
Iterative Algorithm for Multidimensional Pareto
Frontiers Intersection Determination

Jakub Podivinsky, Ondrej Cekan, Martin Krcma, Radek Burget, Tomas Hruska, Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology,

Centre of Excellence IT4Innovations
Bozetechova 2, 612 66 Brno, Czech Republic

Tel.: +420 54114-{1361, 1361, 1360, 1320, 1239, 1223}
Email: {ipodivinsky, icekan, ikrcma, burgetr, hruska, kotasek}@fit.vutbr.cz

Abstract—A processor forms the basis of almost most of
today’s electronic devices. In embedded systems, the emphasis
is put not only on high performance but also on the small size
and low power consumption. Application-specific instruction set
processors present a solution that may be optimized for specific
applications by different modifications of their parameters where
the trade-offs among the parameters may be represented by a
Pareto frontier. In this paper, we propose a novel method of
Pareto frontier merging to allow the optimization of a processor
for a whole set of applications rather than a single one. We
provide an experimental evaluation of the method on a model
of a RISC-V processor and we show that the proposed method
provides better approximation of the source Pareto frontiers than
the state-of-the-art methods.

Keywords—Pareto frontier, processor optimization, ASIP.

I. INTRODUCTION

The area of Internet of Things (IoT) [1] is growing and
the used electronic devices are usually based on a processor
that offers sufficient computing performance as well as high
flexibility. One possibility is to use a general purpose processor
(GPP). Usually, embedded systems are designed for a long
operation time when powered by batteries. Therefore, the low
power consumption of the processor has to be considered [2]
and the need of decreasing the GPPs’ power consumption led
to increasing the development and popularity of Application
Specific Instruction-set Processors (ASIPs). These processors
are optimized for a particular purpose and offer high power
efficiency as well as high computing performance in the
specific applications. The advantage of ASIPs is that they are
designed for a specific application with different parameters
such as power consumption, performance and the chip area
taken into account. The ASIP optimization is usually based
on changing the key parameters of the processor such as the
number of registers, caches, number of computation units, or
on the instruction set modifications. In this paper, we call
the settings of all the mentioned parameters the processor
configuration.

Processors can be modeled using different architecture
description languages (ADLs) or hardware description lan-
guages (HDLs) [3]. ADLs provide a more abstract way of
the processor description (i.e. the designer does not have to
pay much attention to hardware details). There exist various
tools for automatic processor generation based on its abstract
description. As an example, we can mention several of them.
The Synopsys ASIP Designer [4] is a set of tools for ASIP
design from a user-defined architecture to RTL description.

The Cadence company provides configurable Xtensa LX7
Processor and its development tools [5]. In our experimental
work, we use Codasip Studio provided by the Codasip com-
pany [6]. Codasip Studio is a development tool for processor
design; the designer is able to describe the architecture of
a processor and its instruction set and then, to generate a
corresponding toolchain (compiler, simulator, etc.) Codasip
also offers predefined configurable processor cores (eg. RISC-
V [7] based Codix Berkelium processor [8]). It is possible
to generate various processor configurations and test their
usability for a selected application.

In our previous work [9], we have proposed a framework
for searching the most suitable configurations of processor
parameters and compiler flags for a selected application. The
framework is based on a simulation of the processor and the
evaluation of the obtained results. A Pareto frontier of the
possible solutions is the main output which can be used by
a designer for making the final decision. In some cases, there
may be a requirement to find a processor configuration that is
optimized for multiple different applications or for an entire
application class. The parameters of such a configuration then
represent a trade-off among the requirements of the individual
applications. As the results of the individual optimization
processes come in a form of discovered Pareto frontiers, we
face a problem of joining multiple Pareto frontiers that have
been discovered for the individual applications into a single set
of suitable solutions. We call this problem a Multidimensional
Pareto Frontier Intersection and the introduction to this prob-
lem as well as two proposed solutions were the main topics of
[10]. In this paper, we propose a novel solution of this problem
that provides significantly better results in approximation of the
source Pareto frontiers as demonstrated in section IV.

The paper is organized as follows. Section II briefly
describes the Pareto optimization task and Pareto frontier
intersection. In section III, a new solution of the presented
problem is proposed. Experimental evaluation of the proposed
method is presented in section IV. Finally, section V presents
our conclusions and future research directions.

II. THE PARETO FRONTIER OPTIMIZATION

Multi-criteria optimization [11], [12] is a process of finding
a vector ~x = (x1, ..., xn) ∈ X of decision variables (n is
the number of decision variables) that exists in state space X
of a selected task, and which minimizes the vector ~F (~x) =
(f1(~x), f2(~x), ...fN (~x)) of objective functions where N is the
number of objective functions, ∀i ∈ {1, ..., N}, fi(~x) ∈ R.
The state space size is usually limited with several constraints978-1-7281-3427-7/20/31.00/31.00 c©2020 IEEE



gj(~x) ≥ 0, j = 1, 2, ...M . For most real problems, the
optimization objectives are often contradictory and finding a
single solution is usually not possible. Therefore, we may
prefer to search for a set of suitable solutions that fit the
objectives in an acceptable level and are not dominated by a
specific objective at the same time. One of the used approaches
is the Pareto optimization. The underlying concept of the
Pareto optimization is the Pareto dominance [12]. A solution
~u = (u1, u2, ...uN ) ∈ X is Pareto dominant over a solution
~v = (v1, v2, ...vN ) ∈ X when ∀i ∈ {1, ..., N}, fi(~u) ≤
fi(~v)∧∃j ∈ {1, ..., N}, fj(~u) < fj(~v). We say that a solution
~u is Pareto dominant over a solution ~v when ~F (~u) is better
than ~F (~v) with respect to all the objectives fi(~v) and there
exists at least one objective fj(~v) for which ~F (~u) is sharply
better than ~F (~v). A solution is considered to be better than
another one with respect to an objective, when the value of
the corresponding objective function fi(~v) (further called the
objective value) is lower than the same objective value of the
other solution. A solution ~u ∈ X is Pareto optimal when
there is no other solution ~v ∈ X that is Pareto dominant over
u. The set of all Pareto optimal solutions is called a Pareto
frontier. In the processor optimization context, the objectives
may represent, for example, a processor speed and power
consumption. Then, the solutions represent different processor
configurations which are interesting for potential usage are
included in the Pareto frontier.

It may be often needed to construct a compromise Pareto
frontier of solutions meeting the same objectives for different
problem settings. In case of a processor, it may not be practical
to fabricate different massively optimized processors for dif-
ferent application in the same domain. The goal then may be to
find a processor adequately optimized for multiple applications
in the same domain (for example a processor usable in both
a digital watch and a hearing aid) when we are willing to
tolerate some trade-offs in the objectives. We call the problem
of joining a set of different Pareto frontiers into one frontier
as Pareto Frontier Intersection. The result of this process is
a Pareto frontier representing compromise solutions between
different applications selected to be as optimal as possible.
This is illustrated in Fig. 1. There are two charts representing
Pareto frontiers for application A (orange) and application B
(red). As we can see on the numbered squares representing
the individual solutions, the frontiers are disjoint. The green
frontiers in both graphs then represent a joint frontier of
solutions for both applications that meet the objectives the
best. The goal of this paper is to propose algorithms for the
construction of such a joint Pareto frontier. In order to explain
the principle of the joint Pareto frontier, we introduce a formal
description in [10].

This problem has not been addressed very often in the
literature, especially not in a form of an automatic algorithm
as we propose. For example, paper [13] introduces a problem
of constructing a Pareto frontier optimizing hydraulic actuation
systems. It considers two settings of the problem (a servo
valve and a servo pump concept) which leads to two Pareto
frontiers that are later joined manually and compared. The
solution is not then automated. The authors of [14] introduce
an analysis of a generalized Pareto frontier, which focuses
on novel norm balancing algorithms based on cost-reward
formulations on multiple access channels (MACs) and the

speedspeed

p
o

w
er

p
o

w
er

1

11

17

5

18

8

36

19

4

16

13
23

12

21

15

22
9

10

7
2

14

20

speedspeed

p
o

w
er

p
o

w
er

8

9

20

16

7

13

423

5

19

10

3
6

14

18

15

22
11

21

2
1

12

17

application A application B

Pareto frontier for app. A Pareto frontier for app. B Merged pareto frontier 

Fig. 1: The example of Pareto frontier merging.

results are extended to decode-and-forward (DF) relay systems.
The Pareto frontier intersection principle has been also used
in [15] to optimize competing concept alternatives in the area
of turbine engine performance. However, the Pareto frontier
intersection is considered differently than in our research. It is
a process of joining different solutions considering the same
objectives but with only a single problem setting.

III. SOLUTION FOR PARETO FRONTIER INTERSECTION

We have identified two ways to solve the Pareto Frontier
Intersection problem in previous paper [10]. In this section a
new Onion Peeling solution is proposed which is based on an
iterative recalculation of the Pareto frontier. The previously de-
veloped methods published in [10] that we use for comparison
are briefly introduced in sections III-B and III-C.

A. An Iterative Algorithm – Onion Peeling

In this section, we present an algorithm which we named
after the process of an onion peeling. As the peeling of
an onion is done by removing its layers one after another,
the algorithm peels the Pareto frontiers one after another in
order to obtain a set of solutions that creates a joint Pareto
frontier. The algorithm finds the Pareto frontiers for all the
combinations of the problem settings and objectives (the space
A × F ) and then, iteratively moves the discovered Pareto
frontiers into a set P and computes new Pareto frontiers until
the set P of potential solutions reaches a predefined size s. The
principle is illustrated in Fig. 2 where the color layers are the
Pareto frontiers that are successively constructed and moved
into P . The size of P is then a total number of solutions for
all the Pareto frontiers.

f1f1

f2f2

i=0

i=1

i=2

Fig. 2: The example of the onion peeling.

The algorithm is formally described in Algorithm 1. The
individual Pareto frontiers are constructed and moved to the
Pi sets of potential solutions iteratively for all settings of the
problem. After a desired number of solutions in Pi sets was



obtained, the resulting set of solutions is constructed as the
intersection of all the Pi sets. The output set M contains
the solutions that were present in all the Pi sets of potential
solutions. Then, M is a new Pareto frontier and although the
contained solutions are not Pareto optimal, they are as close
to the optimum as possible.

Algorithm 1: Iterative algorithm – onion peeling
Data: Set A of optimization problem settings

Size s of partial sets Px

Result: Set M of configurations representing the
merged Pareto frontier

1 i := 0;
2 forall variants of the problem settings A do
3 set Pi := ∅;
4 while sizeof(Pi) < s do
5 calculate Pareto frontier;
6 move all configurations on Pareto frontier to set

Pi;
7 end
8 i++;
9 end

10 M :=
i⋂

j=0

Pj

The proposed algorithm may be modified at line 4 as the
peeling process does not have to run until all the s solutions
are found for the current Pi set. Instead, a fixed number of
iterations may be used that corresponds to a fixed number of
peeled layers. If the value of s (the size of the Pi sets) is high,
constructing the intersection of the Pi sets after the whole
peeling process may potentially lead to sub-optimal solutions
to be moved to the M set due to uneven distribution of the
solutions on the Pareto frontiers in the original sets. Therefore,
the choice of s is important for the overall efficiency of the
algorithm. It must not be too high to potentially produce sub-
optimal solutions and not too small to produce smaller number
of final solutions than desired. Another approach is to construct
the intersection iteratively after every peeling step until M
reaches the desired size. However, this approach may lead to
higher time complexity of the algorithm.

B. Algorithm based on the Data Pre-processing

This method computes the Pareto frontier after all the
objective values have been joined for all the problem set-
tings. All the objectives are joined using a vector G(~x) =
(g1(~x), g2(~x), ..., gN (~x)) of functions gI(~x), gII(~x), ..., gn(~x)
and then, the Pareto optimal solutions are found based on the
new objective values. The g functions determine a way of
joining the objective values. This functions may use a weighted
average, median or arithmetic average which we have used in
our experiments.

C. Expanding the Number of Dimensions

This algorithm differs from the previous ones in changing
the number of dimensions of the Pareto frontiers. This algo-
rithm does not change the objectives in any way. It creates a
new state space with a higher number of dimensions by adding
the same number of dimensions to every problem setting as
the original state space had. For each problem setting, there is
a state space of solutions with N dimensions and there were

n settings. The new state space (and the new Pareto frontier
constructed in that space) then has N ∗ n dimensions.

IV. EXPERIMENTAL EVALUATION

Presented algorithms were evaluated using our platform for
searching the Pareto frontier of processor configurations pre-
sented in [10] together with implementation details. Obtained
results were compared with the previously presented results.
We have found the frontiers for several applications which we
have divided into application classes according to their specific
instructions utilization:
1) Integer addition – decoding a VOIP codec G.722.1
(decode), anisotropic diffusion image filtering (aniso diff),
decompressing a ZIP algorithm (zip), Dhrystone integer bench-
mark (dhry) and faces recognition (faces).
2) Division instructions – factorization of big integers (factor)
and knapsack problem solver (knapsack).
3) Multiply instructions – matrix product of two matrices
(matrix prod), sorting a matrix (matrix sort) and transposition
of a matrix (matrix transpose).
4) Unrelated – a group of unrelated applications contains
decipher data using the AES 128 cipher (aes), decode and
matrix prod.

As the test case, we used the RISC-V processor Codix
Berkelium [8] implemented by Codasip [6]. According to
its specification [7], seven parameters of the Codix Berke-
lium processor have been selected that may be changed
(EXTENSION E, EXTENSION M, EXTENSION C, EN-
ABLE ICACHE, ICACHE LINE SIZE, ICACHE SIZE, EN-
ABLE PARALLEL MUL). The parameters (described in de-
tail in [10]) represent the total of 252 hardware configurations.
Additionally, we have chosen a small subset of compiler
flags (-o0, -o1, -o2, -o3, -os, -ofast, -ffunction-sections, -fdata-
sections, -funroll-loops, -fno-inline-functions, -ftrapv) that are
frequently used. Therefore, the total number is 9072 configura-
tions. Codasip Studio allow us to measure four metrics during
the evaluation as the objective functions: 1) the number of the
processor cycles – metric of performance, 2) overall number of
the application instructions – metric of memory consumption,
3) overall power consumption estimate of the application
execution and the 4) area estimation of the processor. For all
the applications divided into the above mentioned groups, we
evaluated the whole state space and constructed the Pareto
frontiers for all the applications. The size of the frontier for
the individual applications is shown in [10].

Using the presented algorithms, we joined the constructed
frontiers for all the application groups. The iterative algorithm
(onion peeling) requires the size s of the Px set (Algoritmh
1) to be set in advance. During the experiments, we found out
that this value cannot be constant for all the application groups
as it may lead to an empty frontier for some applications.
The used values of s, which were found experimentally, are
listed in Table I in the s column as a percentage ratio of all
configurations (size of the state space). Table I also contains the
number of configurations on the joined Pareto frontier for all
the presented algorithms in absolute values (the [-] columns)
as well as percentages of the state space.

We have evaluated the proposed algorithms by ranking
all the sets of solutions taken from the joined frontiers and
comparing them with the original frontiers. The evaluation



TABLE I: Number of configurations on merged Pareto frontier
obtained by proposed algorithms.

Iterative alg.
(onion peeling)

Data pre-proc.
(average)

Dimensions
expanding

s [%] [-] [%] [-] [%] [-] [%]
Addition 10 22 0.24% 26 0.27% 174 1.92%
Division 1 28 0.31% 26 0.27% 53 0.58%
Multiply 1 432 4.76% 10 0.11% 16 0.18%
Unrelated 2 24 0.26% 12 0.13% 49 0.54%

result is represented by a numeric rating which represents
the distance of the merged frontier from the original one. For
each evaluated application, we remove the layers of solutions
(Pareto frontiers) from the original state space until the set of
the removed solutions contains all the solutions that were part
of the joined Pareto frontier. The number of removed layers
then serves as the rating. The lower the rating is the closer the
joined Pareto frontier is to the original frontier. The details of
the rating process are also proposed in [10].

Table II contains all the ratings for all the selected appli-
cation groups and the mentioned algorithms. The first column
shows the ratings of the newly proposed iterative (onion
peeling) algorithm; the remaining columns correspond to the
previously published algorithms. As we may notice, the onion
peeling algorithm achieves lower ratings than the remaining
methods for all applications which means that the resulting
Pareto frontiers better approximates the source Pareto frontiers.

TABLE II: Comparison of ratings for application groups (lower
rating means better approximation of the orig. Pareto frontier).

Iterative alg.
(onion peeling)

Data pre-proc.
(average)

Dimensions
expanding

Integer
addition

decode 15 70 92
aniso diff 20 90 143
zip 7 12 25
dhry 6 67 89
faces 24 61 133
Average 14 60 96

Division
instructions

factor 1 14 65
knapsack 4 9 28
Average 3 12 47

Multiply
instructions

matrix p 1 1 6
matrig s 1 3 7
matrix t 1 6 6
Average 1 3 6

Unrelated

aes 5 24 128
decode 8 19 27
matrix p 1 3 7
Average 5 15 54

The highlighted Average rows in Table II contain the
average ratings of the joined Pareto frontiers for the whole ap-
plication groups. The ratings show that the iterative algorithm
(onion peeling) provided the best approximation for all four
application groups. In context of the processor optimization
task, this means that the resulting Pareto frontier for the whole
group contains the processor configurations that are closer to
the optimal configurations for the individual applications.

V. CONCLUSION AND FUTURE WORK

In this paper, we followed our previous research focused
on finding an optimal configuration of an application spe-
cific instruction set processor for a selected application and
on a method of constructing a compromise joined Pareto

frontier for an application group. This paper focuses on a
new algorithm for constructing a joined Pareto frontier that
would represent a whole group of specified applications from
multiple Pareto frontiers related to the individual applications.
We have presented a new iterative algorithm (onion peeling)
which processes a set of Pareto frontiers of the processor
configurations for the individual applications. This algorithm
was compared with the previously presented algorithms and
was proven to provide the best results as we demonstrate on
the ranking results of the obtained frontiers for the individual
applications within a joined application group.

We will explore possible improvements of the presented
algorithm in detail in our future research in order to increase
the algorithm efficiency. Another possible followup of our
work might be to develop another rating algorithm in order
to verify the evaluation of the presented algorithms.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
– LQ1602.

REFERENCES

[1] F. Wortmann and K. Flüchter, “Internet of things,” Business & Infor-
mation Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.

[2] Y. Pu, C. Shi, G. Samson, D. Park, K. Easton, R. Beraha, A. Newham,
M. Lin, V. Rangan, K. Chatha et al., “A 9-mm 2 Ultra-Low-Power
Highly Integrated 28-nm CMOS SoC for Internet of Things,” IEEE
Journal of Solid-State Circuits, vol. 53, no. 3, pp. 936–948, 2018.

[3] P. Mishra and N. Dutt, Processor description languages. Morgan
Kaufmann, 2011, vol. 1.

[4] ASIP Designer Application-Specific Processor Design Made Easy,
Synopsys, 3 2015.

[5] Xtensa LX7 Processor, Cadence, 9 2016.
[6] Codasip. (2019) Processors for the connected world. [Online].

Available: http://www.codasip.com
[7] A. Waterman and K. Asanovic, “The RISC-V instruction set manual,”

volume I: User-level ISA, version 2.2, EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2014-54, 2017.

[8] Codasip. (2019) RISC-V processors. [Online]. Available:
https://www.codasip.com/risc-v-processors/

[9] J. Podivinsky, O. Cekan, M. Krcma, R. Burget, T. Hruska, and
Z. Kotasek, “A Framework for Optimizing a Processor to Selected
Application,” in East-West Design & Test Symposium (EWDTS), 2018
IEEE. IEEE, 2018, pp. 564–574.

[10] ——, “Multidimensional Pareto Frontiers Intersection Determination
and Processor Optimization Case Study,” in 2019 22nd Euromicro
Conference on Digital System Design (DSD). IEEE, 2019, pp. 597–
600.

[11] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Reliability Engineering & System
Safety, vol. 91, no. 9, pp. 992–1007, 2006.

[12] P. Ngatchou, A. Zarei, and A. El-Sharkawi, “Pareto Multi Objective
Optimization,” in Intelligent systems application to power systems,
2005. Proceedings of the 13th international conference on. IEEE,
2005, pp. 84–91.

[13] J. Andersson, “Applications of a multi-objective genetic algorithm to
engineering design problems,” in International Conference on Evolu-
tionary Multi-Criterion Optimization. Springer, 2003, pp. 737–751.

[14] S. B. Roy, A. Madhukumar, and J. Joung, “On joint pareto frontier
in multiple access and relay rate regions with rayleigh fading,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 5, pp. 3777–3786,
2017.

[15] D. Rousis, “A pareto frontier intersection-based approach for efficient
multiobjective optimization of competing concept alternatives,” Ph.D.
dissertation, Georgia Institute of Technology, 2011.


