
Journal of Automated Reasoning (2021) 65:971–999
https://doi.org/10.1007/s10817-021-09597-w

Automata Terms in a Lazy WSkS Decision Procedure

Vojtěch Havlena1 · Lukáš Holík1 ·Ondřej Lengál1 · Tomáš Vojnar1

Received: 15 April 2020 / Accepted: 20 August 2020 / Published online: 3 August 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
We propose a lazy decision procedure for the logic WSkS. It builds a term-based symbolic
representation of the state space of the tree automaton (TA) constructed by the classical
WSkS decision procedure. The classical decision procedure transforms the symbolic rep-
resentation into a TA via a bottom-up traversal and then tests its language non-emptiness,
which corresponds to satisfiability of the formula. On the other hand, we start evaluating
the representation from the top, construct the state space on the fly, and utilize opportunities
to prune away parts of the state space irrelevant to the language emptiness test. In order to
do so, we needed to extend the notion of language terms (denoting language derivatives)
used in our previous procedure for the linear fragment of the logic (the so-called WS1S) into
automata terms. We implemented our decision procedure and identified classes of formulae
on which our prototype implementation is significantly faster than the classical procedure
implemented in the Mona tool.

Keywords WSkS · Tree automata · Automata term · Finite automata ·Monadic
second-order logic

1 Introduction

Weak monadic second-order logic of k successors (WSkS) is a logic for describing regular
properties of finite k-ary trees. In addition to talking about trees, WSkS can also encode
complex properties of a rich class of general graphs by referring to their tree backbones [28].
WSkS offers extreme succinctness for the price of non-elementary worst-case complexity.
As noticed first by the authors of [16] in the context of WS1S (a restriction that speaks
about finite words only), the trade-off between complexity and succinctnessmay, however, be
turned significantly favourable inmany practical cases through a use of clever implementation
techniques and heuristics. Such techniques were then elaborated in the tool Mona [12,22],
the best-known implementation of decision procedures for WS1S and WS2S. Mona has
found numerous applications in verification of programs with complex dynamic linked data
structures [8,25,26,28,42], string programs [34], array programs [43], parametric systems [3,

B Ondřej Lengál
lengal@fit.vutbr.cz

1 IT4I Centre of Excellence, Faculty of Information Technology, Brno University of Technology,
Božetěchova 2, 612 00 Brno, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-021-09597-w&domain=pdf
http://orcid.org/0000-0003-4375-7954
http://orcid.org/0000-0001-6957-1651
http://orcid.org/0000-0002-3038-5875
http://orcid.org/0000-0002-2746-8792

972 V. Havlena et al.

4,6], distributed systems [24,32], hardware verification [2], automated synthesis [18,20,31],
and even computational linguistics [29].

Despite the extensive research and engineering effort invested into Mona, due to which
it still offers the best all-around performance among existing WS1S/WS2S decision proce-
dures, it is, however, easy to reach its scalability limits. Particularly, Mona implements the
classical WS1S/WS2S decision procedures that build a word/tree automaton representing
models of the given formula and then check emptiness of the automaton’s language. The
non-elementary complexity manifests in that the size of the automaton is prone to explode,
which is caused mainly by the repeated determinisation (needed to handle negation and alter-
nation of quantifiers) and synchronous product construction (used to handle conjunctions and
disjunctions). Users of WSkS are then forced to either find workarounds, such as in [26], or,
often restricting the input of their approach, give up using WSkS altogether [38].

As in Mona, we further consider WS2S only (this does not change the expressive power
of the logic since k-ary trees can be easily encoded into binary ones).We revisit the use of tree
automata (TAs) in the WS2S decision procedure and obtain a new decision procedure that
is much more efficient in certain cases. It is inspired by works on antichain algorithms for
efficient testing of universality and language inclusion of finite automata [1,5,11,39], which
implement the operations of testing emptiness of a complement (universality) or emptiness
of a product of one automaton with the complement of the other one (language inclusion) via
an on-the-fly determinisation and product construction. The on-the-fly approach allows one
to achieve significant savings by pruning the state space that is irrelevant for the language
emptiness test. The pruning is achieved by early termination when detecting non-emptiness
(which represents a simple form of lazy evaluation), and subsumption (which basically allows
one to disregard proof obligations that are implied by other ones). Antichain algorithms
and their generalizations have shown great efficiency improvements in applications such as
abstract regular model checking [5], shape analysis [17], LTL model checking [40], or game
solving [41].

Our work generalizes the above mentioned approaches of on-the-fly automata construc-
tion, subsumption, and lazy evaluation for the needs of decidingWS2S. In our procedure, the
TAs that are constructed explicitly by the classical procedure are represented symbolically by
the so-called automata terms. More precisely, we build automata terms for subformulae that
start with a quantifier (and for the top-level formula) only—unlike the classical procedure,
which builds a TA for every subformula. Intuitively, automata terms specify the set of leaf
states of the TAs of the appropriate (sub)formulae. The leaf states themselves are then rep-
resented by state terms, whose structure records the automata constructions (corresponding
to Boolean operations and quantification on the formula level) used to create the given TAs
from base TAs corresponding to atomic formulae. The leaves of the terms correspond to
states of the base automata. Automata terms may be used as state terms over which further
automata terms of an even higher level are built. Non-leaf states, the transition relation, and
root states are then given implicitly by the transition relations of the base automata and the
structure of the state terms.

Our approach is a generalization of our earlier work [13] on WS1S. Although the term
structure and the generalized algorithm may seem close to [13], the reasoning behind it is
significantly more involved. Particularly, [13] is based on defining the semantics (language)
of terms as a function of the semantics of their sub-terms. For instance, the semantics of the
term {q1, . . . , qn} is defined as the union of languages of the state terms q1, . . . , qn , where the
language of a state of the base automaton consists of the words accepted at that state. With
TAs, it is, however, not meaningful to talk about trees accepted from a leaf state, instead,
we need to talk about a given state and its context, i.e., other states that could be obtained

123

Automata Terms in a Lazy WSkS Decision Procedure 973

via a bottom-up traversal over the given set of symbols. Indeed, trees have multiple leafs,
which may be accepted by a number of different states, and so a tree is accepted from a set
of states, not from any single one of them alone. We therefore cannot define the semantics of
a state term as a tree language, and so we cannot define the semantics of an automata term as
the union of the languages of its state sub-terms. This problem seems critical at first because
without a sensible notion of the meaning of terms, a straightforward generalization of the
algorithm of [13] to trees is not possible. The solution we present here is based on defining
the semantics of terms not as functions of languages of their sub-terms, but, instead, via the
automata constructions they represent.

Unlike the classical decision procedure, which builds a TA corresponding to a formula
bottom-up, i.e. from the atomic formulae, we build automata terms top-down, i.e., from
the top-level formula. This approach offers a lot of space for various optimisations. Most
importantly, we test non-emptiness of the terms on the fly during their construction and
construct the terms lazily. In particular, we use short-circuiting for dealing with the ∧ and
∨ connectives and early termination with possible continuation when implementing the
fixpoint computations neededwhen dealingwith quantifiers. That is,we terminate the fixpoint
computation whenever the emptiness can be decided in the given computation context and
continuewith the computationwhen such a need appears once the context is changed on some
higher-level term. Further, we define a notion of subsumption of terms, which, intuitively,
compares the terms with respect to the sets of trees they represent, and allows us to discard
terms that are subsumed by others.

We have implemented our approach in a prototype tool. When experimenting with it, we
have identified multiple parametric families of WS2S formulae where our implementation
can—despite its prototypical form—significantly outperformMona. We find this encourag-
ing since there is a lot of space for further optimisations and, moreover, our implementation
can be easily combined with Mona by treating automata constructed by Mona in the same
way as if they were obtained from atomic predicates.

This paper is an extended version of the paper with the same name that appeared in
the proceedings of CADE-27 [19], containing more examples and complete proofs of the
presented lemmas and theorems, as well as one more optimization of our efficient decision
procedure (cf. Sect. 4.5).

2 Preliminaries

In this section, we introduce basic notation, trees, and tree automata, and give a quick intro-
duction to the weak monadic second-order logic of two successors (WS2S) and its classical
decision procedure. We give the minimal syntax of WS2S only; see, e.g., Comon et al. [9]
for more details.

2.1 Basics, Trees, and Tree Automata

Let Σ be a finite set of symbols, called an alphabet. The set Σ∗ of words over Σ consists
of finite sequences of symbols from Σ . The empty word is denoted by ε, with ε /∈ Σ . The
concatenation of two words u and v is denoted by u.v or simply uv. The domain of a partial
function f : X → Y is the set dom(f) = {x ∈ X | ∃y : x �→ y ∈ f }, its image is the
set img(f) = {y ∈ Y | ∃x : x �→ y ∈ f }, and its restriction to a set Z is the function

123

974 V. Havlena et al.

(a) A tree τ over (b) A tree μ used for the derivative (c) A tree τ from the derivative
of τ with respect to {μ}

Fig. 1 An example of the derivative. Consider trees τ and μ over the alphabet Σ = {a, b, c} given in (a)
and (b) respectively. The derivative of τ with respect to {μ} is the set {τ, τ ′} where τ ′ is given in (c)

f|Z = f ∩ (Z × Y). For a binary operator •, we write A [•] B to denote the augmented
product {a • b | (a, b) ∈ A × B} of A and B.

We will consider ordered binary trees. We call a word p ∈ {L,R}∗ a tree position and p.L
and p.R its left and right child, respectively. Given an alphabet Σ such that ⊥ /∈ Σ , a tree
overΣ is a finite partial function τ : {L,R}∗ → (Σ∪{⊥}) such that (i) dom(τ) is non-empty
and prefix-closed, and (ii) for all positions p ∈ dom(t), either τ(p) ∈ Σ and p has both
children, or τ(p) = ⊥ and p has no children, in which case it is called a leaf. We let leaf (τ)

be the set of all leaves of τ . The position ε is called the root, and we write Σ to denote
the set of all trees over Σ . (Intuitively, the [·] operator can be seen as a generalization of
the Kleene star to tree languages. The symbol is the Chinese character for a tree.) We
abbreviate {a} as a for a ∈ Σ .

The sub-tree of τ rooted at a position p ∈ dom(τ) is the tree τ ′ = {p′ �→ τ(p.p′) |
p.p′ ∈ dom(τ)}. A prefix of τ is a tree τ ′ such that τ ′|dom(τ ′)\leaf (τ ′) ⊆ τ|dom(τ)\leaf (τ). The

derivative of a tree τ with respect to a set of trees S ⊆ Σ is the set τ − S of all prefixes
τ ′ of τ such that, for each position p ∈ leaf (τ ′), the sub-tree of τ at p either belongs to S
or it is a leaf of τ . Intuitively, τ − S are all prefixes of τ obtained from τ by removing some
of the sub-trees in S. The derivative of a set of trees T ⊆ Σ with respect to S is the set⋃

τ∈T (τ − S). See Fig. 1 for an example of the derivative.
A (binary) tree automaton (TA) over an alphabetΣ is a quadrupleA = (Q, δ, I , R)where

Q is a finite set of states, δ : Q2 ×Σ → 2Q is a transition function, I ⊆ Q is a set of leaf
states, and R ⊆ Q is a set of root states. We use (q, r)−{a}→s to denote that s ∈ δ((q, r), a).
A run ofA on a tree τ is a total map ρ : dom(τ) → Q such that if τ(p) = ⊥, then ρ(p) ∈ I ,
else (ρ(p.L), ρ(p.R))−{a}→ρ(p) with a = τ(p). The run ρ is accepting if ρ(ε) ∈ R, and
the language L (A) of A is the set of all trees on which A has an accepting run. A is
deterministic if |I | = 1 and ∀q, r ∈ Q, a ∈ Σ : |δ((q, r), a)| ≤ 1, and complete if I ≥ 1
and ∀q, r ∈ Q, a ∈ Σ : |δ((q, r), a)| ≥ 1. Last, for a ∈ Σ , we shorten δ((q, r), a) as
δa(q, r), and we use δΓ (q, r) to denote

⋃{δa(q, r) | a ∈ Γ } for a set Γ ⊆ Σ .

2.2 Syntax and Semantics ofWS2S

WS2S is a logic that allows quantification over second-order variables, which are denoted
by upper-case letters X , Y , . . . and range over finite sets of tree positions in {L,R}∗ (the
finiteness of variable assignments is reflected in the name weak). See Fig. 2a for an example
of a set of positions assigned to a variable. Atomic formulae (atoms) ofWS2S are of the form:
(i) X ⊆ Y , (ii) X = SL(Y), and (iii) X = SR(Y). Informally, the SL(Y) function returns
all positions from Y shifted to their left child and the SR(Y) function returns all positions

123

Automata Terms in a Lazy WSkS Decision Procedure 975

(a) Positions assigned to the variable X (b) Encoding of ν into a tree τν ; a node at a position p has
the value x y where x = 1 if and only if τν (p) maps X

to 1 and y = 1 if and only if τν (p) maps Y to 1.

Fig. 2 An example of an assignment ν to a pair of variables {X , Y } such that ν(X) = {LR,R,RLR,RR} and
ν(Y) = {ε,L,LL,R,RR} and its encoding into a tree

from Y shifted to their right child. Formulae are constructed from atoms using the logical
connectives ∧,∨,¬, and the quantifier ∃X where X is a finite set of variables (we write ∃X
when X is the singleton set {X}). Other connectives (such as⇒ or ∀) and predicates (such
as the predicate Sing(X) for the singleton set X) can be obtained as syntactic sugar (e.g., we
can define the emptiness predicate X = ∅ as ∀Y . X ⊆ Y and the singleton predicate Sing(X)

as ∀Y . Y ⊆ X ⇒ (Y = X ∨ Y = ∅)).
A valuation of a set of variables X is an assignment ν : X→ 2{L,R}∗ of X to finite subsets

of {L,R}∗. We use ν � {X �→ S} to denote a valuation obtained from ν by changing the
assignment of X to S. A model of a WS2S formula ϕ(X) with the set of free variables X is
a valuation of X for which the formula is satisfied, written ν |� ϕ. Satisfaction of formulae
is defined as follows:

(i) ν |� X ⊆ Y if and only if ν(X) is a subset of ν(Y),
(ii) ν |� X = SL(Y) if and only if ν(X) is {p.L | p ∈ ν(Y)},
(iii) ν |� X = SR(Y) if and only if ν(X) is {p.R | p ∈ ν(Y)},
(iv) ν |� ¬ϕ if and only if not ν |� ϕ,
(v) ν |� ϕ ∧ ψ if and only if ν |� ϕ and ν |� ψ ,
(vi) ν |� ϕ ∨ ψ if and only if ν |� ϕ or ν |� ψ , and
(vii) ν |� ∃X . ϕ if and only if there is a finite S ⊆ {L,R}∗ such that ν � {X �→ S} |� ϕ.

A formula ϕ is valid, written |� ϕ, if and only if all assignments of its free variables are its
models, and satisfiable if it has a model. Without loss of generality, we assume that each
variable in a formula either has only free occurrences or is quantified exactly once; we denote
the set of (free and quantified) variables occurring in a formula ϕ as Vars(ϕ).

2.3 RepresentingModels as Trees

We fix a formula ϕ with variables Vars(ϕ) = X. A symbol ξ over X is a (total) function
ξ : X → {0, 1}, e.g., ξ = {X �→ 0, Y �→ 1} is a symbol over X = {X , Y }. We use ΣX to
denote the set of all symbols over X and 0 to denote the symbol mapping all variables in X

to 0, i.e., 0 = {X �→ 0 | X ∈ X}.
A finite assignment ν : X → 2{L,R}∗ of ϕ’s variables can be encoded as a finite tree τν

of symbols over X where every position p ∈ {L,R}∗ satisfies the following conditions:
(a) if p ∈ ν(X), then τν(p) contains {X �→ 1}, and (b) if p /∈ ν(X), then either τν(p)

123

976 V. Havlena et al.

contains {X �→ 0} or τν(p′) = ⊥ for some prefix p′ of p (note that the occurrences of⊥ in τ

are limited since τ still needs to be a tree). Observe that ν can have multiple encodings: the
unique minimum one τminν and (infinitely many) extensions of τminν with 0-only trees. The
language of ϕ is defined as the set of all encodings of its models L (ϕ) = {τν ∈ Σ

X
| ν |�

ϕ and τν is an encoding of ν}. See Fig. 2 for an example of an assignment and its encoding.
Let ξ be a symbol over X. For a set of variables Y ⊆ X, we define the projection of ξ

with respect to Y as the set of symbols πY(ξ) = {ξ ′ ∈ ΣX | ξ|X\Y ⊆ ξ ′}. Intuitively,
the projection removes the original assignments of variables from Y and allows them to be
substituted by any possible value. We define πY(⊥) = ⊥ and write πY if Y is the singleton
set {Y }. As an example, for X = {X , Y } the projection of 0 with respect to {X} is given
as πX (0) = {{X �→ 0, Y �→ 0}, {X �→ 1, Y �→ 0}}.1 The definition of projection can be
extended to trees τ over ΣX so that πY(τ) is the set of trees {τ ′ ∈ Σ

X
| ∀p ∈ dom(τ) :

if τ(p) = ⊥, then τ ′(p) = ⊥, else τ ′(p) ∈ πY(τ (p))} and subsequently to languages L so
that πY(L) = ⋃{πY(τ) | τ ∈ L}.

2.4 The Classical Decision Procedure forWS2S

The classical decision procedure for the WS2S logic goes through a direct construction
of a TA Aϕ having the same language as a given formula ϕ. Let us briefly recall the
automata constructions used (cf. [9]). Given a complete TA A = (Q, δ, I , R), the comple-
ment assumes thatA is deterministic and returnsA� = (Q, δ, I , Q\R), the projection returns
πX (A) = (Q, δπX , I , R) with δ

πX
a (q, r) = δπX (a)(q, r), and the subset construction returns

the deterministic and complete automaton AD = (2Q, δD, {I }, RD) where δDa (S, S′) =⋃
q∈S,q ′∈S′ δa(q, q ′) and RD = {S ⊆ Q | S ∩ R �= ∅}. The binary operators ◦ ∈ {∪,∩}

are implemented through a product construction, which—given the TAA and another com-
plete TA A′ = (Q′, δ′, I ′, R′)—returns the automaton A ◦ A′ = (Q × Q′,Δ×, I×, R◦)
where Δ×a ((q, r), (q ′, r ′)) = Δa(q, q ′)×Δ′a(r , r ′), I× = I × I ′, and for (q, r) ∈ Q × Q′,
(q, r) ∈ R∩ ⇔ q ∈ R ∧ r ∈ R′ and (q, r) ∈ R∪ ⇔ q ∈ R ∨ r ∈ R′. Testing non-
emptiness of A can be implemented through the equivalence L (A) �= ∅ if and only if
reachδ(I) ∩ R �= ∅ where the set reachδ(S) of states reachable from a set S ⊆ Q through
δ-transitions is computed as the least fixpoint

reachδ(S) = μZ . S ∪
⋃

q,r∈Z
δ(q, r). (1)

The same fixpoint computation is used to compute the derivative with respect to a for some
a ∈ Σ as A − a = (Q, δ, reachδa (I), R): the new leaf states are all those reachable from
I through a-transitions.

The classicalWSkS decision procedure uses the above operations to construct the automa-
ton Aϕ inductively to the structure of ϕ as follows: (i) If ϕ is an atomic formula, then Aϕ

is a pre-defined base TA over ΣX (we show those TAs in Fig. 3). (ii) If ϕ = ϕ1 ∧ ϕ2, then
Aϕ = Aϕ1∩Aϕ2 . (iii) If ϕ = ϕ1∨ϕ2, thenAϕ = Aϕ1∪Aϕ2 . (iv) If ϕ = ¬ψ , thenAϕ = A�

ψ .

(v) Finally, if ϕ = ∃X . ψ , then Aϕ = (πX (Aψ))D − 0 .
Points (i) to (iv) are self-explanatory. In point (v), the projection implements the quan-

tification by forgetting the values of the X component of all symbols. Since this yields

1 Note that our definition of projection differs from the usual one, which would create a symbol over the
alphabet X \ Y; in the example, it would produce a single symbol {Y �→ 0} over the alphabet of symbols
over {Y }.

123

Automata Terms in a Lazy WSkS Decision Procedure 977

(a) (b) (c)

Fig. 3 Tree automata for atomic WS2S formulae. Transitions are represented using multiple-source hyper-
edges. For instance, the transition (s0, s1)−{{X �→1,Y �→1}}→s1 in AX=SL(Y) is represented by the hyper-edge
with sources s0 and s1 over the symbol {X �→ 1, Y �→ 1} that joins just before entering s1. The L and R labels
on the “legs” of the hyper-edge going to s0 and s1 denote the position in the left-hand side of the transition (L
and R stand for “left” and “right”)

non-determinism, projection is followed by determinisation by the subset construction. Fur-
ther, the projection can produce some new trees that contain 0-only labelled sub-trees, which
need not be present in some smaller encodings of the same model. Consider, for example,
a formulaψ having the languageL (ψ) given by the tree τν in Fig. 2b and all its 0-extensions.
To obtain L (∃X .ψ), it is not sufficient to make the projection πX (L (ψ)) because the pro-
jected language does not contain the minimum encoding τminν of ν : Y �→ {ε,L,LL,R,RR},
but only those encodings ν′ such that ν′(RLR) = {Y �→ 0}. Therefore, the 0-derivative
is needed to saturate the language with all encodings of the encoded models (if some of
these encodings were missing, the inductive construction could produce a wrong result, for
instance, if the language were subsequently complemented). As mentioned above, on the
level of automata, the 0 derivative can be achieved by replacing the set of leaf states I ofAϕ

by reachΔ0(I) where Δ is the transition function of Aϕ . See [9] for more details.

3 Automata Terms

Our algorithm for deciding WS2S may be seen as an alternative implementation of the
classical procedure from Sect. 2.4. The main innovation is the data structure of automata
terms,which implicitly represent the automata constructedby the automata operations.Unlike
the classical procedure—which proceeds by a bottom-up traversal on the formula structure,
building an automaton for each sub-formula before proceeding upwards—automata terms
allow for constructing parts of automata at higher levels from parts of automata on the lower
levels even though the construction of the lower level automata has not yet finished. This
allows one to test the language emptiness on the fly and use techniques of state space pruning,
which will be discussed later in Sect. 4.

123

978 V. Havlena et al.

Fig. 4 Tree automata for the
predicates used in Example 1

(a) (b)

3.1 Syntax of Automata Terms

Terms are created according to the grammar

A ::= S | D (automata term)
S ::= {t, . . . , t} (set term)
D ::= S − 0 (derivative term)
t ::= q | t + t | t & t | t | πX (t) | S | D (state term)

starting from states q ∈ Qi , denoted as atomic states, of a given finite set of base automata
Bi = (Qi , δi , Ii , Ri) with pairwise disjoint sets of states. For simplicity, we assume that the
base automata are complete, and we denote by B = (QB, δB, IB, RB) their component-wise
union. Automata terms A specify the set of leaf states of an automaton. Set terms S list a finite
number of the leaf states explicitly, while derivative terms D specify them symbolically as
states reachable from a set of states S via 0’s. The states themselves are represented by state
terms t . (Notice that set terms S and derivate terms D can be both automata terms and state
terms.) Intuitively, the structure of state terms records the automata constructions used to
create the top-level automaton from states of the base automata. Non-leaf state terms, the
state terms’ transition function, and root state terms are then defined inductively from base
automata as described below in detail. We will normally use t, u to denote terms of all types
(unless the type of the term needs to be emphasized).

Example 1 Consider a formulaϕ ≡ ¬∃X .Sing(X)∧X = {ε} and its corresponding automata

term tϕ =
{
{πX ({q0}&{p0})} − 0

}
(we will show how tϕ was obtained from ϕ later). For

the sake of presentation, we will consider the base automata given in Fig. 4 for the predicates

Sing(X) and X = {ε}. The term tϕ above denotes the TA
(
(πX (ASing(X)∩AX={ε}))D−0

)�

constructed using the automata operations of intersection, projection, subset construction,
derivative, and complement. ��

123

Automata Terms in a Lazy WSkS Decision Procedure 979

(a) Root term states (b) Transitions among compatible state terms

Fig. 5 Semantics of terms

3.2 Semantics of Terms

We will define the denotation of an automata term t as the automaton At = (Q,Δ, I , R).
For a set automata term t = S, we define I = S, Q = reachΔ(S) (i.e., Q is the set of
state terms reachable from the leaf state terms), and Δ and R are defined inductively to the
structure of t . Particularly, R contains the terms of Q that satisfy the predicateR defined in
Fig. 5a, and Δ is defined in Fig. 5b, with the addition that whenever the rules in Fig. 5b do
not apply, then we let Δa(t, t ′) = {∅}. The ∅ here is used as a universal sink state in order
to maintain Δ complete, which is needed for automata terms representing complements to
yield the expected language. In Figs. 5a, b, the terms t, t ′, u, u′ are arbitrary terms, S, S′ are
set terms, and q, r ∈ QB.

The transitions of Δ for terms of the type +, &, πX , · , and S are built from the transition
function of their sub-terms analogously to how the automata operations of the product union,
product intersection, projection, complement, and subset construction, respectively, build the
transition function from the transition functions of their arguments (cf. Sect. 2). The only
difference is that the state terms stay annotated with the particular operation by which they
were made (the annotation of the set state terms are the set brackets). The root states are also
defined analogously as in the classical constructions.

Finally, we complete the definition of the term semantics by adding the definition of
semantics for the derivative term S − 0 . This term is a symbolic representation of the set
term that contains all state terms upward-reachable from S in AS over 0. Formally, we first
define the so-called saturation of AS as

(S − 0)s = reachΔ0(S) (14)

(with reachΔ0(S) defined as the fixpoint (1)), and we complete the definition of Δ andR in
Fig. 5a, b with three new rules to be used with a derivative term D:

Δa(D, u) = Δa(D
s, u) (15)

Δa(u, D) = Δa(u, Ds) (16)

R(D) ⇔ R(Ds) (17)

The automatonAD then equalsADs , i.e., the semantics of a derivative term is defined by its
saturation.

Example 2 Let us consider a derivative term t = {πX ({q0}&{p0})}−0 , which occurs within
the nested automata term tϕ of Example 1. The set term representing all terms reachable
upward from t is then the term

123

980 V. Havlena et al.

ts = {πX ({q0}&{p0}), πX ({q1}&{p1}), πX ({qs}&{ps}),
πX ({q1}&{ps}), πX ({q0}&{ps})}.

The semantics of t is then the automaton At with the set of states given by ts. ��

3.3 Properties of Terms

In this section, we establish properties of automata terms that we will use later when estab-
lishing the correctness of our decision procedure. An implication of the definitions in the
previous section, essential for termination of our algorithm in Sect. 4, is that the automata
represented by terms indeed have finitely many states. This is a direct consequence of the
following lemma.

Lemma 1 The size of reachΔ(t) is finite for any automata term t.

Proof (idea) First, we define the depth of a term t , denoted as d(t), inductively as follows:
(i) d(q) = 1 for q ∈ QB, (ii) d(t1 ◦ t2) = 1+max(d(t1), d(t2)) for ◦ ∈ {&,+}, (iii) d(�t1) =
1+ d(t1) for � ∈ {πX , ·}, (iv) d(S) = 1+maxt∈S(d(t)), and (v) d(S − Γ) = 1+ d(S).

Then, since the number of reachable states in base automata is finite, for a given n there
is a finite number of terms of depth at most n. By induction on the depth of terms, we
can show that for a pair of terms t1 and t2, it holds that for each t ∈ Δa(t1, t2) we have
d(t) ≤ max(d(t1), d(t2)). Therefore, for an automata term S it holds that reachΔ(S) is finite.

��
Let us denote by L (t) the language L (At) of the automaton induced by a term t . In the

following, we often use the notions of a term expansion and an expanded term. An expanded
term is a term that does not contain a derivative term as a subterm. Term expansion is then
defined recursively as follows: (i)te = t if t is expanded and (ii) te = (t[u/us])e where u is
a derivative term of the form S−Γ for an expanded term S. Intuitively, the term expansion
saturates derivative subterms in a bottom-upmanner. Note that the expansion of any automata
term A is a set term, i.e., Ae = {t1, . . . , tn}.
Lemma 2 Given an automata term t and its expanded term te, it holds that

(i) te is of a finite size and
(ii) L (

te
) = L (t).

Proof (idea) (i): This can be easily seen from the fact that term expansion is performed
by a bottom-up traversal on the structure of t while substituting derivative terms with their
saturations. From the definition of saturation in (14) and Lemma 1, it follows that each such
saturation is finite.

(ii): First, note that saturation preserves language, i.e., it holds that

L
(
(S − 0)

)
= L

(
(S − 0)s

)
. (18)

Theprevious fact follows from the definition of derivative automaton inSect. 2.4. In particular,
given AS = (Q,Δ, S, R), we have that

AS − 0 = (Q,Δ, reachΔ0(S), R), (19)

which matches the definition of saturation in (14). The lemma follows from the fact that the
expansion substitutes terms for saturated terms with equal languages. ��

123

Automata Terms in a Lazy WSkS Decision Procedure 981

Lemma 3 below shows that languages of terms can be defined from the languages of their
sub-terms if the sub-terms are set terms of derivative terms. The terms on the left-hand sides
are implicit representations of the automata operations of the respective language operators
on the right-hand sides. The main reason why the lemma cannot be extended to all types
of sub-terms and yield an inductive definition of term languages is that it is not meaningful
to talk about the bottom-up language of an isolated state term that is neither a set term
nor a derivative term (which both are also automata terms). This is also one of the main
differences from [13], where every term has its own language, which makes the reasoning
and the correctness proofs in the current paper significantly more involved.

Lemma 3 For automata terms A1, A2 and a set term S, the following equalities hold:

L({A1}) = L(A1) (a)

L({A1+ A2}) = L(A1) ∪ L(A2) (b)

L({A1 & A2}) = L(A1) ∩ L(A2) (c)

L({A1}) = L(A1) (d)

L({πX (A1)}) = πX (L(A1)) (e)

L(S − 0) = L(S)− 0 (f)

Proof (a): We prove the following more general form of (a):

L ({A1, . . . , An}) = L
⎛

⎝
⋃

1≤i≤n
Ae
i

⎞

⎠ . (20)

(Note that A1, . . . , An are automata terms—i.e., either set terms or derivative terms—so their
expanded terms will be set terms.) Intuitively, in this proof we show that determinisation does
not change the language of a term. Let us use A⋃

Ae
i
to denote the TA represented by the

term
⋃

1≤i≤n Ae
i .

(⊆)Let τ be a tree. It holds that τ ∈ L ({A1, . . . , An}) if and only if τ ∈ L ({Ae
1, . . . , A

e
n}

)
,

i.e., if there is an accepting run ρ on τ in A{Ae
1,...,A

e
n}. Note that ρ maps all leaves of τ to the

terms from {Ae
1, . . . , A

e
n}, i.e., each leaf of τ is labelled by some Ae

i , which is a set of terms
of a lower level (such a set term can be seen as a macrostate—i.e., a set of states—from
determinisation of TAs). Moreover, for all non-leaf positions w ∈ dom(τ) \ leaf (τ), let
ρ(w) = U , ρ(w.L) = UL, and ρ(w.R) = UR. Then, from (12), we have that if u ∈ U , then
there exist uL ∈ UL and uR ∈ UR such that u ∈ Δτ(w)(uL, uR). Let us define an auxiliary
function μ(w, u) = (uL, uR) that we will use later. Since ρ is accepting, there is a term
r ∈ ρ(ε) such thatR(r).

We will now use ρ to construct a run ρ′ ofA⋃
Ae
i
on τ . The run ρ′ will now map positions

to a single term as follows: For the root position, we set ρ′(ε) = r . Then, given w ∈
dom(τ)\ leaf (τ), the labels of children ofw are defined as ρ′(w.L) = uL and ρ′(w.R) = uR
where (uL, uR) = μ(w, ρ′(w)). As a consequence, we have that ∀w ∈ leaf (τ) : ρ′(w) ∈⋃

1≤i≤n Ae
i . Then, for eachw ∈ dom(τ), it holds that ρ′(w) ∈ reachΔ(

⋃
1≤i≤n Ae

i)whereΔ

is the transition function ofA⋃
Ae
i
. Therefore, ρ′ is a run ofA⋃

Ae
i
on τ and is accepting, so

τ ∈ L (⋃
1≤i≤n Ae

i

)
.

(⊇) Consider a tree τ ∈ L (⋃
1≤i≤n Ae

i

)
. Then there is an accepting run ρ on τ inA⋃

Ae
i
.

We can then use ρ to construct the run ρ′ on dom(τ) defined as follows: For u ∈ leaf (τ),
if ρ(u) ∈ Ae

i , we set ρ′(u) = Ae
i . For w ∈ dom(τ) \ leaf (τ), we set ρ′(w) = r such

123

982 V. Havlena et al.

that {r} = Δτ(w)(ρ
′(w.L), ρ′(w.R)) (we know that Δτ(w)(ρ

′(w.L), ρ′(w.R)) is a singleton
set due to (12)). For the constructed run ρ′, it now holds that ∀w ∈ dom(τ) : ρ(w) ∈ ρ′(w),
therefore ρ′ is an accepting run on τ in A{Ae

1,...,A
e
n}, i.e., τ ∈ L ({A1, . . . , An}).

(b): (⊆) Let τ ∈ L ({A1+ A2}). Then there is an accepting run ρ on τ inA{Ae
1 + Ae

2}. Since ρ

is accepting, we can definemappings ρ1, ρ2 on dom(τ) such that for allw ∈ dom(τ)we have
ρ1(w) = l(ρ(w)) and ρ2(w) = r(ρ(w)) where l(S1+ S2) = S1 and r(S1+ S2) = S2. The
mappings ρ1 and ρ2 are runs ofA{Ae

1} andA{Ae
2} on τ respectively. Moreover, sinceR(ρ(ε)),

we have that R(ρ1(ε)) ∨ R(ρ2(ε)). To conclude, τ ∈ L
(
A{Ae

1}
)
or τ ∈ L

(
A{Ae

2}
)
, so

τ ∈ L ({A1}) ∪ L ({A2}) and from (a) we get τ ∈ L (A1) ∪ L (A2).
(⊇) Consider τ ∈ L (A1)∪L (A2). From (a) we get τ ∈ L ({A1})∪L ({A2}). Then there

are runs ρ1 inA{Ae
1} and ρ2 inA{Ae

2} on τ such that at least one of them is accepting. We can
define a mapping ρ on dom(τ) such that ∀w ∈ dom(τ) : ρ(w) = ρ1(w)+ ρ2(w), which is
an accepting run on τ in A{Ae

1 + Ae
2}. Therefore τ ∈ L ({A1+ A2}).

(c): Dual to (b).
(d): Let τ be a tree. We will consider runs ρ and ρ of A{Ae

1} and A{Ae
1} on τ respectively.

First, note that both runs exist, which is guaranteed by the presence of the universal sink
state ∅, cf. Sect. 3.2. Second, note that the two runs are unique, since there is a single leaf
state and the transition function is deterministic by (12). Further, from (11), it holds that
∀w ∈ dom(τ) : ρ(w) = ρ(w). From the definition of R we have R(ρ(ε)) ⇔ ¬R(ρ(ε)),
therefore, ρ is not accepting inA{Ae

1} if and only if ρ is accepting inA{Ae
1}. As a consequence,

τ ∈ L({Ae
1}) if and only if τ /∈ L({Ae

1}). From (a), we know that L({Ae
1}) = L(Ae

1).
(e): (⊆) Let τ ∈ L ({πX (A1)}) and ρ be an accepting run of A{πX (Ae

1)} on τ . From the
definition of the transition function in (10) and (4), we get that there is an accepting run ρ′
on some τ ′ inA{Ae

1} where τ ∈ πX (τ ′) and ∀w ∈ dom(τ) : ρ(w) = πX (ρ′(w)). Therefore,
τ ∈ πX (L ({A1})) = πX (L (A1)).

(⊇) Let τ ∈ πX (L (A1)). From the definition of projection, there is τ ′ ∈ L (A1) such
that τ ∈ πX (τ ′). According to (a), there is an accepting run ρ on τ ′ in A{Ae

1}. Then there is
also an accepting run ρ′ on τ in A{πX (Ae

1)} where ∀w ∈ dom(τ) : ρ′(w) = πX (ρ(w)).

(f): We prove the following more general equality: L (S)− Γ = L (
S − Γ

)
, for a set of

symbols Γ (note that S is a set term). In the following text, given a set term U , we define
U � Γ = U e ∪⋃{ΔΓ (t1, t2) | t1, t2 ∈ U e}. Note that reachΔ(U e) = reachΔ(U � Γ).
Further, we use Γ ≤n to denote the set of trees over Γ of height at most n, i.e., Γ ≤n = {t ∈
Γ | ∀w ∈ dom(t) : |w| ≤ n}. We first prove the following two claims.

Claim 1 Let U be a set term. Then L (U � Γ) = L (U)− Γ ≤1.

Proof (⊆)Let τ ∈ L (U � Γ) andρ be an accepting runofAU�Γ on τ . The runρmaps leaves
of τ to the leaf states in U � Γ . Moreover, for each w ∈ leaf (τ) such that ρ(w) /∈ U e (i.e.,
ρ maps w to a newly added leaf state) there exist twL , twR ∈ U e such that ρ(w) ∈ ΔΓ (twL , twR).
We can therefore extend ρ to the run ρ′ defined such that ρ′|dom(τ) = ρ and for allw ∈ leaf (τ)

such that ρ(w) /∈ U e, we define ρ′(w.L) = twL and ρ′(w.R) = twR . The run ρ′ is accepting
in AUe on a tree τ ′ ∈ L (U) such that τ ∈ τ ′ − Γ ≤1, and so τ ∈ L (U)− Γ ≤1.

(⊇) Let τ ∈ L (U)− Γ ≤1 and τ ′ ∈ L (U) be a tree such that τ ∈ τ ′ − Γ ≤1. Hence there
is an accepting run ρ′ of AUe on τ ′. Consider the set Θ = {w ∈ leaf (τ) | ρ′(w) /∈ U e} of
positions mapped by ρ′ to newly added states. Since τ ∈ τ ′ − Γ ≤1, it holds that ∀w ∈ Θ :
ρ′(w.L) ∈ U e ∧ ρ′(w.R) ∈ U e ∧ τ ′(w) ∈ Γ . Therefore, ρ = ρ′|dom(τ) is an accepting run
of AU�Γ on τ , i.e., τ ∈ L (U � Γ). �

123

Automata Terms in a Lazy WSkS Decision Procedure 983

Claim 2 Let U be a set term, U0 = U, and Ui+1 = Ui � Γ for i ≥ 0. Then L (Um) =
L (U)− Γ ≤m.

Proof We prove the claim by induction on m.

– Base case m = 0: L (U0) = L (U) = L (U)− Γ ≤0.
– Inductive case: We assume that the claim holds for 0, . . . ,m. We prove that it holds also

for m + 1. From Claim 1 we have

L (Um+1) = L (Um � Γ) = L (Um)− Γ ≤1. (21)

By the induction hypothesis we further have

L (Um+1) = (L (U)− Γ ≤m)− Γ ≤1. (22)

Finally, from the definition of the derivative we obtain

(L (U)− Γ ≤m)− Γ ≤1 = L (U)− Γ ≤m+1, (23)

which concludes the proof. �

We now prove the main part of the lemma. Consider the sequence of automata terms
S0, S1, . . . where S0 = Se and Si+1 = Si � Γ . From the monotonicity of � and Lemma 1,
there is an n such that Sn �= Sn−1 and Sn = Sn+i for all i ≥ 0. From Claim 2 we have
L (Si) = L (S)−Γ ≤i and, consequently, L (Sn) = L (S)−Γ ≤n . Because Sn is the fixpoint
of the sequence of automata terms S0, S1, . . ., it holds that L (Sn) = L (S)−Γ . Finally, we
have Sn = reachΔΓ (Se) = S−Γ (by (14)), sowe conclude thatL (S)−Γ = L (

S − Γ
)
.
��

Lemma3 shows fundamental properties of terms. Based on itwe further focus on flattening
of terms, whose properties are described by the following lemma.

Lemma 4 For sets of terms S and S′ such that S �= ∅ and S′ �= ∅, we have:
L ({S+ S′}) = L ({S [+] S′}) , (a)

L ({S & S′}) = L ({S [&] S′}) , (b)

L ({πX (S)}) = L ({πX (t) | t ∈ S}) . (c)

Proof (a): (⊆)Let τ ∈ L ({S+ S′}). FromLemma3bwehaveL ({S+ S′}) = L (S)∪L (
S′

)
.

Hence there are runs ρ1 in ASe and ρ2 in AS′e on τ and, moreover, at least one of them is
accepting (both runs exist since the transition functionΔ is complete). Then, we can construct
a mapping ρ from τ defined such that for all w ∈ dom(τ), we set ρ(w) = ρ1(w)+ ρ2(w).
Note that ρ is a run of A{te1 + te2 |t1∈S,t2∈S′} on τ , i.e., it maps leaves of dom(τ) to terms of the
form te1 + te2 for t1 ∈ S and t2 ∈ S′. Moreover, ρ is accepting since at least one of the runs ρ1
and ρ2 is accepting. Therefore, τ ∈ L ({t1+ t2 | t1 ∈ S, t2 ∈ S′}). From the definition of the
augmented product, it follows that τ ∈ L (

S [+] S′) and, finally, from Lemma 3a, we have
τ ∈ L ({S [+] S′}).

(⊇) Let τ ∈ L ({S [+] S′}). From Lemma 3a, we get τ ∈ L (
S [+] S′), and from the defi-

nition of the augmented product, we obtain that τ ∈ L ({t1+ t2 | t1 ∈ S, t2 ∈ S′}). Therefore,
there is an accepting run ρ on τ inA{te1 + te2 |t1∈S,t2∈S′}. Furthermore, let us consider the run ρ′
ofA{S+ S′} on τ (note that, due to (12) and the completeness of the transition function, there is
exactly one). By induction on the structure of τ , we can easily show that for all w ∈ dom(τ),
if ρ(w) = t1 + t2, then ρ′(w) = S1 + S2 such that t1 ∈ S1 and t2 ∈ S2 (the property clearly
holds at leaves and is also preserved by the transition function). Let ρ(ε) = tε1 + tε2 and

123

984 V. Havlena et al.

ρ′(ε) = Sε
1 + Sε

2 . SinceR(tε1 + tε2), it also holds thatR(Sε
1 + Sε

2). Therefore, ρ
′ is accepting,

so τ ∈ L ({S+ S′}).
(b): Dual to (a).
(c): From Lemma 3e we have that L ({πX (S)}) = πX (L (S)). Therefore, it is sufficient

to prove the following identity: πX (L (S)) = L ({πX (t) | t ∈ S}).
(⊆) Let τ ∈ πX (L (S)). Then, there is a tree τ ′ ∈ L (S) such that τ ∈ πX (τ ′). Let ρ be

an accepting run ofASe on τ ′. We will construct a run ρ′ ofA{πX (t)|t∈Se} on τ ′ such that for
all w ∈ dom(τ), we set ρ′(w) = πX (ρ(w)). It follows that τ ∈ L ({πX (t) | t ∈ S}).

(⊇) Let τ ∈ L ({πX (t) | t ∈ S}) and ρ be an accepting run of A{πX (t)|t∈Se} on τ . We will
now construct a mapping ρ′ from dom(τ) such that for all w ∈ dom(τ), we set ρ′(w) = t
where ρ(w) = πX (t). It follows that ρ′ is an accepting run of ASe on τ ′, and so τ ∈
πX (L (S)). ��

3.4 Terms of Formulae

Our algorithm in Sect. 4 will translate a WS2S formula ϕ into the automata term tϕ = {〈ϕ〉}
representing a deterministic automaton with its only leaf state represented by the state term
〈ϕ〉. The base automata of tϕ include the automaton Aϕ0 for each atomic predicate ϕ0 used
in ϕ. The state term 〈ϕ〉 is then defined inductively to the structure of ϕ as follows:

〈ϕ0〉 = Iϕ0 (24)

〈ϕ ∧ ψ〉 = 〈ϕ〉&〈ψ〉 (25)

〈ϕ ∨ ψ〉 = 〈ϕ〉+〈ψ〉 (26)

〈¬ϕ〉 = 〈ϕ〉 (27)

〈∃X . ϕ〉 = {πX (〈ϕ〉)} − 0 (28)

In the definition, ϕ0 is an atomic predicate, Iϕ0 is the set of leaf states of Aϕ0 , and ϕ and ψ

denote arbitrary WS2S formulae. We note that the translation rules may create sub-terms of
the form {{t}}, i.e., with nested set brackets. Since {·} semantically means determinisation
by subset construction, such double determinisation terms can be always simplified to {t}
(cf. Lemma 3a). See Example 1 for a formula ϕ and its corresponding term tϕ . Theorem 1
establishes the correctness of the formula-to-term translation.

Theorem 1 Let ϕ be a WS2S formula. Then L (ϕ) = L(tϕ).

Proof To simplify the proof, we restrict the definition of terms to deterministic terms U
constructed using the following grammar:

U ::= {u, . . . , u} | {πX (u), . . . , πX (u)} (29)

u ::= q | u+ u | u & u | u | U | U − Γ (30)

where q is a state of an automaton. It is easy to see that deterministic terms form a proper
subset of all terms constructed using the definition in Sect. 3.1 (e.g., the term πX (t1)&πX (t2)
is not deterministic). They are, however, sufficient to capture the terms that emerge from the
translation presented above. Note that for two expanded deterministic terms t1 and t2 we have
|Δa(t1, t2)| = 1. Further note that for a WS2S formula ϕ, 〈ϕ〉 is a deterministic term.

Now, we prove L (ϕ) = L ({〈ϕ〉}) by induction on the structure of ϕ. In the proof, we use
properties of the classical decision procedure from Sect. 2.4.

123

Automata Terms in a Lazy WSkS Decision Procedure 985

– ϕ = ϕ0 where ϕ0 is an atomic formula: Let Iϕ0 be the set of leaf states of Aϕ0 .

L ({〈ϕ0〉}) = L ({Iϕ0}
)

�(24)�

= L (
Iϕ0

)
�Lemma 3a �

= L (Aϕ0

)
�term semantics�

= L (ϕ0) . �property of automata for atoms�

– ϕ = ψ1 ∧ ψ2: We use the following equational reasoning:

L ({〈ψ1 ∧ ψ2〉}) = L ({〈ψ1〉& 〈ψ2〉}) �(25)�

= L ({{〈ψ1〉& 〈ψ2〉}}) �Lemma 3a�

= L ({{〈ψ1〉}& {〈ψ2〉}}) �Lemma 4b�

= L ({〈ψ1〉}) ∩ L ({〈ψ2〉}) . �Lemma 3c�

= L (ψ1) ∩ L (ψ2) �induction hypothesis�

= L (ϕ) . �classical procedure�

– ϕ = ψ1 ∨ ψ2:
We use the following equational reasoning:

L ({〈ψ1 ∨ ψ2〉}) = L ({〈ψ1〉+ 〈ψ2〉}) �(26)�

= L ({{〈ψ1〉+ 〈ψ2〉}}) �Lemma 3a�

= L ({{〈ψ1〉}+ {〈ψ2〉}}) �Lemma 4a�

= L ({〈ψ1〉}) ∪ L ({〈ψ2〉}) . �Lemma 3b�

= L (ψ1) ∪ L (ψ2) �induction hypothesis�

= L (ϕ) . �classical procedure�

– ϕ = ¬ψ : First, we prove the following claim:

Claim 3 Let t be a deterministic term, then L ({{t}}) = L ({
t
})
.

Proof First, consider two expanded deterministic terms t1 and t2. Since t1 and t2 are determin-
istic, from (12) we have Δa(t1, t2) = {t ′} for some deterministic term t ′ and any symbol a.
Therefore (from (11)), Δa(t1, t2) = {t ′} and Δa({t1}, {t2}) = {{t ′}}. Hence, there is an
accepting run ρ on a tree τ in A{{t}} if and only if there is an accepting run ρ′ on τ in A{t}
where for all w ∈ dom(τ) it holds that ρ(w) = s ⇔ ρ′(w) = {s}. �

We proceed to the main part of the proof.

L ({〈¬ψ〉}) = L ({〈ψ〉}) �(27)�

= L ({{〈ψ〉}}) �Claim 3�

= L ({〈ψ〉}) �Lemma 3d�

= L (ψ) �induction hypothesis�

= L (ϕ) . �classical procedure�

– ϕ = ∃X . ψ : We start by proving the following claim:

Claim 4 Let t be a deterministic term, then L ({πX ({t})}) = L ({πX (t)}).

123

986 V. Havlena et al.

Proof First, consider two expanded deterministic terms t1 and t2. Since t1 and t2 are both
deterministic, we have Δa(t1, t2) = {ta} for some deterministic term ta and any sym-
bol a. Therefore, according to (10), Δa(πX (t1), πX (t2)) = {πX (tb) | b ∈ πX (a)} and
Δa(πX ({t1}), πX ({t2})) = {πX ({tb}) | b ∈ πX (a)}. Hence, there is an accepting run ρ

on a tree τ inA{πX ({t})} if and only if there is an accepting run ρ′ on τ inA{πX (t)}, where for
all w ∈ dom(τ) it holds that ρ(w) = πX (s) ⇔ ρ′(w) = πX ({s}). �

We proceed to the main part of the proof.

L ({〈∃X . ψ〉}) = L
(
{πX (〈ψ〉)} − 0

)
�(28)�

= L ({πX (〈ψ〉)})− 0 �Lemma 3f�

= L ({πX ({〈ψ〉})})− 0 �Claim 4�

= πX (L ({〈ψ〉}))− 0 �Lemma 3e�

= πX (L (ψ))− 0 �induction hypothesis�

= L (ϕ) . �classical procedure�

��

4 An Efficient Decision Procedure

The development in Sect. 3 already implies a naive automata term-based satisfiability check.
Namely, by Theorem 1, we know that a formula ϕ is satisfiable if and only if L(Atϕ) �= ∅.
After translating ϕ into tϕ using rules (24)–(28), we may use the definitions of the transition
function and root states of Atϕ = (Q,Δ, I , F) in Sect. 3 to decide the language emptiness
through evaluating the root state test R(reachΔ(I)). The equalities and equivalences (8)–
(17) can be implemented as recursive functions. We will further refer to this algorithm as the
simple recursion. The evaluation of reachΔ(I) induces nested evaluations of the fixpoint (14):
the one on the top level of the language emptiness test and another one for every expansion
of a derivative sub-term. The termination of these fixpoint computations is guaranteed due
to Lemma 1.

Such a naive implementation is, however, inefficient and has only disadvantages in com-
parison to the classical decision procedure. In this section, we will discuss how it can be
optimized. Besides an essential memoization needed to implement the recursion efficiently,
we will show that the automata term representation is amenable to optimizations that cannot
be used in the classical construction. These are techniques of state space pruning: the fact that
the emptiness can be tested on the fly during the automata construction allows one to avoid
exploration of state space irrelevant to the test. The pruning is done through the techniques of
lazy evaluation and subsumption. We will also discuss optimizations of the transition func-
tion of Sect. 3 through product flattening and nondeterministic union, which are analogous
to standard implementations of automata intersection and union.

4.1 Memoization

The simple recursion repeats the fixpoint computations that saturate derivative terms from
scratch at every call of the transition function or root test. This is easily countered through
memoization, known, e.g., from compilers of functional languages, which caches results

123

Automata Terms in a Lazy WSkS Decision Procedure 987

of function calls in order to avoid their re-evaluation. Namely, after saturating a derivative
sub-term t = S − 0 of tϕ for the first time, we simply replace t in tϕ by the saturation
ts = reachΔ0(S). Since a derivative is a symbolic representation of its saturated version
(cf. (14)), the replacement does not change the language of tϕ . Using memoization, every
fixpoint computation is then carried out only once.

4.2 Lazy Evaluation

The lazy variant of the procedure uses short-circuiting to optimize connectives ∧ and ∨, and
early termination to optimize fixpoint computation in derivative saturations. Namely, assume
that we have a term t1+ t2 and that we test whetherR(t1+ t2). Suppose that we establish that
R(t1); we can short circuit the evaluation and immediately return true, completely avoiding
touching the potentially complex term t2. Similarly for a term of the form t1 & t2, where we
can short circuit the evaluation when one branch is false.

Furthermore, early termination is used to optimize fixpoint computations used to saturate
derivatives within tests R(S − 0) (obtained from sub-formulae such as ∃X . ψ). Namely,
instead of first unfolding the whole fixpoint into a set {t1, . . . , tn} and only then testing
whetherR(ti) is true for some ti , the terms ti can be tested as soon as they are computed, and
the fixpoint computation can be stopped early, immediately when the test succeeds on one
of them. Then, instead of replacing the derivative sub-term by its full saturation, we replace
it by the partial result {t1, . . . , ti } − 0 for i ≤ n. Finishing the evaluation of the fixpoint
computation might later be required in order to compute a transition from the derivative.
We note that this corresponds to the concept of continuations from functional programming,
used to represent a paused computation that may be required to continue later.

Example 3 Let us now illustrate the lazy decision procedure on our running example for-
mula ϕ ≡ ¬∃X . Sing(X) ∧ X = {ε} and the corresponding automata term tϕ =
{ {πX ({q0}&{p0})} − 0

}
from Example 1. The task of the procedure is to compute the

value of R(reachΔ(tϕ)), i.e., whether there is a root state reachable from the leaf state 〈ϕ〉
of Atϕ . The fact that ϕ is ground allows us to slightly simplify the problem because any
ground formula ψ is satisfiable if and only if⊥ ∈ L (ψ), i.e., if and only if the leaf state 〈ψ〉
of Atψ is also a root. It is thus enough to test R(〈ϕ〉) where 〈ϕ〉 = {πX ({q0}&{p0})} − 0 .

The computation proceeds as follows. First, we use (5) from Fig. 5a to propa-
gate the root test towards the derivative, i.e., to obtain that R(〈ϕ〉) if and only if
¬R({πX ({q0}&{p0})} − 0). Since theR-test cannot be directly evaluated on a derivative
term, we need to start saturating it into a set term, evaluating R on the fly, hoping for early
termination. We begin with evaluating theR-test on the initial element t0 = πX ({q0}&{p0})
of the set. The test propagates through the projection πX due to (4) and evaluates as false on
the left conjunct (through, in order, (3), (6), and (7)) since the state q0 is not a root state. As
a trivial example of short circuiting, we can skip evaluatingR on the right conjunct {p0} and
conclude that R(t0) is false.

Thefixpoint computation then continueswith thefirst iteration, computing the0-successors
of the set {t0}. We will obtain the set Δ0(t0, t0) = {t0, t1} with t1 = πX ({q1}&{p1}). The
test R(t1) now returns true because both q1 and p1 are root states. With that, the fixpoint
computation may terminate early, with the R-test on the derivative sub-term returning true.
Memoization then replaces the derivative sub-term in 〈ϕ〉 by the partially evaluated version
{t0, t1} − 0 , and R(〈ϕ〉) is evaluated as false due to (5). We therefore conclude that ϕ is
unsatisfiable (and invalid since it is ground). ��

123

988 V. Havlena et al.

4.3 Subsumption

The next technique we use is based on pruning out parts of a search space that are sub-
sumed by other parts. In particular, we generalize (in a similar way as we did for WS1S in
our previous work [13]) the concept used in antichain algorithms for efficiently deciding
language inclusion and universality of finite word and tree automata [1,5,11,39]. Although
the problems are in general computationally infeasible (they are PSPACE-complete for finite
word automata and EXPTIME-complete for finite tree automata), antichain algorithms can
solve them efficiently in many practical cases.

We apply the technique by keeping set terms in the form of antichains of simulation-
maximal elements and prune out any other simulation-smaller elements. Intuitively, the notion
of a term t being simulation-smaller than t ′ implies that trees that might be generated from
the leaf states T ∪ {t} can be generated from T ∪ {t ′} too, hence discarding t does not hurt.
Formally, we introduce the following rewriting rule:

{t1, t2, . . . , tn}�{t2, . . . , tn} for t1 t2, (31)

which may be used to simplify set sub-terms of automata terms. The rule (31) is applied after
every iteration of the fixpoint computation on the current partial result. Hence the sequence
of partial results is monotone, which, together with the finiteness of reachΔ(t), guarantees
termination. The subsumption relation used in the rule is defined as

S S′ ⇔ S ⊆ S′ ∨ S ∀∃ S′ (32)

t & u t ′ & u′ ⇔ t t ′ ∧ u u′ (33)

t + u t ′ + u′ ⇔ t t ′ ∧ u u′ (34)

t t ′ ⇔ t ′ t (35)

πX (t) πX (t ′)⇔ t t ′ (36)

where S ∀∃ S′ denotes ∀t ∈ S ∃t ′ ∈ S′. t t ′. Intuitively, on base TAs, subsumption
corresponds to inclusion of the set terms (the left disjunct of (32)). This clearly has the
intended outcome: a larger set of states can always simulate a smaller set in accepting a tree.
The rest of the definition is an inductive extension of the base case. It can be shown that
for any automata term t is an upward simulation on At in the sense of [1]. Consequently,
rewriting sub-terms in an automata term according to the new rule (31) does not change its
language.

4.4 Product Flattening

Product flattening is a technique that we use to reduce the size of fixpoint saturations
that generate conjunctions and disjunctions of sets as their elements. Consider a term
of the form D = {πX (S0 & S′0)} − 0 for a pair of sets of terms S0 and S′0 where the
TAsAS0 andAS′0 have sets of states Q and Q′, respectively. The saturation generates the set
{πX (S0 & S′0), . . . , πX (Sn & S′n)} with Si ⊆ Q, S′i ⊆ Q′ for all 0 ≤ i ≤ n. The size of this

set is 2|Q|+|Q′| in the worst case. In terms of the automata operations, this fixpoint expan-
sion corresponds to first determinizing both AS0 and AS′0 and only then using the product
construction (cf. Sect. 2.4). The automata intersection, however, works for nondeterministic
automata too—the determinization is not needed. Implementing this standard product con-
struction on terms would mean transforming the original fixpoint above into the following

123

Automata Terms in a Lazy WSkS Decision Procedure 989

fixpoint with a flattened product: D = {πX (S0 [&] S′0)} − 0 where [&] is the augmented
product for conjunction. This way, we can decrease the worst-case size of the fixpoint to
|Q| · |Q′|. A similar reasoning holds for terms of the form {πX (S0+ S′0)} − 0 . Formally,
the technique can be implemented by the following pair of sub-term rewriting rules where S
and S′ are non-empty sets of terms:

S+ S′�S [+] S′, (37)

S & S′�S [&] S′. (38)

Observe that for terms obtained from WS2S formulae using the translation from Sect. 3, the
rules are not helpful in their given form. Consider, for instance, the term {πX ({r}&{q})}−0
obtained from a formula ∃X . ϕ ∧ ψ with ϕ and ψ being atoms. The term would be, using
rule (38), rewritten into the term {πX ({r & q})}−0 . Then, during a subsequent fixpoint com-
putation,wemight obtain a fixpoint of the following form: {πX ({r & q}), πX ({r & q, r1 & q1}),
πX ({r1 & q1, r2 & q2})}, where the occurrences of the projection πX disallow one to perform
the desired union of the inner sets, and so the application of rule (38) did not help. We there-
fore need to equip our procedure with a rewriting rule that can be used to push the projection
inside a set term S:

πX (S)�{πX (t) | t ∈ S}. (39)

In the example above, using rule (39) we would now obtain the term {πX (r & q)} − 0 (note
that we rewrote {{·}} to {·} as mentioned in Sect. 3) and the fixpoint {πX (r & q), πX (r1 & q1),
πX (r2 & q2)}. The correctness of the rules is guaranteed by Lemma 4.

We, however, still have to note that there is a danger related with the rules (37)–(39).
Namely, if they are applied to some terms in a partially evaluated fixpoint but not to all, the
form of these terms might get different (cf. πX ({r & q}) and πX (r & q)), and it will not be
possible to combine them as source states of TA transitions when computing Δa , leading
thus to an incorrect result. We resolve the situation in such a way that we apply the rules as
a pre-processing step only before we start evaluating the top-level fixpoint, which ensures
that all terms will subsequently be generated in a compatible form.

4.5 Nondeterministic Union

Optimization of the product term saturations from the previous section can be pushed one
step further for terms of the form {πX (S+ S′)} − 0 . The idea is to use the nondeterministic
TA union to implement the union operation instead of the product construction. The TA union
is implemented as the component-wise union of the two TAs. Its size is hence linear to the
size of the input instead of quadratic as in the case of the product (i.e., |Q| + |Q′| instead of
|Q| · |Q′|). To work correctly, the nondeterministic union requires disjoint input sets of states
(otherwise, the combination of the two transition functions could generate runs that are not
possible in either of the input TAs). We implement the nondeterministic union through the
following rewriting rule:

S+ S′�S ∪ S′ for S �!� S′ (40)

where S and S′ are sets of terms (similarly to Sect. 4.4, in order to successfully reduce the
fixpoint state space on terms obtained fromWS2S formulae, we also need to apply rule (39)
to push projection inside set terms). The relation �!� used in the rule is the non-interference
of terms, which generalizes the state space disjointness requirement of the nondeterministic
union of TAs. Its complement, the interference of terms !�, is defined using the following

123

990 V. Havlena et al.

equivalences:

S !� S′ ⇔ S = S′ ∨ ∃t ∈ S, t ′ ∈ S′. t !� t ′ (41)

t & u !� t ′ & u′ ⇔ t !� t ′ ∨ u !� u′ (42)

t + u !� t ′ + u′ ⇔ t !� t ′ ∨ u !� u′ (43)

t !� t ′ ⇔ t !� t ′ (44)

πX (t) !� πX (t ′) ⇔ t !� t ′ (45)

D !� t ⇔ Ds !� t (46)

t !� D ⇔ t !� Ds (47)

q !� r ⇔ ∃1 ≤ k ≤ n. q, r ∈ Qk (48)

For terms t and u that are not matched by any rule above, we define t �!� u (for instance,
t1 & t2 �!� u1+ u2). Interference between terms tells uswhenwe cannot perform the rewriting.
Intuitively, this happens when we obtain a term {S+ S′} where S and S′ contain states from
the same base automaton Bk with the set of states Qk .

In order to avoid interference in the terms obtained fromWS2S formulae, we can perform
the following pre-processing step: When translating a WS2S formula ϕ into a term tϕ , we
create a special version of a base TA for every occurrence of an atomic formula inϕ. This way,
we can never mix up terms that emerged from different subformulae to enable a transition
that would otherwise stay disabled.

To use rule (40), it is necessary to modify treatment of the sink state ∅ in the definition
of Δ of Sect. 3. The technical difficulty we need to circumvent is that (unlike for finite word
automata) the nondeterministic union of two (even complete) TAs is not complete.

This can cause situations such as the following: let D = {πX ({t} + {r})} − 0 such that
Δ0(t, t) = {t}, Δ0(r , r) = {r}, andR(t) andR(r) are both true, i.e., both t and r can accept
any 0-tree, which alsomeans that the union of their complements should not accept any 0-tree.
Indeed, the saturation of D is the set term Ds = reachΔ0({πX ({t}+{r})}) = {πX ({t}+{r})}
where it holds that ¬R(πX ({t} + {r})), i.e., it does not accept any 0-tree. On the other hand,
if we use the new rule (40) together with rule (39), we obtain the term {πX (t), πX (r)} − 0 .
When computing its saturation, we will obtain a new element Δ0(πX (t), πX (r)) = πX (∅).
The term πX (∅) was constructed using the implicit rule of Sect. 3 that sends the otherwise
undefined successors of a pair of terms to {∅}. Note that R(πX (∅)) is true, yielding that
the fixpoint approximation {πX (t), πX (r), πX (∅)} is a root state, so a 0-tree is accepted.
Therefore, the application of the new rule (40) changed the language.

Although the previous situation cannot happen with terms obtained fromWS2S formulae
using the translation rules from Sect. 3, in order to formulate a correctness claim for any
terms constructed using our grammar, we remedy the issue by modifying the definition of
implicit transitions of Δ to {∅} from Sect. 3. We give the modified transition function Δ� in
Fig. 6.

Note that in the previous example, when using the modified transition function Δ� for
computing the saturation of the term {πX (t), πX (r)}−0 , we would from t �!� r deduce that
πX (t) �!� πX (r). As a consequence, Δ�

0(πX (t), πX (r)) = {∅}, which is not accepting.
We will denote the semantics of a term t obtained using Δ� instead of Δ as L� (t). First,

we show that the properties of terms from Sect. 3 under the original semantics hold also for
the modified semantics.

123

Automata Terms in a Lazy WSkS Decision Procedure 991

Fig. 6 Modified transition
function a (t, t) =

•
a (t, t) if t t

{∅} otherwise

•
a (t + u, t + u) = a (t, t) [+] a (u, u)

•
a (t & u, t & u) = a (t, t) [&] a (u, u)

•
a (πX(t), πX(t)) = πX(u) u ∈ πX(a)(t, t)

•
a (t, t) = u u ∈ a (t, t)

•
a (S, S) =

t∈S,t ∈S

a (t, t)

•
a (q, r) = δBa (q, r)

Lemma 5 For automata terms A1, A2 and a set term S, the following equalities hold:

L� ({A1}) = L� (A1) (a)

L� ({A1+ A2}) = L� (A1) ∪ L� (A2) (b)

L� ({A1 & A2}) = L� (A1) ∩ L� (A2) (c)

L�
({A1}

) = L� (A1) (d)

L� ({πX (A1)}) = πX (L� (A1)) (e)

L�
(
S − 0

)
= L� (S)− 0 (f)

Proof In the following proofs we abuse notation and denote by AS the automaton of the
term S with the altered transition function Δ�.

(a): We prove the following more general form of (a):

L� ({A1, . . . , An}) = L�

⎛

⎝
⋃

1≤i≤n
Ae
i

⎞

⎠ (g)

(Again, note that all expanded terms are set terms.) Intuitively, in this proof we show that
determinisation does not change the modified language of a term. Let us useA⋃

Ae
i
to denote

the TA represented by the term
⋃

1≤i≤n Ae
i . Recall that we are using the modified semantics

with the altered term transition function Δ�.
(⊆) Let τ be a tree. It holds that τ ∈ L� ({A1, . . . , An}) if and only if τ ∈

L�
({Ae

1, . . . , A
e
n}

)
, i.e., if there is an accepting run ρ on τ in A{Ae

1,...,A
e
n}. Note that ρ maps

all leaves of τ to the terms from {Ae
1, . . . , A

e
n}, i.e., each leaf of τ is labelled by some Ae

i ,
which is a set of terms of a lower level (such a set term can be seen as a macrostate—i.e.,
a set of states—from determinisation of TAs). Since ρ is accepting, there is a term r ∈ ρ(ε)

such thatR(r). Note that becauseR(r), it follows that r �= ∅.
We will now use ρ to construct a run ρ′ of A⋃

Ae
i
on τ . The run ρ′ will now map every

position of τ to a single term. For the root position, we set ρ′(ε) = r .We proceed by induction
as follows: For all non-leaf positions w ∈ dom(τ) \ leaf (τ) such that ρ′(w) = u, assume
that in the original run it holds that ρ(w.L) = UL and ρ(w.R) = UR. Then, let uL ∈ UL

and uR ∈ UR be terms such that u ∈ Δ�(uL, uR) (the presence of such terms is guaranteed

123

992 V. Havlena et al.

by (54)). The following inductive invariant holds: If u �= ∅, then uL �= ∅ and uR �= ∅
(the invariant follows from (54), the fact that r �= ∅, and (41)). We set ρ′(w.L) = uL and
ρ′(w.R) = uR.

As a consequence, we have that ∀w ∈ leaf (τ) : ρ′(w) ∈ ⋃
1≤i≤n Ae

i . Then, for each
w ∈ dom(τ), it holds thatρ′(w) ∈ reachΔ�(

⋃
1≤i≤n Ae

i)whereΔ� is the (modified) transition
function of A⋃

Ae
i
. This follows from the definition of modified transition function for set

terms (54). Therefore, ρ′ is a run of A⋃
Ae
i
on τ and is accepting, so τ ∈ L�

(⋃
1≤i≤n Ae

i

)
.

(⊇) Consider a tree τ ∈ L�
(⋃

1≤i≤n Ae
i

)
. Then there is an accepting run ρ on τ inA⋃

Ae
i
.

We can then use ρ to construct the run ρ′ on dom(τ) defined as follows: For u ∈ leaf (τ),
if ρ(u) ∈ Ae

i , we set ρ′(u) = Ae
i . For w ∈ dom(τ) \ leaf (τ), we set ρ′(w) = r such

that {r} = Δ
�

τ(w)(ρ
′(w.L), ρ′(w.R)) (we know that Δ

�

τ(w)(ρ
′(w.L), ρ′(w.R)) is a singleton

set due to (54)). For the constructed run ρ′, it now holds that ∀w ∈ dom(τ) : ρ(w) ∈ ρ′(w),
therefore ρ′ is an accepting run on τ in A{Ae

1,...,A
e
n}, i.e., τ ∈ L� ({A1, . . . , An}).

(b)–(e): The proof is identical to the proof of corresponding variant in Lemma 3 (with
altered term transition function).

(f): The proof is similar to the proof of Lemma 3f with one exception. In particular, in the
proof of (the modified version of) Claim 1, we need to make use of the fact that interference
is preserved along transition relation, which is formalized in the following claim.

Claim 5 For two terms t1, t2 such that t1 !� t2, symbol a, and for each t ∈ Δ
�
a(t1, t2) it holds

that t !� t1 and t !� t2.

Proof By induction on the structure of terms:

– Base case: Let t1 and t2 be states of some base automata. From t1 !� t2 and (48), we can
deduce that t1 and t2 are both states of some base automaton Bk , i.e., t1, t2 ∈ Qk . Then
it also holds that Δ

�
a(t1, t2) ⊆ Qk , so for every t ∈ Δ

�
a(t1, t2), we have that t !� t1 and

t !� t2.
Let us now continue with inductive cases.

– Let t1 = u1 & v1 and t2 = u2 & v2. From (42), it follows that either u1 !� u2 or v1 !� v2.

Δ�
a(t1, t2) = Δ�

a(u1 & v1, u2 & v2)

= Δ•a(u1 & v1, u2 & v2) �(49)�

= Δ�
a(u1, u2) [&]Δ�

a(v1, v2) �(51)�

= {u & v | u ∈ Δ�
a(u1, u2) ∧ v ∈ Δ�

a(v1, v2)} �def. of [&] �

Therefore, for all t = u & v ∈ Δ
�
a(t1, t2):

– if u1 !� u2, then u !� u1 and u !� u2, so, from (42), it also holds that t !� t1 and
t !� t2; and

– if v1 !� v2, then v !� v1 and v !� v2, so, from (42), it also holds that t !� t1 and
t !� t2.

– The proofs for other inductive cases are similar.

�

The other parts of the proof are similar. ��

123

Automata Terms in a Lazy WSkS Decision Procedure 993

Lemma 6 For sets of terms S and S′ such that S �= ∅ and S′ �= ∅, we have:

L�
({S+ S′}) = L�

({S [+] S′}) , (a)

L�
({S & S′}) = L�

({S [&] S′}) , (b)

L� ({πX (S)}) = L� ({πX (t) | t ∈ S}) . (c)

Proof (a): (⊆) Let τ ∈ L�
({S+ S′}). From Lemma 5b we have L�

({S+ S′}) = L� (S) ∪
L�

(
S′

)
. Hence there are runs ρ1 in ASe and ρ2 in AS′e on τ such that for all w ∈ dom(τ),

ρ1(w) �= ∅ ∧ ρ2(w) �= ∅, and, moreover, at least one of them is accepting. Note that both
runs exist since the transition function Δ� is complete (for a pair of terms t1 and t2, (i) if
t1 �!� t2, then trivially Δ�(t1, t2) = {∅} �= ∅ and (ii) if t1 !� t2, then, from the definition of
modified transition function we have Δ�(t1, t2) = Δ•(t1, t2) �= ∅). Then, we can construct
a mapping ρ from τ defined such that for all w ∈ dom(τ), we set ρ(w) = ρ1(w)+ ρ2(w).
Note that ρ is a run of A{te1 + te2 |t1∈S,t2∈S′} on τ , i.e., it maps leaves of dom(τ) to terms of the
form te1 + te2 for t1 ∈ S and t2 ∈ S′. Moreover, ρ is accepting since at least one of the runs ρ1

and ρ2 is accepting. Therefore, τ ∈ L�
({t1+ t2 | t1 ∈ S, t2 ∈ S′}). From the definition of the

augmented product, it follows that τ ∈ L�
(
S [+] S′) and, finally, from Lemma 5a, we have

τ ∈ L�
({S [+] S′}).

(⊇) Let τ ∈ L�
({S [+] S′}). From Lemma 5a, we get τ ∈ L�

(
S [+] S′), and from the

definition of the augmented product,we obtain τ ∈ L�
({t1+ t2 | t1 ∈ S, t2 ∈ S′}). Therefore,

there is an accepting run ρ on τ inA{te1 + te2 |t1∈S,t2∈S′}. Furthermore, let us consider the run ρ′
ofA{S+ S′} on τ (note that, due to (12), the definition of interference, and the completeness of
the transition function, there is exactly one). By induction on the structure of τ , we can easily
show that for all w ∈ dom(τ), if ρ(w) = t1+ t2, then ρ′(w) = S1+ S2 such that t1 ∈ S1 and
t2 ∈ S2 (the property clearly holds at leaves and is also preserved by the transition function).
Let ρ(ε) = tε1 + tε2 and ρ′(ε) = Sε

1 + Sε
2 . Since R(tε1 + tε2), it also holds that R(Sε

1 + Sε
2).

Therefore, ρ′ is accepting, so τ ∈ L�
({S+ S′}).

(b): Dual to (a).
(c): Identical to the proof of Lemma 4c (with the altered transition function). ��

The following theorem shows that formula-to-term translation is correct even for themodified
semantics.

Theorem 2 Let ϕ be a WS2S formula. Then, L�
(
tϕ

) = L (ϕ).

Proof In the proof we use the notion of expanded terms. By te,Δ we denote that a term t
is expanded using term transition function Δ from Sect. 3.2. In the first step we prove
L�

(
tψ

) = L (
tψ

)
by showing that 〈ψ〉e,Δ = 〈ψ〉e,Δ�

for each subformulaψ ofϕ by induction
on the structure of ϕ:

– ϕ = ϕ0 where ϕ0 is an atomic formula: Let Iϕ0 be the set of leaf states and Qϕ0 set of
states of a unique Aϕ0 . For each q1, q2 ∈ Qϕ0 we have q1 !� q2. Since Iϕ0 is already

expanded, 〈ϕ0〉e,Δ = 〈ϕ0〉e,Δ�
.

123

994 V. Havlena et al.

– ϕ = ψ1 ∧ ψ2: We use the following equational reasoning.

〈ϕ〉e,Δ = 〈ψ1 ∧ ψ2〉e,Δ = (〈ψ1〉& 〈ψ2〉)e,Δ �(25)�

= 〈ψ1〉e,Δ & 〈ψ2〉e,Δ �expansion propagation�

= 〈ψ1〉e,Δ�

& 〈ψ2〉e,Δ�

�induction hypothesis�

= (〈ψ1〉& 〈ψ2〉)e,Δ�

�expansion propagation�

= 〈ϕ〉e,Δ�

�(25)�

– ϕ = ψ1 ∨ ψ2: Dual to ψ1 ∧ ψ2.
– ϕ = ¬ψ : We use the following equational reasoning.

〈ϕ〉e,Δ = (〈ψ〉)e,Δ �(27)�

= 〈ψ〉e,Δ �expansion propagation�

= 〈ψ〉e,Δ�

�induction hypothesis�

= (〈ψ〉)e,Δ�

�expansion propagation�

= 〈ϕ〉e,Δ�

�(27)�

– ϕ = ∃X . ψ : We use the following equational reasoning.

〈∃X . ψ〉e,Δ = ({πX (〈ψ〉)} − 0)e,Δ �(28)�

= (
reachΔ0 ({πX (〈ψ〉)}))e,Δ �(14)�

= reachΔ0

({
πX (〈ψ〉e,Δ)

})
�expansion propagation�

= reachΔ0

({
πX (〈ψ〉e,Δ�

)
})

�induction hypothesis�

From the inductive construction of 〈ϕ〉 let us now observe that for every t1, t2 ∈
reachΔ0

({
πX (〈ψ〉e,Δ�

)
})

we have t1 !� t2. This follows from the definition of interfer-

ence and from the fact that for every set term S occurring in 〈ψ〉 and every t1, t2 ∈ S it
holds that t1 !� t2. Based on the previous, we have

〈∃X . ψ〉e,Δ = reachΔ0

({
πX (〈ψ〉e,Δ�

)
})

= reach
Δ

�
0

({
πX (〈ψ〉e,Δ�

)
})

�previous reasoning�

= 〈∃X . ψ〉e,Δ�

�expansion prop. and (28)�

Since te,Δϕ = te,Δ
�

ϕ and the fact that for each a ∈ Σ and t1, t2 ∈ te,Δϕ :Δa(t1, t2) = Δ
�
a(t1, t2),

we haveL (
tϕ

) = L�
(
tϕ

)
. Finally, fromTheorem 1we haveL (

tϕ
) = L (ϕ), which concludes

the proof. ��
Based on Lemmas 5, Lemma 6, and Theorem 2 we can show correctness of the nondeter-
ministic union rule (40):

Lemma 7 Let S and S′ be sets of terms such that S �!� S′. Then

L�
({S+ S′}) = L�

(
S ∪ S′

)
.

123

Automata Terms in a Lazy WSkS Decision Procedure 995

Proof (⊆) From Lemma 5b, we have L�
({S+ S′}) = L� (S) ∪ L�

(
S′

)
. Let τ ∈ L� (S) ∪

L�
(
S′

)
and ρ be an accepting run on τ of either ASe or AS′e . Therefore, ρ is an accepting

run on τ also in ASe∪S′e .
(⊇) Let τ ∈ L�

(
S ∪ S′

)
. For each t1 ∈ Se and t2 ∈ S′e it holds that t1 �!� t2, so we have

that if t ∈ Δ
�
a(t1, t2), then t = ∅. Therefore, if ρ is an accepting run of ASe∪S′e on τ , then

ρ is an accepting run on τ in either ASe or AS′e . Without loss of generality, suppose that ρ

is an accepting run on τ of ASe and let ρ′ be the run of A{S+ S′} on τ (note that A{S+ S′} is
deterministic and complete, so ρ′ is unique). By induction on the structure of τ , we can easily
show that for all w ∈ dom(τ), if ρ(w) = t1, then ρ′(w) = S1 + S2 such that t1 ∈ S1 (the
property clearly holds at leaves and is also preserved by the modified transition function).
Let ρ(ε) = tε1 and ρ′(ε) = Sε

1 + Sε
2 . Since R(tε1), it also holds that R(Sε

1 + Sε
2). Therefore,

ρ′ is accepting, so τ ∈ L�
({S+ S′}). ��

Note that although the optimization presented in this section can improve the worst-case
number of reached terms, its use comes with a cost. In order to guarantee that rule (40) can be
performed, we need to use a different base automaton for each atomic formula. A different
base automaton can be obtained, e.g., by instantiating the automaton for a given formula every
time with different names of states. The use of different base automata makes it, however,
less likely that memoization avoids evaluating some function call (even though a similar one
might have already been evaluated), which may significantly impact the overall performance
of the decision procedure.

5 Experimental Evaluation

We have implemented the above introduced techniques (with the exception of Sect. 4.5 for
the reasons described therein) in a prototype Haskell tool.2 The base automata, hard-coded
into the tool, were the TAs for the basic predicates from Sect. 2, together with automata
for predicates Sing(X) and X = {p} for a variable X and a fixed tree position p. As an
additional optimisation, our tool uses the so-called antiprenexing (proposed already in [13]),
which pushes quantifiers down the formula tree using the standard logical equivalences.
Intuitively, antiprenexing reduces the complexity of elements within fixpoints by removing
irrelevant parts outside the fixpoint.

We have performed experiments with our tool on various formulae and compared its per-
formance with that of Mona. We appliedMona both on the original form of the considered
formulae as well as on their versions obtained by antiprenexing (which is built into our tool
and which—as we realised—can significantly helpMona too). Our preliminary implemen-
tation of product flattening (cf. Sect. 4.4) is restricted to parts below the lowest fixpoint, and
our experiments showed that it does not work well when applied on this level, where the
complexity is not too high, so we turned it off for the experiments. We ran all experiments
on a 64-bit Linux Debian workstation with the Intel(R) Core(TM) i7-2600 CPU running at
3.40GHz with 16GiB of RAM. The timeout was set to 100s.

We first considered various WS2S formulae on which Mona was successfully applied
previously in the literature. On them, our tool is quite slower than Mona, which is not
much surprising given the amount of optimisations built into Mona (for instance, for
the benchmarks from [25], Mona on average took 0.1 s, while we timeouted). Next,
we identified several parametric families of formulae (adapted from [13]), such as, e.g.,

2 The implementation is available at https://github.com/vhavlena/lazy-wsks.

123

https://github.com/vhavlena/lazy-wsks

996 V. Havlena et al.

Table 1 Experimental results over the following parametric families of formulae: (a) ϕ
pt
n ≡

∀Z1, Z2. ∃X1, . . . , Xn . edge(Z1, X1) ∧
∧n

i=1 edge(Xi , Xi+1) ∧ edge(Xn , Z2) where edge(X , Y) ≡
edgeL(X , Y) ∨ edgeR(X , Y) and edgeL/R(X , Y) ≡ ∃Z . Z = SL/R(X) ∧ Z ⊆ Y (b) ϕcnstn ≡ ∃X . X =
{(LR)4}∧ X = {(LR)n} (c) ϕsubn = ∀X1, . . . , Xn ∃X .

∧n−1
i=1 Xi ⊆ X ⇒ (Xi+1 = SL(X)∨ Xi+1 = SR(X))

ϕ n Running time (sec) # of subterms/states

Lazy Mona Mona+AP Lazy Mona Mona+AP

ϕ
pt
n 1 0.02 0.16 0.15 149 216 216

2 0.50 – – 937 – –

3 0.83 – – 2487 – –

4 34.95 – – 8391 – –

5 60.94 – – 23,827 – –

ϕcnstn 80 14.60 40.07 40.05 1146 27,913 27,913

90 21.03 64.26 64.20 1286 32,308 32,308

100 28.57 98.42 98.91 1426 36,258 36,258

110 38.10 – – 1566 – –

120 49.82 – – 1706 – –

ϕsubn 3 0.01 0.00 0.00 140 92 92

4 0.04 34.39 34.47 386 170 170

5 0.24 – – 981 – –

6 2.01 – – 2376 – –

ϕhorn
n ≡ ∃X . ∀X1. ∃X2, . . . Xn . ((X1 ⊆ X ∧ X1 �= X2) ⇒ X2 ⊆ X) ∧ . . . ∧ ((Xn−1 ⊆
X ∧ Xn−1 �= Xn) ⇒ Xn ⊆ X), where our approach finished within 10ms, while the time
of Mona was increasing when increasing the parameter n, going up to 32s for n = 14 and
timeouting for k ≥ 15. It turned out thatMona could, however, easily handle these formulae
after antiprenexing, again (slightly) outperforming our tool. Finally, we also identified sev-
eral parametric families of formulae that Mona could handle only very badly or not at all,
even with antiprenexing, while our tool can handle them much better. These formulae are
mentioned in the caption of Table 1, which give detailed results of the experiments.

Particularly, the columns under “Running time (sec)” give the running times (in seconds) of
our tool (denoted Lazy), Mona, and Mona with antiprenexing (Mona +AP). The columns
under “# of subterms/states” characterize the size of the generated terms and automata.
Namely, for our approach, we give the number of nodes in the final term tree (with the leaves
being states of the base TAs). For Mona, we give the sum of the numbers of states of all the
minimal deterministic TAs constructed byMonawhen evaluating the formula. The “–” sign
means a timeout or that the tool ran out of memory.

The formulae considered in Table 1 speak about various paths in trees. We were originally
inspired by formulae kindly provided by Josh Berdine, which arose from attempts to translate
separation logic formulae to WS2S (and use Mona to discharge them), which are beyond
the capabilities of Mona (even with antiprenexing). We were also unable to handle them
with our tool, but our experimental results on the tree path formulae indicate (despite the
prototypical implementation) that our techniques can help one to handle some complex graph
formulae that are out of the capabilities of Mona. Thus, they provide a new line of attack on
deciding hard WS2S formulae, complementary to the heuristics used in Mona. Improving

123

Automata Terms in a Lazy WSkS Decision Procedure 997

the techniques and combining them with the classical approach of Mona is a challenging
subject for our future work.

6 RelatedWork

The seminal works [7,30] on the automata-logic connection were the milestones leading to
what we call here the classical tree automata-based decision procedure for WSkS [35]. Its
non-elementary worst-case complexity was proved in [33], and the work [16] presents the
first implementation, restricted to WS1S, with the ambition to use heuristics to counter the
high complexity. The authors of [9] provide an excellent survey of the classical results and
literature related to WSkS and tree automata.

The tool Mona [12] implements the classical decision procedures for both WS1S and
WS2S. It is still the standard tool of choice for decidingWS1S/WSkS formulae due to its all-
around most robust performance. The efficiency of Mona stems from many optimizations,
both higher-level (such as automata minimization, the encoding of first-order variables used
in models, or the use of multi-terminal BDDs to encode the transition function of the automa-
ton) as well as lower-level (e.g. optimizations of hash tables, etc.) [21,23]. The MSO(Str)
logic, a dialect ofWS1S, can also be decided by a similar automata-based decision procedure,
implemented within, e.g., jMosel [36] or the symbolic finite automata framework of [10].
In particular, jMosel implements several optimizations (such as second-order value num-
bering [27]) that allow it to outperform Mona on some benchmarks (Mona also provides
an MSO(Str) interface on top of the WS1S decision procedure).

The original inspiration for ourwork are the antichain techniques for checking universality
and inclusion of finite automata [1,5,11,39] and language emptiness of alternating automata
[11], which use symbolic computation together with subsumption to prune large state spaces
arising from subset construction. This paper is a continuation of our work on WS1S, which
started by [14], where we discussed a basic idea of generalizing the antichain techniques to
aWS1S decision procedure. In [13], we then presented a completeWS1S decision procedure
based on these ideas that is capable to rival Mona on already interesting benchmarks. The
work in [37] presents a decision procedure that, although phrased differently, is in essence
fairly similar to that of [13]. One additional feature of [37] over [13] is that it can employ
laziness even when generating base automata. This feature can have a significant effect for
formulae with large integer constants, such as x = 1,000,000,000 ∧ x = 1000. While the
formula is clearly unsatisfiable,Mona constructs the base automata, which might already be
too large to fit in the memory.

This paper generalizes [13] to WS2S. It is not merely a straightforward generalization of
the word concepts to trees. A nontrivial transition was needed from language terms of [13],
with their semantics being defined straightforwardly from the semantics of sub-terms, to tree
automata terms, with the semantics defined as a language of an automaton with transitions
defined inductively to the structure of the term. This change makes the reasoning and correct-
ness proof considerably more complex, though the algorithm itself stays technically quite
simple. Due to our implementation in Haskell, we can, similarly to [37], avoid constructing
large base automata and only construct those parts necessary to establishing the status of
input formulae.

Finally,GanzowandKaiser [15] developed anewdecision procedure for theweakmonadic
second-order logic on inductive structures within their tool Toss. Their approach completely
avoids automata; instead, it is based on the Shelah’s composition method. The paper reports

123

998 V. Havlena et al.

that the Toss tool could outperform Mona on two families of WS1S formulae, one derived
from Presburger arithmetics and one formula of the form that we mention in our experiments
as problematic for Mona but solvable easily by Mona with antiprenexing.

Acknowledgements We thank the anonymous reviewers, both of the conference and the journal version of
the paper, for their careful reading of the drafts, the spotted bugs, and the helpful comments on how to improve
the exposition in this paper. This work was supported by the Czech Science Foundation project 19-24397S, the
FIT BUT internal project FIT-S-20-6427, and The Ministry of Education, Youth and Sports from the National
Programme of Sustainability (NPU II) project IT4Innovations excellence in science—LQ1602.

References

1. Abdulla, P.A., Chen, Y.F., Holík, L., Mayr, R., Vojnar, T.:When simulationmeets antichains (on Checking
language inclusion of NFAs). In: TACAS’10, LNCS, vol. 6015, pp. 158–174. Springer (2010)

2. Basin, D., Klarlund, N.: Automata based symbolic reasoning in hardware verification. In: CAV’98, LNCS,
pp. 349–361. Springer (1998)

3. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S systems to verify parameterized
networks. In: TACAS’00, LNCS, vol. 1785, pp. 188–203. Springer (2000)

4. Bodeveix, J., Filali, M.: FMona: A tool for expressing validation techniques over infinite state systems.
In: TACAS’00, LNCS, vol. 1785, pp. 204–219. Springer (2000)

5. Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-based universality and inclusion
testing over nondeterministic finite tree automata. In: CIAA’08, LNCS, vol. 5148, pp. 57–67. Springer
(2008)

6. Bozga, M., Iosif, R., Sifakis, J.: Structural invariants for parametric verification of systems with almost
linear architectures. Tech. Rep. arXiv:1902.02696 (2019)

7. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: International Congress on
Logic, Methodology, and Philosophy of Science, pp. 1–11. Stanford University Press (1962)

8. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag properties via
user-defined predicates in separation logic. Sci. Comput. Program. 77(9), 1006–1036 (2012)

9. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree automata techniques and applications (2008)

10. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: POPL’14., pp. 541–554 (2014)
11. Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In: TACAS’10, LNCS, vol. 6015, pp.

2–22. Springer (2010)
12. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: New techniques for WS1S and WS2S. In: CAV’98.

LNCS, vol. 1427, pp. 516–520. Department of Computer Science, Aarhus University, Springer, BRICS
(1998)

13. Fiedor, T., Holík, L., Janků, P., Lengál, O., Vojnar, T.: Lazy automata techniques forWS1S. In: TACAS’17,
LNCS, vol. 10205, pp. 407–425. Springer (2017)

14. Fiedor, T., Holík, L., Lengál, O., Vojnar, T.: Nested antichains for WS1S. In: TACAS’15, LNCS, vol.
9035. Springer (2015)

15. Ganzow, T., Kaiser, L.: New Algorithm for weak monadic second-order logic on inductive structures. In:
CSL’10, LNCS, vol. 6247, pp. 366–380. Springer (2010)

16. Glenn, J., Gasarch, W.: Implementing WS1S via finite automata. In: Workshop on Implementing
Automata, LNCS, vol. 1260, pp. 50–63. Springer (1996)

17. Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata for verification of heap
manipulation. Formal Methods Syst. Des. 41(1), 83–106 (2012)

18. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over unbounded domains. In:
FMCAD’10, pp. 101–109. IEEE Computer Science (2010)

19. Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Automata terms in a lazy WSkS decision procedure. In:
Proceedings of of CADE-27, LNCS, vol. 11716, pp. 300–318. Springer (2019)

20. Hune, T., Sandholm, A.: A case study on using automata in control synthesis. In: FASE’00, LNCS, vol.
1783, pp. 349–362. Springer (2000)

21. Klarlund, N.: A theory of restrictions for logics and automata. In: CAV’99, LNCS, vol. 1633, pp. 406–417.
Springer (1999)

123

http://arxiv.org/abs/1902.02696

Automata Terms in a Lazy WSkS Decision Procedure 999

22. Klarlund, N., Møller, A.: MONA Version 1.4 user manual. BRICS, Department of Computer Science,
Aarhus University (2001). Notes Series NS-01-1. Available from http://www.brics.dk/mona/. Revision
of BRICS NS-98-3

23. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int. J. Found. Comput.
Sci. 13(4), 571–586 (2002)

24. Klarlund, N., Nielsen,M., Sunesen, K.: A case study in automated verification based on trace abstractions.
In: Formal System Specification, The RPC-Memory Specification Case Study, LNCS, vol. 1169. Springer
(1996)

25. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and data. In: POPL’11,
pp. 611–622. ACM (2011)

26. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using STRAND. In: SAS’11, LNCS,
vol. 6887, pp. 43–59. Springer (2011)

27. Margaria, T., Steffen, B., Topnik, C.: Second-order value numbering. In: GraMoT’10, ECEASST, vol. 30,
pp. 1–15. EASST (2010)

28. Møller, A., Schwartzbach, M.: The pointer assertion logic engine. In: PLDI’01. ACM Press (2001). Also
in SIGPLAN Notices 36(5) (2001)

29. Morawietz, F., Cornell, T.: The logic-automaton connection in linguistics. In: LACL’97, LNAI, vol. 1582.
Springer (1997)

30. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Trans. Am. Math. Soc.
141, 1–35 (1969)

31. Sandholm, A., Schwartzbach, M.I.: Distributed safety controllers for web services. In: FASE’98, pp.
270–284. Springer (1998)

32. Smith, M.A., Klarlund, N.: Verification of a sliding window protocol using IOA and MONA. In:
FORTE/PSTV’00, IFIP, vol. 183, pp. 19–34. Kluwer (2000)

33. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (preliminary report). In: Fifth
Annual ACM Symposium on Theory of Computing. STOC’73, pp. 1–9. ACM, New York (1973)

34. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based on monadic second-
order logic. ACM Trans. Comput. Log. 22(4), 33:1–33:33 (2013)

35. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem
of second-order logic. Math. Syst. Theory 2(1), 57–81 (1968)

36. Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: a stand-alone tool and jABC plugin for
M2L(Str). In: SPIN’06, LNCS, vol. 3925, pp. 293–298. Springer (2006)

37. Traytel,D.:Acoalgebraic decisionprocedure forWS1S. In: 24thEACSLAnnualConferenceonComputer
Science Logic (CSL’15). Leibniz International Proceedings in Informatics (LIPIcs), vol. 41, pp. 487–503.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015)

38. Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative tree data structures. In:
CADE’11, LNCS, vol. 6803, pp. 476–491. Springer (2011)

39. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: a new algorithm for checking univer-
sality of finite automata. In: CAV’06, LNCS, vol. 4144, pp. 17–30. Springer (2006)

40. Wulf, M.D., Doyen, L., Maquet, N., Raskin, J.F.: Antichains: alternative algorithms for LTL satisfiability
and model-checking. In: TACAS’08, LNCS, vol. 4693. Springer (2008)

41. Wulf, M.D., Doyen, L., Raskin, J.F.: A lattice theory for solving games of imperfect information. In:
HSCC’06, LNCS, vol. 3927. Springer (2006)

42. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In: POPL’08, pp.
349–361. ACM (2008)

43. Zhou, M., He, F., Wang, B., Gu, M., Sun, J.: Array theory of bounded elements and its applications. J.
Autom. Reason. 52(4), 379–405 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.brics.dk/mona/

	Automata Terms in a Lazy WSkS Decision Procedure
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basics, Trees, and Tree Automata
	2.2 Syntax and Semantics of WS2S
	2.3 Representing Models as Trees
	2.4 The Classical Decision Procedure for WS2S

	3 Automata Terms
	3.1 Syntax of Automata Terms
	3.2 Semantics of Terms
	3.3 Properties of Terms
	3.4 Terms of Formulae

	4 An Efficient Decision Procedure
	4.1 Memoization
	4.2 Lazy Evaluation
	4.3 Subsumption
	4.4 Product Flattening
	4.5 Nondeterministic Union

	5 Experimental Evaluation
	6 Related Work
	Acknowledgements
	References

