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Abstract—This paper evaluates the practical usage of the
Multiple-choice Knapsack Problem (MCKP) solver to auto-
matically select the proper fault mitigation method for each
component to maximize the overall fault tolerance of the whole
system. The usage of the MCKP is placed into the context
with our fault tolerance automation toolkit, the goal of which
is to completely automate the process of fault-tolerant system
design on a very general level. To achieve our goal, we present
our research on Field Programmable Gate Arrays (FPGAs) for
which we have developed the specific components in order to
support their fault-tolerant design automation. In our particular
case study, the MCKP method on the partitioned system was
able to find the solution with 18% less critical bits compared
to our previous approach, while even lowering the circuit size.
The results indicate that by splitting the system into smaller
components and applying the MCKP method, considerably better
results in terms of critical bits representation can be achieved.

Keywords—Fault-Tolerant System Design, Electronic Design
Automation, Multiple-choice Knapsack Problem, Fault Tolerance
Property Estimation, Verification, High-Level Synthesis.

I. INTRODUCTION

As electronic systems penetrate into areas with increased
reliability demand, the pressure on designers to make such sys-
tems reliable arises. Generally, two main approaches to reliable
system design exist: 1) Fault Avoidance (FA) [1], which is
based on the better selection of proper and more reliable com-
ponents and does not change the structure or interconnections
of the system; and 2) Fault Tolerance (FT) [2], which accepts
unreliable components as a fact and tries to solve the problem
of higher reliability with modification of the system structure.
Our research is based on the FT approach. Also, growing
complexity of electronic systems led to strategies and design
flows that maintain the Time To Market (TTM) on a reasonable
level. High-level Synthesis (HLS) is a good example of such
a design flow. Generally, HLS allows a designer to utilize the
description written in one of the higher-level programming
languages and transform it to its Register Transfer Level (RTL)
implementation in VHDL or Verilog. In our research we focus
on FT design automation and also on its combination with
HLS, because our concept of FT design automation is general,
and thus is able to cover different design flows.

So far, our research has been targeting SRAM-based FP-
GAs. SRAM-based FPGAs store their configuration bitstream
in an SRAM memory, and thus are prone to the so-called
Single Event Upset (SEU) bit-flips. A benefit of using FPGAs
is also their good usability in the process of FT design testing,
because the concepts can be easily tested on a real HW with
the usage of the so-called fault injection. During the test of an
FT circuit, the approach of fault injection is usually combined
with the so-called functional verification in order to detect the
failure of the tested unit. The bits that cause a discrepancy on
the output pins during the verification are called critical bits,

sometimes in the literature also referred to as sensitive bits.
The percentage of critical bits in an FPGA design is usually
understood as a quantified measurement of FT of the design.

The usual step in the process of FT design is to assign a
suitable combination of FT techniques to harden individual
blocks against faults that would lead to higher FT of the
whole circuit. Solutions to these reliability allocation problems
can also be found in literature. The Improved Surrogate
Constraint (ISC) method was applied to the system reliability
allocation problems with a mix of components in paper [3].
The authors of [4] proposed the penalty guided artificial
bee colony algorithm. The paper [5] presents the use of the
variable neighborhood search meta-heuristic method. The use
of dynamic self-adaptive multi-objective particle swarm opti-
mization method is proposed in [6]. The usage of the genetic
algorithm was examined in [7] and [8], where the use of
Non-dominated Sorting Genetic Algorithm II (NSGA-II) was
presented. The experiments show that the NSGA-II can find
a number of promising solutions of the reliability allocation
problem. Most of the presented work is a separate solution
to this problem without a broader concept. In our research,
we bring the integration into the complex tool which targets
the automation of FT design process. As the fundamental
algorithm for our experiments, we decided to transform the
problem of redundancy allocation to the MCKP [9].

This paper is organized as follows: Section II introduces the
concept of our FT design automation toolkit. The use of MCKP
for FT strategy selection is proposed in Section III. The case
study and experimental results are presented and discussed in
Section IV. Section V concludes the paper and presents plans
for our future research.

II. FAULT-TOLERANT DESIGN AUTOMATION

In our research, by FT design automation, we mean the
transformation of the so-called unhardened system description
to its FT version. Our aim is to research FT design methods
that allow automatic FT selection and insertion while keeping
the methods as much general as possible, with the ability
to specialize on particular design flow through addition of
special modules. The structure of our platform comes from the
ordinary process of FT system creation, that is: 1) specification
of the required parameters, and 2) iterative modification and
evaluation until the specific requirements are met.

Our FT design automation platform consists of various
components and each component targets particular phase or
task during the transformation of the system. The first is
the component implementing the FT strategy selection, which
is the main topic of this paper. The FT strategy selection
decides which type of FT method to use for which part
of the system. The so-called helpers are used during this
process. The helpers include libraries or possibly modification
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scripts, that are able to incorporate redundancy into a particular
component of the system. So far, we have been developing
specific helpers for the usage with HLS, which we call the
Redundant Data Types (RDTs) [10]. The RDTs act as new data
types in the algorithm description and decorate the resulting
system to decrease its critical bit representation. After each
iteration, the draft of the system is evaluated. The evaluation is
performed on the real FPGA HW. We use the Fault Tolerance
ESTimation (FT-EST) framework [11] to automatically build
test-benches. The data obtained through the FT-EST frame-
work can be further examined by the FPGA bitstream-specific
analysis [12] to obtain numeric quantification of FT indicators.

The general overview of the traditional approach with a
designer making manual operations and the connections to our
automatic flow utilizing processes, can be seen in Figure 1.
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Figure 1: Design of FT system from an unhardened system
with the designer’s operations mapped to the processes of our
automation platform.

III. FAULT TOLERANCE STRATEGY SELECTION

For our testing, we decided to map the problem of redun-
dancy selection to the MCKP. The MCKP is a special type of
the Knapsack Problem (KP). KP and its variations belong to
the so-called combinatorial optimization problems [13]. The
KP as an optimization is an NP-hard problem. Let’s suppose
we have a knapsack of a particular load capacity and a set
of objects. Each object has attached the values of the so-
called profit and weight. Then, the KP objective is to solve
the problem of the best selection of the objects to achieve
the best value (i.e. profit) in the knapsack, while keeping the
load below its maximum capacity [14]. The MCKP extends
the original KP by distinguishing the objects into classes.
In addition, in MCKP, exactly one object from each class
must be selected. The general objective is equivalent – to
maximize the profit while keeping the load below the given
capacity [9]. The MCKP can be mapped to the problem of
redundancy selection. However, it is important to note that for
our purposes, we slightly modify the MCKP problem to prefer
the units with the smallest handicap, instead of the highest
profit. The handicap is actually the number of critical bits, in
our terms and the capacity is the chip area available (e.g. bits of
the bitstream). We decided to use critical bits as the metrics, as
their representation determines the SEU resistance of a design.
Other metrics such as time required to compute a result may be
also used for a component, in such case, however, components
in the system would have to use a communication protocol

because of timing differences. Also the final throughput of
the complete system would have to by analyzed separately.
Graphical illustration of the usage of MCKP for redundancy
selection can be seen in Figure 2.
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Figure 2: The graphical representation of FT system and the
selection strategy based on MCKP.

In our research we chose to evaluate the weights and profits
of each component, and then solve the MCKP fully in SW.
After that, create the composed unit according to the results
obtained from the MCKP solver. This is the reason why our
FT strategy has actually just one iteration on the level of the
FT automation toolkit because the state-space exploration is
performed in the MCKP fully in SW. For this method to work,
it is necessary to evaluate each variant of each component to
obtain the input parameters for the MCKP solver.

IV. THE CASE STUDY AND EXPERIMENTAL RESULTS

In our case study, we designed an electronic system that is
suitable for our demonstration purposes. The system literally
computes the number of 1 bits (i.e. high bits) in the sum of
three numbers, of which one is a static constant. The system
also computes a CRC-8 checksum of data obtained after the
first and second additions. The system can be partitioned
into four components: 1) addition; 2) addition of a constant;
3) number of high bits computation; and 4) CRC-8 checksum
computation. The block diagram can be seen in Figure 3.

Addition Add. Const.
16 b

16 b 16 b

CRC-8 8 b

5 b
16 b

16 b
16 b

Composed Unit

Num. of Ones

Figure 3: The schematic of the system with its components.

A. Components of Benchmark System and Their Implementa-
tion Properties

The component addition sums two 16-bit unsigned num-
bers and provides the result also on 16 bits. The compo-
nent Add. Constant which will be referred to as addconst
further in the text, adds a constant number to its one 16-bit
input. The component crc8 computes the Cyclic Redundancy
Check (CRC) out of the 32 bits wide vector. The output is
8 bits wide. The last component, Number of Ones, provides
an unsigned 5-bit number representing the quantity of high
bits in its 16 bits wide input vector. This component will be
referred to as numones.

For the implementation of the components, we used a
traditional HLS design flow utilizing the C++ language. Each
component was implemented in four variations incorporating
different amount of redundancy in their data-path level using
the RDT approach: 1) simple (no redundancy); 2) triple (data-
path triplicated); 3) quadruple, (four data-paths); and 4) quin-
tuple (five data-paths). Component descriptions were synthe-
sized using the Mentor Graphics Catapult C HLS tool [15].
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For each of these circuits, the FT-EST test bench was created.
Test benches were synthesized using the Xilinx Integrated
Synthesis Environment (ISE) 14.7 [16]. After that, each bit of
utilized LUT contents was exhaustively tested on the ML506
evaluation board using Virtex 5 technology. The overview of
the synthesized components can be seen in Table I. As can be
seen, each RDT (i.e. each FT insertion method) has different
efficiency on a component. This property actually suggests that
each unique component suits different FT method that achieves
the best parameters.

TABLE I: Component Variations and Their Properties

Component Name
Number

of Inputs
[b]

Num. of
Outputs

[b]

Used
LUT
bits
[b]

Critical
bits [b]/

KP Han-
dicap [-]

Criti-
cal bits

Repr.
[%]

addition simple 16 b; 16 b 16 b 4288 162 3.78
addition triple 3x 16 b; 3x 16 b 3x 16 b 8320 163 1.96
addition quadruple 4x 16 b; 4x 16 b 4x 16 b 10304 195 1.89
addition quintuple 5x 16 b; 5x 16 b 5x 16 b 14528 232 1.6

addconst simple 16 b 16 b 4224 104 2.46
addconst triple 3x 16b 3x 16 b 8096 130 1.61
addconst quadruple 4x 16b 4x 16 b 9952 171 1.72
addconst quintuple 5x 16b 5x 16 b 14144 198 1.4

crc8 simple 32 b 8 b 4800 977 20.35
crc8 triple 3x 32 b 3x 8 b 6592 819 12.42
crc8 quadruple 4x 32 b 4x 8 b 6976 712 10.21
crc8 quintuple 5x 32 b 5x 8 b 7360 971 13.19

numones simple 16 b 5 b 4096 380 9.28
numones triple 3x 16 b 3x 5 b 4800 122 2.54
numones quadruple 4x 16 b 4x 5 b 5312 125 2.35
numones quintuple 5x 16 b 5x 5 b 5184 120 2.31

To connect components of various redundancy levels,
VHDL bit-based voter was utilized. If there is a requirement
to ensure that no component is shared on the system, pblocks
in the Xilinx PlanAhead software [17] can be used.

B. MCKP Reaction to Area Available on the FPGA

In the first phase of our experiments, the behavior of the
MCKP for various chip area settings was tested. We selected
the number of LUT bits to represent the chip area occupied.
Empirically, the interval from 17500 to 21100 with the step
of 100 bits was selected. For each chip-area threshold, the
MCKP solver was executed and the resulting configuration
was observed. As the granularity of the MCKP reaction to
different thresholds is dependent on the size of available
components, we obtained six different FT configurations. The
results including the actual configurations are shown in Fig-
ure 4. As can be seen, the MCKP tries to completely utilize
the given area. Another important observation is that with
the increasing size of the system, the absolute number of
critical bits decreases, indicating the MCKP strategy targets
the optimal configurations. Especially important observation is
that not only the critical bit representation is lowering but also
the absolute value of critical bits decreases while the circuit
increases in size.

Furthermore, as can be seen, the MCKP selects to harden
only the crc8 and numones components. As you can see in
Table I, this is caused by inefficiency of the selected type
of redundancy methods for the first two components (i.e. the
addition and addconst).

C. Real Implementation Results

From the previous step, six system configurations were
obtained. These systems will be referred to by the name

Figure 4: The theoretical computed values for the system
configurations obtained by changing the available area (i.e.
size) on the chip.

autocomposed 1 to 6. We further added four reference systems
that were composed without the partitioning, just by using
equivalent redundancy method on the complete system. These
units will be further referred to as composed simple, com-
posed triple, composed quadruple and composed quintuple.
In fact, the autocomposed 1 system is equivalent to the com-
posed simple system, as for the smallest chip area setting, only
simple units are selected by the MCKP solver. As a result, 9
unique systems were obtained and evaluated with the usage
of the FT-EST framework on the exhaustive test of all LUT
bits. The results are shown in Table II. As can be seen, after
the synthesis, the autocomposed units utilize less LUT bits
than indicated by the estimated values provided by a sum of
components. Obviously, the synthesis is able to optimize better
for larger systems, compared to the much smaller components.
The numbers of critical bits, however, follow the general trend
and are nearly equivalent to the values determined by the
MCKP-based method.

TABLE II: Parameters of the Synthesized Systems

System Name
Num. of

Inputs
[b]

Num. of
Outputs

[b]

Used
LUT
bits
[b]

Critical
bits [b]/

KP Han-
dicap [-]

Criti-
cal bits

Repr.
[%]

autocomposed 1

16 b;
16 b

5 b;
8 b

9120 1518 16.64
autocomposed 2 9856 1255 12.73
autocomposed 3 10240 1147 11.2
autocomposed 4 11684 1044 8.96
autocomposed 5 12000 968 8.07
autocomposed 6 12416 860 6.93

composed simple 9120 1518 16.64
composed triple 19684 1049 5.34
composed quadruple 24448 1060 4.34
composed quintuple 33056 1261 3.81

As can be seen, the largest autocomposed solution is still
37% smaller than the composition in which the entire system
was hardened with the usage of the triple RDT. For this system,
the number of critical bits is yet 18% smaller. In addition, the
autocomposed units are built of the optimal components that
decrease the number of critical bits with the growing size.
This is not always the case for the unpartitioned units, where
for example the composed quintuple system contains more
critical bits than its smaller counterparts. Important properties
of the autocomposed and naively composed systems after their
synthesis are shown in Figure 5.

Although a significant difference in the estimated and real
sizes can be seen, the important fact for us is that the estimation
of critical bits (i.e. the overall KP handicap) remained nearly
equivalent after the systems were composed and synthesized.
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Figure 5: Properties of the synthesized configurations obtained
by changing the available area (i.e. size) on the chip.

D. Comparison of Partitioned vs. Homogeneous FT Selection

As can be observed in Figure 6, systems on which equiv-
alent redundancy method was applied to each component
(i.e. left part of the chart) have significant steps (i.e. low
granularity) in their implementation sizes according to utilized
redundancy method. This increases the overhead of the solu-
tion, as for a given space on an FPGA, implementation that
is smaller than the given space must be selected, resulting in
an unused FPGA area. On the other hand, systems on which
each component can be hardened using different redundancy
method (i.e. right part of the chart) have better granularity
among the resulting sizes of the system. Furthermore, the
automatic method based on the MCKP solver follows the trend
of lowering the absolute number of critical bits, which is not
always the case with the composed units. Also, the assumption,
that each component must be hardened using its most suitable
redundancy method can be also confirmed from the chart. It
is obvious, that the autocomposed units achieve equivalent or
better results while occupying significantly smaller area.
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Figure 6: Comparison of partitioned (i.e. autocomposed) sys-
tems with systems hardened using equivalent redundancy
method (i.e. manually composed systems).

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the possibility to utilize the MCKP solver
to assign redundancy types to components of a system was
presented. The usability was put into the context of the main
goal of our research which is the automation of FT design
process. In our case study, the method was presented on an
artificially created system which was built of four components.
The MCKP solver in combination with our FT design automa-
tion toolkit was able to optimize the selection and its results
contained 18% less critical bits compared to our previous
naive selection. In addition, the circuits assembled according
to the MCKP solver were much smaller because the solver
dismisses the sub-optimal configurations. Furthermore, the re-
sults indicate that dividing the system into smaller components

and searching the best solution for each component leads to
considerably smaller circuit while achieving even better results.

In future, the function blocks of the automation toolkit will
have to be programmably interconnected into a platform be-
cause, at the moment, a designer must execute them separately.
The integration would result in the complete platform, whose
user interactions would be in fact minimal, while still allowing
to replace and use its blocks as in a toolkit.
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