
DesigningCorrelation Immune Boolean Functions With Minimal
Hamming Weight Using Various Genetic Programming Methods

Jakub Husa
Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence
Brno, Czech Republic
ihusa@fit.vutbr.cz

ABSTRACT
In this paper, we search for Boolean functions with properties use-
ful in cryptography for preventing side-channel attacks. We use
three genetic programming methods including linear genetic pro-
gramming, which has not been used to design these functions be-
fore. Our results aim to provide a fair comparison by performing
parameter optimization for each individual method, and deliver an
insight into howwell they cope with the demand for growing num-
ber of function inputs and higher degrees of correlation immunity.

CCS CONCEPTS
• Computing methodologies → Genetic programming; • Se-
curity and privacy→ Cryptanalysis and other attacks;

KEYWORDS
Evolutionary algorithms, Genetic Programming, CartesianGenetic
Programming, Linear Genetic Programming, Cryptography, Boo-
lean Functions, Hamming Weight, Correlation Immunity.
ACM Reference Format:
Jakub Husa. 2019. DesigningCorrelation Immune Boolean Functions With
Minimal Hamming Weight Using Various Genetic Programming Methods.
In Genetic and Evolutionary Computation Conference Companion (GECCO
’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3319619.3321925

1 INTRODUCTION
Side-channel attacks are attacks targeting the way a cipher is im-
plemented in a device by probing for bits of the processed data,
rather than attacking the cryptographic algorithm itself [3]. One
way to prevent this is bymasking the processed values with a suit-
able Boolean function.

A Boolean function is a function with n binary inputs and a sin-
gle binary output. One way it can be represented is with a truth
table of length 2n , which defines a specific output for all possi-
ble inputs. To be suitable for masking a Boolean function needs to
possess two properties, low (but non-zero)Hamming weight (HW),
and high correlation immunity (CI) [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3321925

HW of a Boolean function is equal to the number of ones in its
truth table. LowHWmakes the function easy to implement and de-
creases the masking cost. CI of degree t means that the function’s
output is statistically independent of up to t of its inputs, and de-
termines how many simultaneous probes will it be able to resists.
For a formal definition of these properties and the known optimal
values, we point interested readers to literature [1].

Becausemost analytical approaches for designing cryptographic
Boolean functions only create balanced functions, which don’t have
a low HW [1], the task presents an interesting venue for use of
heuristic approaches like evolutionary algorithms and specifically
genetic programming (GP), which has already been shown to pro-
vide competitive results and discover new functions with better
properties [5, 6].

2 OUR CONTRIBUTION
GP doesn’t evolve candidate solutions directly, but as short exe-
cutable structures (individuals, whose output is interpreted as a
Boolean function. There exist multiple GP methods with different
individual representations. Tree-based (TGP), which uses syntac-
tic trees of limited depth, Cartesian (CGP), which uses an array of
function nodes interconnected as an acyclic directed graph, and
Linear (LGP), which uses a sequentially executed list of instruc-
tions operating over a finite set of registers. For more details on
these methods, we refer interested readers to literature [4].

Because different GP methods usually use different population
schemes, it is difficult to compare them fairly. For this reason, we
have chosen two standard population schemes for all GP variants.
(1 + λ) evolution strategy (EST) creates new individuals by making
mutated copies of the single best individual found so far. Steady-
state tournament (SST) creates new individuals by randomly select-
ing three individuals for a tourney, and replacing the worst with a
mutated offspring of the better two.

All GP methods use the same set of operands {AND, OR, XOR,
XNOR}, and try to minimize fitness defined as infinity if the output
is constant, and by equation 1 for all other Boolean functions:

Fitnessf = HWf +min(0, t −CIf) ∗ 2n (1)

Where n is the number of function inputs and t the desired level
of CI. For each GP method, population scheme, n, and t we have
performed 100 independent runs. Each run was terminated either
by reaching what is, to the best of our knowledge, the best solution
ever found by GP [5] (and in most cases also the known optimal
value [1]), or by reaching a set limit of 1 000 000 fitness function
evaluations, in which case the run was considered unsuccessful.

https://doi.org/10.1145/3319619.3321925
https://doi.org/10.1145/3319619.3321925

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Jakub Husa

Table 2: Experimental results comparing selected GP methods utilizing two different population schemes.

EST Experimental results of TGP Experimental results of CGP Experimental results of LGP
t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

n = 6 19744 784626 (14) 3406 35922 140169 8094 74746 356539
n = 7 37151 (18) (0) 6816 81721 278946 12569 165849 531192
n = 8 20267 (27) (0) (0) 9184 27299 621912 972744 15126 87172 (39) (34)
n = 9 80859 (1) (0) (0) (0) 12071 57672 182851 213011 (12) 17926 101449 493624 (40) (4)
n = 10 102436 (0) (0) (0) (0) 18764 121374 352436 868841 (9) 26634 151009 695616 (16) (1)

SST Experimental results of TGP Experimental results of CGP Experimental results of LGP
t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

n = 6 1005 21005 218505 6320 77160 135585 13730 314235 (32)
n = 7 11005 30505 (47) 10955 210900 575650 17955 533445 (18)
n = 8 12005 19505 (40) (15) 17735 59330 953730 (24) 25065 204740 (2) (9)
n = 9 14005 23005 (32) (6) (0) 17330 88055 371415 482255 (13) 29490 225675 (27) (20) (1)
n = 10 15005 34005 (37) (4) (0) 22570 122535 467810 (40) (7) 44325 641850 (8) (0) (0)

Table 1: Results of parameter optimization.

Optimized Examined Results for EST
property range TGP CGP LGP

Population 5–1000 5 5 5
Chrom. length 50–1500 – 700 200
Tree depth 4–12 7 – –

Free registers 5–100 – – 20
Mutation rate 0.01–1.0 1.0 0.055 0.02

Examined Examined Results for SST
Property Range TGP CGP LGP

Population 5–1000 1000 10 10
Chrom. length 50–1500 – 700 200
Tree depth 4–12 7 – –

Free registers 5–100 – – 20
Mutation rate 0.01–1.0 0.5 0.02 0.02

TGP used a sub-tree crossover and its mutation rate meant the
probability that a random node would be replaced with a new, ran-
domly generated subtree. CGP and LGP used a one-point crossover
and theirmutation ratemeant the probability that each genewould
be replaced with a random value. CGP also used an array with a
single row and an unlimited L-back [4]. Each method had its other
evolutionary parameters optimized one at a time using a simple
hill climbing algorithm. The final values, as well as their examined
ranges, are shown in table 1. Population sizes lower than 5 have not
been examined to maintain a reasonable degree of parallelization.

Table 2 shows the results of our experiments. If more than half
of the runs ended with success, we show the median number of
fitness function evaluations required to find a solution. If fewer
than half of the runs succeeded, and the median therefore cannot
be determined, we show (in parentheses) how many of the 100
runs resulted in success. The cells where t ≥ ⌈ 2n−23 ⌉ are left empty
because in their case constructing a Boolean function with optimal
HW is trivial [1].

3 CONCLUSION
TGP provides the best results with SST and a very large population.
It handles a growing number of function inputs extremely well but
struggles to find functions with a high CI. TGP is affected by the
choice of population scheme significantly more than the other two
methods, likely because it uses a different mutation and crossover
operators. CGP, notorious for the difficult use of crossover, per-
forms the best with EST which only uses mutation. While CGP
does not scale with an increasing number of inputs nearly as well
as TGP, it is able to create large functionswith a high CI, something
that TGP fails to do.

LGPworkswell with shorter chromosomes and one free register
per ten instructions. It scales in a manner similar to CGP, but even
with the optimized settings requires approximately two times as
many evaluations to obtain equivalent results. To the best of our
knowledge, this is the first work that examines the use of LGP for
the design of this type of Boolean functions.

ACKNOWLEDGMENTS
This work was supported by Czech Science Foundation project 19-
10137S.

REFERENCES
[1] Claude Carlet and Xi Chen. 2018. Constructing Low-Weight d th-Order

Correlation-Immune Boolean Functions Through the Fourier-Hadamard Trans-
form. IEEE Transactions on Information Theory 64, 4 (2018), 2969–2978.

[2] Claude Carlet and Sylvain Guilley. 2013. Side-channel indistinguishability. In Pro-
ceedings of the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy. ACM, 9.

[3] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2008. Power analysis at-
tacks: Revealing the secrets of smart cards. Vol. 31. Springer Science & Business
Media.

[4] Nicholas FreitagMcPhee, Riccardo Poli, andWilliam B Langdon. 2008. Field guide
to genetic programming. (2008).

[5] Stjepan Picek, Claude Carlet, Sylvain Guilley, Julian F Miller, and Domagoj
Jakobovic. 2016. Evolutionary algorithms for boolean functions in diverse do-
mains of cryptography. Evolutionary computation 24, 4 (2016), 667–694.

[6] Stjepan Picek, Sylvain Guilley, Claude Carlet, Domagoj Jakobovic, and Julian F
Miller. 2015. Evolutionary approach for finding correlation immune Boolean func-
tions of order t with minimal Hamming weight. In International Conference on
Theory and Practice of Natural Computing. Springer, 71–82.

	Abstract
	1 Introduction
	2 Our contribution
	3 Conclusion
	Acknowledgments
	References

