
Multi-Island Finite Automata and
Their Even Computation

Dušan Kolář, Alexander Meduna and Martin Tomko

Brno University of Technology, Faculty of Information Technology, Centre of Excellence
IT4Innovations, Božetěchova 2, 612 66 Brno, Czech Republic

Email: itomko@fit.vutbr.cz

This paper discusses n-island finite automata whose transition graphs can be
expressed as n-member sequences of islands i1, i2, . . . , in, where there is a bridge
leaving ij and entering ij+1 for each 1 ≤ j ≤ n − 1. It concenrates its attention on
even computation defined as any sequence of moves during which these automata
make the same number of moves in each of the islands. Under the assumption that
these automata work only in an evenly computational way, the paper proves that
the language family defined by m-island finite automata is properly contained
in that defined by (m + 1)-island finite automata, for all m ≥ 1. This infinite
hierarchy occurs between the family of regular languages and that of context-
sensitive languages, and it represents an automaton-based counterpart to the
grammar-based hierarchy resulting from n-parallel right-linear grammars. Open

questions are formulated in the conclusion.

1. INTRODUCTION

Over its history, the theory of computation has
always systematically and intensively investigated finite
automata in terms of their structures in relation to the
way they work (see [1], [2], [3], [4], [5], [6], [7]). In this
paper, we continue with this vivid investigation trend.
Indeed, we study finite automata with a transition-
graph-based restriction placed on the way they work
and demonstrate an infinite hierarchy of language
families resulting from this restricted computation,
referred to as even computation. To give some insight
into it, we first introduce the notion of an island into
graph theory; we assume that the reader is familiar with
this theory (see [8]).

For brevity, by graphs, we automatically mean un-
ordered labeled oriented connected graphs throughout.
Let G be a graph and H be a connected subgraph of G
such that H contains k bridges of G, for some k ≥ 0. H
is a k-bridge island if more than k bridges of G occur in
any connected subgraph of G that properly contains H.
If G contains no bridge entering H, then H is a starting
island. If G contains no bridge leaving H, then H is a
final island.

In what follows, we automatically assume that finite
automata have a single start state s and a single
final state f ; in addition, all their states are useful,
and during a single move, they can read a string,
possibly consisting of several symbols. (Of course,
non-deterministic finite automata that satisfy these
properties are as powerful as any finite automata
that define the family of regular languages.) Let
M be a finite automaton with transition graph GM .
Then, considering the properties and assumptions given

above, we see that GM can be expressed as a sequence
of islands i1, i2, . . . , in for some n ≥ 1 such that i1 is the
only starting island, which contains s, in is the only final
island, which contains f , and there is a bridge bj leaving
ij and entering ij+1 for all 1 ≤ j ≤ n−1 (the case when
n = 1 means that GM = i1 = in). M with GM of this
form is called an n-island finite automaton, and an even
computation in this automaton is a sequence of moves
during which M makes the same number of moves in
each of its islands i1 through in.

We restrict our attention to n-island finite automata
that only perform even computations. As the main
result of this paper we demonstrate that the language
family defined by n-island finite automata under this
restriction is properly contained in that defined by
(n + 1)-island finite automata, for all n ≥ 1. To
rephrase this result less formally, any increase in the
number of islands in finite automata satisfying the
above properties gives rise to an increase in their power.
This hierarchy occurs between the family of regular
languages and that of context-sensitive languages. As
is obvious, the former is defined by 1-island finite
automata. It is worth poining out that this hierarchy
represents an automaton-based counterpart to the
grammar-based hierarchy resulting from multi-parallel
right-linear grammars (see [9]).

2. PRELIMINARIES

In this section, we formally define the basic notions that
this paper builds on, starting with finite automata and
following up with a few concepts related to directed
graphs, so that we can combine these areas in the
following section. For a more thorough introduction

The Computer Journal, Vol. ??, No. ??, ????

2 Kolář, D., Meduna, A., Tomko, M.

to the theory of formal languages, consult [10] or [11].

Finite Automata

A general finite automaton (GFA for short) is a
pentuple M = (Q,Σ, R, s, f), where:

• Q is a finite nonempty set of states;

• Σ is a finite nonempty input alphabet, Q ∩ Σ = ∅;

• R ⊆ Q × Σ∗ × Q is a finite set of rules; each
(p, w, q) ∈ R is written as pw → q in what follows;

• s ∈ Q is the start state;

• f ∈ Q is the final state.

M represents a finite automaton (FA for short) if
pw → q ∈ R implies |w| ≤ 1.

Let M = (Q,Σ, R, s, f) be a GFA. A configuration
of M is any string in QΣ∗. As special cases, sw is an
initial configuration for any w ∈ Σ∗, and f is the unique
final configuration.

Let px, qy be two configurations ofM , where p, q ∈ Q,
x, y ∈ Σ∗. For any rule r ∈ R, M makes a move from
px to qy according to r, denoted as px `M qy [r], if
and only if r is of the form pw → q for some w ∈ Σ∗

and x = wy. The subscript M is omitted whenever
no confusion may arise. We denote the transitive and
reflexive closure of ` by `∗.

The language accepted by M is denoted by L(M) and
defined as

L(M) = {w ∈ Σ∗ | sw `∗ f}.

Languages accepted by (general) finite automata are
called regular languages, and we denote the class of
these languages by REG.

Let M = (Q,Σ, R, s, f) be a GFA and let χ1, . . . , χn

be n configurations of M for some positive integer n.
The sequence c = χ1, . . . , χn is called a successful
computation of M if and only if:

(1) χ1 = sw for some w ∈ Σ∗;

(2) χi ` χi+1 for all 1 ≤ i < n;

(3) χn = f .

Directed Graphs

A directed graph (or simply a graph) is a pairG = (V,E)
where V is a finite set of vertices and E ⊆ V × V is a
finite set of edges.

An edge-labeled directed graph is a directed graph
G = (V,E) along with an edge labeling W : E → L,
which assigns to each edge ofG a label from a predefined
set L of labels.

Let G = (V,E) and G′ = (V ′, E′) be two graphs.
G′ is a subgraph of G if and only if V ′ ⊆ V and
E′ ⊆ E. Note that because G′ is a graph, it must

also hold that E′ ⊆ V ′ × V ′. Furthermore, G′ is a
proper subgraph of G if G′ 6= G. If G′ is a subgraph
of G and E′ = E ∩ (V ′ × V ′), we say that G′ is
an induced subgraph of G (induced by the set V ′ of
vertices). A subgraph G′ = (V ′, E′) of an edge-labeled
directed graph is automatically understood to have its
edge labeling’s domain restricted to E′.

We now proceed towards the concept of a bridge.
Let G = (V,E) be a directed graph and let

u0, . . . , un ∈ V be n + 1 of its vertices for some non-
negative integer n. Then the sequence p = u0, . . . , un
is:

a) A path from u0 to un in G (or simply a path), if
(ui, ui+1) ∈ E or (ui+1, ui) ∈ E for 0 ≤ i < n;

b) A directed path from u0 to un in G, if (ui, ui+1) ∈ E
for 0 ≤ i < n.

If p is a path, then for any 0 ≤ i < j ≤ n we say that
ui and uj are connected by a path. A graph is connected
if any two of its vertices are connected by a path.

Let G = (V,E) be a connected directed graph. An
edge e ∈ E is a bridge, if (V,E \ {e}) is not connected.
We denote by B(G) the set of all bridges in G. A
subgraph G′ = (V ′, E′) of G is a bridgeless subgraph of
G if it contains no bridges of G (that is, B(G)∩E′ = ∅).
In other words, a bridge is an edge in a connected
graph whose removal would cause the graph to cease
being connected. If the graph is not connected to begin
with, the concept of a bridge is irrelevant, so we do not
consider any of its edges to be bridges.

Note that a bridgeless subgraph G′ of G must not
contain edges that are bridges in G, but there is no
requirement that the edges of G′ must not be bridges
in G′ itself.

3. DEFINITIONS

In what follows, by the notion of a graph, we
automatically understand an edge-labeled directed
graph. We now have all the necessary auxiliary
definitions to formally define the notion of an island.

Definition 3.1. Let G be a graph. A bridgeless
island in G is a connected bridgeless subgraph I of G
that is not a proper subgraph of any other connected
bridgeless subgraph of G.

Next, we prove that any vertex and any edge that is
not a bridge is contained in exactly one bridgeless island
of its graph.

Lemma 3.1. Let G = (V,E) be a connected graph.
For any u ∈ V , there is exactly one bridgeless island
I = (VI , EI) of G such that u ∈ VI .

Proof. Let u ∈ V be any vertex of G. The single-vertex
graph ({u}, ∅) is clearly a connected bridgeless subgraph
of G, meaning it is either an island or contained in a
properly larger connected bridgeless subgraphs of G.

The Computer Journal, Vol. ??, No. ??, ????

Multi-Island Finite Automata and Their Even Computation 3

Of all these subgraphs, at least one must necessarily be
maximal with regards to the ”is a subgraph of” relation,
meaning it is an island. In conclusion, u is necessarily
contained in at least one island of G.

Now let I1 = (V1, E1) and I2 = (V2, E2) be two
islands of G such that u ∈ V1∧u ∈ V2. Let V3 = V1∪V2

and E3 = E1∪E2. As (V1×V1)∪ (V2×V2) ⊆ (V3×V3),
it necessarily holds that E3 ⊆ V3 × V3, meaning that
I3 = (V3, E3) is also a graph.

As I1 and I2 are both bridgeless, I3 is also bridgeless.
Finally, I1 and I2 are both connected. Consider any
two vertices v, w ∈ V3. Clearly, as u ∈ V1 ∩ V2, both
v and w are connected with u by a path, either in I1
or in I2. By combining these two paths, we get a path
between v and w, meaning that I3 is also connected.

Thus, I1, I2 and I3 are all connected bridgeless
subgraphs of G. I1 and I2 are also subgraphs of I3, but
they are also islands in G, meaning that they cannot be
proper subgraphs of I3, implying I1 = I2 = I3.

Lemma 3.2. Let G = (V,E) be a connected graph.
For any e ∈ E \ B(G)1, there is exactly one bridgeless
island I = (VI , EI) of G such that e ∈ EI .

Proof. Let e = (u, v) ∈ E \ B(G) be any edge of G that
is not a bridge. The graph ({u, v}, {(u, v)}) is clearly a
connected bridgeless subgraph of G, meaning that it is
an island of G or is contained in an island of G, which
we can prove analogously to the proof of Lemma 3.1
and which leads to the conclusion that e is contained in
at least one island of G.

Now let I1 = (V1, E1) and I2 = (V2, E2) be two
islands of G such that e ∈ E1 ∧ e ∈ E2. Note that
it is necessarily the case that u, v ∈ V1 ∩ V2. Also let
V3 = V1 ∪ V2 and E3 = E1 ∪ E2. Analogously with the
proof of Lemma 3.1, we can prove that I3 = (V3, E3) is
a connected bridgeless subgraph of G, and as I1 and I2
are both subgraphs of I3 and islands of G, it must hold
that I1 = I2 = I3.

Islands in Finite Automata

To establish the connection between finite automata
and graphs, let us first recall the notion of a transition
graph:

Definition 3.2. Let M = (Q,Σ, R, s, f) be a GFA
and let W : Q×Q→ 2Σ∗

be a function defined for any
(p, q) ∈ Q×Q as W (p, q) = {w ∈ Σ∗ | (pw → q) ∈ R}.
The transition graph of M , denoted by GM , is the edge-
labeled directed graph GM = (Q,E) with edge-labeling
W|E, where E = {(p, q) ∈ Q×Q |W (p, q) 6= ∅} and the
function W|E is W with its domain restricted to E.

If G = (V,E) is the transition graph GM for some
GFA M , we can denote the island that contains the
vertex u ∈ V by Iu. Thus, we denote the island

1Any e ∈ B(G) is a bridge, meaning it is not contained in any
bridgeless islands by definition.

that contains the start state by Is and the island that
contains the final state by If .

For a GFA M = (Q,Σ, R, s, f) and its corresponding
transition graph GM , we say that a state q ∈ Q is
useful if there exists a directed path p from s to f in
the transition graph such that q occurs in p; otherwise,
q is useless. Note that s and f are always useful unless
L(M) = ∅ (if L(M) = ∅, M has no useful states). Also
note that useful states are exactly those states that are
used in some successful computation, meaning that we
can remove the useless states and all associated edges
without changing the accepted language.

To simplify a few statements about the islands of a
GFA, let us introduce the notion of an island graph:

Definition 3.3. Let G = (V,E) be a directed graph,
S be the set of its islands, and B(G) be the set of its
bridges. For any node u ∈ V , Iu ∈ S denotes the island
of G containing u. The island graph of G is the graph
I(G) = (S,Γ), where Γ = {(Iu, Iv) | (u, v) ∈ B(G)}.

Furthermore, let p = u0, . . . , un be a path in G.
then its corresponding path in I(G) is the unique path
I(p) = I0, . . . , Im, 1 ≤ m ≤ n which can be constructed
as follows:

1. Let I0 be the island containing u0;

2. For each subsequent node ui, if the island
I containing ui is different from the island
containing ui−1, append I to the end of the
sequence constructed so far;

3. After un has been processed, the sequence
is finished, clearly ending with the island Im
containing un.

Note that the definition of Γ encounters no duplicates
as there can be no more than a single bridge connecting
any two islands. There is therefore a bijection ψ :
B(G)↔ Γ defined as ψ(u, v) = (Iu, Iv).

It is easy to see that I(G) contains no cycles, because
we would then be able to remove any edge on any
cycle like this without making the resulting graph
disconnected, which contradicts the fact that all edges
of I(G) are bridges in G. For a connected graph G,
I(G) is also connected, meaning it can be thought of as
a tree, leading to an easy conclusion that a graph with
n bridges has n+ 1 islands, among other things.

Theorem 3.1. Let M = (Q,Σ, R, s, f) be a GFA
with n bridges such that every state in Q is useful. Let
GM be the transition graph of M , and let I(GM) be the
corresponding island graph. Finally, let w1, w2 ∈ L(M)
be any two words accepted by M , and let the paths p1

and p2 represent in GM the successful computations
sw1 `∗ f and sw2 `∗ f , respectively. Then the paths
I(p1) and I(p2) in I(GM) corresponding to p1 and p2,
respectively, are equal, that is,

I(p1) = I(p2).

The Computer Journal, Vol. ??, No. ??, ????

4 Kolář, D., Meduna, A., Tomko, M.

In other words, all islands of M can be ordered as
I0, . . . , In, such that every successful computation of M
visits them exactly in this order and never returns to
any island after once leaving it.

Proof. Let M be a GFA with no useless states. Recall
that I(GM) for a GFA M with no useless states can be
thought of as a tree. In such a graph, there is a unique
path between any two nodes. Any path corresponding
to a successful computation of M necessarily starts
in Is and ends in If , and in between corresponds to
the unique path between them. Furthermore, as M
contains no useless states, every island of M occurs on
some path from Is to If , and as we have just established,
there is exactly one such path, and all islands of M
occur on it.

In conclusion, any two paths in GM corresponding
to a successful computation of M are represented in
I(GM) by the unique path I0, . . . , In connecting Is = I0
and If = In. This unique path defines the order
I0, . . . , In of the islands of M .

Informally speaking, this theorem says that the island
graph of the transition graph of any GFA with no useless
states is of the following form:

I0 −→ I1 −→ · · · −→ In−1 −→ In

This also means that we can always denote its islands
as I0, . . . , In, where n is the number of bridges.

Definition 3.4. Let G = (V,E) be a connected
graph and let k be a non-negative integer. A k-bridge
island of G is a connected subgraph I of G that contains
exactly k edges that are bridges in G and is not properly
contained in any other such subgraph.

In other words, any connected subgraphH ofG which
contains I as a proper subgraph contains at least k + 1
bridges of G. When the number k of bridges can be
omitted, we often refer to k-bridge islands simply as
islands.

Note that for k = 0, this definition corresponds
to Definition 3.1, so the term bridgeless island is
synonymous with the term 0-bridge island. The
following theorem demonstrates how k-bridge islands
are formed from bridgeless islands.

Theorem 3.2. Let G be a connected graph with n
bridgeless islands denoted as I1, . . . , In, k be an integer
satisfying 0 ≤ k < n, and I be a k-bridge island of G.
Then, denoting each bridgeless island as Ij = (Vj , Ej),
there is a set S = {j0, . . . , jk} of k+ 1 indices, 1 ≤ ji ≤
n for each ji, such that I = (V,E), where V =

⋃
j∈S Vj

and E = (
⋃

j∈S Ej) ∪ (B(G) ∩ V × V). Conversely, for
any such set S of k+ 1 indices, the graph I constructed
in this way is either disconnected or a k-bridge island
in G.

In other words, a k-bridge island I in a graph G
consists prececisely of the union of k + 1 bridgeless

islands of G and the k bridges connecting them.
Conversely, any such union is a k-bridge island.

Proof. We prove this theorem by induction on k.
Basis: For k = 0, the theorem says that any

bridgeless island of G consists of exactly one bridgeless
island of G, which is obviously true: if the particular
island is Ij for some j, simply set S = {j}. Conversely,
an island constructed from a singleton set of indices {j}
just corresponds to the bridgeless island Ij .

The rest of the proof consists of the induction step
for each half of the theorem.

Induction Step, 1/2: Let k be a positive integer, and
assume that the theorem holds for all 0, . . . , k − 1. Let
I be a k-bridge island of G and let b ∈ B(G) be one
of its k bridges. By removing b from I, we decompose
it into two disjoint connected subgraphs J and K such
that I is the union of J , K, and b.

As they are formed from a k-bridge island by
removing one bridge, J and K contain m and l bridges
of G, respectively, where m, l are integers satisfying
m + l + 1 = k. It can be shown that J and K are
an m-bridge island and an l-bridge island, respectively
– they are both connected and contain exactly the right
number of bridges. It remains to show that neither is
properly contained in another such subgraph of G.

Let us assume that there is an m-bridge island J ′ in G
properly containing J . It follows that J ′ is necessarily
connected and contains no bridges out of J , which also
means that b is not in J ′. Furthermore, J ′ and K are
necessarily disjoint, because as they are both connected,
J ′ and K having a non-empty intersection would imply
the existence of a path connecting J and K without
going through b, which would contradict the fact that
b is a bridge in G. Therefore, the union of J ′, K
and b is a connected subgraph of G containing exactly
k bridges and properly containing I as a subgraph,
which contradicts the presupposition that I is a k-
bridge island. Therefore, there can be no such J ′, J
is an m-bridge island, and the same logic can be used
to prove that K is an l-bridge island.

By the induction hypothesis, J and K are composed
of m+ 1 and l+ 1 bridgeless islands, respectively, along
with the m and l bridges connecting them. As I is
exactly the union of K, J and b, we can express I
as the union of m + l + 2 = k + 1 bridgeless islands
and m + l + 1 = k bridges between them. These k
bridges are also all the bridges of G between the nodes
of K and J (so precisely B(G)∩ V × V , as the theorem
requires), as no more than k bridges may connect k+ 1
bridgeless islands – the presence of more bridges would
introduce loops, contradicting the assumption that they
are bridges. Thus, the induction step for the first half
of the theorem is completed.

Induction Step, 2/2: Conversely, let k be a positive
integer, assume that the theorem holds for all 0, . . . , k−
1, and let S = {j0, . . . , jk} be a set of k + 1 distinct
indices satisfying 1 ≤ ji ≤ n for each 0 ≤ i ≤ k.

The Computer Journal, Vol. ??, No. ??, ????

Multi-Island Finite Automata and Their Even Computation 5

Let us construct I = (V,E) with S as a basis as
described in the theorem. If I is disconnected, we are
done. Otherwise, I is connected, and we know that the
number of bridges in I is k, as more bridges would lead
to loops and fewer bridges would not suffice to connect
all of the k+ 1 disjoint bridgeless islands. It remains to
show the maximality of I, because if it is not properly
contained in a k-bridge island, it is itself a k-bridge
island.

Let I ′ be a k-bridge island containing I. Then, as
we have already shown in the first half of the proof, I ′

must be constructed as a union of k+1 bridgeless islands
specified by some set S′ of indices. However, as I ′ also
contains I, it must contain all of the bridgeless islands
specified by S, leading to the conclusion that S ⊆ S′,
which along with the fact that |S′| = |S| = k+1 implies
S′ = S and I ′ = I.

We have already seen that any graph can be described
as a union of bridgeless islands and the bridges
connecting them (in Lemmas 3.1 and 3.2), and we
have seen the structure of such a decomposition (in
Theorem 3.1). Similar decompositions of a graph G
can be made into the more general k-bridge islands
(for varying k), usually in more than one way. What
this comes down to is deciding which bridgeless islands
to merge into larger islands. This corresponds to
dividing the bridges in B(G) into two groups: bridges
which merge their adjacent bridgeless islands into larger
islands, and bridges which remain as bridges between
the larger islands in the final decomposition. Therefore,
for a graph G with n bridges, given k such that 0 ≤ k ≤
n, we can decompose G into k+1 islands in

(
n
k

)
different

ways.
Using such a decomposition might appear like an

attempt to diverge from structures offered by bridgeless
islands alone, but in fact, it is just a convenient
shorthand – for any k-bridge island I found in the
transition graph of a particular finite automaton M , we
can slightly modify M to get an equivalent automaton
containing a bridgeless island corresponding to I. As an
example, consider any bridge (u, v) along with a rule
uw → v in M . If we simply add a new state q and
rules u → q, qw → v, the language accepted by the
automaton remains the same, but (u, v) is no longer a
bridge and the former two bridgeless islands connected
by (u, v) are merged into a new bridgeless island in the
new automaton. Similar actions can be repeated as
necessary to merge larger groups of islands.

n-island Finite Automata

Let us now finally apply all the notions we have
introduced to the formal definition of an n-island GFA:

Definition 3.5. Let [n] = {1, 2, . . . , n} be the set
of all positive integers up to and including n and let
M = (Q,Σ, R, s, f) be a GFA. We say that M is an n-
island general finite automaton (or n-IGFA for short)

if and only if Q =
⋃n

i=1Qi for some family of pairwise
disjoint sets Q1, . . . , Qn called islands of M such that:

1. For each i ∈ [n], the island Qi contains:

• An entry state si ∈ Qi,

• An exit state fi ∈ Qi;

2. For each pw → q ∈ R, exactly one of the following
holds:

• Either p, q ∈ Qi for some i ∈ [n], in which
case the rule is an internal rule of island i,

• Or p = fi ∈ Qi, q = si+1 ∈ Qi+1 for some
i ∈ [n], i 6= n, in which case the rule is a
bridge rule;

3. s = s1 ∈ Q1;

4. f = fn ∈ Qn.

For each i ∈ [n] set Ri = R ∩ (Qi × Σ∗ × Qi),
which is the set of internal rules of island i, and set
Rb = R ∩

⋃n−1
i=1 ({si}×Σ∗×{fi+1}), which is the set of

bridge rules of M . Clearly R = (
⋃n

i=1Ri)∪Rb. Also set
Γ = {(fi, si+1) | 1 ≤ i < n}, which is the set of bridges
of M .

Furthermore, if M is a FA, we say that M is an
n-island finite automaton (or n-IFA for short).

In the transition graph GM of the automaton, it is
the case that Γ ⊆ B(GM), meaning that each pair of
states in Γ is a bridge in GM , Therefore, Q1, . . . , Qn are
islands in GM , as they are necessarily composed of the
remaining bridgeless islands and the bridges connecting
them. The edges (fi, si+1) connecting neighboring
islands are called bridges, as they are bridges in the
GFA’s transition graph. However, this graph may also
contain bridges within the individual islands.

Note that while M is required to contain the island
structure as described by Q1, . . . , Qn, the structure
of M itself does not specify its islands or bridges in
any way. These must therefore be defined by some
additional structure, such as the set Γ ⊆ B(GM) of
selected bridges. The sets Q1, . . . , Qn along with their
entry and exit states are fully defined by specifying the
automaton M along with the set of bridges Γ.

Furthermore, note that for each i ∈ [n], Mi =
(Qi,Σ, Ri, si, fi) is a GFA, which we can also refer to
as the i-th island of M .

An n-IGFA is just a special case of a GFA, so the
previously defined notions of a configuration, move,
and accepted language still apply. However, we can
introduce some extensions of these notions:

Definition 3.6. Let n be a positive integer, M =
(Q,Σ, R, s, f) an n-IGFA, Γ ⊆ B(GM) be its set of
bridges, and let p, q ∈ Q be any two states of M ,
x, y ∈ Σ∗ any two strings over Σ, and r ∈ R be a rule
of M such that px ` qy [r].

The Computer Journal, Vol. ??, No. ??, ????

6 Kolář, D., Meduna, A., Tomko, M.

If r ∈ Ri for some i ∈ [n], we can say that M makes a
move in island i with regard to Γ, denoted as px Γ

i`qy[r],
and if r ∈ Rb, we can say that M makes a bridge move
with regard to Γ, denoted as px Γ

b`qy [r]. We can omit
the left superscript Γ when the set of bridges used is
clear from the context.

For both of these relations, the upper index k for some
non-negative integer k denotes their k-th power, and
the upper index ∗ denotes their transitive and reflexive
closure.

Using these notions, we now introduce a new kind of
computation based on a restriction not possible in an
ordinary GFA.

Definition 3.7. Let n be a positive integer, M =
(Q,Σ, R, s, f) an n-IGFA with its islands specified by
the set Γ of selected bridges, and let w ∈ Σ∗ be any
string over Σ. A computation sw `∗ f of M is even
with regard to Γ, denoted as sw Γ

e`∗f , if and only if
there is a non-negative integer k and for each i ∈ [n]
configurations ςi, ϕi ∈ QiΣ

∗ such that:

(i) ςi
Γ
i`kϕi for each i ∈ [n],

(ii) ϕi
Γ
b`ςi+1 for each i ∈ [n], i 6= n,

(iii) ς1 = sw,

(iv) ϕn = f .

The language accepted by M by even computations
with regard to Γ is denoted by Le(M,Γ) and defined as

Le(M,Γ) = {w ∈ Σ∗ | sw Γ
e`∗f}.

In other words, a computation is even if the same
number of moves is performed by M in each island.

For any positive integer n, we denote the class of
all n-IGFA and the class of all n-IFA by GFAn and
FAn, respectively. We also denote the classes of
languages accepted by these automata as L(GFAn) =
{L(M) | M ∈ GFAn} and L(FAn) = {L(M) | M ∈
FAn}. Finally, we denote the classes of languages
accepted by these automata by even computations by
Le(GFAn) = {Le(M,Γ) | M ∈ GFAn,Γ ⊆ B(GM)}
and Le(FAn) = {Le(M,Γ) |M ∈ FAn,Γ ⊆ B(GM)}. .

Example 1. Consider M1 =
({s, q, f}, {a, b, c}, R, s, f), where R consists of the
rules

sa → s,
s → q,
qb → q,
q → f,
fc → f,

and set Γ = {(s, q), (q, f)}, which as a set of selected
bridges corresponds to the islands Q1 = {s}, Q2 =
{q}, Q3 = {f}. See figure 1 for a diagram of this
automaton, with the individual bridges enclosed in
dashed rectangles.

s q f

a

ε

b

ε

c

FIGURE 1. The diagram of M1

Clearly, L(M1) = {a}∗{b}∗{c}∗ ∈ REG. Consider-
ing the set Γ of selected bridges, M1 is a 3-IFA, with
each of the states s = s1 = f1, q = s2 = f2, f = s3 = f3

being both the entry and exit state of their respective
islands. Consider the following even computation with
input aabbcc, with the current state underlined in each
configuration for clarity:

saabbcc 1` sabbcc

1` sbbcc

b` qbbcc

2` qbcc

2` qcc

b` fcc

3` fc

3` f

As the computation performs exactly 2 steps in each
island, we can say that saabbcc Γ

e`f , meaning aabbcc ∈
Le(M1,Γ). Observe that

Le(M1,Γ) = {anbncn | n ≥ 0},

which is a context-sensitive language, but not a context-
free language.

4. RESULTS

In this section, we establish the main results of this
paper. First, we prove REG = L(GFAn) = L(FAn)
for all n ≥ 1. Then, we demonstrate Le(GFAn) ⊂
Le(GFAn+1) for all n ≥ 1.

Theorem 4.1. REG = L(GFAn) for any n ∈ N,
n ≥ 1.

Proof. As an n-IGFA is just a special case of a GFA,
clearly L(GFAn) ⊆ REG for any n ∈ N, n ≥ 1.

Let L ∈ REG be a regular language over an alphabet
Σ. If L = ∅, it is easy to construct an n-IGFA accepting
L: simply let its first island be Q1 = {s1, f1} such that
there is no rule s1w → f1 for any string w. Other
than this, the structure of the remaining islands can be
completely arbitrary.

Otherwise, L 6= ∅. Let M = (Q,Σ, R, s, f) be a GFA
with no useless states such that L(M) = L. As M is
definitely a 1-IGFA, clearly REG ⊆ L(GFA1). Let
n ≥ 2 and Q′ = {q2, . . . , qn} be a set of n−1 new states
such that Q′ ∩ Q = Q′ ∩ Σ = ∅. We can introduce
new rules R′ = {f → q2} ∪ {qi → qi+1 | 2 ≤ i < n}.
Clearly, M ′ = (Q ∪ Q′,Σ, R ∪ R′, s, qn) is an n-IGFA

The Computer Journal, Vol. ??, No. ??, ????

Multi-Island Finite Automata and Their Even Computation 7

with regard to {(f, q2)} ∪ {(qi, qi+1) | 2 ≤ i < n} as
the set of selected bridges and L(M ′) = L(M) = L.
Therefore, REG ⊆ L(GFAn), so we can conclude that
REG = L(GFAn) for any n ∈ N, n ≥ 1.

Rather than proving the analogous result for ordinary
finite automata separately, we now show their relation
to general finite automata, from which this analogous
result follows.

Theorem 4.2. L(FAn) = L(GFAn) and
Le(FAn) = Le(GFAn) for any n ∈ N, n ≥ 1.

Proof. As an n-FA is just a special case of an n-
GFA, clearly it holds that L(FAn) ⊆ L(GFAn) and
Le(FAn) ⊆ Le(GFAn).

To prove the converse inclusion, let n be any positive
integer, let M = (Q,Σ, R, s, f) be any n-IGFA, and let
Γ ⊆ B(GM) be the set of bridges defining the n islands
of M . We construct an n-IFA N = (O,Σ, P, s, f ′) along
with a set ∆ ⊆ B(GN) of its defining bridges such that
L(N) = L(M) and Le(N,∆) = Le(M,Γ).

As an intermediate step to simplify the construction,
let us define the n-GFA M ′ with bridges Γ′ equivalent
to M in every way except that nothing is read during
bridge moves. This reading is done just before exiting
the island instead. Let s1, . . . , sn denote the entry
states and f1, . . . , fn the exit states of each island of
M . Clearly, s = s1, Γ = {(fi, sn+1) | 1 ≤ i < n}, and
f = fn. We introduce new states f ′1, . . . , f

′
n /∈ Q which

serve as the new exit states of each island. We define
M ′ as the pentuple (Q′,Σ, R′, s, f ′), where:

• Q′ = Q ∪ {f ′1, . . . , f ′n};

• R′ = Rn ∪Rf ∪Rb, where:

– Rn = R \ {px → q ∈ R | (p, q) ∈ Γ} is the set
of original non-bridge rules in M ,

– Rf = {fix → f ′i | (fix → si+1) ∈
R for some 1 ≤ i < n} ∪ {fn → f ′n} is the set
of new rules for the reading done in bridges in
M ,

– Rb = {f ′i → si+1 | 1 ≤ i < n} is the set of new
bridge rules;

• f ′ = f ′n is the new exit state of the final island;

• Σ and s are the same as in M .

We also set Γ′ = {(f ′i , sn+1) | 1 ≤ i < n}. Clearly,
L(M ′) = L(M) and Le(M,Γ) = Le(M

′,Γ′), as exactly
one additional step must occur in each island, so for
each even computation in M there is a corresponding
even computation in M ′, and vice versa.

Next, let m = max{|x| | px → q ∈ R′, where p, q ∈
Q′, x ∈ Σ∗} be the smallest integer greater than or equal
to the length of any string that can be read by a single
rule in M ′ (or, equivalently, in M). We simulate each
internal island rule of M ′ in N by m new rules and m−1
new intermediate states as follows.

Let r : px→ q ∈ (Rn∪Rf) be a non-bridge rule ofM ′,
let x = a1 · · · ak with k = |x| ≤ m, and let ai denote
ε for i > k. We introduce a new state 〈r, i〉 for each
1 ≤ i < m. To simulate r, we add the rules pa1 → 〈r, 1〉,
〈r,m− 1〉am → q and for each 1 ≤ i ≤ m− 2 a rule of
the form 〈r, i〉ai+1 → 〈r, i + 1〉. The other states and
bridge rules can be taken over unchanged.

Formally, we define N = (O,Σ, P, s, f ′), where

• O = Q′∪Qs, where Qs = {〈r, i〉|r ∈ (Rn∪Rf), 1 ≤
i < m};

• P = Rb ∪Rs, where

– Rb is simply the set of bridge rules of M ′,

– Rs =
⋃

r∈(Rn∪Rf) S(r) is the set of simulation
rules for each non-bridge rule, where S(r) is
the set of simulation rules for the specific rule
r, defined as follows:
Let r : px → q be a non-bridge rule and x =
a1 · · · am, where ai ∈ Σ for 1 ≤ i ≤ |x| and
ai = ε for |x| < i ≤ m. Then S(r) is defined as
the set S(r) = {pa1 → 〈r, 1〉, 〈r,m − 1〉am →
q} ∪ {〈r, i〉ai+1 → 〈r, i+ 1〉 | 1 ≤ i ≤ m− 2};

• Σ, s, f ′ are the same as in M ′.

Finally, let ∆ = Γ′. Clearly, for each computation of
M ′, a corresponding computation in N can be made
such that for each move in an island of M ′, exactly
m moves are performed in the corresponding island
in N while reading exactly the same string from the
input. This also means that an even computation
of M ′ is always simulated by an even computation
in N , because where M ′ performs exactly k moves
in each island for some k ≥ 0, N performs exactly
mk moves in each island. Furthermore, no additional
computations can be performed in N , as the new states
can only be used in the simulation of rules from M ′.
Therefore, L(N) = L(M ′) = L(M ′) and Le(N,∆) =
Le(M

′,Γ′) = Le(M,Γ). This construction can be
performed for any n-IGFA, meaning that the inclusions
L(GFAn) ⊆ L(FAn) and Le(GFAn) ⊆ Le(FAn) hold
for any positive integer n, finalizing the proof of the
theorem.

Theorem 4.3. REG = L(FAn) for any n ∈ N,
n ≥ 1.

Proof. Follows immediately from Theorems 4.1 and 4.2.

Accepting Power

In this subsection we show that n-IGFA are equivalent
to another computational model, n-parallel right-linear
grammars, defined as follows:

Definition 4.1. Let n be a positive integer. An n-
parallel right-linear grammar (or n-PRLG for short) is
a quadruple G = (N,Σ, P, S), where:

The Computer Journal, Vol. ??, No. ??, ????

8 Kolář, D., Meduna, A., Tomko, M.

• N is a finite, non-empty set of nonterminals;

• Σ is a finite set of terminals, N ∩ Σ = ∅;

• S ∈ N is the start symbol;

• P is a finite set of production rules, each rule being
of one of the following four forms:

(i) S → x, where x ∈ Σ∗,

(ii) S → A1 · · ·An, where Ai ∈ N \ {S} for
1 ≤ i ≤ n,

(iii) A→ xB, where A,B ∈ N \ {S} and x ∈ Σ∗,

(iv) A→ x, where A ∈ N \ {S} and x ∈ Σ∗.

A derivation step in a given n-PRLG G =
(N,Σ, P, S) is defined as follows. For α, β ∈ (N ∪ Σ)∗,
α ⇒G β holds if and only if one of the following three
options holds:

a) α = S and (S → β) ∈ P ;

b) α = x1A1x2 · · ·xnAn and β = x1y1x2 · · ·xnyn,
where xi ∈ Σ∗, Ai ∈ N \ {S}, yi ∈ Σ∗(N \ {S}),
and (Ai → yi) ∈ P for all 1 ≤ i ≤ n;

c) α = x1A1x2 · · ·xnAn and β = x1y1x2 · · ·xnyn,
where xi ∈ Σ∗, Ai ∈ N \ {S}, yi ∈ Σ∗, and
(Ai → yi) ∈ P for all 1 ≤ i ≤ n.

We can also simply write x ⇒ y where G is clear
from the context. We define ⇒∗, ⇒+ and ⇒k for non-
negative integers k as usual.

The language generated by an n-PRLG G is denoted
by L(G) and defined as

L(G) = {w ∈ Σ∗ | S ⇒∗G w}.

Note that unlike other definitions of this model, we
allow erasing rules. However, this has no effect on the
generative power of this model in comparison with the
variant without erasing rules (see [9] for proof). In what
follows, we denote the class of languages generated by
n-PRLGs by PRLn.

Theorem 4.4. Let n be a positive integer, M =
(Q,Σ, R, s, f) be an n-IGFA and Γ ⊆ B(GM) be a
set of bridges of M . Then there is an n-PRLG G =
(N,Σ, P, S) such that L(G) = Le(M,Γ).

Proof. Given the n-IGFA M = (Q,Σ, R, s, f) and the
set of bridges Γ, we can infer the individual islands
Q1, . . . , Qn and their entry and exit states si, fi for
each 1 ≤ i ≤ n. We can simply take the states of
the automaton as the nonterminals for the grammar,
add a start symbol S and an initial rule of the form
S → s1 · · · sn, and add a rewriting rule of the form
p → xq for each internal rule px → q within an island
of M . Finally, we add rules to allow the rewriting of exit
states to whatever strings can be read on the following
bridge, or to the empty string in the case of the final
state.

Formally, let G = (Q∪{S},Σ, P, S), where S /∈ Q∪Σ
and P = Ps ∪ Pi ∪ Pf , with the individual components
of the rule set defined as follows:

• Ps = {S → s1 · · · sn} is the set containing the
single initial rule;

• Pi = {p → xq | (px → q) ∈ R ∧ p, q ∈
Qj for some island j} is the set containing rules
corresponding to the internal rules of each island;

• Pf = {fi → x | 1 ≤ i < n ∧ (fix → si+1) ∈
R}∪{f → ε} is the set containing the terminating
rules for each island.

After applying the initial rule, the i-th nonterminal
represents the i-th island of M . In any derivation,
exactly the same number of steps is taken in each
simulated island, fulfilling the requirement that only
even computations get simulated. This is because
an n-PRLG requires that in a single step, either all
n nonterminals in its sentential form get rewritten
to terminal strings (which corresponds to applying
the terminating rules), or they all get rewritten
to strings each containing exactly one nonterminal
(which corresponds to applying the internal rules).
Furthermore, because of the way the rewriting rules of
the grammar are based on M , G generates exactly those
strings which M accepts. Therefore, L(G) = Le(M,Γ),
concluding the proof.

It follows from this theorem that Le(GFAi) ⊆
PRLi. The converse relation is not as straightforward
to prove. It is easy to imagine that we can simply
construct an n-IGFA based on the rules of a given
n-PRLG and let each island simulate the derivations
starting from a particular nonterminal, but an n-PRLG
may have multiple rules of the form S → A1 · · ·An,
which requires each island to simulate derivations from
different nonterminals depending on which initial rule
was used, with only the number of steps taken in
each island as a means of communication between the
islands.

Consider the relatively simple language L2 =
{anbn, bnan | n ≥ 0}, which is clearly a PRL2

language, as it is generated by the grammar G2 =
({S,A,B}, {a, b}, P, S), where P contains the following
production rules:

S → AB,
S → BA,
A → aA,
A → ε,
B → bB,
B → ε.

Let us now thing about how to construct a 2-IFGA
which would accept L2 by even computations. While it
is easy to imagine how the concept of even computations
can be employed to ensure the same number of a’s and

The Computer Journal, Vol. ??, No. ??, ????

Multi-Island Finite Automata and Their Even Computation 9

b’s in a string, it is not immediately obvious how the
second island can be forced to only accept b’s if the first
island only accepted a’s, and vice versa. Regardless of
what computation path is performed in the first island,
the computation must go through the single available
bridge, so the only information about the computation
in the first island that is available to the automaton in
the second island is how many steps were performed.
However, this is enough to communicate which kind of
string is being accepted – by adding appropriate ε-rules,
we can ensure that for strings of the form anbb, an odd
number of steps is performed in each island, whereas
for strings of the form bnan this number would be even.
This idea is demonstrated in the following example.

Example 2. Consider the automaton M2 =
(Q, {a, b}, R, s1, f2) where

• Q = {s1, s2, p1, p2, p3, p4, q1, q2, q3, q4, f1, f2},

• R = {s1 → p1, s1 → q1, p1a → p2, p2 → p1, p2 →
f1, q1 → q2, q1 → f1, q2b → q1, f1 → s2, s2 →
p3, s2 → q3, p3b → p4, p4 → p3, p4 → f2, q3 →
q4, q3 → f2, q4a→ q3},

along with the set of bridges Γ = {(f1, s2)}. A
diagram of this automaton can be seen in Figure 2 with
dashed rectangles delimiting the individual islands.

Examine R to see that any computation within the
first island ending in its exit state is necessarily of one
of the following two forms, where w ∈ Σ∗:

(1) s1a
kw ` p1a

kw `2k−1 p2w ` f1w, where k ≥ 1,

(2) s1b
kw ` q1b

kw `2k q1w ` f1w, where k ≥ 0.

Analogously, any computation within the second
island that processes the entire remainder of the input
string and ends up in the final state is necessarily of one
of the following two forms:

(1’) s2b
k ` p3b

k `2k−1 p4 ` f2, where k ≥ 1,

(2’) s2a
k ` q3a

k `2k q3 ` f2, where k ≥ 0.

Notice that computations of forms (1), (1’) consist
of 2k + 1 steps for a given k ≥ 1, so the number of
steps is always odd, whereas computations of forms (2),
(2’) consist of 2k + 2 steps for a given k ≥ 0, so the
number of steps is always even. Recall that in an even
computation, exactly the same number of steps must
be taken in each island. From this and from what
we have established about the possible computations
in each island, there are only two possible forms of even
computations in automaton M2:

(a) s1a
kbk 1`2k+1f1b

k
b`s2b

k
2`2k+1f2, where k ≥ 1,

(b) s1b
kak 1`2k+2f1a

k
b`s2a

k
2`2k+2f2, where k ≥ 0.

Notice that even computations of form (a) go through
states pi and do not go through states qi for i ∈

{1, 2, 3, 4}, whereas it is the other way around for
computations of form (b)2.

In summary,

Le(M2,Γ) = {anbn, bnan | n ≥ 0} = L2.

In an n-PRLG, we can achieve the generation of the
two different string forms just by having two different
starting rules (S → AB and S → BA). In an n-
IGFA, no such simple approach is possible in the general
case, but as seen in the previous example, we can
associate each string form with a different remainder
when dividing by a preselected number (in this case 2)
and require the number of steps taken in each island
when accepting a string of a given form to give the
associated remainder; 0 for strings of the form bnan, 1
for strings of the form anbn.

To allow us to simulate any n-PRLG, we can
generalize this approach. To simulate a grammar with
k starting rules, associate a unique remainder from
{0, . . . , k − 1} with each rule and require that the
number of steps taken in each island while simulating
a derivation starting with this rule give this remainder
when divided by k.

Because we don’t need to differentiate between
different terminal-generating starting rules in this way
(that is, rules of the form S → x where x ∈ Σ∗), we
instead use the remainder when dividing bym+1, where
m is the number of different nonterminal-generating
starting rules (that is, rules of the form S → α where
α ∈ Nn). We reserve remainder 0 for terminal-
generating starting rules and associate a remainder
value from {1, . . . ,m} with each of the m nonterminal-
generating starting rules. This approach is formalized
in the proof of the following theorem.

Theorem 4.5. Let n be a positive integer, and let
G = (N,Σ, P, S) be an n-PRLG. Then there is an n-
IGFA M = (Q,Σ, R, s, f) and a set of bridges Γ ⊆
B(GM) such that Le(M,Γ) = L(G).

Proof. Let G = (N,Σ, P, S) be an n-PRLG. First, for
convenience, let us divide the set of production rules P
of G into four pairwise disjoint subsets:

• Ps = {p ∈ P | p is of the form S →
A1 · · ·An, where A1, . . . , An ∈ N \ {S}},

• Pc = {p ∈ P | p is of the form S → x, where x ∈
Σ∗},

• Pn = {p ∈ P | p is of the form A →
xB, where A,B ∈ N \ {S}, x ∈ Σ∗},

• Pt = {p ∈ P | p is of the form A → x, where A ∈
N \ {S}, x ∈ Σ∗}.

Note that Ps ∪ Pc ∪ Pn ∪ Pt = P .

2Although of course q2 and q4 are not visited when accepting
the empty string.

The Computer Journal, Vol. ??, No. ??, ????

10 Kolář, D., Meduna, A., Tomko, M.

s1

p1 p2

f1

q1

q2

s2

p3 p4

f2

q3

q4

ε

ε

a

ε
ε

ε

ε

b

ε

ε

ε

b

ε
ε

ε

ε

a

FIGURE 2. The diagram of M2

Let m = |Ps| be the number of different initial rules
generating nonterminals, and let these rules be indexed,
meaning we can write Ps = {p1, . . . , pm} where for
any given integer j satisfying 1 ≤ j ≤ m, pj denotes
a specific rule, and pi = pj implies i = j. Also, let
Aij denote the i-th nonterminal on the right-hand side
of the j-th rule of Ps, meaning that pj is of the form
S → A1j · · ·Anj . We construct M in such a way that
for a derivation starting with rule pj , the corresponding
computation performs in each island a number of steps
giving the remainder j when divided by m + 1. This
ensures that even computations can only be created by
combining paths within individual islands intended for
simulating the same initial rule of G. The remainder
0 is used for derivations starting (and thus necessarily
also ending) with rules from Pc.

We can now start constructing M . The set Q consists
of the following states:

• si and fi for each 1 ≤ i ≤ n, which are the entry
and exit states for each island;

• States of the form 〈i, j〉 for each 1 ≤ i ≤ n,
1 ≤ j ≤ m, which are used for the initial generation
of the remainder in each island;

• States of the form 〈A, i, j〉 for each 1 ≤ i ≤ n,
1 ≤ j ≤ m, A ∈ N \ {S}, which represent
the nonterminal A simulated in the i-th island
in a computation with predetermined remainder
j (meaning that this state is intended to be used
for simulations of derivations starting with the rule
pj ∈ Ps);

• States of the form 〈i, j, k,B〉 for each 1 ≤ i ≤ n,
1 ≤ j ≤ m, 1 ≤ k ≤ m, B ∈ (N \{S})∪{ε}, which
allow the rules from Pn and Pt with the right-hand
side xB for some x ∈ Σ∗ to be simulated usingm+1

moves in M . In each of these states, i identifies the
island, j represents the remainder for this branch
of computation (or equivalently, it represents that
the derivation being simulated starts with the rule
pj ∈ Ps), and k is the counter used to ensure
that exactly m + 1 moves are performed for the
simulation of any given rule from Pn ∪ Pt.

We now have the necessary groundwork to describe
the rules of the automaton. Specifically, R must contain
the following rules:

• Rules to generate the remainder:

– A rule of the form si → 〈i, 1〉 for each 1 ≤ i ≤
n,

– A rule of the form 〈i, j〉 → 〈i, j + 1〉 for each
1 ≤ i ≤ n, 1 ≤ j < m;

• Rules to pair the remainder 0 with simulating
derivations starting with rules from Pc:

– A rule of the form 〈1,m〉x → f1 for each
production rule S → x ∈ Pc;

– A rule of the form 〈i,m〉 → fi for each
1 < i ≤ n;

• Rules to pair the remainder j, 1 ≤ j ≤ m, in island
i with the nonterminal Aij derived at position i
by the initial rule pj : S → A1j · · ·Anj ∈ Ps

corresponding to the remainder:

– A rule of the form si → 〈Ai1, i, 1〉 for each
1 ≤ i ≤ n;

– A rule of the form 〈i, j − 1〉 → 〈Aij , i, j〉 for
each 1 ≤ i ≤ n, 1 < j ≤ m;

• Rules to simulate production rules from Pn and
Pt, including extra ε-rules to ensure that the
simulation of a given rule always takes m+1 steps:

The Computer Journal, Vol. ??, No. ??, ????

Multi-Island Finite Automata and Their Even Computation 11

– A rule of the form 〈A, i, j〉x → 〈i, j, 1, B〉 for
each 1 ≤ i ≤ n, 1 ≤ j ≤ m and each rule
A → xB ∈ Pn ∪ Pt, where x ∈ Σ∗ and
B ∈ (N \ {S}) ∪ {ε};

– A rule of the form 〈i, j, k, B〉 → 〈i, j, k+ 1, B〉
for each 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k < m,
B ∈ (N \ {S}) ∪ {ε};

– A rule of the form 〈i, j,m,B〉 → 〈B, i, j〉 for
each 1 ≤ i ≤ n, 1 ≤ j ≤ m, B ∈ N \ {S};

– A rule of the form 〈i, j,m, ε〉 → fi for each
1 ≤ i ≤ n, 1 ≤ j ≤ m;

• Bridge rules:

– A rule of the form fi → si+1 for each 1 ≤ i <
n.

Given all this, we can define M = (Q,Σ, R, s, f),
where

• Q and R are as described above,

• Σ is the same as in G,

• s = s1 and f = fn.

Finally, Γ = {(fi, si+1) | 1 ≤ i < n}.
By examining the definition of R above, it can be

seen that each non-initial rule of G is simulated by
m + 1 moves, and enforcing the remainder ensures
that in even computations, the islands agree on the
initial S-rule used. Even computations also make sure
that in the simulated derivation, all nonterminals get
rewritten to a terminal string in a single step, as an
n-PRLG requires (this corresponds to moving into the
exit state fi of each island). Each island can on its own
accept any string derivable from any single nonterminal
different from S, but the structure helps simulate the
synchronicity of the grammar. It therefore follows that
Le(M,Γ) = L(G).

The above theorem proves that PRLn ⊆ Le(GFAn),
which along with Theorem 4.4 gives rise to the following
corollary:

Corollary 4.1. For any positive integer n,
PRLn = Le(GFAn).

Recall that

PRLn ⊂ PRLn+1 for all n ≥ 1

(see [9]). From this hierarchy and Corollary 4.1
above, we obtain the following main result of this paper.

Theorem 4.6. For any positive integer n,
Le(GFAn) ⊂ Le(GFAn+1).

Proof. This theorem follows straightforwardly from
Corollary 4.1 above and Theorem 5 in [9].

5. CONCLUSION

The present paper has introduced the notion of an
island in transition graphs for finite automata. Based
on this notion, it placed a restriction on the way finite
automata work, referred to as even computation. As
its main result, it demonstrated an infinite hierarchy
of language families corresponding to the number of
islands in evenly computing finite automata. This
hierarchy coincides with a well-known infinite hierarchy
of language families resulting from multi-parallel right-
linear grammars in a very natural way. Consequently, it
is obviously closely related to some well-known results
about formal languages, on which it sheds light in
an alternative way. Therefore, the authors suggest
to continue with the study opened in the present
paper. Specifically, this investigation should pay special
attention to the following three open problem areas.

I. Introduce deterministic versions of the restricted
finite automata defined in this paper. Study them
by analogy with the study of classical deterministic
finite automata.

II. We have based the present paper on one-way finite
automata with useful states, out of which only one
state is final. Observe that this concept fulfills
an essential role in the proofs of the achieved
results. In the classical automata theory, however,
there exist many other equivalent versions of these
automata. Do the achieved results hold in their
terms as well? Specifically, do they hold in terms
of two-way finite automata (see Section 2.6 in [10])?

III. There exist a broad variety of finite automata,
ranging from quantum through probabilistic up to
fuzzy finite automata. Restrict these automata by
analogy with the bridge-based restriction discussed
in the present paper. Study their power. From
a more general viewpoint, investigate this topic
in terms of automata that are stronger than
finite automata, such as a broad variety of
pushdown automata, including counters and one-
turn pushdown automata.

FUNDING

This work was supported by The Ministry of Education,
Youth and Sports of the Czech Republic from the
National Programme of Sustainability (NPU II),
project IT4Innovations excellence in science—LQ1602.

REFERENCES

[1] Bavel, Z. (1968) Structure and transition-preserving
functions of finite automata. J. ACM, 15, 135–158.

[2] Yli-Jyrä, A. and Koskenniemi, K. (2004) Compiling
contextual restrictions on strings into finite-state
automata. Proceedings of the Eindhoven FASTAR
Days 2004, September.

The Computer Journal, Vol. ??, No. ??, ????

12 Kolář, D., Meduna, A., Tomko, M.

[3] Sin’ya, R., Matsuzaki, K., and Sassa, M. (2013)
Simultaneous finite automata: An efficient data-
parallel model for regular expression matching. 2013
42nd International Conference on Parallel Processing,
October, pp. 220–229.

[4] Verma, A. and Loura, A. (2014) A novel algorithm for
the conversion of parallel regular expressions to non-
deterministic finite automata. Applied Mathematics &
Information Sciences, 8, 95–105.

[5] Meduna, A. and Zemek, P. (2012) Jumping finite
automata. Int. J. Found. Comput. Sci., 23, 1555–1578.

[6] Skobelev, V. V. and Skobelev, V. G. (2015) Finite
automata over algebraic structures: models and some
methods of analysis. Computer Science Journal of
Moldova, 23.

[7] Han, X., Chen, Z., Liu, Z., and Zhang, Q. (2018)
The detection and stabilisation of limit cycle for
deterministic finite automata. International Journal of
Control, 91, 874–886.

[8] West, D. (2017) Introduction to Graph Theory, 2
edition. Pearson.

[9] Rosebrugh, R. D. and Wood, D. (1975) Restricted
parallelism and right linear grammars. Util. Math., 7,
151–186.

[10] Hopcroft, J. E. and Ullman, J. D. (1979) Introduction
to Automata Theory, Languages and Computation, 1
edition. Addison-Wesley Publishing Company.

[11] Meduna, A. (2014) Formal Languages and Computa-
tion: Models and Their Applications, 1 edition. Auer-
bach Publications.

The Computer Journal, Vol. ??, No. ??, ????

