
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2020 317

Improving the Accuracy and Hardware Efficiency
of Neural Networks Using Approximate Multipliers

Mohammad Saeed Ansari , Student Member, IEEE, Vojtech Mrazek , Member, IEEE,

Bruce F. Cockburn , Member, IEEE, Lukas Sekanina , Senior Member, IEEE,
Zdenek Vasicek , and Jie Han , Senior Member, IEEE

Abstract— Improving the accuracy of a neural network (NN)
usually requires using larger hardware that consumes more
energy. However, the error tolerance of NNs and their appli-
cations allow approximate computing techniques to be applied
to reduce implementation costs. Given that multiplication is the
most resource-intensive and power-hungry operation in NNs,
more economical approximate multipliers (AMs) can significantly
reduce hardware costs. In this article, we show that using
AMs can also improve the NN accuracy by introducing noise.
We consider two categories of AMs: 1) deliberately designed
and 2) Cartesian genetic programing (CGP)-based AMs. The
exact multipliers in two representative NNs, a multilayer percep-
tron (MLP) and a convolutional NN (CNN), are replaced with
approximate designs to evaluate their effect on the classification
accuracy of the Mixed National Institute of Standards and
Technology (MNIST) and Street View House Numbers (SVHN)
data sets, respectively. Interestingly, up to 0.63% improvement in
the classification accuracy is achieved with reductions of 71.45%
and 61.55% in the energy consumption and area, respectively.
Finally, the features in an AM are identified that tend to make
one design outperform others with respect to NN accuracy. Those
features are then used to train a predictor that indicates how well
an AM is likely to work in an NN.

Index Terms— Approximate multipliers (AMs), Cartesian
genetic programing (CGP), convolutional NN (CNN), multi-layer
perceptron (MLP), neural networks (NNs).

I. INTRODUCTION

THE increasing energy consumption of computer systems
still remains a serious challenge in spite of advances in

energy-efficient design techniques. Today’s computing systems
are increasingly used to process huge amounts of data, and
they are also expected to present computationally demanding
natural human interfaces. For example, pattern recognition,

Manuscript received June 2, 2019; revised August 4, 2019; accepted
September 3, 2019. Date of publication October 8, 2019; date of current
version January 21, 2020. This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) under Project
RES0018685 and Project RES0025211; and in part by the INTER-COST
under project LTC18053. (Corresponding author: Mohammad Saeed Ansari.)

M. S. Ansari, B. F. Cockburn, and J. Han are with the Department
of Electrical and Computer Engineering, University of Alberta, Edmonton,
AB T6G 1H9, Canada (e-mail: ansari2@ualberta.ca; cockburn@ualberta.ca;
jhan8@ualberta.ca).

V. Mrazek, L. Sekanina, and Z. Vasicek are with the IT4Innovations
Centre of Excellence, Faculty of Information Technology, Brno University
of Technology, 612 66 Brno, Czech Republic (e-mail: mrazek@fit.vutbr.cz;
sekanina@fit.vutbr.cz; vasicek@fit.vutbr.cz).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2940943

data mining, and neural network (NN)-based classifiers are
especially required for computational resources. Approximate
computing is an emerging design paradigm that can reduce
the system cost without reducing the system effectiveness.
It leverages the inherent error tolerance of many applications,
such as machine learning, multimedia processing, pattern
recognition, and computer vision, to allow some accuracy to be
traded off to save hardware cost [1]. NNs are now recognized
as providing the most effective solutions to many challenging
pattern recognition and machine learning tasks such as image
classification [2]. Due to their intrinsic error tolerance char-
acteristics and high computation and implementation costs,
there is increasing interest in using approximation in NNs.
Approximation in the memories, where the synaptic weights
are stored [3], approximation in the computation, such as using
approximate multipliers (AMs) [4], [5] and approximation
in neurons [6], [7], are all strategies that have already been
reported in the literature.

Given that multipliers are the main bottleneck of NNs
[8]–[10], this article focuses on the use of AMs in NNs.
The work in [11] showed that using approximate adders
(with reasonable area and power savings) has an unacceptable
negative impact on the performance of NNs, so only exact
adders are used in this article.

Several AMs have been proposed in the literature that
decrease the hardware cost, while maintaining acceptably
high accuracy. We divide the AMs into two main categories:
1) deliberately designed multipliers, which include designs that
are obtained by making some changes in the truth table of
the exact designs [12] and 2) Cartesian genetic programing
(CGP)-based multipliers, which are designs that are generated
automatically using the CGP heuristic algorithm [13]. Note
that there are other classes of AMs that are based on analog
mixed-signal processing [14], [15]. However, they are not
considered in this article since our focus is on digital design
that is more flexible in implementation than analog-/mixed-
signal-based designs.

There is a tradeoff between the accuracy and the hardware
cost, and there is no single best design for all applications.
Thus, selecting the appropriate AM for any specific appli-
cation is a complex question that typically requires careful
consideration of multiple alternative designs. In this article,
the objective is to find the AMs that improve the performance
of an NN, i.e., by reducing the hardware cost while preserving

1063-8210 c� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7792-359X
https://orcid.org/0000-0002-9399-9313
https://orcid.org/0000-0002-4340-8394
https://orcid.org/0000-0002-2693-9011
https://orcid.org/0000-0002-2279-5217
https://orcid.org/0000-0002-8849-4994

318 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2020

an acceptable output accuracy. To the best of our knowledge,
this article is the first that attempts to find the critical features
of an AM that make it superior to others for use in an NN.

Our benchmark multipliers, including 500 CGP-based AMs
and 100 variants of deliberately designed multipliers, are eval-
uated for two standard NNs: a multi-layer perceptron (MLP)
that classifies the MNIST data set [16] and a convolutional NN
(CNN), LeNet-5 [17], that classifies the SVHN data set [18].
After each network is trained while using double-precision
floating-point exact multipliers, the accurate multipliers are
replaced with one approximate design (selected from the set
of benchmark multipliers), and then five steps of retraining are
performed. This process is repeated for each of the benchmark
multipliers, resulting in 600 variants for each of the two con-
sidered NNs. The retraining is done for each AM only once.
Then, the inference is performed to evaluate the accuracy.
Since the simulations always start from the same point, i.e., we
run the retraining steps on the pre-trained network (with exact
multipliers), there is no randomness, and therefore the results
will be consistent if the simulation is repeated.

The rest of this article is organized as follows. Section II
specifies the considered networks and different types of
AMs. Section III evaluates the considered multipliers from
two perspectives: 1) application-independent metrics and
2) application-dependent metrics, and discusses the implica-
tions of the results. Section IV is devoted to feature selection
and describes how the most critical features in an AM can
be identified. Section V discusses the error and hardware
characteristics of the AMs and recommends the five best AMs.
For further performance analysis, these five multipliers are
then used to implement an artificial neuron. Finally, Section VI
summarizes and concludes this article.

II. PRELIMINARIES

This section provides background information on the two
benchmark NNs and describes the considered AMs.

A. Employed Neural Networks and Data Sets

MNIST (Mixed National Institute of Standards and Tech-
nology) is a data set of handwritten numbers that consists
of a training set of 60 000 and a test set of 10 000 28 × 28
images and their labels [16]. We used an MLP network with
784 input neurons (one for each pixel of the monochrome
image), 300 neurons in the hidden layer, and ten output
neurons, whose outputs are interpreted as the probability
of each of the classification into ten target classes (digits
0 to 9) [16]. This MLP uses the sigmoid activation function
(AF). An AF introduces nonlinearity into the neuron’s output
and maps the resulting values onto either the interval [−1, 1]
or [0, 1] [19]. Using the sigmoid AF, the neuron j in layer l,
where 0 < l ≤ lmax, computes an AF of the weighted sum of
its inputs, x j,l , as given by

x j,l = 1

1 + e−sum j,l

sum j,l =
N∑

i=1

xi,l−1 × wi j,l−1 (1)

where N denotes the number of neurons in layer l − 1 and
wi j,l−1 denotes the connection weight between the neuron i
in layer l − 1 and the neuron j in layer l [2].

SVHN is a data set of house digit images taken from Google
Street View images [18]. The data set contains 73 257 images
for training and 26 032 images for testing. Each digit is
represented as a pair of a 32 × 32 RGB image and its label.
We used LeNet-5 [17] to classify this data set. This CNN
consists of two sets of convolutional and average pooling
layers, followed by a third convolutional layer, and then a
fully-connected layer. It also uses ReLU AF, which simply
implements max(0, x). The convolutional and fully connected
layers account for 98% of all the multiplications [13], therefore
approximation is applied only to these layers. In order to
reduce the complexity, we converted the original 32 × 32 RGB
images to 32 × 32 grayscale images using the standard “luma”
mapping [13]

Y = 0.299 × R + 0.587 × G + 0.114 × B (2)

where R, G, and B denote the intensities of red, green, and
blue additive primaries, respectively.

To train an NN, the synaptic weights are initialized to
random values. Then, the network is trained by using the
standard backpropagation-based supervised learning method.
During the training process, the weights are adjusted to
reduce the error. Instead of starting the training with ran-
dom initial weights, one can use the weights of a previ-
ously trained network. Initializing the weights in this way
is referred to as using a pre-trained network [2]. Note that
a pretrained network can be retrained and used to perform
a different task on a different data set. Usually, only a few
steps of retraining are required to fine-tune the pre-trained
network.

B. Approximate Multipliers

Through comprehensive simulations, we confirmed that
8-bit multipliers are just wide enough to provide reasonable
accuracies in NNs [10], [20]. Therefore, only 8-bit versions
of the approximate multipliers were evaluated in this article.

1) Deliberately Designed Approximate Multipliers: Delib-
erately designed AMs are obtained by making carefully chosen
simplifying changes in the truth table of the exact multiplier.
In general, there are three ways of generating AMs [12], [21]:
1) approximation in generating the partial products, such as
the under-designed multiplier (UDM) [22]; 2) approximation
in the partial product tree, such as the broken-array multiplier
(BAM) [23] and the error-tolerant multiplier (ETM) [24];
and 3) approximation in the accumulation of partial products,
such as the inaccurate multiplier (ICM) [25], the approximate
compressor-based multiplier (ACM) [26], the AM [27], and
the truncated AM (TAM) [28]. The other type of deliberately
designed AM that is considered in this article is the recently
proposed alphabet set multiplier (ASM) [10].

Here, we briefly review the design of the deliberately
designed AMs.

The UDM [22] is designed based on an approximate 2 × 2
multiplier. This approximate 2 × 2 multiplier produces 1112,

ANSARI et al.: IMPROVING THE ACCURACY AND HARDWARE EFFICIENCY OF NNs USING APPROXIMATE MULTIPLIERS 319

instead of 10012 to save one output bit when both of the inputs
are 112.

The BAM [23] omits the carry-save adders for the least
significant bits (LSBs) in an array multiplier in both the
horizontal and vertical directions. In other words, it truncates
the LSBs of the inputs to permit a smaller multiplier to be
used for the remaining bits.

The ETM [24] divides the inputs into separate MSB and
LSB parts that do not necessarily have equal widths. Every
bit position in the LSB part is checked from left to right and
if at least one of the two operands is 1, checking is stopped
and all of the remaining bits from that position onward are set
to 1. On the other hand, normal multiplication is performed
for the MSB part.

The ICM [25] uses an approximate (4:2) counter to build
AMs. The approximate 4-bit multiplier is then used to con-
struct larger multipliers.

The ACM [26] is designed by using approximate 4:2 com-
pressors. The two proposed approximate 4:2 compressors
(AC1 and AC2) are used in a Dadda multiplier with four
different schemes.

The AM [27] uses a novel approximate adder that generates
a sum bit and an error bit. The error of the multiplier is then
alleviated by using the error bits. The truncated version of the
AM multiplier is called the TAM [28].

The ASM [10] decomposes the multiplicand into short bit
sequences (alphabets) that are multiplied by the multiplier.
Instead of multiplying the multiplier with the multiplicand,
some lower-order multiples of the multiplier are first calcu-
lated (by shift and add operations) and then some of those
multiples are added in the output stage of the ASM [10].
It should be noted that the ASM design was optimized for
use in NNs, and so it is not directly comparable to the
other AMs considered in this article when used in other
applications.

Based on these main designs, variants were obtained by
changing the configurable parameter in each design, forming
a set of 100 deliberately designed approximate multipliers. For
example, removing different carry-save adders from the BAM
multiplier results in different designs; also, the widths of the
MSB and LSB parts in the ETM multiplier can be varied to
yield different multipliers.

2) CGP-Based Approximate Multipliers: Unlike the delib-
erately designed AMs, the CGP-based designs are generated
automatically using CGP [13]. Although several heuristic
approaches have been proposed in the literature for approx-
imating a digital circuit, we used CGP, since it is intrinsically
multi-objective and has been successfully used to generate
other high-quality approximate circuits [29].

A candidate circuit in CGP is modeled as a 2-D array of
programable nodes. The nodes in this problem are the 2-input
Boolean functions, i.e., AND, OR, XOR, and others. The initial
population P of CGP circuits includes several designs of exact
multipliers and a few circuits that are generated by performing
mutations on accurate designs. Single mutations (by randomly
modifying the gate function, gate input connection, and/or pri-
mary output connections) are used to generate more candidate
solutions. More details are provided in [13] and [29].

TABLE I

CONSIDERED FEATURES OF THE ERROR FUNCTION

III. EVALUATION OF APPROXIMATE MULTIPLIERS IN

NEURAL NETWORKS

This section considers both application-dependent and
application-independent metrics to evaluate the effects of AMs
in NNs.

A. Application-Independent Metrics

Application-independent metrics measure the design fea-
tures that do not change from one application to another. Given
that AMs are digital circuits, these metrics can be either error
or hardware metrics. Error function metrics are required for
the feature selection analysis.

The main four error metrics are the error rate (ER), the error
distance (ED), the absolute ED (AED), and the relative ED
(RED). We evaluated all 600 multiplier designs using the
nine features extracted from these four main metrics, as given
in Table I. All of the considered multipliers were implemented
in MATLAB and simulated over their entire input space,
i.e., for all 256 × 256 = 65536 combinations.

The definitions for most of these features are given in

ED = E−A

RED = 1 − A

E
AED = |E − A|

RMSED =
√√√√(

1

N
×

N∑
i=1

(Ai − Ei)2

)
(3)

VarED = 1

N
×

N∑
i=1

(
EDi − 1

N
×

N∑
i=1

EDi

)2

.

Those that are not given in (3) are evident from the
description. Note that E and A in (3) refer to the exact and
approximate multiplication results, respectively. Also, note that
the mean-/ variance-related features in Table I are measured
over the entire output domain of multipliers (N = 65536),
i.e., 256 × 256 = 65536 cases for the employed eight-bit
multipliers.

Note that the variance and the root mean square (RMS) are
distinct metrics, as specified in (3). Specifically, the variance
measures the spread of the data around the mean, while the
RMS measures the spread of the data around the best fit. In the
case of error metrics, the best possible fit is zero.

320 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2020

Fig. 1. Effects of multiplier size on classification accuracy.

We found that the majority of the 100 deliberately designed
AMs either always overestimate or always underestimate the
accurate product of the multiplication. This can be expected
to cause problems when these multipliers are used in repet-
itive or iterative operations, such as matrix multiplications.
In those cases, the errors do not cancel out and are instead
accumulated. On the other hand, most of the CGP-generated
AMs sometimes overestimate and sometimes also underes-
timate the product. This leads to some error cancellation
and tends to make these multipliers better suited for use
in NNs.

All of the multipliers were implemented in VHSIC Hard-
ware Description Language (VHDL) and/or Verilog and syn-
thesized using the Synopsys Design Compiler (DC) for the
STMicroelectronics CMOS 28-nm process to obtain the most
important hardware metrics: the power dissipation, the circuit
area, and the critical path delay. These hardware metrics are
useful for identifying the most hardware-efficient multiplier
among those with similar error characteristics.

We also generated 500 AMs using the CGP algorithm. The
Verilog, C, and MATLAB codes for all the designs and their
error and hardware characteristics can be found in [30].

B. Application-Dependent Metrics

The classification accuracies of the MLP and LeNet-5 net-
works were evaluated over the MNIST and SVHN data sets,
respectively. All 600 of the AM designs (100 deliberately
designed and 500 CGP-based AMs) were employed in both
NNs, and their classification accuracy was calculated.

The effect of multiplier size on the classification accuracy
is shown in Fig. 1, where different-sized exact multipliers,
ranging in width from 4 to 12 bits (including the sign bit), are
shown. Note that the multiplication is performed on integer
numbers. The original values in the range [−1, 1] are mapped
and rounded to the closest integers, with 1 being mapped to
the maximum representable value, as determined by the size
of the multiplier.

The results show that without performing the retraining
steps, the 6-bit multiplier is the smallest design that is able to
provide acceptable results. On the other hand, when retraining

steps are considered (we performed five retraining steps), 4-bit
designs can be used with only 2% degradation in classification
accuracy compared to 8-bit designs. Note that the 8-bit designs
were found to be only 0.04% less accurate than the 12-bit
designs.

Interestingly, we observed that almost all of the AMs result
in similar classification accuracies for the MNIST data set,
regardless of the circuit design. This was expected, since
MNIST is a relatively easy data set to classify. This bodes
well for the use of cheaper, AM designs. The SVHN data set,
however, shows a drop in classification accuracy more clearly
than the MNIST data set when reduced-width multipliers are
used. This might be due to the fact that SVHN data are harder
to classify than the MNIST data.

C. Overfitting

An interesting finding from this article is the observation
that a few AMs have slightly improved the classification
accuracy over the exact multipliers. This is a potentially
significant result, since it means we can use less hardware
and yet get better results. We believe that overfitting in NNs
may be the main reason for this interesting result.

Overfitting happens when the network is trained so much
that it produces overly complex and unrealistic class bound-
aries when deciding whether to classify a data point into one
class or another [31]. An overfitted network performs well on
the training data, since it effectively memorizes the training
examples, but it performs poorly on test data because it has
not learned to generalize to a larger population of data values.
Several solutions have been proposed in the literature to avoid
overfitting such as dropout [31], weight decay [32], early
stopping [33], and learning with noise [34]–[39].

Dropout techniques help to avoid overfitting by omitting
neurons from an NN. More specifically, for each training case,
a few neurons are selected and removed from the network,
along with all their input and output connections [31]. Weight
decay is another strategy to handle overfitting in which a
weight-decay term is added to the objective function. This
term reduces the magnitude of the trained weights and makes
the network’s output function smoother, and consequently
improves the generalization (i.e., a well-generalized NN can
more accurately classify unseen data from the same population
as the learning data) and reduces the overfitting [32]. Early
stopping approaches stop the training process as soon as a
pre-defined threshold value for classification accuracy has been
achieved [33].

Last but not least, the addition of noise to the synaptic
weights of NNs has been found to be a low-overhead technique
for improving the performance of an NN [35]. Murray and
Edwards [37] report up to an 8% improvement in the clas-
sification accuracy by injecting stochastic noise into synaptic
weights during the training phase. The noise injected into the
synaptic weights in NNs can be modeled as either additive or
multiplicative noise [38], [39], as defined in

Additive noise : W∗
i j = Wij + δi j

Multiplicative noise : W∗
i j = Wij δi j (4)

and both have been found to be beneficial.

ANSARI et al.: IMPROVING THE ACCURACY AND HARDWARE EFFICIENCY OF NNs USING APPROXIMATE MULTIPLIERS 321

In (4), δi j denotes the injected noise and Wij denotes the
noisy synaptic weight between the i th neuron in layer L and
the j th neuron in layer L + 1. The input of neuron j in layer
L + 1, denoted n j , is calculated as

n j =
NL∑
i=1

xi × wi j (5)

where NL is the number of neurons in layer L and xi and
wi j denote a neuron’s output and its connection weight to
neuron j , respectively. If the exact multiplication in (5) is
replaced with an approximate one, the approximate product
for multiplicand a and multiplier b is given by

M(a, b) = a × b + �(a, b) (6)

where the dither (error function) �(a, b) is the function
that expresses the difference between the output of an exact
multiplier and an AM. By combining (5) and (6), we obtain

n j =
NL∑
i=1

xi × wi j =
NL∑
i=1

M(xi , wi j)

≈ approximate multipliers−−−−−−−−−−−−−−−−→
NL∑
i=1

M �(xi , wi j)

=
NL∑
i=1

(
(xi × wi j) + �(xi , wi j)

)

=
NL∑
i=1

(
xi ×

(
wi j + �(xi , wi j)

xi

))
=

NL∑
i=1

xi × w∗
i j .

(7)

Note that the noise term �(xi , wi j) in (7) depends on the
multiplier xi , and is a different function for each individual
design. Hence, we cannot compare the result in (7) to the def-
initions given in (4), since �(xi , wi j) is an unknown function
that changes for different multipliers. However, we hypothe-
size that the same argument that adding noise to the synaptic
weights, as we did in (7), can sometimes help to avoid
overfitting in NNs.

To provide experimental support for this hypothesis,
we built an analytical AM, which is defined as

M �(a, b) = a × b + � (8)

where � denotes the injected noise. We added Gaussian
noise, since it is the most common choice in the literature
[34]–[36]. We used this noise-corrupted exact multiplier in an
MLP (784-300-10) and tested it over the MNIST data set.
Fig. 2 shows how the accuracy is affected by increasing the
noise levels. Note that the noise’s mean and standard deviation
in the noise-corrupted multiplier are the exact multiplication
product (EMP) and a percentage of the EMP, respectively. This
percentage is given by the term noise level in Fig. 2.

Since the added Gaussian noise is stochastic, we ran the
simulations ten times and report the average results. The
results in Fig. 2 confirmed the results in [34] and [39]: adding
small amounts of noise can indeed improve the classification
accuracy. However, as shown in Fig. 2, adding too much noise

Fig. 2. MNIST classification accuracy, training, and testing with additive
Gaussian noise.

will degrade the classification accuracy. Note that the classifi-
cation accuracies in Fig. 2 are normalized to the classification
accuracy obtained by using exact multipliers.

Additionally, we injected Gaussian noise with positive and
negative offsets in our accuracy analysis in Fig. 2 to show the
negative effect of biased noise on the classification accuracy.
For the biased noise, the errors are more likely to accumulate,
and therefore the accuracy drops. The mean is changed to
1.1 × EMP and 0.9 × EMP to model the positive and negative
offsets, respectively.

IV. CRITICAL FEATURES OF MULTIPLIERS

FOR NEURAL NETWORKS

In Section III, we showed that adding noise to the multi-
pliers can improve the accuracy of an NN. We also modeled
the difference between an exact multiplier and an approximate
one using the error function �(xi , wi j) of the AM; see (7).
In this section, we consider different multipliers to investigate
what properties of the error function might make one design
superior to others when employed in an NN.

As previously mentioned, the error function depends on
the multiplier and is a different function for each individual
design. An exact analysis of the error functions for different
multipliers is impractical, and so instead we sought the rele-
vant features of the error functions. Nine seemingly relevant
features of the error function were identified, and are listed
in Table I. In order to determine the most discriminative
features of the error functions, i.e., the features that contribute
the most to the performance of an AM in an NN, the nine
features in Table I were applied to several statistical feature
selection tools (as described next).

To be able to run feature selection algorithms, the mul-
tipliers were classified into two categories based on their
performance in NNs. We defined a threshold accuracy, Ath,
and classified the multipliers that produce higher accuracies
than Ath into class 1, while the others into class 0. Since in
the NN accuracy analysis some AMs produce slightly higher
classification accuracies than exact multipliers when employed
in NNs, it was convenient to choose Ath = ACCExact, which

322 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2020

is the NN classification accuracy that is obtained when exact
multipliers are employed in the network’s structure. Note that
the average noise level for class 1 AMs is 2.61%, which is
close to the obtained noise level range in Fig. 2.

A. Feature Selection

Feature selection is a statistical way of removing less
relevant features that are not as important to achieving accurate
classification performance. There are many potential benefits
to feature selection including facilitating data understanding
and space dimensionality reduction [40], [41]. In this article,
feature selection algorithms are used to select a subset of mul-
tipliers’ error function features that are most useful for building
a good predictor. This predictor anticipates the behavior of an
AM in an NN.

Scikit-learn is a free machine learning tool that is widely
used for feature selection [42]. It accepts an input data array
and their corresponding labels to build an estimator that imple-
ments a fitting method. We used the three classifiers, recursive
feature elimination (RFE) [43], mutual information (MI) [44],
and Extra-Tree [45].

The RFE classifier iteratively prunes the least important
features from the current set of features until the desired
number of features is reached. The i th output of the RFE
corresponds to the ranking position of the i th feature, such that
the selected (i.e., the estimated best) features are assigned a
rank of 1. Note that in RFE, the nested feature subsets contain
complementary features and are not necessarily individually
the most relevant features [43]. MI is another useful fea-
ture selection technique that relies on nonparametric methods
based on entropy estimation from the K -nearest neighbor
distances, as described in [44]. Each feature is assigned a
score, where higher scores indicate more important features.
Finally, the tree-based estimators can also be used to compute
feature importance to discard less relevant features. Extra-Tree,
an extremely randomized tree classifier, is a practical classifier
that is widely used for feature selection [45]. Similar to MI,
the i th output of this classifier identifies the importance of the
i th feature, such that the higher the output score, the more
important the feature is.

The results of each of the three aforementioned feature
selection algorithms are provided in Table II. The results
in Table II show that Var-ED is the most important feature
according to all three classifiers. RMS-ED is another important
metric, i.e., the most important metric according to RFE,
the second-most critical feature in MI, and the third-most sig-
nificant metric in Extra-Tree classifier. Our simulation results
show that the average value of the Var-ED and RMS-ED
features for class 0 multipliers are 20.21× and 6.42× greater
than those of the class 1 AMs, respectively.

Other important features that have a good ranking in the
three classifiers are MEAN-AED and VAR-AED. We also
observed that the multipliers that produced better accuracies
in an NN than the exact multiplier (class 1 multipliers) all
have double-sided error functions. Thus, they overestimate the
actual multiplication product for some input combinations and
underestimate it for others. Having double-sided EDs seems

TABLE II

RANKING OF ERROR FUNCTION FEATURES

to be a necessary, but not a sufficient condition for better
accuracy.

Given that class 1 AMs tend to have smaller Var-ED and
RMS-ED values and the observation that double-sided errors
are necessary for a good AM, the difference in the error
magnitude should be small to meet the RMS-ED requirement
i.e., having small RMS-ED values. Moreover, since the error
should be double-sided to have a small variance, these errors
should be distributed around zero.

B. Training the Classifier

Now, having found the most important features of the error
function of an AM, we can use them to predict how well a
given AM would work in an NN. In this section, we explain
how to build a classifier that has the error features of an AM
as inputs and predicts if it belongs to class 1 or class 0.

1) NN-Based Classifier: The error features of 500 randomly
selected multipliers were used to train the NN-based classifier
and those of the 100 remaining multipliers were used as the
test samples to obtain the classification accuracy of the trained
model. We designed a three-layer MLP with 20 neurons in the
hidden layer and two neurons in the output layer (since we
have two classes of multipliers). The number of neurons in the
input layer equals the number of features that are considered
for classification. The number of considered multiplier error
features that were used as inputs to the NN-based classifier was
varied from 1 up to 9 (for nine features, in total, see Table I).
The resulting classification accuracies, plotted in Fig. 3, reflect
how well the classifier classifies AMs into class 1 or class 0.

Note that when fewer than nine features are selected,
the combination of features giving the highest accuracy is
reported in Fig. 3. The combination of features is selected
according to the results in Table II and is given in Table III.

To choose two features, for example, the candidate features
are selected from the top-ranked ones in Table II: 1) Var-ED
and Mean-AED (by Extra-Tree); 2) Var-ED and RMS-ED
(by MI); and 3) Mean-ED, Var-ED, and RMS-ED (by RFE).
For these four features (i.e., Mean-ED, Var-ED, RMS-ED,
and Mean-AED), we consider all six possible combinations
and report the results for the combination that gives the
highest accuracy. Using the same process as in this example,
the feature combinations for which the accuracy is maximized
were found, and are provided in Table III.

ANSARI et al.: IMPROVING THE ACCURACY AND HARDWARE EFFICIENCY OF NNs USING APPROXIMATE MULTIPLIERS 323

TABLE III

FEATURE COMBINATIONS THAT GIVE THE HIGHEST MULTIPLIER
CLASSIFICATION ACCURACY

As shown in Fig. 3, the highest classification accuracy is
achieved when two features are used as inputs to the NN-based
classifier, namely Var-ED and RMS-ED. Also, Fig. 3 shows
that using more than two features does not necessarily result
in a higher accuracy.

2) MATLAB Classification Learner Application: The
MATLAB software environment provides a wide variety
of specialized applications [46]. In particular, the classifier
learner application, available in the apps gallery, allows us to
train a model (classifier) that predicts if a multiplier falls into
class 0 or class 1 when applied to an NN. This application
provides the option of choosing a model type, i.e., decision
trees, K -nearest neighbors, support vector machines (SVMs),
and logistic classifiers among others. We considered all of
these model types (with their default settings) to find the model
that most accurately fits the classification problem. Similarly,
500 randomly selected multipliers were used to train the model
and the 100 remaining multipliers were used as test samples
to obtain the classification accuracy of the trained model.

Fig. 3 also shows the effect of the number of selected
features on the accuracy of each of the three considered classi-
fiers. Note that the SVM- and KNN-based classifiers achieve
higher accuracies than the decision tree-based classifier. All
three classifiers achieve better accuracies than the NN-based
classifier.

Similar to the NN-based classifier, the classifier’s accuracy
for the combination of features that gives the highest accu-
racy is shown in Fig. 3 when fewer than nine features are
selected. The highest classification accuracy for the SVM- and
KNN-based classifiers is achieved when only two features are
used as inputs to the classifier: i.e., Var-ED and RMS-ED.
However, the decision tree-based classifier has the highest
accuracy when only one feature, Var-ED, is considered.

C. Verifying the Classifiers

The trained SVM classifier was verified in Section III-B
by using 100 AMs, where an accuracy of almost 86% was

Fig. 3. Effect of the number of selected features on AM classifier accuracy.

achieved. In this section, the SVM classifier is used to predict
the performance of 14 representative AMs in a different
benchmark NN. The SVM classifier is selected since it shows
the best performance compared to other classifiers, see Fig. 3.

Ideally, we would want to verify the classifier using all
600 AMs. However, the large number of multipliers in a
deep NN benchmark and the large number of images in the
data set would make the exhaustive experiment prohibitively
time consuming. Therefore, in addition to the 100 previously
considered multipliers, five multipliers were randomly selected
from each class of AMs, plus the two multipliers that provided
the best accuracy when used in an NN to classify the SVHN
and MNIST data sets, and the two multipliers that had the
worst accuracy for those same data sets. The SVM classifier
was used to predict the behavior of each of these multipliers
in a given NN benchmark. Then, these multipliers were used
in the NN to verify the classifier’s accuracy.

AlexNet is considered as the benchmark NN and is trained
to classify the ImageNet data set [47]. AlexNet is a CNN
with nine layers: an input layer, five convolution layers, and
three fully connected layers [48]. Note that training a deep
CNN over a big data set, such as ImageNet, would be very
time consuming. Hence, we used the MATLAB pre-trained
model and performed ten retraining steps (using the AMs) as
an alternative to train the network from scratch.

Table IV shows how the SVM classifier anticipates the
performance of each of the 14 multipliers (i.e., the five
randomly selected multipliers from each class of AMs and the
four multipliers that provided the best and the worst accuracies
when used in an NN to classify the SVHN and MNIST data
sets) in AlexNet.

As shown in Fig. 3, none of the classifiers is 100% accurate.
For instance, AlexNet implemented with the AM M1 has
a worse accuracy than Ath (i.e., the accuracy of AlexNet
implemented with exact multipliers) even though the multi-
plier is classified into class 1 (see Table IV). However, this
misclassified multiplier produces an accuracy close to Ath and
the difference (0.41%) is small.

While some multipliers might perform well for one data set,
they might not work well for other data sets. In other words,

324 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2020

TABLE IV

CLASSIFICATION ACCURACY OF ALEXNET ON THE
IMAGENET LSVRC-2010 DATA SET

Fig. 4. NN accuracy using the same AMs for different data sets.
(a) Pareto-optimal design in PDP for the SVHN. (b) Behavior of SVHN
Pareto-optimal multipliers for the MNIST.

the performance of a multiplier is application dependent.
To illustrate this claim, we have plotted the Pareto-optimal
designs in power-delay product (PDP) for the SVHN data set
using all 600 AMs in Fig. 4(a).

Fig. 4(b) shows the performance of the Pareto-optimal
multipliers in PDP for the SVHN data set for the MNIST

data set. Note that a multiplier is considered to be PDP-Pareto
optimal if there does not exist any other multiplier which
improves the classification accuracy with the same PDP. It is
clear from Fig. 4 that the Pareto-optimal designs for the two
data sets are different.

V. ERROR AND HARDWARE ANALYSES OF

APPROXIMATE MULTIPLIERS

This section analyzes the error and hardware characteristics
of AMs. Based on this analysis, a few designs that have a
superior performance in both considered data sets are identi-
fied and recommended.

A. Error Analysis

Fig. 5 compares class 0 and class 1 multipliers with respect
to four important error features: Var-ED, RMS-ED, Mean-
AED, and Var-AED. This plot shows how the class 1 and
class 0 multipliers measure differently for the considered
features. As shown in Fig. 5, class 1 multipliers generally have
smaller Mean-AED, Var-ED, Var-AED, and RMS-ED values,
when compared to class 0 multipliers. It also shows, in the
zoomed-in insets, that some class 0 multipliers having smaller
Var-AED, RMS-ED, Mean-AED, and/or Var-ED values than
some class 1 multipliers is the reason why some multipliers
are misclassified by the classifiers.

B. Hardware Analysis

To further understand the quality of AMs, we performed a
hardware analysis. The main hardware metrics of a multiplier,
i.e., power consumption, area, and critical path delay, and PDP,
are considered in this analysis. Note that all of the considered
multipliers in this article are pure combinational circuits for
which the throughput is inversely proportional to the critical
path delay.

Fig. 6 shows two scatter plots that best distinguish the two
classes of AMs, which are area versus delay (see Fig. 6(a))
and power consumption versus delay (see Fig. 6(b)). Note that
only the results for the SVHN data set are shown as the results
for the MNIST are almost the same.

As the results in Fig. 6 show, unlike for the error metrics,
there is no clear general trend in the hardware metrics.
However, the designs with small delay and power consumption
are preferred for NN applications, as discussed next.

As AMs are obtained by simplifying the design of an exact
multiplier, more aggressive approximations can be used to
further reduce the hardware cost and energy consumption.
As previously discussed, some multipliers have almost similar
accuracies, while as shown in Fig. 4, they have different
hardware measures. The main reasons are as follows: 1) the
hardware cost of a digital circuit totally depends on how it is
implemented in hardware; e.g., array and Wallace multipliers
are both exact designs, and therefore they have the same
classification accuracy. However, they have different hardware
costs and 2) the classification accuracy of NNs is application
dependent and it depends on the network type, the data set,
the learning algorithm, and the number of training iterations.

ANSARI et al.: IMPROVING THE ACCURACY AND HARDWARE EFFICIENCY OF NNs USING APPROXIMATE MULTIPLIERS 325

Fig. 5. Classification of class 0 and class 1 multipliers based on the
most important features. (a) Var-ED versus mean-AED. (b)Var-ED versus
log10(Var-AED). (c) Var-ED versus RMS-ED.

Fig. 6. Hardware comparison between class 0 and class 1 AMs. (a) Area
versus delay for class 1 and class 0 AMs. (b) Power versus delay for class 1
and class 0 AMs.

C. Recommended Approximate Multipliers

This section identifies a few AMs that exhibit superior
performance for both considered data sets. We chose the five
best AMs that produce better accuracies than exact multipliers
when used in the two considered NNs: the MLP for the
MNIST data set and LeNet-5 for the SVHN data set. Note
that these five designs were selected and sorted based on their
low PDP values.

Table V lists and Fig. 6 shows these multipliers. Their
Verilog, C, and MATLAB descriptions can be found online
from [30]. Table V also reports the main hardware charac-
teristics of these designs, i.e., the area, power consumption,
delay, and PDP. The results in Table V indicate that all five
chosen AMs (which are all CGP-based AMs) consume less
power (at least 73%) than the exact multiplier, while providing
slightly higher accuracies (up to 0.18% or more) when they
are used in NNs. Comparing the average area and the PDP
shows significant savings in hardware cost (i.e., 65.20% and
81.74% less area and PDP, respectively) by replacing the exact
multipliers with the approximate ones.

326 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2020

TABLE V

HARDWARE CHARACTERISTICS OF THE FIVE BEST AMS

TABLE VI

ERROR CHARACTERISTICS OF THE FIVE BEST AMS

TABLE VII

HARDWARE CHARACTERISTICS OF AN ARTIFICIAL NEURON
IMPLEMENTED USING RECOMMENDED AMS

The accuracies of the five recommended multipliers when
employed in the two NN workloads are reported in Table VI.
Although not an important error feature, the ER is shown
in Table VI, together with VAR-ED and RMS-ED, which are
two critical error features for the performance of an AM in
NNs. The results show that the five recommended multipliers
all have small VAR-ED and RMS-ED values.

Hardware descriptions (in Verilog) of all of the CGP-based
AMs can be found online in [30]. By using the Verilog code,
one can easily obtain the truth table and/or the logic circuit
for each design.

VAR-ED and RMS-ED, as the two most critical error
features for the performance of an AM in NNs, are also given
in Table VI. The results show that the five recommended
multipliers all have small VAR-ED and RMS-ED values,
which is consistent with the results in Fig. 5.

An artificial neuron was also implemented using the five
recommended AMs to replace the exact ones. The imple-
mented neuron has three inputs and an adder tree composed
of two adders to accumulate the three multiplication products.
This is a widely used technique for the performance analysis
of multipliers in NNs [10].

The hardware characteristics of the implemented neuron
are given in Table VII. The results show that the neurons
constructed using the recommended multipliers can be up to
71.45% more energy-efficient than the neuron that uses the
exact multiplier while being 61.55% smaller than it.

VI. CONCLUSION

This article described the evaluation of a large pool of AMs,
which contained 100 deliberately designed and 500 CGP-
based multipliers, for application in NNs. The exact multipliers
in two benchmark networks, i.e., one MLP and one CNN
(LeNet-5), were replaced after training with AMs to see
how the classification accuracy is affected. The MLP and the
CNN were employed to classify the MNIST and SVHN data
sets, respectively. The classification accuracy was obtained
experimentally for both data sets for all 600 AMs.

The features in an AM that tend to make it superior to others
with respect to NN accuracy were identified and then used to
build a predictor that forecasts how well an multiplier is likely
to work in an NN. This predictor was verified by classifying
114 AMs based on their performance in LeNet-5 and AlexNet
CNN for the SVHN and ImageNet data sets, respectively.

The major findings of this article are as follows.

1) Unlike most of the CGP-generated AMs, the majority
of the 100 deliberately designed AMs either always
overestimate or always underestimate the actual value of
the multiplication. Hence, the errors in CGP-generated
multipliers are more likely to cancel out, and therefore
these multipliers are better suited for use in NNs.

2) It is not only possible, but can also be practical and more
economical, to use AMs in the structure of NNs instead
of exact multipliers.

3) NNs that use appropriate AMs can provide higher
accuracies compared to NNs that use the same num-
ber of exact multipliers. This is a significant result
since it shows that a better NN performance can be
obtained with significantly lower hardware cost while
using approximation.

4) It appears that using AMs adds small inaccuracies (i.e.,
approximation noise) to the synaptic weights and this
noise helps to mitigate the overfitting problem, and thus
improves the NN accuracy.

5) The most important features that make a design superior
to others are the variance of the ED (Var-ED) and the
RMS of the ED (RMS-ED).

Although the statistically most relevant and critical features
of AMs are identified in this article, a statistically accurate
predictor based on those features cannot guarantee that the
best approximate design will be identified: ensuring the best
choice of AM requires application-dependent experimentation.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. 18th IEEE Eur. Test
Symp. (ETS), May 2013, pp. 1–6.

[2] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85–117, Jan. 2015.

[3] G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal, and K. Roy,
“Significance driven hybrid 8T-6T SRAM for energy-efficient synaptic
storage in artificial neural networks,” in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), 2016, pp. 151–156.

[4] T. Na and S. Mukhopadhyay, “Speeding up convolutional neural net-
work training with dynamic precision scaling and flexible multiplier-
accumulator,” in Proc. Int. Symp. Low Power Electron. Design, 2016,
pp. 58–63.

ANSARI et al.: IMPROVING THE ACCURACY AND HARDWARE EFFICIENCY OF NNs USING APPROXIMATE MULTIPLIERS 327

[5] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural
networks with low precision multiplications,” 2014, arXiv:1412.7024.
[Online]. Available: https://arxiv.org/abs/1412.7024

[6] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “AxNN:
Energy-efficient neuromorphic systems using approximate computing,”
in Proc. Int. Symp. Low Power Electron. Design, 2014, pp. 27–32.

[7] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “ApproxANN: An
approximate computing framework for artificial neural network,” in
Proc. Design, Autom. Test Eur. Conf. Exhib., 2015, pp. 701–706.

[8] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, “Fast neural networks
without multipliers,” IEEE Trans. Neural Netw., vol. 4, no. 1, pp. 53–62,
Jan. 1993.

[9] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural networks
with few multiplications,” 2015, arXiv:1510.03009. [Online]. Available:
https://arxiv.org/abs/1510.03009

[10] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K. Roy,
“Energy-efficient neural computing with approximate multipliers,” ACM
J. Emerg. Technol. Comput. Syst., vol. 14, no. 2, 2018, Art. no. 16.

[11] H. R. Mahdiani, M. H. S. Javadi, and S. M. Fakhraie, “Efficient utiliza-
tion of imprecise computational blocks for hardware implementation of
imprecision tolerant applications,” Microelectron. J., vol. 61, pp. 57–66,
Mar. 2017.

[12] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifi-
cation, and comparative evaluation of approximate arithmetic circuits,”
ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 4, p. 60, Aug. 2017.

[13] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design
of power-efficient approximate multipliers for approximate artificial
neural networks,” in Proc. 35th Int. Conf. Comput.-Aided Design, 2016,
pp. 1–7.

[14] E. H. Lee and S. S. Wong, “Analysis and design of a passive switched-
capacitor matrix multiplier for approximate computing,” IEEE J. Solid-
State Circuits, vol. 52, no. 1, pp. 261–271, Jan. 2017.

[15] S. Gopal et al., “A spatial multi-bit sub-1-V time-domain matrix mul-
tiplier interface for approximate computing in 65-nm CMOS,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 506–518, Sep. 2018.

[16] Y. LeCun, C. Cortes, and C. Burges. (2010). MNIST handwritten
digit database. AT&T Labs. [Online]. Available: http://yann.lecun.com/
exdb/mnist

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[18] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011,
p. 5.

[19] R. J. Schalkoff, Artificial Neural Networks, vol. 1. New York, NY, USA:
McGraw-Hill, 1997.

[20] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.
Archit. (ISCA), 2017, pp. 1–12.

[21] M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, “Low-power
approximate multipliers using encoded partial products and approximate
compressors,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 3,
pp. 404–416, Sep. 2018.

[22] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in Proc. 24th Int. Conf.
VLSI Design, 2011, pp. 346–351.

[23] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of
soft-computing applications,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 4, pp. 850–862, Apr. 2010.

[24] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed
multiplier for error-tolerant application,” in Proc. Int. Conf. Electron
Devices Solid-State Circuits, 2010, pp. 1–4.

[25] C.-H. Lin and I.-C. Lin, “High accuracy approximate multiplier with
error correction,” in Proc. 31st Int. Conf. Comput. Design, Oct. 2013,
pp. 33–38.

[26] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and
analysis of approximate compressors for multiplication,” IEEE Trans.
Comput., vol. 64, no. 4, pp. 984–994, Apr. 2015.

[27] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in Proc.
Design, Autom. Test Eur. Conf. Exhib., 2014, pp. 1–4.

[28] H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate radix-8 booth
multipliers for low-power and high-performance operation,” IEEE Trans.
Comput., vol. 65, no. 8, pp. 2638–2644, Aug. 2016.

[29] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3,
pp. 432–444, Jun. 2015.

[30] (2016). EvoApprox8b—Approximate Adders and Multipliers Library.
[Online]. Available: http://www.fit.vutbr.cz/research/groups/ehw/
approxlib/

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[32] C. S. Leung, H.-J. Wang, and J. Sum, “On the selection of weight decay
parameter for faulty networks,” IEEE Trans. Neural Netw., vol. 21, no. 8,
pp. 1232–1244, Aug. 2010.

[33] Y. Shao, G. N. Taff, and S. J. Walsh, “Comparison of early stopping
criteria for neural-network-based subpixel classification,” IEEE Geosci.
Remote Sens. Lett., vol. 8, no. 1, pp. 113–117, Jan. 2011.

[34] Y. Luo and F. Yang. (2014). Deep Learning With Noise. [Online].
Available: hp://www.andrew.cmu.edu/user/fanyang1/deep-learning-with-
noise.pdf

[35] N. Nagabushan, N. Satish, and S. Raghuram, “Effect of injected noise
in deep neural networks,” in Proc. Int. Conf. Comput. Intell. Comput.
Res., 2016, pp. 1–5.

[36] T. He, Y. Zhang, J. Droppo, and K. Yu, “On training bi-directional
neural network language model with noise contrastive estimation,” in
Proc. 10th Int. Symp. Chin. Spoken Lang. Process., 2016, pp. 1–5.

[37] A. F. Murray and P. J. Edwards, “Enhanced MLP performance and fault
tolerance resulting from synaptic weight noise during training,” IEEE
Trans. Neural Netw., vol. 5, no. 5, pp. 792–802, Sep. 1994.

[38] J. Sum, C.-S. Leung, and K. Ho, “Convergence analyses on on-line
weight noise injection-based training algorithms for MLPs,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1827–1840, Nov. 2012.

[39] K. Ho, C.-S. Leung, and J. Sum, “Objective functions of online weight
noise injection training algorithms for MLPs,” IEEE Trans. Neural
Netw., vol. 22, no. 2, pp. 317–323, Feb. 2011.

[40] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of
the NIPS 2003 feature selection challenge,” in Proc. Adv. Neural Inf.
Process. Syst., 2005, pp. 545–552.

[41] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Jan. 2003.

[42] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[43] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Mach. Learn.,
vol. 46, nos. 1–3, pp. 389–422, 2002.

[44] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 69, no. 6, 2004, Art. no. 066138.

[45] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006.

[46] MathWorks. MATLAB Classification Learner App. Accessed: Oct. 1,
2019. [Online]. Available: https://www.mathworks.com/help/stats/
classificationlearner-app.html

[47] (2015). ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
[Online]. Available: http://www.image-net.org/challenges/LSVRC/

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

Mohammad Saeed Ansari (S’16) received the
B.Sc. and M.Sc. degrees in electrical and electronic
engineering from Iran University of Science and
Technology, Tehran, Iran, in 2013 and 2015, respec-
tively. He is currently working toward the Ph.D.
degree in electrical and computer engineering at the
University of Alberta, Edmonton, AB, Canada.

His current research interests include approxi-
mate computing, design of computing hardware for
emerging machine learning applications, multilayer
perceptrons (MLPs), convolutional NNs (CNNs) in

particular, and reliability and fault tolerance.

328 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2020

Vojtech Mrazek (M’18) received the Ing. and Ph.D.
degrees in information technology from the Faculty
of Information Technology, Brno University of Tech-
nology, Brno, Czech Republic, in 2014 and 2018,
respectively.

He is currently a Researcher with the Evolv-
able Hardware Group, Faculty of Information
Technology, Brno University of Technology. He
is also a Visiting Postdoctoral Researcher with
the Department of Informatics, Institute of Com-
puter Engineering, Technische Universität Wien

(TU Wien), Vienna, Austria. He has authored or coauthored over 30 con-
ference/journal papers focused on approximate computing and evolvable
hardware. His current research interests include approximate computing,
genetic programming, and machine learning.

Dr. Mrazek received several awards for his research in approximate com-
puting, including the Joseph Fourier Award for research in computer science
and engineering in 2018.

Bruce F. Cockburn (S’86–M’90) received the B.Sc.
degree in engineering physics from Queen’s Uni-
versity, Kingston, ON, Canada, in 1981, and the
M.Math. and Ph.D. degrees in computer science
from the University of Waterloo, Waterloo, ON,
Canada, in 1985 and 1990, respectively.

From 1981 to 1983, he was a Test Engineer and a
Software Designer with Mitel Corporation, Kanata,
ON, Canada. He was a Sabbatical Visitor with
Agilent Technologies, Inc., Santa Clara, CA, USA,
and The University of British Columbia, Vancouver,

BC, Canada, in 2001 and from 2014 to 2015, respectively. He is currently
a Professor with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada. His current research interests
include the testing and verification of integrated circuits, FPGA-based hard-
ware accelerators, parallel computing, stochastic and approximate computing,
and bioinformatics.

Lukas Sekanina (M’02–SM’12) received the Ing.
and Ph.D. degrees from Brno University of Tech-
nology, Brno, Czech Republic, in 1999 and 2002,
respectively.

He was a Visiting Professor with Pennsylvania
State University, Erie, PA, USA, in 2001, and the
Centro de Eléctronica Industrial (CEI), Universi-
dad Politécnia de Madrid (UPM), Madrid, Spain,
in 2012, and a Visiting Researcher with the Depart-
ment of Informatics, University of Oslo, Oslo, Nor-
way, in 2001. He is currently a Full Professor and

the Head of the Department of Computer Systems, Faculty of Information
Technology, Brno University of Technology.

Dr. Sekanina received the Fulbright Scholarship to work with the NASA Jet
Propulsion Laboratory, Caltech, in 2004. He has served as an Associate Editor
for the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION from
2011 to 2014, the Genetic Programming and Evolvable Machines Journal,
and the International Journal of Innovative Computing and Applications.

Zdenek Vasicek received the Ing. and Ph.D. degrees
in electrical engineering and computer science
from the Faculty of Information Technology, Brno
University of Technology, Brno, Czech Republic,
in 2006 and 2012, respectively.

He is currently an Associate Professor with the
Faculty of Information Technology, Brno University
of Technology. His current research interests include
evolutionary design and optimization of complex
digital circuits and systems.

Dr. Vasicek received the Silver and Gold medals
at HUMIES, in 2011 and 2015, respectively.

Jie Han (S’02–M’05–SM’16) received the B.Sc.
degree in electronic engineering from Tsinghua Uni-
versity, Beijing, China, in 1999, and the Ph.D. degree
from Delft University of Technology, Delft, The
Netherlands, in 2004.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada. His
current research interests include approximate com-
puting, stochastic computing, reliability and fault
tolerance, nanoelectronic circuits and systems, and

novel computational models for nanoscale and biological applications.
Dr. Han was a recipient of the Best Paper Award at the International

Symposium on Nanoscale Architectures (NanoArch 2015) and Best Paper
Nominations at the 25th Great Lakes Symposium on VLSI (GLSVLSI 2015),
NanoArch 2016, and the 19th International Symposium on Quality Electronic
Design (ISQED 2018). He served as the General Chair for GLSVLSI 2017 and
the IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT 2013). He served as the Technical
Program Committee Chair for GLSVLSI 2016 and DFT 2012. He is currently
an Associate Editor of the IEEE TRANSACTIONS ON EMERGING TOPICS IN

COMPUTING (TETC), the IEEE TRANSACTIONS ON NANOTECHNOLOGY,
and Microelectronics Reliability (Elsevier Journal).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

