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Abstract—This research paper presents the examination of the
influences of faults on a control unit of smart electronic locks. A
stepper motor is often used as an actuator of such smart locks
and its motor controller is usually implemented in a processor.
The aim of this paper is to examine the impact of faults occurring
in the control processor. It should be noted that faults in such
electronic systems can also be induced artificially, usually with
ulterior motives. The processor can be implemented in an FPGA
(Field Programmable Gate Array) in order to be able to emulate
HW faults inside the processor. This allows us to use previously
developed evaluation platform for fault tolerance testing. This
platform allows us to monitor the impact of faults both on
electronic and mechanical parts of electro-mechanical system. In
this paper, the evaluation of faults artificially injected in FPGA-
based processor is proposed. Experiments with both single and
multiple fault injections were performed. In our research, we
found out that a fault in the same position of the design does not
always affect the electronics in the same way. Also, the mechanics
may still operate correctly despite the electronics failure.

Keywords—Electronic Lock, Stepper Motor, FPGA, Fault Tol-
erance, Fault Injection.

I. INTRODUCTION

Nowadays, smart devices [1] are on the rise, their goal is to
make our lives more efficient, simpler and more pleasant. The
smart electronic lock [2] is an example of smart device that
can be met in our everyday life. Connecting electronics with
mechanical elements and a remote server brings new possibili-
ties for users to control these locks. The smart electronic locks
have many advantages, since they can be controlled remotely.

Various types of faults can arise in electronic systems,
especially if such systems are operated in environments with
increased level of electrostatic electricity, increased occurrence
of charged particles, etc. It should be noted that faults can
also be injected artificially, usually with malicious intentions.
For example, sensitive data from an embedded memory (parts
of an algorithm, encryption keys, etc.) can be extracted by
bumping attacks [3]. Attacks on smart cards based on fault
injection which modifies the behavior [4] can serve as another
example. Unauthorized or accidental unlocking of electronic
locks may also be caused by fault injection. Opening a lock
or preventing its closing can cause financial losses or endanger
human health or life. Unauthorized unlocking can be caused
by various types of attacks, either to the server part of the
whole system, or directly to the lock in the door [5]. Intently
inducing faults is one of the possible attacks which is yet an
unexplored topic that we will deal with in our research.

The evaluation of the effects of faults on an electro-
mechanical system is in focus of our research. Especially, we
focus on systems composed of SRAM-based FPGAs. Another

example of electro-mechanical system where faults can cause
undesirable consequences, is an electronic lock. In this work,
we are going to use previously developed tools to analyze
the impact of faults on electronic locks. Electronic locks are
usually controlled by an embedded processor that can be
implemented in an FPGA which gives us the possibility to
simulate faults. We have identified three main goals that we
are going to achieve during our research targeted on electronic
locks which are in detail presented in paper [6]:
1) The evalution of faults injected directly into stepper motor
control signals and the estimation of the risk of an unautho-
rized unlocking (solved in [6]).
2) To implement the stepper motor controller with a processor
configured into an FPGA and evaluate: a) the impact of faults
injected into processor and b) the possibility of unauthorized
unlocking (topic of this paper).
3) To verify the possibility of using standard fault tolerance
techniques for eliminating unauthorized lock unlocking.

During solving of the goals we will use three levels of
evaluation which were presented in [6] with various architec-
tures of component realization and interconnection. This paper
is based on interconnections of a PC for simulation running
and an FPGA where electronic controller is implemented.

This paper is organized as follows. Electronic lock com-
ponents are presented in Section II. Section III introduces
an evaluation platform for monitoring the impact of faults
on electro-mechanical applications. Section IV describes ex-
perimental environment architecture. Experiments with fault
injection are presented in Section V. Section VI concludes the
paper and mentions plans for our future research.

II. ELECTRONIC LOCK

Smart electronic locks are quite complex electronic de-
vices. The basis of the lock can be divided into three blocks
– control module, I/O module and motor module [7]. The
important block is the motor module which performs the
operation with the mechanical part of the lock. Stepper motor
is very often found in electronic locks [8] [9], that is why we
focus on experiments with stepper motor in our research.

The stepper motor is a DC electric motor whose full
rotation can be divided into several equal steps. The stepper
motor is controlled by input pulses (typically square pulses)
that precisely rotate the shaft position based on an angle
which is given by the number of motor steps. It consists of a
cylindrical rotor, a number of stators, a number of yokes, and a
set of coils [10]. We have chosen a conventional bipolar stepper
motor with a permanent magnet in its rotor which operates on
the attraction or repulsion between the rotor and the stator
electromagnets. The particular model of this type of stepper978-1-7281-3427-7/20/31.00/31.00 c©2020 IEEE



motor that we have chosen is 28BYJ-48 [11]. It is a small
stepper motor operating at 5V which is equipped with a 1/64
transmission gearbox. It has 4 phases with a single step angle
of 5.625◦/64 and 4,096 steps are needed to perform the full
rotation (64 steps without the gearbox).

III. THE VERIFICATION-BASED EVALUATION PLATFORM

The main evaluation tool used in this paper is our previ-
ously developed platform [12] for the evaluation of the impact
of faults injected in electronic part of electro-mechanical
system. The proposed evaluation platform is based on well
known functional verification technique [12]. The core of the
platform is an ML506 evaluation board with Virtex 5 FPGA
which allows us to inject faults directly to the FPGA in
which the electronic control unit is implemented. The fault
injector based on Partial Dynamic Reconfiguration (PDR) is
implemented in a computer and faults are injected through a
JTAG interface. The communication between the simulation
of mechanical part running on the computer and the electronic
controller on the FPGA is accomplished through the Ethernet.

Functional verification is used as a tool for monitoring
the impact of faults both on the electronic controller and
the mechanical part of an electro-mechanical system. The
modification of basic functional verification is shown in Figure
1. The main difference is that Device Under Test (DUT) is
moved to the FPGA, which allows to inject artificial faults
directly into FPGA and monitor their impact. The versatility
of the proposed platform is based on the fact that func-
tional verification is usually used during electronic systems
development. Therefore, the verification environment and the
reference model (the most important elements dependent on
the evaluated system) are available from the previous stage
of system development and can be used for a fault tolerance
evaluation. The verification scenario generation is usually
a part of the verification environment or we can use our
previously developed universal generator [13]. An important
condition for using the platform is that an electronic controller
can be implemented in an FPGA. The DUT implementation in
the FPGA and proper communication with the software part
of verification environment are realized by the driver and the
monitor components. These components are partly universal,
but they need to be customized for a particular DUT.
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Fig. 1: The general concept of the use of functional verification
for monitoring impact of faults.

The mechanical part is also an important element which
allows to monitor the impact of faults not only on electronics,
but also on mechanics. It is not important whether it is a real
mechanical part or its simulation. The availability of sensors
that provide feedback of the mechanical part behavior is
important. The values provided by these sensors are monitored
by the verification environment which checks if the system
behaves according to its specification. Usually, the use of
simulation leads to a faster testing and is usually cheaper.

Together with the evaluation platform we proposed the
process of evaluation which is divided into three phases:
1) Classical simulation-based functional verification is done.
After this phase we can be sure that the detected failures
in following phases are caused by the injected faults. 2)
During the second phase, modified verification environment
(DUT implemented on FPGA) is used and artificial faults are
injected. The output of this phase is a list of faults with the
impact on electronic controller. 3) The third phase is focused
on the evaluation of the behaviour of the mechanical part if
the electronic part is corrupted by a fault.

IV. EXPERIMENTAL SETUP

In this work, we deal with monitoring the impact of faults
on the electronic lock, more precisely on the main mechanical
element which is the stepper motor and its control processor.
In this case, the verification environment is modified since no
feedback is used when the stepper motor is controlled only by
control signals. The measurement of the angle of rotation (both
continuous and resulting angle) is needed for monitoring the
behaviour of the mechanical part. The angle measurement can
be easily realized both in the case of experiments with a real
stepper motor (e.g. a stepper motor can rotate a potentiometer),
and in the case of simulation. Figure 2 shows the use of
functional verification-based platform for checking the impact
of faults injected into the control processor implemented in
FPGA.
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Fig. 2: The use of functional verification for monitoring impact
of faults on stepper motor controller.

For our experimental purposes, we chose the NEO430 soft-
core processor [14] which is based on the Texas Instruments
MSP430 [15] instruction set architecture. The NEO430 is
based on the Harvard architecture and uses program (IMEM)
and data (DMEM) memory with configurable sizes. The
processor implements configurable peripherals like a timer,
a watchdog, UART and SPI serial interfaces (implemented
together as a USART unit), general purpose IO ports and
an internal bootloader. The peripheral modules are optional
due to the possibility to reduce the size of the implemented
system. In our experimental implementation (shown in Figure
3), we use UART interface for debugging purposes, Custom
Functional Unit (CFU) is used as an input interface for
the required number of steps and output signals for stepper
motor are provided through the General-purpose inputs and
outputs (GPIOs). The program is stored in ROM memory,
it means that the program starts working after the processor
is activated without any need to load the program from an
external memory. The program itself repeatedly sets the stepper
motor signals according to its specification. It is possible to
parameterize the required number of steps through a signed
number on the input ”STEPS”. The negative number causes



opposite direction of rotation. The outputs include four signals
for the stepper motor control.
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Fig. 3: The use of functional verification for monitoring impact
of faults on the stepper motor controller.

We decided to use MATLAB and Simulink [16] for
the simulation of the stepper motor, especially Simscape
library [17] which proposes the stepper motor simulation. This
model is generic, however, proper parameters from the stepper
motor datasheet [11] must be used. More accurately, it is the
4-phase stepper motor with a permanent-magnet rotor. The
output from the complete model is a current angle of the
stepper motor. It is also necessary to model a voltage controller
which converts logic inputs to the electric impulses which
excite the motor coils.

V. EXPERIMENTS AND EXPERIMENTAL RESULTS

The following subsections describe experiments corre-
sponding to the second and the third phase of the evaluation
process. There is no space for the first phase which is not
so important from the reliability point of view. Faults were
injected during the second and the third phase into the ex-
perimental processor according to two strategies – single bit-
flip faults injected at the start of experiment and multiple bit-
flip faults injected at a regular interval. We injected the faults
into the bits of the bitstream that are utilized by LUTs of the
controller implemented in the FPGA. The total number of the
utilized bits was 58496. The impact of faults was monitored
on the output of the electronic controller and then on the
behaviour of the mechanical part with corrupted electronic
controller.

During the mechanics simulation we recorded the rotation
angle. The collected information covers the minimal, maximal
and the final rotation angle of the stepper motor. The minimal
angle was identical during all iterations as the motor always
started at the same position and it never started to rotate
in the opposite direction. The maximal and the final angle
depended on an injected fault effect. Almost always the angles
were equal. The maximal rotation angle is the most important
variable in the context of a possible unwanted locking or
unlocking the lock.

A. Single fault injection
Since an exhaustive evaluation would be demanding, we

uniformly selected at random 6000 random bit faults that
were injected into the FPGA. We performed five iterations
of experiments with the selected bits in order to evaluate
whether the controller behaviour is affected randomly by the
particular injected fault or it remains the same. We compared
the iterations in order to extract common features of the fault
affected controller behaviour. The experiments were repeated
five times using the same set of faults. Table I illustrates the
failure rate of the electronic controller in all three experiment
iterations (rows 1, 2, 3, 4 and 5). The Electronic failure—Total

column covers the number of faults that caused the electronics
failure. We divided the types of the electronics failures into
three classes: 1) the premature stopping—Stuck, 2) unending
controller operation—Time-out and 3) the correct termination,
although with mismatching values—Mismatch. The numbers
of failures of the particular types are listed in Table I. In
the third phase we evaluated the mechanics behaviour. The
Mechanic OK—Total column shows the number of cases
when the electronics has failed but the mechanics functioned
correctly and reached the proper position as was evaluated
in the mechanics simulation. This number of faults therefore
affected the electronic controller without affecting the overall
lock behaviour at the same time. As can be seen, the highest
number appears in the last column, that is when the controller
terminated its activity correctly with mismatching values. The
reason is we evaluated the electronics failure strictly when we
considered even a single mismatching output as a failure.

TABLE I: The results of single and multiple injection experi-
ments with the failures classification.

Iter. Electronic failure Mechanic OK

Total Stuck Time-
out

Mis-
match Total Stuck Time-

out
Mis-
match

1 633 159 260 214 210 5 2 203
2 633 174 270 189 186 5 3 178
3 572 93 145 334 331 6 3 322
4 624 172 269 183 183 5 3 175
5 574 100 147 327 327 6 3 318

Multi 5772 1248 1901 2605 592 35 26 531

The set of bits that have proven to cause a failure was
always a bit different between the iterations. We compared all
combinations of two (e.g. 1∩ 2, 1∩ 3...), three (e.g. 1∩ 2∩ 3,
1 ∩ 3 ∩ 4...) and four (e.g. 1 ∩ 2 ∩ 3 ∩ 4, 1 ∩ 3 ∩ 4 ∩ 5...)
sets of results. The result statistics are listed in Table II.
The table does not cover all the combinations but describes
only the minimum, average and the maximum of all of the
combinations. The last row contains a combination of all
iterations, so it presents a precise value. The Electronic Failure
column covers the number of faults that caused an electronic
failure in all the compared iterations. The Mechanic OK
column covers the number of faults which have not affected
the mechanics during any iteration. Even though, the same
fault caused the electronics failure, the electronic did not fail
always in the same way (stuck, time-out and mismatch). The
column Different El. Failure covers the number of such faults.
As can be seen, the growing size of compared sets leads to a
smaller number of faults that cause electronic failure for each
iteration. At the same time, the number of faults that did not
cause any mechanic failure is lowering while on the other hand
the number of faults with different electronic failure grows. We
also detected unique bits, out of the total 6000, that caused a
failure of the controller when fault was injected during almost
one iteration which are shown in the last column. The number
of these unique bits is rising with the growing size of the
compared sets.

TABLE II: The iterations results comparison (single faults).
Num. of
Comp.

Electronic
Failure

Mechanic
OK

Different El.
Failure

El. Failure
Unique Bits

Runs min avg max min avg max min avg max min avg max

2 509 527 560 46 109 260 36 146 213 633 687 715
3 430 481 511 13 55 86 112 207 292 710 728 742
4 460 467 475 30 37 44 208 216 224 740 750 755

all 395 32 312 764

Moreover, we examined the motor rotation angle. Figure 4a



contains a boxplot chart which displays the maximal angle for
all the iterations. As the chart illustrates, the required rotation
angle was 4500◦. The majority of the electronics failures led
to a smaller final rotation angle. Only a small number of faults
caused a bigger rotation angle. If the goal of the fault injection
is to unlock the lock unauthorized, most likely it will not be
reached. On the contrary, if the goal is to prevent the door to
lock properly, the chances are significantly higher.
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Fig. 4: Boxplot graph with rotation angle for (a) three experi-
ment iterations with single injection and (b) multiple injection.

B. Multiple fault injection
Furthermore, we inspected the impact of a multiple fault

injection on both the electronics and the mechanics. We
performed 6000 experiments in this scenario as well. We
uniformly-at-random injected a single fault into utilized bits of
the motor controller design each five seconds. The particular
experiment was terminated when a fault impact was detected
or after 280 seconds if the faults proved to have no effect. The
time limit is important as some faults do not cause a significant
number of incorrect transactions on the controller output as
other faults, but they cause that the controller would not
stop the motor rotation when expected. The multiple injection
proved to cause a significantly higher rate of the controller
failures. Out of the 6000 total, 5772 experiments resulted in
incorrect controller output transactions when multiple faults
were injected.

The last row of Table I shows the number of faults that
led to the electronics failure and their classification. It also
contains the number that did not lead to the mechanics failure
as well as the relations with the electronics failures types. As
can be seen, the overall behaviour is similar to single fault
cases, therefore the mechanics did not fail despite the inputs
mismatch. The mechanics reactions on the incorrect controller
outputs are illustrated in Figure 4b. As can be seen, unlike in
the case of single faults, the smallest rotation angles did not
occur and the span between the minimum and maximum grew.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we realized the second phase of our evaluation
of fault injections effects on the electronic controller of an
electronic lock implemented in HW. The stepper motor con-
trolled by the controller implemented in a processor was used
as our experimental platform. The processor was implemented
in FPGA which allowed us a repeated and nondestructive
testing of the faults effects. We examined the faults effects
on electronics and mechanics of the lock, when we inspected
how the faults affected the rotation of the motor. For these
purposes, we further developed our fault tolerant system testing
platform that we presented in our previous papers. The results
indicate that random single faults cause a failure in about 10
% cases which is not suitable for an exploitation. The same
faults proved not to always cause the same failures during
the multiple iterations, moreover they did not lead to the

mechanics failure every time. The mechanics failures most
often led to a smaller angle rotation than desired, therefore
these failures may prevent the door to lock. The failures proved
to be more probable when injecting multiple faults.

In our future research, we will focus on the third phase
which will utilize simulation accelerated on an FPGA in order
to speed up the evaluation.
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