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a b s t r a c t 

Packet classification (matching) is one of the critical operations in networking widely used in many dif- 

ferent devices and tasks ranging from switching or routing to a variety of monitoring and security appli- 

cations like firewall or IDS. To satisfy the ever-growing performance demands of current and future high- 

speed networks, specially designed hardware accelerated architectures implementing packet classification 

are necessary. These demands are now growing to such an extent, that in order to keep up with the ris- 

ing throughputs of network links, the FPGA accelerated architectures are required to perform matching of 

multiple packets in every single clock cycle. To meet this requirement a simple replication approach can 

be utilized – instantiate multiple copies of a processing pipeline matching incoming packets in parallel. 

However, simple replication of pipelines inseparably brings a significant increase in utilization of FPGA 

resources of all types, which is especially costly for rather scarce on-chip memories used in matching 

tables. 

We propose and examine a unique parallel hardware architecture for hash-based exact match classifica- 

tion of multiple packets in each clock cycle that offers a reduction of memory replication requirements. 

The core idea of the proposed architecture is to exploit the basic memory organization structure present 

in all modern FPGAs, where hundreds of individual block or distributed memory tiles are available and 

can be accessed (addressed) independently. This way, we are able to maintain a rather high throughput 

of matching multiple packets per clock cycle even without fully replicated memory resources in matching 

tables. Our results show that the designed approach can use on-chip memory resources very efficiently 

and even scales exceptionally well with increased capacities of match tables. For example, the proposed 

architecture is able to achieve a throughput of more than 2 Tbps (over 3 0 0 0 Mpps) with an effective 

capacity of more than 40 0 0 0 IPv4 flow records at the cost of only a few hundred block memory tiles 

(366 BlockRAM for Xilinx or 672 M20K for Intel FPGAs) utilizing only a small fraction of available logic 

resources (around 68 0 0 0 LUTs for Xilinx or 95 0 0 0 ALMs for Intel). 

© 2019 Published by Elsevier B.V. 
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. Introduction 

Computer networks and their infrastructure are required to be

onstantly faster and faster as users want to transfer more data.

he ever-increasing capacity of network links leads to a need for

ll network devices and systems to speed up their packet process-

ng. Even the most powerful current processors are not able to rea-

onably cope with network traffic on 100 Gbps links. In order to

chieve wire-speed processing with a throughput of 100 Gbps and
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ore, network systems have to utilize hardware accelerated FPGA

r ASIC technology. The FPGA acceleration provides high perfor-

ance and is highly configurable (flexible) as well. The flexibility

s essential for any practical network system because traffic pro-

essing is changing with the introduction of every new protocol,

pplication or service. Therefore, 40 Gbps and 100 Gbps network

nterface cards with FPGAs (also known as Smart NICs) started to

e recently deployed to data centers as hardware platforms for the

cceleration [1] and will be probably more and more frequently

sed in the future. 

Flexible network traffic processing can be easily described in

he P4 high-level language [2] . Furthermore, this description can

e automatically mapped directly to a high-throughput packet pro-

essing architecture for an FPGA hardware accelerator [3,4] . The P4
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language has been originally designed at Stanford University in or-

der to enable protocol, vendor and target independent definitions

of packet processing. One of the integral parts of the P4 language

specification [5,6] is the utilization of match/action tables as a ba-

sis to control processing of each input packet. 

The core functionality performed by the match/action tables is

packet classification in various forms. During the classification pro-

cess, packets are matched against a set of rules, which are usu-

ally defined by exact values, ranges or prefixes of a few selected

packet header fields. Generally, the performed classification is a

mathematical problem of a multidimensional range search. Due to

the large ruleset size and complexity of rules, it is rather difficult

to perform matching at such rate that is sufficient for wire-speed

processing of high-speed network data. Therefore, many different

hardware architectures have been designed to accelerate packet

classification [7–13] . 

To achieve wire-speed 100 Gbps throughput, it is necessary to

process every incoming packet only in 6.7 ns, because the short-

est 64 B Ethernet packets can arrive within such small time inter-

vals. The time to process a packet corresponds to a 150 MHz clock.

It consequently means that multiple packets have to be processed

within each clock cycle to achieve wire-speed 400 Gbps or 1 Tbps

packet processing if the frequency can not scale over 500 MHz.

FPGAs are not ready for such high frequency, especially if large

data widths are used to transfer packet data. Therefore, the pro-

cessing throughput is usually increased simply by the utilization

of multiple processing pipelines in parallel [14,15] , which require

multi-port memories or memory replication. Unfortunately, both

approaches significantly reduce throughput scalability at 400 Gbps

or 1 Tbps fast links. 

Therefore, in this article, we focus on the feasible design of a

new hardware acceleration technique for packet classification with

efficient utilization of on-chip memory resources to achieve high-

speed network traffic processing. We introduce a general novel

hardware architecture that is able to scale the throughput of P4

match/action tables to more than 2 Tbps (over 3 0 0 0 Mpps) on

current FPGAs from both major vendors (Xilinx as well as In-

tel), while memory replication is significantly reduced compared

to other approaches. The proposed concept is compared with

a simple pipeline/memory replication scheme and several pos-

sible optimizations are introduced. The proposed architecture is

further evaluated using various backbone network traffic traces

and shown to maintain its high performance even in realistic

deployment. 

2. Related work 

There is a lot of published research in the area of packet clas-

sification with many completely different approaches described in

individual papers. Some of them focus on being as general as pos-

sible, supporting packet classification in multiple different dimen-

sions or supporting different types of match strength such as range

lookups, ternary matching or longest prefix match (LPM). However,

the only way how to scale most of the published approaches for

higher throughputs is to utilize multiple copies of the same archi-

tecture operating in parallel. The problem of effective scaling to

multiple matches per clock cycle is not properly addressed. 

Packet classification based on bit-parallelism (or bit vectors,

BV), proposed by Lakshman et al. [16] , is a practical implementa-

tion that leverages the fact that rule updates are infrequent com-

pared to search operations. The algorithm works in two stages. In

the first stage, multiple parallel searches are carried out, each of

them limited to only a single (different) dimension of the clas-

sification. Each of these parallel searches results in a bit vector

that represents which rules were matched (in the given dimen-

sion). This means that each bit of these vectors corresponds to
ne record in classification ruleset, therefore their width is given

y the number of rules used. A bit is set to logical one if a cor-

esponding rule is matched in a given dimension and is reset to

ogical zero otherwise. After this stage, each bit vector represents

 subset of rules that were matched in a given dimension. Then

he second stage has to find an intersection of the sets matched

ithin single dimensions. Since these sets are represented as bit

ectors finding the intersection is reduced to bitwise AND opera-

ion among the bit vectors. The main problem with this approach

s the width of bit vectors which increases with the number of

ules. Song et al. [17] presented architecture that combines bit vec-

or approach with TCAMs. The architecture uses TCAMs for lookups

ithin dimensions that require exact or prefix matches and tree-

itmap implementation of the BV algorithm for source and desti-

ation port lookups. This architecture is optimized for classification

ased on network flow 5-tuples (source IP address, destination IP

ddress, source port, destination port, and L4 protocol), therefore it

s not very flexible and was not shown to have the ability to scale

o support different header fields. 

Several different approaches supporting multiple dimensions

re described in [18] . A grid of Tries extends standard Trie to

wo dimensions however, it is not easily extensible for more di-

ensions than two. General solution using cross-products is more

romising, but with no further optimization uses up way too much

emory and resulting cross-products are quite large. Other trie-

ased algorithms scale poorly with the increasing number of di-

ensions. Additionally, these algorithms need great amounts of

emory and cannot be easily scaled to higher throughputs. 

Another group of approaches to classification tries to utilize ar-

hitectures based on the construction of decision trees. Many of

hese algorithms are not designed with FPGA implementation in

ind, however, some of them can be bent to be efficiently mapped

nto FPGA structure. HiCuts [8] and HyperCuts [9] are examples of

uch algorithms. The main idea is to progressively cut the whole

earched space represented by classification dimensions into small

nough parts (usually representing 1 or only a few rules). Different

euristics can be used to decide how to cut the space efficiently

ut, resulting trees tend to have many nodes. Additionally adding

r removing rules leads to the need for rebuilding of the whole

ree. 

Prasanna et al. [19] pushed the idea of constructing decision

rees even further. They have observed that HyperCuts and similar

lgorithms do not efficiently deal with rules that have too much

verlap with each other. In such cases, many rules need to be du-

licated and the resulting tree (hence required memory) can ex-

lode exponentially with the number of dimensions. To mitigate

his issue, a decision forest is introduced. A ruleset is split into

ubsets and smaller decision trees are built for each of these sub-

ets. Rules within each subset are chosen so that they have as little

verlap as possible and that they specify nearly the same dimen-

ions. Additionally, two other techniques are used to optimize Hy-

erCuts algorithm. Rule overlap reduction stores rules that should

e replicated in a list in each internal node instead of actually

eplicating it into all the child nodes. Precise range cutting is used

o determine cutting points which will result in the least number

f rule duplications instead of deciding the number of cuts for a

eld. 

Taylor et al. [7] introduced Distributed Crossproducting of Field

abels (DCFL). This algorithm decomposes classification into single

imensions and can be easily parallelized. Moreover, it uses Bloom

ilters [11] and labeling technique to lower memory and logic re-

uirements. The architecture was shown to be scalable even to

igher throughputs [20] , but only by using multiple copies of the

emories. Because of these key features, the architecture can be

uplicated to increase throughput while still maintaining reason-

ble usage of on-chip memories and logic. This idea was pushed
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Fig. 1. The memory architecture of simple replication approach using memory tiles 

on FPGA. 
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Fig. 2. The top-level architecture of the proposed optimization approach. 
urther to build scalable architecture through memory duplication

n [20] . 

In many cases, exact match packet classification is sufficient.

his is prevalent mainly when IP flows are concerned. Effective

pproaches to exact match packet classification are usually based

n some form of hash tables. A sophisticated way of implement-

ng hash tables is cuckoo hashing principle [21] . The main idea of

uckoo hashing is to increase the efficiency of memory utilization

n the hash table by multiple hash functions/tables utilized in par-

llel. Each table uses one of the different hash functions for in-

exing its elements. Thanks to this, if a new element cannot be

nserted into the first hash table because of a conflict with an al-

eady existing item, it can still be inserted into one of the other

ables through a different hash function (into a different position).

ven when the element cannot be inserted into the correct posi-

ion in any of the tables it can still be inserted by force, pushing

ne of the previous occupants out of the tables. The previous oc-

upant can then be reinserted into the tables using the same ap-

roach – either finding an empty position in one of the tables or

wapping place with another item, which then must be reinserted.

he reinsertion process can have multiple iterations with different

tems. Using more parallel tables and mainly the described rein-

ertion mechanism allow the cuckoo hashing to keep high lookup

peed while decreasing the number of unresolvable conflicts and

herefore increasing the effective capacity. 

The cuckoo hashing approach is well suited for hardware be-

ause each hash table can work in parallel [22,23] . These published

mplementations offer throughputs up to around only 100 Gbps,

hile in this paper we aim at achieving over 1 Tbps. Cuckoo hash-

ng based packet classification is also effectively used to monitor

r analyze network traffic in the idea of Software Defined Monitor-

ng (SDM) [24] . Here, an external memory is utilized and achieved

hroughput is again shown to be sufficient only for up to 100 Gbps.

. Architecture 

We aim to design an architecture for exact match packet clas-

ification with the main goal being to accommodate very high

hroughputs in the magnitude of multiple terabits per second. One

f the ways to achieve this performance would be to increase the

lock frequency of basic cuckoo hashing architectures described at

he end of the previous section. However, this is possible to do

nly until a certain point, after which the frequency cannot be fur-

her increased due to the limitations of current FPGA technology.

he better way to increased throughput is through the design of a

ew architecture of cuckoo hashing that can carry out more than

ne rule lookup per each clock cycle. This would naturally require

ore than one memory access per clock cycle to each utilized hash

able during the matching process. Current FPGAs from both ma-

or vendors (Xilinx and Intel) have on-chip tiles of distributed (in

ogic) and block memories. Block memory tiles are the main type,

o we are going to focus on them in the following descriptions and

valuations. However, all of the proposed approaches are general

nough to apply to distributed memories as well. 

In cases of both vendors, the block memory tiles have two in-

ependent read ports, therefore we can easily perform two mem-

ry accesses per clock cycle with no replication, and therefore, no

dditional cost. If we want to enable more than 2 accesses per

lock cycle to further increase the throughput, we can simply repli-

ate the memories. An example with 4 accesses is illustrated in

ig. 1 . Two of the four accesses are mapped into the first copy

f the memory and the remaining two are mapped to the other

opy. This approach is not particularly efficient and do not scale

ell because we need to double the on-chip memory utilization

n order to achieve doubled throughput. However, we can lever-

ge the internal structure of FPGAs and their organization of block
emory into independent tiles. A single copy of a larger mem-

ry is internally usually composed of more than one block mem-

ry tile (B blocks). More specifically, on current Xilinx FPGA chips

ach BlockRAM tile [25] can be used as 36 b wide dual port mem-

ry with 1 024 entries and on current Intel FPGAs each M20K tile

26] can be similarly used as 20 b wide dual port memory with

 024 entries. Larger memories are then constructed utilizing mul-

iple BlockRAM or M20K tiles organized into several rows (more

ntries) and columns (wider data). For example, Fig. 1 corresponds

o three columns wide (up to 108 b on Xilinx or 60 b on Intel) and

our rows high (up to 4 048 entries) memory. 

.1. Proposed approach 

Because there already are multiple rows of memory tiles in

ach hash table we should be able to perform more than just two

emory accesses per clock cycle. In an ideal case, we can, in fact,

o two accesses per cycle independently to each of the individ-

al rows of the table. This fact can be leveraged as a key feature

o optimize the previously mentioned simple replication approach.

herefore, we propose an FPGA matching architecture of cuckoo

ashing shown in Fig. 2 . The proposed approach is also easily ap-

licable to any other kinds of hash tables, but we choose cuckoo

ashing as it is the most effective existing hashing scheme to date.

An architecture able to carry out up to 2 parallel lookups per

ycle with cuckoo hashing using 3 different hash functions/tables

s shown in the Fig. 2 . The memory blocks used here are similar

o the blocks from Fig. 1 – meaning that they internally consist

f multiple independent rows of block memory tiles. Hash func-

ions are computed individually for each lookup key (H blocks)

nd are connected to a distribution logic (D blocks). There is one

istributor block for each hash function/table of the cuckoo hash-

ng. The distributor consists primarily of logic that maps the re-

uested memory accesses into corresponding table rows given by

 few most significant bits of their hash values (memory address)
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and distributes them onto available block memory ports for each of

these rows. On the other side of the memory, it correctly forwards

data read from each memory row and port to the corresponding

comparator logic ( = and OR blocks). The basic idea in this con-

cept is to replicate memory fewer times than in the case of a sim-

ple approach (fewer replicas than required parallel packet lookups)

as we can perform multiple accesses per clock cycle into the ta-

ble as long as the hash functions are pointing into different rows

of memories. Additionally, memory can also be replicated here to

enable more than two parallel access ports for each row. 

The main function of distributor blocks is to determine which

row of the block memory tiles is accessed by which lookup and

set the corresponding control logic in a correct way to carry out

all the parallel lookups that are not in conflict with one another.

Access conflicts, in this case, mean that there are more lookups

wanting to access the same row of one table than there are avail-

able read ports in this row. Note that since the memories can still

be replicated the number of available access ports might be higher

than two. All the lookups that could not be carried out in the first

cycle will be carried out in consecutive cycles until all of the re-

quested lookups are finished. This means that when access con-

flicts occur, the lookup of all of the inputs will take more than one

cycle. However, the basic idea is that the relative number of occur-

ring conflicts (or rather the number of additional cycles needed) is

pretty low, especially for higher numbers of memory rows (larger

tables), thus reducing total throughput only very slightly. Com-

pared to that, the saved memory resources thanks to no or weaker

replication are considerable. 

As an example, let us consider a case where four packet lookups

each clock cycle are needed, there are four rows of block memory

tiles, and only two access ports per memory (meaning no memory

replication). No access conflicts will occur unless at least three of

the four parallel lookups need to access the same memory row. In

the case of the conflict, two of the conflicting accesses can still be

carried out together with all of the others that are not in conflict.

The last one or two accesses from the conflicting group has to be

carried out in the next clock cycle. Even if there is a conflict every

time, we still achieve the same throughput as the simple archi-

tecture with the same memory requirements (replication factor).

In the example without replication, we would do four lookups in

two clock cycles which is the same as the simple approach with

two lookups each cycle. This shows that at worst the proposed

approach is on par with the simple replication scheme in terms

of both memory and throughput. However, the key idea is that

the conflicts do not occur each time and are actually pretty infre-

quent (20% conflict chance in this example), therefore the actually

achieved effective throughput is considerably better. 

Another important feature of the proposed architecture is that

we can easily achieve independence in the access conflict handling

for each parallel hash table used in the cuckoo hashing scheme. A

distributor corresponding to a single hash table does not need to

wait until all the other distributors carried out all their lookups.

Instead, there are small input and output buffers that are used to

synchronize the access requests and their results (denoted by small

squares on corresponding connections in Fig. 2 ). This makes the ar-

chitecture a lot more efficient as the throughput is not governed

by the probability of no conflicts in all of the tables together but

rather by the probability that there are no conflicts in every single

table independently. This independent probability is a lot lower es-

pecially when a higher number of parallel hash tables are used. 

Indeed, the described buffers require some additional FPGA re-

sources. Moreover, the distributors themselves introduce some ad-

ditional logic overhead compared to simple replication approach.

In the simple approach, there is a dedicated memory port for each

parallel lookup, therefore hash functions (inputs) and comparison

logic (outputs) can be directly connected to appropriate memories
ithout any distributors. The core of each distributor is a simple

lanner, that can evaluate and resolve access conflicts – basically

 group of encoders and decoders to select a valid access plan for

ach clock cycle. The planner controls two columns of multiplex-

rs: the first to route planed access requests to correct memory

ows/ports on the input and the second to pair read data with

heir corresponding requests on the output. Additional registers

re also used to thoroughly pipeline the distributors for better fre-

uency and to correctly synchronize all operations together. The

otal FPGA logic overhead of the distributors and buffers around

hem is expected to be manageable compared to complex hash-

ng blocks which are usually considerably large and contain critical

aths. 

During the resolution of access conflicts, the available access

orts of memories are currently not fully utilized in the added

lock cycles. For example, if only one lookup cannot be carried out

n the first cycle it has to be carried out in the second (additional)

ne. Reserving one full clock cycle just for one extra lookup is in-

fficient. A more reasonable approach would be to already com-

ine the extra lookup cycles with some of the lookups needed for

he next set of input keys. This approach requires the buffer ar-

hitecture to be much more complex as it needs to be able to ef-

ciently plan the memory accesses across multiple lookup cycles.

his operation is not trivial and would require considerable addi-

ional resources and create long critical paths. Furthermore, the re-

ource increase is not exculpable as after our initial experiments

e concluded that for the most interesting cases (the ones where

he benefits of the proposed architecture are the best) the change

ould increase the throughput by only a minuscule margin. There-

ore the rest of this article does not use architecture with this kind

f optimization. 

.2. Analysis of access conflicts occurances 

Using some basic probabilities and statistics, it is possible to

heoretically analyze the expected probability of access conflict oc-

urrences and thus derive the achievable throughput of the pro-

osed architecture with any given parameters. There are three

ain parameters of the architecture that influence the probability

f conflicts: 

1. r as the number of rows of block memory tiles in each table,

2. l as the number of parallel lookups per clock cycle corre-

sponding to the number of inputs, 

3. and p as the number of available access ports for each table

row. 

Using these three parameters we can now examine the conflict

robabilities and their effect on the achieved throughput. 

The situations when a single lookup needs to access one spe-

ific selected row of memory tiles and that it needs to access any

ther row have mutually complementary probabilities: 

 s (r) = 

1 

r 
(1)

 ns (r) = 

r − 1 

r 
(2)

Now for any given number n , the probability that exactly n

ookups out of total l in one cycle need to access one selected row

ut of r rows can be computed as a product of: the probability

hat selected n lookups access selected row, the probability that all

he other l − n lookups do not access this row, and the number of

ombinations by which it is possible to position those n colliding
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ookups into all l inputs. The corresponding equation is therefore: 

 s (n, l, r) = (P s (r)) n ∗ (P ns (r)) l−n ∗
(

l 

n 

)

= 

(
1 

r 

)n 

∗
(

r − 1 

r 

)l−n 

∗
(

l 

n 

)
(3) 

o get the probability that any of the memory rows will have ex-

ctly n lookups mapped onto it we simply multiply the previous

robability from Eq. (3) by the total number of rows: 

 a (n, l, r) = P s (n, l, r) ∗ r = 

(
1 

r 

)n −1 

∗
(

r − 1 

r 

)l−n 

∗
(

l 

n 

)
(4)

Finally, the probability that more than n lookups out of all l in

ne cycle need to access the same row out of r can be approx-

mated simply as a sum of the probabilities from Eq. (4) for all

alues higher than given n : 

 c,a (n, l, r) = 

l ∑ 

i = n +1 

P a (i, l, r) = 

l ∑ 

i = n +1 

(
1 

r 

)i −1 

∗
(

r − 1 

r 

)l−i 

∗
(

l 

i 

)
(5) 

However, this sum does not account for the fact that solution

paces described by some of the summed probabilities can have

on-empty intersections with one another (some conflict variants

re counted multiple times). To counter this fact we would have to

ompute probabilities that exactly n lookups will be mapped onto

he same row while there is no other row with n or more lookups

apped onto it. This would lead to exponentially more complex

ested sums. However, the approximate results achieved by the

q. (5) are always higher than the actual correct results, which in

urn means that they would actually give us more pessimistic re-

ults for the throughput. Additionally, this approximation is very

recise for results under configurations that are the most interest-

ng for us. For example, it is absolutely precise if p is higher or

qual to l /2, since in this case, it is impossible for two different

ows to have more than p accesses mapped at the same time. 

The probability approximated by the Eq. (5) essentially gives

he chance that there will be a conflict for a matching architecture

ith l parallel lookups, r rows of block memory tiles and p = n

orts for each row. However, not all occurring access conflicts are

qual when it comes to their resolving and thus effect on the to-

al achieved throughput. For example, if p = 2 and 6 lookups need

o access the same row it takes 3 cycles to carry out all of them,

hile when only 4 lookups need to access the same row only 2

ycles are needed. To extend our equations and reflect this we in-

roduce weights into the sum: 

 w,c (n, l, r) = 

l ∑ 

i = n +1 

w (i, n ) ∗ P a (i, l, r) (6)

The weight w here represents the number of cycles needed to

esolve the conflict in each case and can be easily computed as: 

 (i, n ) = 

⌈
i 

n 

⌉
(7)

Finally, we need to do one last thing in order to get how many

imes more cycles (on average) are needed compared to the case

ithout any conflicts. The Eq. (6) sums only weighted probabilities

f conflicts. We need to also add the probability that there will be

o conflict at all. Weight corresponding to no conflict is obviously

 since even when there is no conflict we still need one clock cy-

le to carry out all the lookups. So the coefficient that gives us the

ation between needed cycles (achieved throughputs) between our

rchitecture and ideal case without conflicts is computed as fol-

ows: 

(n, l, r) = c w,c (n, l, r) + (1 − P c,a (n, l, r)) (8)
 t  
In conclusion, the proposed optimized architecture with l

ookups, r block memory rows, and p ports can achieve through-

ut equivalent to an average of m lookups per cycle, where: 

 = 

l 

c(p, l, r) 
(9) 

Thanks to the previously mentioned buffers there is no need

o include number of parallel hash functions (hash tables) in the

uckoo hashing scheme into our computations. Lookup processing

nd memory accesses corresponding to each hash operate inde-

endently of one another and their results are only synchronized

fterward via buffers. This means that if there is a collision in

emory tied to one hash another hash with no collision does not

ave to wait. 

. Results 

Based on the previously described mathematical analysis, the

xpected throughput results in this section are obtained. Then

hey are confirmed through extensive experiments with the de-

igned architecture using real network traffic traces. The architec-

ure is implemented in VHDL with configurable parameters like

he number of hash tables, their sizes, level of memory replica-

ions, and the number of lookups per clock cycle. Measurements

f FPGA resources requirements for Xilinx are based on implemen-

ations for the UltraScale+ XCVU9P chip [25] using Vivado 2018.2

ool and for Intel are based on implementations for the Stratix10

SG280HU2F50E1VG chip [27] using Quartus Prime 18.1 Pro. The

rchitecture is able to achieve working frequency ( F max ) of more

han 400 MHz for every evaluated configuration on both chips.

herefore, all throughput results in the following part of this sec-

ion are shown for 400 MHz clock frequency. We evaluated the ar-

hitecture for 32 b wide arbitrary data (action) and in two differ-

nt settings of key width: a 104 b wide key that is sufficient for

he classification of standard IPv4 flows (5-tuple), and 296 b wide

ey for simmilar IPv6 flow matching. There are 3 main parameters

hat are worth exploring in the obtained results – effective rule ca-

acity, resource requirements (block memory tiles, logic cells), and

chievable throughput (lookups per cycle, Mpps, Gbps). 

We start the evaluation with achievable capacity analysis of the

roposed extended cuckoo hashing scheme. Then continue with

esource utilization and scaling for different configurations of the

esigned atchitecture. And finally, take a closer look at achievable

hroughputs in real network deployment. 

.1. Effective rule capacity 

To examine the effective capacity of the proposed architecture,

easurements in several configurations are performed with ran-

omly generated keys. Different key widths (104 b IPv4 and 296 b

Pv6 5-tuple), numbers of block memory rows (2, 8, and 16), and

umbers of hash functions (2, 3, and 4) are tested. For each con-

guration, results from 1 0 0 0 0 0 0 independent runs are obtained,

here each run consists of inserting new rules one by one into

he cuckoo hash tables until the first unsuccessful attempt occurs.

ig. 3 illustrates the aggregated results of these measurements. The

raph shows the probability of achieving at least given rule capac-

ty utilization, e.g. in around 85% of performed tests with two ta-

les (solid line) the achieved utilization is at least 50% of total ca-

acity. More specifically, the depicted results are for IPv4 5-tuples

nd 8 memory rows (8 192 items) per table. However, changing

he key width has no effect on the results at all and changing the

umber of rows (items) per table has only a negligible effect. The

nly parameter significantly influencing the effective capacity of

he architecture is the number of parallel hash functions – with
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Fig. 3. Achieved memory capacity utilization for a different number of hash tables 

(functions). 
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99% probability 40% utilization is achieved with 2 functions, 90%

utilization with 3 functions and even 97% with 4 functions. 

These results are consistent with similar measurements pre-

sented for general cuckoo hashing scheme in published papers

like [23] . Therefore, we can conclude that the proposed optimized

memory replication scheme has no negative effects on the achiev-

able rule capacity compared to standard cuckoo hashing. Table 1

shows different capacities of the proposed architecture based on

the number of hash functions and the number of block mem-

ory rows for each table. Total (theoretical) capacity and achiev-

able effective capacity based on the measured results are shown.

Table 1 is primarily used to illustrate the capacities of the config-

urations that are considered in the following evaluation. Note that

configurations with two tables are not considered because of the

poor achieved utilization. 

4.2. Achievable throughput and required resources 

The main goal of the proposed approach is to save FPGA mem-

ory resources while maintaining high throughput. Therefore, we

start the evaluation with Fig. 4 that captures the relations between

throughputs and memory tiles utilizations for the designed archi-

tecture with three hash functions in different configurations. Each

graph shows results for different FPGA vendor (Xilinx in the top

half, Intel in the bottom half) and different matching key width

(IPv4 5-tuple on the left and IPv6 5-tuple on the right). Outer

shape of points (square, circle, triangle) is used to distinguish dif-

ferent numbers of memory rows (last 3 entries in the legend),

while different inner shapes of points (middle 3 entries in the

legend) are used to represent how many lookups per clock cycle

(number of inputs l ) the proposed architecture supports. Finally,

individual lines in the graphs represent throughput and memory

requirements of the simple memory replication approach for a dif-

ferent number of block memory rows used (distinguished by line

type from the first 3 entries in the legend). The number of rows is
Table 1 

Capacities of the proposed architecture for different parameters. 

Hash functions Memory rows Total capacity Effective capacity 

3 1 3 072 2 765 

3 2 6 144 5 530 

3 4 12 288 11 059 

3 8 24 576 22 118 

3 16 49 152 44 236 

4 1 4 096 3 973 

4 2 8 192 7 946 

4 4 16 384 15 892 

4 8 32 768 31 784 

4 16 65 536 63 569 
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s  
irectly tied to the capacity of the architecture as shown in Table 1 .

hese results of the simple replication scheme (lines) form a base-

ine for evaluation of the designed optimization approach. 

Results of the proposed memory-optimized architecture are

hown as individual points in the graphs. The parameters of each

valuated architecture are given by outer and inner shape of the

oint according to shown legend (e.g. ‘x’ in a square means 4 rows

nd 8 lookups). The proposed approach is clearly better in terms of

sed memory for each given throughput achieved as in each graph

ll points are below lines that correspond the appropriate number

f rows. Obviously, when there is only one row of block memories

t is impossible to employ our optimization and gain something.

he results for one and two rows of block memories are not shown

n the figure for the sake of better clarity. However, even when

nly two rows of block memories are used we can already achieve

etter results. For example, using the optimized architecture with

0 lookups we achieve up to 48.5% increase in throughput com-

ared to the simple approach with the same memory requirements

nearly 3 lookups per cycle versus only 2). 

When more than two block memory rows per table are used

he gains from the proposed approach become even better. With

6 rows (dotted line and triangle points) it is possible to achieve

early twice the throughput without any memory duplication even

hen using the proposed architecture with only 4 lookups (cross).

f we use versions with 8 (‘x’) or 10 (star) lookups per cycle the

peedup is even further amplified and nearly 7 or 7.5 times higher

hroughput is reached with no additional memory requirements.

dditionally, when utilizing two replicas of memory, the proposed

pproach can achieve nearly the full throughput of 10 lookups per

ycle. In other words, we achieve 99.7% of throughput with only

0% of used memory compared to simple replication. The observed

ncrease of speedup for architectures with more rows in their ta-

les is expected. Because more rows mean a higher chance for the

ookups to be better spread out between different rows and thus

he probability of access conflicts occurring during matching de-

reases. 

Comparing individual graphs in Fig. 4 to one another, we notice

hat they all look very similar. The only real difference is the scale

f their y-axes (memory requirements), while all the general char-

cteristics described above remain the same. Therefore, the mem-

ry savings offered by the proposed architecture scale comparably

ell regardless of key width and FPGA vendor. Furthermore, the

otal required memory seems to scale linearly with configured key

idth as 2.5 × increase in memory utilization is evident between

rchitectures with 104 b wide IPv4 flow identifier (left half) and

96 b wide IPv6 flow identifier (right half). Finally, visible nearly

 × increase in the number of utilized memory tiles between In-

el (bottom) and Xilinx (top) is due to different sizes of one tile

etween the two FPGAs – Intel M20K tile is smaller at 20 Kb

20 b × 1024 items) while Xilinx BlockRAM tile has 36 Kb (36 b

1024 items). The actual size of the utilized memory in bytes is,

herefore indeed, comparable on both devices. 

The efficiency of the proposed memory optimization approach

s not affected by the number of used hash functions, they only

ffect the effective rule capacity. This can be clearly seen by com-

aring Fig. 5 with the appropriate graph from Fig. 4 . Fig. 5 shows

he relation of utilized memory and achieved throughput for dif-

erent architecture configurations with 4 hash functions on Xilinx

PGAs using IPv4 flow identifiers. Graphs for Intel FPGAs and IPv6

ow identifiers are now omitted as they are again nearly identical

o one another. Graphs shown by Figs. 4 and 5 are pretty much the

ame only shifted slightly along the y-axis. This increase in mem-

ry requirements is offset by the higher capacity of the architec-

ures with 4 hash functions (see Table 1 ). 

Results about memory requirements presented so far might

uggest that architectures with more lookups per cycle (inputs) are



M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950 7 

Fig. 4. The relations between utilized memory tiles and achieved throughput for different FPGAs and key widths when using 3 hash functions. 

Fig. 5. The relation between utilized memory and achieved throughput for Xilinx 

FPGAs and IPv4 flows when using 4 hash functions. 
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lways better. However, this is not the case when it comes to uti-

ized on-chip logic resources. Each additional lookup port needs its

wn hash function implementation, independent buffers, and gen-

rally leads to larger distributors. The relation between utilized on-

hip logic, more specifically required LUTs or ALMs, and through-

ut for 3 hash functions is illustrated in Fig. 6 . Each graph shows

he results for different FPGA vendor and different matching key

idth and the relations are again similar. We can see that if we

se an architecture with for example 10 lookups (star) the logic

equirements go up together with the level of memory duplica-

ion and the achieved throughput. Memory-optimized architecture

ith 10 lookups, 16 rows and 4 memory ports (two memory repli-
as) achieves 99.7% of throughput requiring only 40% of memory

t a cost of around 466% of LUTs compared to the simple approach

ith 10 lookups and 16 rows regardless of device and key width.

rom a different point of view, the optimized architecture with

0 lookups, 2 rows and 2 memory ports (no replication) achieves

8.5% increased throughput requiring the same memory at a cost

f at most 244% increase in LUTs/ALMs compared to the simple ap-

roach with 2 lookups and 2 rows. However, we argue that the de-

reased memory requirements or increased throughput, depending

n the way we look at it, is a favorable trade-off for the increase

n on-chip logic. In many cases, even the increased logic require-

ents are still feasible for current FPGAs (only a few percents of

he total available), while increasing the throughput without the

eed to replicate memories can prove to be more critical. 

Finally, let’s analyze the proposed memory optimized architec-

ure from a different point of view. What is the best achievable

esult if we want to reach a given throughput goal? Figs. 7 and

 illustrate memory requirements of the best configurations of

he proposed approach (best proposed) compared to the baseline

iven by the simple memory replication (simple) when reaching a

hroughput of at least 800 Gbps or 2.4 Tbps respectively. The best

onfiguration is the one that requires the least memory while still

atisfying the minimal throughput threshold. This obviously means

hat actually achieved throughputs of compared simple and opti-

ized configurations are not the same. For better comparison, we

an leverage the fact that memory of the simple approach scales

inearly with throughput and adjust the required memory to the

oint where the simple approach has exactly the same throughput

s the optimized (adjusted simple). We can see that the proposed

pproach becomes more and more effective as the total capacity

f the cuckoo hash table (number of rows) rises. For 2 rows it

s possible to achieve the same throughput as simple replication

ith somewhere between 67% and 80% of required memory (af-

er adjustment), while for 16 rows only between 25% and 40% of
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Fig. 6. The relation between utilized logic and achieved throughput for different FPGAs and key widths when using 3 hash functions. 

Fig. 7. Memory requirements comparison when achieving at least 800 Gbps. 
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Fig. 8. Memory requirements comparison when achieving at least 2.4 Tbps. 
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Fig. 9. Illustrations of examined scenarios with worst-case packet window and 

average-case byte window. 
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emory is needed. To be more precise the most significant fac-

or that governs memory savings is the ratio between the number

f rows (capacity) and required throughput (parallel lookups). The

igher the capacity the better the results become as the lookups

an be spread among more rows. This is true regardless of key

idth and FPGA vendor. 

.3. Evaluation on real network traffic 

The previous results are obtained under a premise that the net-

ork traffic, or more specifically packets and their identifiers used

n the matching, have random and evenly distributed values. How-

ver, this is not always the case in real networks. Most likely there

s a multitude of ongoing sessions between different devices each

omposed of multiple packets that are transferred in short bursts.

he burstiness of the traffic from the same flow means that the

robability of multiple packets accessing the same row of block

emories might be higher than what we obtained through math-

matical analysis. To better understand performance limits of the

roposed approach we, therefore, analyze achieved throughput on

eal network traces. We mainly focus on two scenarios. 

The first examined scenario uses only packet identifiers ex-

racted from the network traces and assumes that each packet has

he shortest possible length of 64 B. Here, only the distribution of

he matching identifier is taken into account and therefore, only

asic patterns found in the real network traces are demonstrated.

or the matching architecture, this is the worst-case scenario un-

er the full network load, because the maximal possible amount of

ackets needs to be classified in each and every clock cycle. In the

econd scenario, we also take into account another characteristic

f the network traffic – actual packet length. Longer packets mean

hat within the same time window (one clock cycle) fewer packets

eed to be actually classified and therefore there is a lower chance

f access conflict occurring. This represents the average-case on a
eal network more closely. However, the exact timing of packet ar-

ivals is still ignored to simulate full network load. 

Both scenarios are better illustrated by Fig. 9 . In the worst-case

cenario (top part), there is a window of l packets processed in

very clock cycle because we assume each packet to be of a mini-

al length of 64 B. Where l is the number of parallel lookups sup-

orted by the architecture. In the average-case scenario (bottom

art), we instead have a window of l ∗64 bytes as the amount of

ata received for processing in each clock cycle. If a packet does

ot fully fit into a single window and is spread among multiple, it

ill be classified in the last window it occupies. The architecture

till needs to classify all of the packets ending in a single window

ach clock cycle or add additional cycles if access conflicts occur.

or example in the worst-case scenario, packets 1 to 4 arrive in

he first window (first clock cycle), packets 5 to 8 in the second,
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Table 2 

Basic characteristics of capture traffic traces from CESNET network. 

Trace name Packets Bytes Time period Capture time 

meter1 1 000 000 1 081 259 293 1.033 s 11:00 

meter4 1 000 000 791 590 133 1.489 s 15:00 

Fig. 10. Throughput results on real network traces for architecture with 10 lookups 

and 2 × memory replication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Throughput results on real network trace meter4 for architecture with 10 

lookups and different levels of memory replication. 

Fig. 12. Throughput results on real network trace meter4 for architecture with dif- 

ferent numbers of lookups. 
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and so on. In the average-case scenario, packets 1 to 2 arrive in

the first window, packets 3 to 5 in the second, no packets in the

third window, and packets 6 to 8 in the last window. 

Real network traces used for this evaluation were obtained from

the high-speed backbone network managed by CESNET. CESNET is

Czech National Research and Educational Network which has op-

tical links operating at speeds of up to 100 Gbps. This optical

network serves around 20 0 0 0 0 users and routes mainly IP traf-

fic. Data traces were captured at different points of the network

and at different times of the day. The captured traces contain both

IPv4 and IPv6 flows, with IPv4 dominating. To support matching of

both IP versions, results for architectures supporting IPv6 5-tuples

are shown and IPv4 addresses in rules are extended to apropriate

width. In the following evaluations two traces are used: meter1 and

meter4 . Their basic characteristics are shown in Table 2 . 

Basic look at the achievable throughput under realistic deploy-

ment is provided in Fig. 10 . It shows achieved throughput for dif-

ferent numbers of block memory rows on captured network traces.

A reference throughput for packets with random uniformly dis-

tributed identifiers (results from Section 4.2 ) is shown as well as

measured results using packet and byte windows. On both network

traces, the architecture shows similar behavior. The main things we

can observe is that for the worst-case scenario (packet window)

the throughput is overall lower than in random case and for the

more realistic average-case (byte window) it is always higher than

expected. The interesting fact to notice about the worst-case sce-

nario is that its throughput falls behind the expected values more

and more with the rising number of block memory rows. This be-

havior would suggest a more prevalent occurrence of access col-

lisions than expected. However, if we take into account realistic

packet lengths (byte window) the observed decrease in throughput

is far outweighed by the lower arrival rate of matching requests

into the architecture. 

Fig. 11 shows that the same trends of achieved worst-case and

average-case throughputs can be observed even when we decrease

the level of memory replication. This graph shows a comparison

between the same 2 × replication as used in Fig. 10 and archi-

tecture with no memory replication at all. With decreased replica-
ion levels the results just get shifted a bit towards lower through-

uts, but the observed trends remain the same. Furthermore, if

e change the number of lookups that the architecture can at

ost perform per clock cycle similar trends in the graph arise

gain. Fig. 12 shows a comparison of measured throughputs for

wo architectures that differ only in the number of lookups per

lock cycle. Once again the random data measurement has a higher

hroughput than the worst-case scenario, but average-case still

eats the expectations. Finally, a somehow different picture arises

f we try to classify the captured packets based only on source IP

ddress and not the whole IP 5-tuple. The measured results are

rovided in Fig. 13 . We can see, that the decrease in throughput

or the worst-case scenario is slightly bigger for IP address only

atching than for IP flows matching. This, in turn, would suggest

 higher probability of access conflicts occurrence for less specific

acket identification. 

The above-described reduction of throughput in the worst-case

cenario can be easily explained after further analysis of the oc-

urring access conflicts. In the real network data, the majority of

he conflicts are caused by multiple subsequent packets with ex-

ctly the same identifiers. In evaluated cases belonging to the same

ow or originating from the same network device. The probabil-

ty of this special type of collision does not decrease when we in-

rease the number of block memory rows, because these packets
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Fig. 13. Throughput results for architecture with 8 lookups and no memory repli- 

cation with different keys. 
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eed to access not only the same row but exactly the same item

entry) in each table. However, this special case does not actually

ave to cause an access conflict and stall the pipeline. Although

ultiple lookups need to access the same row, they require ex-

ctly the same entry from the memory. Therefore, this entry needs

o be only read out once and then distributed as a result for all of

he lookups that needed it. This leads to a possible optimization,

here additional logic (simple address comparators) can be added

nto each distributor that handles these types of parallel lookups

nd aggregates them into only one memory access. With this opti-

ization even the worst-case scenario throughput exactly matches

he expected results from Sections 3.2 and 4.2 . This change does

ot pose any significant increase in overall resources and bene-

ts the throughput only under a very specific traffic pattern in

he worst-case scenario. Therefore the actual results for logic con-

umption are left out of this article. 

. Conclusion 

The article presents and examines the design of a novel mem-

ry optimized FPGA architecture for general exact match packet

lassification at very high speeds (400 Gbps and beyond) based on

he cuckoo hashing algorithm. The proposed architecture offers an

asily configurable tradeoff between total achieved throughput, re-

uired on-chip memory, utilized logic resources, and effective rule

apacity with equally favorable scaling on FPGAs from both ma-

or vendors. Thanks to the designed unique memory optimization

cheme, it is possible to implement exact match packet classifi-

ation at very high throughputs even for large rulesets operat-

ng with efficient utilization of available memory. There are sev-

ral ways in which the architecture can be effectively used – ei-

her to maximize throughput and rule capacity on devices with

imited memory resources or to minimize memory requirements

hile satisfying needed rule capacity and throughput. 

Thorough experimental measurements of the proposed simple

nd optimized architectures of cuckoo hashing presented in the ar-

icle show several interesting facts. First of all the proposed mem-

ry optimized architecture is considerably more efficient than a

imple replication approach presented in the related works while it

till retains exactly the same effective rule capacity as the original

uckoo hashing approach. For appropriate configurations, we are

ble to achieve up to 99.7% of the original throughput for only 25

o 40% of utilized memory resources compared to the simple repli-

ation. The achieved memory savings gets higher when hash tables
ith larger capacities are used. Thanks to this favorable scaling we

an achieve an unprecedented throughput of 2.4 Tbps with an ef-

ective capacity of over 44 0 0 0 IPv4 5-tuple (flows) rules when

sing on-chip block memories for the cost of only 366 BlockRAM

iles on Xilinx FPGAs or 672 M20K tiles on Intel FPGAs. Similarly,

ven a feasible IPv6 5-tuple matching can be implemented with

he same throughput and capacity at the cost of 882 BlockRAMs

r 1 584 M20Ks. The only downside of the proposed memory op-

imized architecture is the increased requirement of on-chip logic

esources. However, the increase is well within manageable mar-

ins and we argue that the benefits of decreased memory require-

ents and increased throughput outweigh this issue in most prac-

ical cases. Finally, the performance of the architecture is proven

o hold (after the proposed same item access optimization) when

rocessing real network traffic even in the worst-case scenario

hen flooded by the shortest packets and for the average-case, the

otal throughput is even higher than expected. 
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[4] P. Benáček , V. Puš, H. Kubátová, T. Čejka , P4-To-VHDL: automatic generation of
high-speed input and output network blocks, Microprocessors and Microsys-

tems 56 (2018) 22–33 . 

[5] The P4 Language Consortium, The P4 Language Specification: Version 1.0.5,
2018. 

[6] The P4 Language Consortium, P4 16 Language Specification: Version 1.1.0, 2018. 
[7] D. Taylor , J. Turner , Scalable packet classification using distributed crosspro-

ducing of field labels, in: Proceedings of the 24th Annual Joint Conference of
the IEEE Computer and Communications Societies, 2005, pp. 269–280 . 

[8] P. Gupta , N. McKeown , Packet classification using hierarchical intelligent cut-

tings, in: Proceedings of the Hot Interconnects, 1999 . 
[9] S. Singh , F. Baboescu , G. Varghese , J. Wang , Packet classification using multidi-

mensional cutting, in: Proceedings of the Conference on Applications, Tech-
nologies, architectures, and Protocols for Computer Communications, ACM,

New York, NY, USA, 2003, pp. 213–224 . 
[10] H. Lee , W. Jiang , V.K. Prasanna , Scalable high-throughput SRAM-based architec-

ture for IP lookup using FPGA, in: Proceedings of the International Conference

on Field Programmable Logic and Applications, 2008 . 
[11] S. Dharmapurikar , H. Song , J. Turner , J. Lockwood , Fast packet classification us-

ing Bloom filters, in: Proceedings of the 2006 ACM/IEEE symposium on Archi-
tecture for Networking and Communications Systems, ANCS, ACM, New York,

NY, USA, 2006, pp. 61–70 . 
[12] V. Puš, J. Ko ̌renek , Fast and scalable packet classification using perfect hash

functions, in: Proceedings of the 17th International ACM/SIGDA Symposium on
Field Programmable Gate Arrays, FPGA, ACM, New York, NY, USA, 2009 . 

[13] J. Ko ̌renek , V. Puš, J. Blaho , Memory optimization for packet classification al-

gorithms, in: Proceedings of the 5th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, in: Association for Computing

Machinery, Association for Computing Machinery, 2009, pp. 165–166 . 
[14] H. Le , V.K. Prasanna , Scalable Tree-based Architectures for IPv4/v6 Lookup Us-

ing Prefix Partitioning 61 (7) (2012) 1026–1039 . ISSN 0018-9340 

http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0001
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0002
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0003
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0003
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0003
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0003
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0004
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0005
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0005
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0005
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0006
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0006
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0006
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0007
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0008
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0009
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0010
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0010
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0010
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0011
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0012
http://refhub.elsevier.com/S0141-9331(19)30133-4/sbref0012


12 M. Kekely, L. Kekely and J. Ko ̌renek / Microprocessors and Microsystems 73 (2020) 102950 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

a  

g

[15] Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, V. Prasanna, Multi-dimensional packet clas-
sification on FPGA: 100 GBPS and beyond, in: Proceedings of the International

Conference on Field-Programmable Technology 
[16] T.V. Lakshman , D. Stiliadis , High-speed policy-based packet forwarding using

efficient multi-dimensional range matching, SIGCOMM Comput. Commun. Rev.
28 (4) (1998) 203–214 . 

[17] H. Song , J.W. Lockwood , Efficient packet classification for network intrusion
detection using FPGA, in: Proceedings of the 2005 ACM/SIGDA 13th Interna-

tional Symposium on Field-Programmable Gate Arrays, FPGA, ACM, New York,

NY, USA, 2005, pp. 238–245 . 
[18] V. Srinivasan , G. Varghese , S. Suri , M. Waldvogel , Fast and scalable layer four

switching, SIGCOMM Comput. Commun. Rev. 28 (4) (1998) 191–202 . 
[19] W. Jiang , V.K. Prasanna , Scalable packet classification on FPGA, IEEE Trans. Very

Large Scale Integr. (VLSI) Syst. 20 (2012) . 
[20] M. Kekely , J. Korenek , Packet classification with limited memory resources, in:

Proceedings of the Euromicro Conference on Digital System Design, Institute

of Electrical and Electronics Engineers, 2017, pp. 179–183 . 
[21] R. Pagh , F.F. Rodler , Cuckoo hashing, in: Algorithms - ESA 2001, volume

2161 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2001,
pp. 121–133 . 

[22] A. Kirsch, M. Mitzenmacher, Y. Baohua, X. Yibo, L. Jun, Using a queue to de-
amortize cuckoo hashing in hardware, http://www.eecs.harvard.edu/michaelm/

postscripts/aller20 07.pdf 20 07. 

[23] L. Kekely , M. Žádník , J. Matoušek , J. Ko ̌renek , Fast lookup for dynamic packet
filtering in FPGA, in: Proceedings of the 17th IEEE Symposium on Design

and Diagnostics of Electronic Circuits and Systems, IEEE Computer Society,
Warszaw, Poland, 2014, pp. 219–222 . ISBN: 978-1-4799-4558-0. 

[24] L. Kekely , J. Kucera , V. Pus , J. Korenek , A.V. Vasilakos , Software defined moni-
toring of application protocols, IEEE Trans. Comput. 65 (2) (2016) 615–626 . 

[25] Xilinx, UltraScale and UltraScale + FPGAs Packaging and Pinouts, Xilinx Inc.,

2016. UG575. 
[26] Intel, Intel Stratix 10 Embedded Memory User Guide, Intel Corporation, 2018.

UG-S10MEMORY 2018.12.24. 
[27] Intel, Intel Stratix 10 GX/SX Device Overview, Intel Corporation, 2019. S10-

OVERVIEW 2019.02.15. 

Michal Kekely is a Ph.D. student at Faculty of Informa-

tion Technology, Brno University of Technology since 2016
and also an FPGA firmware developer at the Research and

development department of Netcope Technologies since

2016. Michal’s research is focused mainly on hardware ac-
celerated solutions for high-speed networks, particularly

in the area of network monitoring and security. So far,
he is an author of several research papers published at

renowned international conferences. 
Lukáš Kekely received his Ph.D. degree from Faculty of

Information Technology, Brno University of Technology in
2017. Lukáš is a researcher and a project manager at the

hardware department of Liberouter project which is a
part of CESNET (Czech National Research and Educational

Network). The main focus of his research is the hardware

acceleration of time-critical networking operations using
FPGAs, particularly in the area of high-speed network se-

curity and monitoring. He is an author of many research
papers published at renowned international conferences. 
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