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Evolutionary Development of Growing Generic
Sorting Networks by Means of Rewriting Systems

Michal Bidlo and Michal Dobeš

Abstract—This paper presents an evolutionary developmental
method for the design of arbitrarily growing sorting networks.
The developmental model is based on a parallel rewriting system
(a grammar) that is specified by an alphabet, an initial string
(an axiom), and a set of rewriting rules. The rewriting process
iteratively expands the axiom in order to develop more complex
strings during a series of development steps (i.e., derivations in
the grammar). A mapping function is introduced that allows
for converting the strings onto comparator structures—building
blocks of sorting networks. The construction of the networks is
performed in such a way that a given (initial) sorting network
grows progressively by adding further building blocks within
each development step. For a given (fixed) alphabet, the axiom
together with the rewriting rules themselves are the subjects of
the evolutionary search. It will be shown that suitable gram-
mars can be evolved for the construction of arbitrarily large
sorting networks that grow with various given sizes of develop-
ment steps. Moreover, the resulting networks exhibit significantly
better properties (the number of comparators and delay) in
comparison with those obtained by means of similar existing
methods.

Index Terms—Development, genetic algorithm (GA), rewriting
system, scalability, sorting network.

I. INTRODUCTION

EVOLUTIONARY design has become a widely used and
successful concept for solving various tasks. This con-

cept uses evolutionary algorithms (EAs) in combination with
a suitable representation and domain-specific knowledge of the
problem to be solved (supplied by the designer) in order to
automatically generate candidate solutions, given some criteria
to be preferred and optimized during many iterations (gener-
ations) of the EA. One of the most remarkable advantages
of EA-based design approaches is that innovative solutions
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can be produced that are beyond the scope of conventional
engineering methods. Bentley surveyed various methods and
applications of this field in [1] and [2]. The reasons for its
usefulness can be summarized as follows [1].

1) Evolution is a good, general-purpose problem solver.
2) Evolution and the human design process share many

similar characteristics.
3) The most successful and remarkable designs known to

mankind were created by natural evolution, the inspira-
tion for EAs.

On the basis of these statements, the following general
goal can be formulated when applying the evolutionary design
in the engineering domain: to produce original, innovative,
efficient, and useful solutions to complex problems that can
be created with minimal effort and domain knowledge of a
designer. Therefore, the main challenge for the designer is to
choose a suitable EA (together with the representation, fitness
function, etc.) in order to automatically search for new solu-
tions of a given problem rather than to perform the creative
design manually.

For example, evolutionary design has succeeded (and
in some cases outperformed human designers) in solv-
ing hard problems for example, designing analogue circuits
(e.g., [3]–[6]), digital circuits (e.g., [7] and [8]), antennas
(e.g., [9]–[11]), image filters (e.g., [12]), classifier and control
systems (e.g., [13]), performing on-chip evolutionary design
using field-programmable gate array (FPGA) (e.g., [14]–[17]),
or evolution-in-materio using liquid crystals or carbon nan-
otubes (e.g., [18] and [19]).

Although the functioning of systems produced by evo-
lutionary design can often be viewed as sophisticated and
difficult to understand, the innovative and most success-
ful designs have mostly been obtained for relatively “sim-
ple” systems—meaning simple in size (i.e., composed of
less components rather than very extensive systems). This
issue corresponds to the fact that large designs require long
chromosomes, i.e., the search space becomes bigger and
more difficult to be effectively explored by EA, which is
referred to as the problem of scale of the representation
(as pointed out by Torresen in [20]). Moreover, in the case
of designing digital circuits, evaluation time grows exponen-
tially with an increasing number of inputs, which is known
as the problem of scale of the fitness calculation. In order
to overcome the scaling problems in the evolutionary cir-
cuit design, researchers have introduced various concepts,
the most important of which are the following: evolution at
the functional level (introduced by Murakawa et al. [21]),
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incremental evolution (proposed by Toressen [20]) and
development (for the circuit evolution introduced by
Haddow and Tufte [22] and Gordon and Bentley [23]).
Recently, Vašíček and Sekanina [24] introduced a formal
verification-based approach to eliminate the problem of scale
of the fitness evaluation of large digital circuits. In this paper,
we will deal with development applied to the problem of
evolutionary design of growing sorting networks.

A. Development for Evolutionary Design

In nature, development embodies the processes that occur
during the whole life of an organism. Development is essen-
tially the emergence of organized structures from an initially
very simple group of cells [25]. In EAs, the concept of
computational development [26] allows for the evolution of
nontrivial indirect representations (prescriptions represented
by genotypes) according to which target objects (solutions to
a problem—phenotypes) can be constructed. The importance
of development in the field of evolutionary design is that some
features can reasonably be achieved only by employing devel-
opment. For example, shrinking genotypes and reducing the
search space, adaptation, self-organization, emergent behav-
ior, growth, scalability, or generic design usually cannot be
achieved using direct representations. Kumar surveyed some
basic methods for computational development in [26, Ch. 2].

One of the techniques suitable for performing the compu-
tational development is a grammar-based approach in which
two basic scenarios have been applied.

1) The development is controlled by a grammar with
given rewriting rules and the target solutions develop
as (or according to) evolving “programs” which are
derived using the grammar [27]. This concept, currently
known as grammatical evolution, has gained popularity
in recent years and nowadays provides many variants for
solving problems in different areas (e.g., see a survey
in [28]). Specifically, for example, grammatical evolu-
tion has been applied to predict functions [29], solve
architectural and engineering design problems [30],
predict the stock price development [31], or optimize
heterogeneous cellular networks [32].

2) In a more general way, the form of the rewriting rules
may be the subject of evolution, the development is per-
formed as a sequence of derivations by means of such
(evolving) rules in order to construct a target object.

In this paper, the latter approach will be applied in order
to design growing (scalable) sorting networks using a spe-
cific type of grammar called Lindenmayer systems (currently
known as L-systems). Lindenmayer introduced the concept of
L-systems in [33]. L-systems represent a class of formal gram-
mars that allow several parts of a string to be rewritten in
parallel during a single rewriting step (in general, using differ-
ent rewriting rules). This feature makes L-systems particularly
useful for modeling and simulation of natural organisms, the
development of which is inherently parallel. Hence, L-systems
have mostly been used for studying various aspects of bio-
logical development and for modeling complex systems in
general (e.g., graphical modeling of plants [34] or evolution

of virtual creatures [35]). However, successful applications of
L-systems also exist in other areas. For example, a rewriting
developmental (neuro) system was investigated by Kitano [36].
Later, Boers and Kuiper [37] utilized L-systems to create
the architecture of feed-forward artificial neural networks.
3-D mechanical objects have been designed by Hornby and
Pollack [38] by evolving a variant of L-system for their
genotype–phenotype mapping. Haddow et al. [39] applied
L-systems in the problem of development of digital circuits
using the concept of extrinsic evolution. Escuela et al. [40]
evolved L-systems as an inference procedure for folded struc-
tures on simple lattice models. Ashlock et al. [41], [42]
studied simultaneous evolution of L-system rules and their
interpretation in order to solve various rendering problems.
Beaumont and Stepney [43] applied grammatical evolution
of L-systems in order to investigate the effect of elitism,
and the form of the underlying grammar. Campos et al. [44]
used L-systems for evolutionary generation of neural network
architectures which are capable of performing various tasks.

B. Motivation and Goals

Although the development is traditionally viewed as a tech-
nique that should allow us to achieve a certain degree of
complexity of evolved phenotypes (compared to the “clas-
sical” evolutionary design), some studies have shown that
the obtained solutions exhibit complexity similar to those
generated without development (e.g., [22], [23], and [45]).
Nevertheless, the complexity may lie in various aspects of the
solutions, depending on application—for example, the size of
a circuit regarding its number of inputs/outputs, the number of
low-level elements (e.g., transistors or logic gates), the abil-
ity of adaptation, self repair, etc. However, apart from several
studies, where the scalability problem has been primarily taken
into account (e.g., [38] and [46]–[50]), a truly generic evo-
lutionary design in which the target solution can grow and is
actually able to solve a general instance of a problem repre-
sents a rather rare case. However, we believe that this concept
is worth further investigation because several studies have
shown the potential of evolutionary design in order to discover
innovative solutions in various areas (e.g., instruction-based
development of generic sorting networks [46], [47] or evolu-
tion of transition functions for generic square calculations in
cellular automata [48], [51]). It is important to note that in
order to achieve such results, a suitable developmental repre-
sentation needs to be proposed in combination with a proper
objective function and EA, which represents a nontrivial task.

The goal of this paper is to propose a developmental scheme
based on a parallel rewriting system (a grammar) that is spec-
ified by an alphabet, an initial string (an axiom) and a set
of rewriting rules. The rewriting process iteratively expands
the axiom in order to develop more complex strings during a
series of development steps (i.e., derivations in the grammar).
A mapping function is introduced that allows converting the
strings onto comparator structures—building blocks of sort-
ing networks. The construction of the networks is performed
in such a way that a given (initial) sorting network grows
progressively by adding further building blocks within each
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Fig. 1. (a) Compare-swap component and its schematic symbol and
(b) example of a 4-input sorting network.

development step. For a given (fixed) alphabet, the rewriting
rules themselves together with the axiom are the subjects of the
evolutionary search. It will be shown that suitable grammars
can be evolved for the construction of arbitrarily large sorting
networks that grow with various given sizes of development
steps. Moreover, the resulting networks exhibit significantly
better properties (the number of comparators and delay) in
comparison with those obtained by means of similar existing
methods.

II. SORTING NETWORKS AND THEIR DESIGN

The concept of sorting networks was introduced in 1954;
Knuth summarized its history and some basic principles
in [52]. A sorting network is defined as a sequence of compare-
swap components (called comparators) the arrangement of
which in the sorting network depends only on the number of
elements to be sorted (i.e., inputs of the network), not on the
values of the elements. Therefore, sorting networks are said to
be data-independent. This means that the structure of a sorting
network of n inputs is fixed for the given n. Such a feature is
especially suitable for parallel processing and hardware imple-
mentation. A comparator unit contains two inputs (K1, K2) and
two outputs (K′

1, K′
2). The comparator compares and possibly

exchanges the two inputs, so that the outputs satisfy K′
1 ≤ K′

2
for arbitrary values of K1, K2. The structure of a comparator,
its symbolic representation and an example of a 4-input sorting
network are shown in Fig. 1(a)–(c), respectively.

The delay and the number of comparators represent two
crucial parameters of any sorting network. The delay of a
sorting network is the minimum number of groups of compara-
tors where all comparators inside a group process independent
inputs. Therefore, the delay at the hardware level determines
the longest combinational path of the network because the
comparators inside each group can be evaluated in parallel
while the evaluation of the groups is sequential. Note that the
pipelined implementation is not considered for calculating the
delay. Both the number of comparators and the delay increase
with the size of the sorting network.

For example, the sorting network in Fig. 1(b) has delay
3—see the groups of comparators marked by rounded rectan-
gles and denoted as S1, S2, and S3. Note that the groups of
independent comparators are called parallel layers. The aim
of designing sorting networks is to minimize the number of
comparators, delay or both parameters.

In order to determine whether an n-input sorting network
is said to be valid (i.e., is able to sort any input sequence),
the so-called zero–one principle can be applied. The zero–one
principle states that if a sorting network correctly sorts all
2n binary input vectors, then it sorts correctly any sequence
of arbitrary values [52]. This allows us to reduce the num-
ber of test vectors from n! to 2n. Even so, the complete test

Fig. 2. Sorting network created by (a) insertion principle, (b) selection
principle (in both cases from a 2-input network marked by a rectangle). Both
networks are equivalent and exhibit a structure shown in (c) with the parallel
layers separated by vertical dashed lines.

Fig. 3. Examples of sorting networks created by Batcher’s algorithms for
merging two 8-element sorted sequences into a sorted 16-element output
sequence [56]. (a) Odd-even merge sort, (b) original bitonic merge sort, and
(c) modified bitonic merge sort.

of sorting networks in this way is not feasible for a large n
because the number of test vectors grows exponentially with n.
Furthermore, it is generally impossible to obtain a correct solu-
tion if only a subset of test vectors is utilized for an evaluation
of the sorting network [53]. However, there are other tech-
niques which allow us to further shorten the evaluation time
substantially. For example, Bundala and Závodný [54] applied
an approach based on formal verification using an SAT solver.

A. Conventional Sorting Network Design

Although the design of a sorting network is usually per-
formed for a fixed number of inputs (with the aim of optimiz-
ing the parameters of the specific network), several generic
algorithms are known from the literature which can be used
for the construction of arbitrarily large sorting networks.

One class of such algorithms uses a method in which a
larger sorting network grows from a valid smaller network
by adding a suitable arrangement of comparators. Consider a
valid sorting network with n inputs. A widely known insertion
principle (called straight insertion sort) or selection principle
(denominated as bubble sort) allows us to create a valid n+1-
input network from the smaller one by adding n comparators
(see Fig. 2). Although such networks are, in fact, the least effi-
cient compared to those created for a fixed n, these approaches
probably represent the simplest general design principles of
sorting networks.

Another class of algorithms performs merging of two
already sorted sequences into a single sorted sequence (instead
of growing a target sorting network). There are two well
known approaches for constructing sorting networks this
way: 1) the odd–even merge sort and 2) bitonic merge sort
(proposed by Batcher [55] with a further analysis provided
in [56]). Unlike the growing sorting networks, the Batcher’s
algorithms take two already sorted sequences of the same
length, Ai and Bi (for i = 1, 2, . . . 2k−1), and merge them
into a single sorted sequence Ej (for j = 1, 2, . . . 2k). Fig. 3
illustrates this principle which belongs to the most efficient
techniques for creating variable size sorting networks.
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Various other approaches have been recently proposed to
synthesize or optimize sorting networks. For example, Schiller
proposed an agglomeration law for sorting networks, the pur-
pose of which was to better fit the given algorithm and the
platform which it runs on. In the case of sorting networks, the
agglomeration groups, the input data and the original (sort-
ing) algorithm is generalized to work on the agglomerated
input while keeping its original structure. This results in a
new access opportunity of sorting networks well-suited for
efficient parallelization on modern multicore computers, com-
puter networks or GPGPU [57]. Zuluaga et al. [58] presented a
domain-specific language and compiler to automatically gener-
ate hardware implementations of sorting networks which have
reduced the area and are optimized for latency or through-
put. For this purpose, a special hardware structure called
streaming sorting networks was proposed which allowed us
to achieve improved cost-performance tradeoffs of resulting
solutions [58], [59]. Sklyarov et al. designed an FPGA-based
accelerator for parallel data sorting. The architecture is based
on three steps: 1) the initial data set is decomposed into sub-
sets that are individually sorted; 2) several subsets are joined
to form bigger sorted subsets; and 3) finally, these subsets are
merged in order to produce the final sorted set. The proposed
circuits permit the number of clock cycles per data item to
be significantly reduced, thus optimizing the entire sorting
process [60]. Bundala et al. analyzed optimality of sorting
networks and proved depth limits for instances with 9–16
inputs (an open problem since the publication of the first edi-
tion of Knuth’s work [52] in 1968). Their approach combines
symmetry breaking and Boolean satisfiability using an SAT
solver [54], [61], [62]. Codish et al. [63] studied some prop-
erties of the front and back parts of sorting networks, and
illustrated their utility in the search for new bounds of optimal
sorting networks. In particular, new solutions were presented
for 17–20 inputs in [64]. Note that in addition to an extensive
theoretical analysis of appropriate parts of sorting networks the
authors also applied a simple EA to help optimize prefixes of
the resulting solutions.

B. Evolutionary Sorting Network Design

Designing efficient sorting networks represents a difficult
combinatorial optimization problem, especially for higher a
number of inputs. Although some generic design techniques
exist (see Section II-A), sorting networks designed by means
of them are generally not optimal. This means that solving
the problem of an optimal sorting network design requires
finding the appropriate arrangements of comparators for every
given number of inputs. Several works have been published
that attempt to solve this task by means of various uncon-
ventional techniques, especially using EAs. In this section,
some of the relevant works regarding the evolutionary design
of both generic sorting networks and those designed for a fixed
number of inputs are mentioned.

Although the insertion and selection principles, mentioned
in Section II-A, enable a simple design of sorting networks for
an arbitrary number of inputs (even by extending—growing—
the existing optimal networks), the resulting solutions are not

cost- or delay-efficient. This approach appends a certain struc-
ture of comparators to an existing valid n-input network in
order to create a valid n + 1-input network, which may be
considered a single step of growth (or development) of the
sorting network. In [46] and [47], an EA was applied to grow
n+2-input networks from n-input networks, i.e., a single devel-
opment step was found to be sufficient in order to extend
(grow) the network by two inputs. It was shown that if a more
complex comparator arrangement (discovered by evolution) is
appended to the growing network during this single step, then
both the total number of comparators and the delay of the
resulting networks can be reduced substantially in comparison
with the insertion or selection principle. Note that this obser-
vation represents the main idea of the hypothesis formulated
in Section I-B.

Some advances can be observed regarding the evolu-
tion of fixed-size sorting networks. Some of the structures
(re)discovered in the past by means of evolution still repre-
sent state-of-the-art solutions of sorting networks for a given
number of inputs. After only mentioning some of (now clas-
sical) works in which the artificial evolution was involved
for the first time (e.g., [16] and [65]–[69]), the following
summary focuses on relevant publications from recent years.
In 2005, Choi and Moon [70] published a graph-theoretical
approach that allows for the introduction of a repair heuris-
tic into genetic algorithm (GA) for strong local optimization
of sorting network structures. Their approach enabled the
rediscovery of some of the best 16-input networks known
at that time using a common (single-processor) PC, which
was a result comparable to those obtained using supercom-
puters. Graham et al. [71] proposed a statistical analysis
regarding parameter tuning of a GA in combination with
specific heuristic functions in the problem of evolving sort-
ing networks. Kubalík published an iterative algorithm (called
POEMS) that seeks the best variation of a sorting network
(for up to 16 inputs) in each iteration using so-called hyper-
mutations. A hypermutation is a variation in the network
structure, the discovery of which is performed using a GA. The
POEMS approach showed an ability to outperform traditional
mutation-based algorithms based on evolution strategies [72].
Coles used a concept of filters—a fixed sequences of com-
parators at the beginning of the sorting network—and its
extension from smaller to larger networks using a stochastic
process [73]. The filter should sort as many input sequences
as possible and further improve the optimization of the
entire sorting network. For example, a filter of a 9-input
network was extended to 25 inputs, which allowed him to
attain the best known bound (the number of comparators)
for the network of this size. Valsalam and Miikkulainen [74]
proposed an symmetry and evolution-based network sort
optimization approach (SENSO) which utilizes the symme-
try of the problem to decompose the minimization goal into
subgoals that are easier to solve. Their method allowed the
authors to improve various sorting network structures with
up to 23 inputs. López-Ramírez and Cruz-Cortés [75] used a
method based on an artificial immune system combined with a
local search strategy to produce new optimal sorting networks
for 9–15 inputs.
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Fig. 4. Concept of the method proposed for the evolutionary development
of generic sorting networks by means of rewriting systems. Note that the
chromosome at the bottom of the figure shows an example of the axiom (S)
and rewriting rules, both are the subject of an evolutionary search.

III. EVOLUTIONARY DEVELOPMENT OF

SORTING NETWORKS

The objective of this paper is to propose an application-
specific developmental scheme for a GA, which allows us to
design arbitrarily growing sorting networks. It can be assumed
that a suitable representation of sorting networks for the GA
in combination with the proposed developmental scheme may
provide some innovative results in comparison with relevant
methods published in the literature. The developmental scheme
is based on a rewriting system, i.e., a grammar in which an
iterative application of suitable rewriting rules on a string from
the previous iteration (or on an initial string in case of the
first iteration) produces more complex strings that encode the
growing sorting networks. Remembering that the conventional
evolutionary design of sorting networks typically treats fixed-
size networks, the application of the evolutionary development
for the design of generic (growing) sorting networks represents
a rare case.

A. Evolutionary Developmental System

The scheme proposed for the evolutionary development of
sorting networks is illustrated in Fig. 4. A sorting network
is represented by a text string consisting of specific symbols
whose interpretation will be described in Section III-B. A
rewriting system (which will be described in Section III-C)
is used to iteratively transform the strings in order to develop
larger sorting networks—see the Rewriting system block in
Fig. 4. An initial string (or axiom) and a set of rewriting rules
represent the main ingredients of the rewriting system and both
are generated by the GA—see the Genetic algorithm block in
Fig. 4 that will be described in Section III-D. In order to
perform the development of sorting networks, a simple valid
sorting network is specified that will grow during the devel-
opment (see the initial network block in Fig. 4). Specifically,
a 2-input single-comparator initial network will be used in
this paper. The development works as follows. The applica-
tion of rewriting rules on the axiom generates a more complex

string that encodes a comparator structure used for extending
the initial network (see the string 1 and structure 1 blocks in
Fig. 4). If more developmental steps are applied iteratively on
the current string, more complex strings emerge that encode
larger comparator structures (see the further string and struc-
ture blocks in Fig. 4). A single application of rewriting rules
that generates the next string is interpreted as a developmental
step. In our approach, both the axiom and the rewriting rules
are the subject of evolution. This means that the axiom and
rules (encoded in a single GA chromosome) represent a can-
didate recipe according to which the sorting networks can be
developed.

B. Mapping of Strings to Sorting Networks

The developmental process utilizes a conversion function
that maps the strings to sorting networks (see the conversion
function block in Fig. 4). The following scheme is used to
convert the strings from the rewriting system to the structures
of comparators.

At the beginning of the developmental process, a wire
pointer i will be introduced with an initial value of 0 (i.e.,
pointing to the top wire of the network to be created), the
number of inputs of the initial network w0 will be spec-
ified, a constant � will be chosen denoting the size of
the developmental step and a step counter t will be initial-
ized to 1. The rewriting system works with the alphabet
� = {U, D, 1, 2, 3, 4, S, a, b, c, d} the symbols of which have
the following interpretation.

The symbol U represents the command move the pointer
up one wire if possible (i.e., if i > 0 then i = i − 1). The
symbol D represents the command move the pointer down
one wire if possible (i.e., if i < w − 1 then i = i + 1).
A digit d ∈ {1, 2, 3, 4} ⊂ � represents a command make
a comparator (i, i + d). This implies that a comparator may
compare values across at most 4 “spaces” between wires of the
network. We chose to limit the size of comparators this way
because larger values induced extensive design space in which
the evolution failed to discover working solutions. On the
basis of our initial experiments, we also limited the maximal
size of the developmental step considered in our experiments
to 4. The remaining alphabet symbols {S, a, b, c, d} ⊂ � are
interpreted as no-operation commands. An arbitrary nonempty
string Vx ∈ �∗ is processed left to right in order to be
transformed to a structure of comparators according to the
aforementioned interpretation. By performing the tth devel-
opmental step, the number of inputs of the sorting network
created in this step will be determined as wt = w0+�·t. After
each developmental step, the time will be increased (t = t+1)
and the wire pointer i will be reset to 0.

For example, let us consider the number of inputs of the
initial sorting network to be w0 = 2 and the size of the
developmental step � = 2. By performing the first devel-
opmental step, the axiom is rewritten to UDSD1U2U2D1,
which is interpreted as an arrangement of comparators (see
the string 1 and structure 1 blocks in Fig. 4). This structure
extends the initial sorting network into a larger instance with
w1 = w0 + � = 2 + 2 = 4 inputs. Fig. 5 (to be read line
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Fig. 5. Example of a process transforming the string UDSD1U2U2D1 to
a sequence of comparators of a 4-input comparator structure. Note that the
action for the first symbol (U) is not applicable because i = 0.

by line from top to bottom) shows the interpretation of the
string UDSD1U2U2D1, the actions to be performed and the
structure of comparators to be generated. After finishing this
step, t = t + 1 = 1 and the wire pointer i = 0.

For the second developmental step (represented by the string
2 and structure 2 blocks in Fig. 4), the width is determined
as w2 = w0 + � · t = 2 + 2 ∗ 2 = 6, the index i is reset to
0 and the structure of comparators is generated according to
the string 2. Since the sorting network is intended to grow
during each developmental step, it is important to note that
the sorting network created within the given developmental
steps includes all the comparators generated during previous
steps. This means that the 6-input network from the second
step is made by joining structure 1 and structure 2 from Fig. 4,
the 8-input network from the third developmental step arises
by joining the structure 3 to the previously created 6-input
network, etc.

C. Rewriting System

The rewriting system was designed on the basis of so-called
IL-systems which were studied in detail in [76]. An IL-system
is a parallel context-sensitive rewriting system with rewriting
rules of the form VL〈V〉VR → VT , where VL, VR, VT ∈ �∗,
V ∈ �. Let us denominate the part on the left of the arrow
the left-hand side of the rule and the part on the right of the
arrow the right-hand side of the rule. The symbols 〈, 〉 are used
in the notation of the rules in order to distinguish the symbol
to be rewritten from its contexts. A rule is said to match if
V has been found in the string and the substring immediately
on the left of V corresponds to VL and the substring immedi-
ately on the right of V corresponds to VR. Note that VL and
VR represents the so-called left context and right context of
V , respectively. The context may even be an empty string. A
matching rule is said to be applied if the symbol V in the
string to be rewritten is substituted by the right side of the
rule VT .

For the purposes of sorting network development, an
extended concept of IL-systems will be proposed herein
and denominated as multisymbol deterministic IL-system (or
MDIL-system). In this extension, the rewriting rules have the
form VL〈VS〉VR → VT , where VS ∈ �+, which means that a
string VS rather than a single symbol V can be rewritten. This
allows the string to be rewritten to shrink in length if needed
(or even VS to be replaced by an empty string). A given finite
number of candidate rewriting rules is arranged sequentially
in each chromosome of the EA. Each rule is assigned a unique

Fig. 6. Example of rewriting the string 1 to the string 2 using three MDIL-
system-based rewriting rules (all shown in Fig. 4).

priority that is determined by its position in the chromosome.
Specifically, the first rule takes the highest priority, while the
last rule in the chromosome has the lowest priority. The pro-
cessing of the rules according to their priorities ensures that
the rewriting is deterministic in the case of more than one
match at the same or conflicting position (e.g., if overlapping
substrings are to be rewritten). The rewriting process in MDIL-
system works as follows. The rules are investigated (according
to the priorities from the highest to the lowest) for a match
with respect to the string to be rewritten. The inspection of
the match in the string is performed sequentially left to right.
All nonoverlapping positions that match a rule are marked
to be rewritten. After determining all matches, the matching
rules are applied in parallel on the appropriate positions in the
string.

For example, let us take into account the string 1 and
Evolved rewriting rules block in Fig. 4 and let us demonstrate
a developmental step in order to generate the string 2. Fig. 6
shows a detailed scheme of this step. The string 1 is inspected
from left to right for the match of the rewriting rules. If more
than one matching rule is found for a particular position, then
the rule with the higher priority is chosen to be applied. As the
first match the string “S” of the rule R2 is found at index 3,
hence the string S is marked to be rewritten. Note that the rule
R3 also matches at index 3, however, it has a lower priority
and hence cannot be applied at the same position. The next
match is the rule R1 (string “D” at index 10), i.e., the string
D will also be marked for rewriting. Since no more matches
can be found in string 1, the matching rules are applied at the
marked strings and string 2 is derived.

D. Evolution of Rewriting Rules

In order to design rewriting rules for the MDIL-system
using an EA, a chromosome structure based on a 1-D array
of symbols was chosen which encodes the axiom that is also
a subject of evolution, and a sequence of r rewriting rules in
the format described in Section III-C (the number of rewriting
rules r is specified as a parameter). Each chromosome has the
structure [axiom | VL1〈VS1〉VR1 → VT1 | . . . | VLr〈VSr〉VRr →
VTr].

A simple GA combined with the MDIL-system-based devel-
opmental model was applied for the evolutionary development
of growing sorting networks. The Genetic algorithm block in
Fig. 4 implements an evolutionary scheme whose pseudocode
is shown in the listing of Algorithm 1. The following GA set-
tings were experimentally determined and used to obtain the
results presented in Section IV.

Authorized licensed use limited to: Brno University of Technology. Downloaded on April 03,2020 at 06:32:29 UTC from IEEE Xplore.  Restrictions apply. 



238 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 2, APRIL 2020

Algorithm 1: GA Used
Initialize the time, t = 0.
Randomly generate the initial population, P(0).
while the stop condition is false do

Develop SNs using each chromosome in P(t).
Evaluate fitness of the SNs, assign it to chromosomes.
The best chromosome and its mutant go into P(t + 1).
while P(t + 1) is not full do

A parent is the winner of tournament from P(t).
Mutate the parent and put it into P(t + 1).

end
t = t + 1

end

The evolutionary process (i.e., each independent run of the
GA) has two goals. The first goal, called the design goal, is to
find such an axiom and rewriting rules that are able to generate
valid sorting networks for the given number of developmental
steps. We call such sets of rewriting rules fully operational.
The second goal, called the optimization goal, is to optimize
the parameters of the generated sorting networks. The fitness
function (which will be described later in this section) ensures
that after the design goal has been fulfilled, the remaining com-
putational time of the run is utilized solely for the optimization
goal. This approach, performing both the evolutionary design
and optimization in a single run, was applied on the basis
of our initial experiments with the design goal only, which
produced results of poor quality (the sorting networks con-
sisted of a high number of comparators and exhibited large
delays).

The fitness evaluation of each chromosome is performed
as follows. Each chromosome is used to develop s sorting
networks, using the approach described in Section III-B, where
s denotes a parameter specifying the number of developmental
steps. After each developmental step t = 1, . . . s the fit-
ness ft of the wt-input sorting network is calculated as the
number of correctly sorted output bits for each of the 2wt

possible input binary test vectors. The fitness of a chromo-
some for the design objective is given by Fdesign = ∑s

t=1 ft
and the maximal design fitness of a chromosome (that is
able to develop fully working networks within the given
number of steps) is Fmax = ∑s

t=1 wt2wt . The number of erro-
neous output bits can be expressed as E = Fmax − Fdesign,
the value of which equals 0 for fully operational solutions.
The metric E is used for calculating the fitness of candi-
date solutions during the design goal and optimization goal.
Let Cs denote the total number of comparators and Ds the
delay of a sorting network developed after the sth step. If
E > 0 for a candidate solution, then its fitness is given
by the first row of (1). The evolutionary run is consid-
ered successful if a fully operational set of rules has been
obtained.

The aim of the optimization goal is to reduce the num-
ber of comparators and delay of resulting sorting networks.
Therefore, after detecting at least one fully operational solu-
tion (with E = 0), such solutions need to be strongly preferred
to other candidate solutions. In order to do that, a suitable
constant b � Fmax is introduced (specifically, b = 109 in this
paper) and the fitness of fully operational solutions will be

determined according to the second row of

F =
{

Fmax − E − Cs − Ds if E > 0
Fmax + b − Cs − Ds if E = 0.

(1)

The following genetic operators are used during the evolu-
tion. The tournament selection operator with base 4 is applied
for selecting a parent chromosome in each generation. The
parent undergoes mutation which is performed by randomly
selecting one of the following ways: 1) each symbol in the
chromosome is replaced by a new random symbol with the
probability 0.2; 2) a randomly selected symbol is removed
from the chromosome (this allows for shortening the strings
the rewriting rules are composed of); and 3) a new random
symbol is inserted at a randomly selected position in the chro-
mosome (this allows extending the strings; the insertion is
not performed if the maximal length of the given part of the
rule would be exceeded). Moreover, a special swap operator is
applied with the probability 1/(RULE SWAP), the parameter
RULE SWAP = 6 in this paper. In particular, the swap is per-
formed by randomly selecting two rules and swapping their
positions in the chromosome. This operator has been intro-
duced herein in order to allow us to change the priority of the
rules without necessarily changing their form.

IV. EXPERIMENTAL RESULTS

In order to test the hypothesis posed in Section I-B, several
sets of experiments have been conducted using the proposed
evolutionary developmental system in various configurations.
For each configuration, 120 independent evolutionary runs
have been performed. The time of each run was 12 h using
multicore Intel Xeon E5-2695 processors on the Salomon
cluster1 that is a part of Czech IT4Innovations National
Supercomputing Center.2 The cluster provides more than a
thousand of equivalent 24-core nodes which ensures that each
run has the same amount of available computing resources.

The experiments have been evaluated statistically with
respect to the success rate and computational effort expressed
as the number of generations performed within the given time
limit. As the specific combination of the given configuration
parameters influence the cardinality of the search space and
the time needed to evaluate a candidate solution, the corre-
lation between the computational effort and success rate for
various configurations may show us how efficient the proposed
system is. This approach was chosen since it is difficult to find
the most suitable criterion for terminating the evolution.

In order to evaluate the results, fully operational solutions
from each set of experiments have been tested by further
development of larger sorting networks. More specifically, we
evaluated the correctness of resulting networks by performing
four further developmental steps in addition to the three steps
which were performed during the evolution. For the purposes
of this paper, the solutions that pass the test are considered
general (see [77] for details of how to prove this formally).

It is worth noting that most results obtained for the growing
networks produce solutions containing redundant comparators.

1https://docs.it4i.cz/salomon/hardware-overview/
2https://www.it4i.cz/
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TABLE I
OVERVIEW OF PARAMETERS AND THEIR SETTINGS USED IN THE

PROPOSED EVOLUTIONARY DEVELOPMENTAL SYSTEM

In order to present the effective cost of the solutions, the data
in the following sections regarding the number of comparators
and delay will be presented after removing redundant compo-
nents. Although redundancy is undesirable and conventional
design methods can avoid it naturally, this represents an issue
in the case of evolutionary design. We identify redundant com-
parators by observing their activity (i.e., swapping the input
values) during the evaluation of the network. Those compara-
tors that have not swapped their inputs at all can be removed
without any significant computational overhead. This way the
evaluation time of candidate solutions may be reduced.

A. Evolutionary System Setup

In the area of evolutionary computation, it is usual to tune
the parameters of the experimental system in order to achieve
a reasonable performance, evolvability, and quality of obtained
solutions. However, the proposed system requires a higher
number of parameters to be set and the tuning of them all
does not represent a reasonable approach. Therefore, for the
purpose of this paper, some of the parameters have been set
experimentally, on the basis of our previous experience or
according to recommendations from the literature. Some of
them are the subject of various experimental setups for con-
ducting experiments whose results will be presented in this
section. More specifically, we have identified that a higher
selection pressure during the evolution is needed in order to
obtain good solutions. In this paper, this is accomplished by
elitism, the appropriate tournament selection base and a strong
preference of fully operational solutions in the fitness func-
tion (as described in Section III-D). A complete list of the
parameters involved by the proposed system and their val-
ues chosen is shown in Table I. The parameters with multiple
values specified are those for the experimental evaluation.

In order to evaluate abilities of the proposed system with
respect to various aspects of the rewriting-based developmental
process, several forms of rewriting rules have been used that
differ in the maximal allowed length of the contexts and the
strings to be rewritten, as well as the maximal length of the
right side of the rules. For example, a rule of the form 1〈1〉0 →
12 means that it may have the left context of at most one
symbol, does not use the right context and replaces just a
1-symbol-substring by a string of at most 12 symbols. Other
forms of rules, considered in our experiments, are 1〈1〉1 → 18
and 2〈2〉2 → 24. For each form of the rewriting rules, several
selected combinations of values of the number of rewriting
rules and size of the developmental step were evaluated.

The statistics of all the sets of experiments are listed in
Table II. The configuration of each experiment is specified by
the size of the developmental step, the form and the number of
the rewriting rules. The resulting data from each set includes
the number of fully operational solutions and the number of
general solutions out of the 120 independent runs. Moreover,
the average number of generations processed within the 12-h
limit is presented together with its standard deviation. The
number of generations is inversely proportional to the compu-
tational cost of the experiment (i.e., the lower value per 12 h,
the higher the computational cost).

We analyzed the statistical results and found an interesting
correlation between the search space size (which depends on
the type and the number of the rewriting rules), the number of
fully operational solutions (including the number of general
solutions), and the computational effort. For example, the car-
dinality of the search space for the simplest case (i.e., a single
rewriting rule containing up to two symbols on the left and
up to 12 symbols on the right), the search space constitutes
approximately 112+12 = 3.8 × 1014 candidate solutions (note
that 11 is the number of symbols in the alphabet). For the
rule type 2〈2〉2 → 24 it is 116+24 = 2.82 × 10187 candidate
solutions. The analysis showed that the number of fully oper-
ational solutions, computational effort as well as the number
of general solutions, exhibit better values with the increasing
size of the search space. This indicates that a larger search
space may contain a non-negligible amount of potentially good
solutions and the proposed EA can effectively explore such a
search space. It is, however, intractable to examine such search
spaces completely.

B. Results for the Developmental Step of Size 2

The experiments performed using the developmental step of
size 2 were motivated with the aim of rediscovering or possibly
improving (by means of the rewriting system) the best solution
published in [46]. As shown in Table II, the vast majority of
experiments provided more than 100 fully operational results
out of 120 runs. Although the number of general solutions is
very low for some configurations, it increases significantly if
more resources are provided in the evolution (see Table II).

Although no improvement in the resulting sorting networks
obtained in this set of experiments has been observed with
respect to [46], an interesting general context-free system has
been obtained that generates sorting networks of the same
structure as in [46]. While in [46] the resulting networks con-
tained some redundant comparators and had to be manually
optimized, the solution obtained by means of the rewriting
system generates sorting networks without any redundant com-
parators. In fact, the known way of growing even-input sorting
networks that was published for the first time in [46] has
been rediscovered in this paper. The result obtained by the
evolved rewriting system is illustrated in Fig. 7. The solu-
tion works with three rewriting rules, the highest-priority
one rewrites the symbol 1 to ε (the empty string). This
causes removing all 1 s from the current string during each
derivation, subsequently more 1 s immediately emerge again
at other positions in the string by applying the remaining
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TABLE II
RESULTS OF EVOLUTIONARY EXPERIMENTS OUT OF 120 RUNS FOR EACH CONFIGURATION. THE COLUMNS REPRESENT: THE AVERAGE NUMBER OF

GENERATIONS PERFORMED WITHIN A 12-h LIMIT (AVG. #GENS), THE NUMBER OF FULLY OPERATIONAL RESULTS (#FULLY OPER. RESULTS) AND

THE NUMBER OF RESULTS WHICH ARE CONSIDERED TO BE GENERAL (#GEN. RESULTS).

TABLE III
COMPARISON OF THE NUMBER OF COMPARATORS OF THE BEST FOUND SOLUTION TO

OTHER METHODS. REDUNDANT COMPARATORS WERE REMOVED

TABLE IV
COMPARISON OF THE DELAY OF THE BEST FOUND SOLUTION TO OTHER METHODS. REDUNDANT COMPARATORS WERE REMOVED

rules. Note that 1 encodes a comparator across neighboring
wires, so it represents a very important symbol for creat-
ing working sorting networks. Another general solution for
the step size 2 was discovered using a single rule in the
chromosome (specifically, the axiom 1da2SD1 and the rule
〈1d〉 → DbUaDSD1d2aU2dDbSDcb1UUU) that produces
equivalent sorting networks as those in Fig. 7. The number of
comparators and delay of the corresponding sorting networks
are shown in Tables III and IV, respectively, (in the rows
denominated “step 2”).

C. Results for the Developmental Step of Size 3

The increase of the step size provides more possibilities
of the comparator arrangements during the growth of the

3See the Appendix in the supplementary material for details.
4See the Appendix in the supplementary material for details.

sorting networks. From a single comparator (i.e., a 2-input
initial network), larger instances with 5, 8, 11, etc. inputs can
be developed. Fig. 8 shows one of the most interesting solu-
tions obtained in this set of experiments using 3 rewriting
rules in the chromosome. In addition, the evolved rewrit-
ing system generates sorting networks without any redundant
comparators. The number of comparators and delay of the cor-
responding sorting networks are shown in Tables III and IV,
respectively, with the appropriate data denominated “step 3.”
It can be seen that although the delay of these networks is
worse against the solutions for step 2 (see Table IV), the
number of comparators in this case exhibits lower values for
the number of inputs (width) 14 or higher—see Table III.
As evident for the widths of the networks appropriate for
both the steps 2 and 3 solutions, the step 3 networks contain
less comparators against the step 2 solution and this differ-
ence increases for larger networks (e.g., the step 3 solution is
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Fig. 7. Even-input sorting networks generated from the evolved axiom
bb1U42c1Da and the set of rewriting rules {〈1〉 → ε, 〈4〉 → DD4d12U2U,
〈a〉 → 1aDa}. The structures used to grow the networks are coded
by means of the derived strings (a) bbUDD4d12U2U2cD1aDa,
(b) bbUDDDD4d12U2Ud2U2U2cD1aDaD1aDa, and (c)
bbUDDDDDD4d12U2Ud2U2Ud2U2U2cD1aDaD1aDaD1aDaD1 − aDa.
The lengths of the strings coding the networks shown is 19, 31, and 48
symbols, respectively. This result was obtained using step size 2 and 3 rules
of the type 1〈1〉0 → 12.

Fig. 8. Sorting networks generated for the step size 3 using the evolved axiom
DccSScU133cb4b44UDb1D1 and rewriting rules 〈S〉 → SDDS, 〈4〉 → ε

and 〈b〉 → bcU2DDd1UU. The derived strings are not shown because of
larger lengths (52, 91, and 142 symbols after the first, second, and third
derivation, respectively). This result was obtained using three rules of the
type 1〈1〉0 → 12.

better by 25 comparators for 32 inputs compared to the step
2 network). Therefore, this result partially supports the valid-
ity of the hypothesis posed in Section I-B—for the number of
comparators, in particular.

D. Results for the Developmental Step of Size 4

The most advanced experiments conducted in this paper uti-
lized the developmental step of size 4, the aim of which was to
achieve further improvement both in the number of compara-
tors and delay of the networks. Two general solutions were
obtained in which the evolution optimized both these parame-
ters which eventually fully confirmed the hypothesis stated in
Section I-B. Both were obtained using the rewriting rules of
the form 2〈2〉2 → 24. Since none of these results were able
to generate sorting networks without redundant comparators,
a final analysis was performed after their removal.

The first result was obtained with eight rewriting rules
in the chromosome and the corresponding solution is illus-
trated in Fig. 9. The comparator arrangements appended to
the growing network after each of the three developmen-
tal steps shown in this figure consists of 14 comparators (3
are redundant, i.e., 21%), 32 comparators (11 are redundant,
i.e., 34%), and 50 comparators (19 are redundant, i.e., 38%),
respectively. It is evident that the percentage of redundant
comparators in each developmental step increases. However, a
further analysis of these networks showed that after removing
the redundant comparators the total number of comparators
and delay of the networks optimized this way can be reduced

Fig. 9. Sorting networks generated for the step size 4 using the evolved
axiom c1d32dbbDD11b4U1D and rewriting rules 〈4〉 → aaUccDb, 〈21〉 →
ε, 〈4〉 → b2Dd1dddc, 〈4〉 → SdScd2UcabU, 〈a3〉 → Sa1, 〈b〉 →
SDUabcU32U2, 〈I〉 → S1DcD1DDa1, 〈I〉 → SSbc4UD3Uc34SD1S4bS. The
comparators shown in red are redundant. This result was obtained using eight
rules of the type 2〈2〉2 → 24.

Fig. 10. Sorting networks generated for the step size 4 using the
evolved axiom S42UUUUD2DS11 and a single rewriting rule 〈S〉 →
DD2D2DS41U4U41DUD1UUUD4U. The comparators shown in red are
redundant. This solution represents the best result of this paper and was
obtained using a single rule of the type 2〈2〉2 → 24.

Fig. 11. Manually optimized sorting networks created by removing redundant
comparators from the solution shown in Fig. 10 which represents the best
result of this paper.

substantially. The resulting properties of the optimized sorting
networks are summarized in Tables III and IV for the number
of comparators and delay, respectively, the appropriate data
is denominated “step 4A.” As can be seen, there is a cer-
tain improvement against both steps 3 and 2 solutions. For
example, the 14-input step 4A sorting network consists of 65
effective comparators (compared to 69 and 70 for steps 3 and
2 solutions, respectively—see Table III), the delay of the step
4A solution exhibits the value 16 (compared to 20 for steps 3
and 18 for the step 2 nets—see Table IV).

The second result, which represents the best solution of
this paper, has been obtained using a single rewriting rule
in the chromosome and the corresponding network structures
are shown in Fig. 10. In addition, the sorting networks gener-
ated in this case contain some redundant comparators that had
to be removed before performing the final analysis. Fig. 11
displays the result without the redundant comparators. More
specifically, there are 15 comparators appended to the growing
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network after the first developmental step (out of which 4 are
redundant, i.e., 27%), 33 comparators appended after the sec-
ond step (14 are redundant, i.e., 42%) and 45 comparators
appended after the third step (18 are redundant, i.e., 40%)
as shown in Fig. 10. The properties of the final optimized
sorting networks are summarized in Table III (the number of
comparators) and Table IV (delay) and the appropriate data
is denominated step 4B. The comparison of both parame-
ters against the previously mentioned solutions shows that the
improvement in the step 4B result is remarkable. For example,
the 26-input step 4B network consists of 187 comparators and
exhibits delay 27 (the previous network needed 218 compara-
tors for 26 inputs with delay 31, the step 3 solution of the
same width is a 233-comparator network with the delay 40
and the solution using step 2 contains 247 comparators and
delay 36 in the case of the 26-input network).

E. Comparison and Discussion

In order to summarize the evaluation of the results obtained,
whose properties are shown in Tables III and IV, a com-
parison with some other selected generic sorting network
construction methods has been performed. For this purpose,
the existing Bubble-Sort algorithm, Bitonic sort and odd–even
merge-sort have been chosen whose properties are summa-
rized in these tables under the title “Existing methods.” The
Bubble-Sort is mentioned just for completeness because it rep-
resents the least efficient sorting algorithm both from the view
of the number of comparators and delay. However, it uses the
same principle of growing sorting networks as considered in
this paper, hence the comparison with this method is adequate.
As shown in Section IV-B, a more efficient generic method
which overcomes the Bubble-Sort is the step 2 approach, orig-
inally published in [46], which has been rediscovered in this
paper. However, the results obtained by utilizing the step size
3 and 4 represent the main contribution of this paper because
they overcome both the Bubble-Sort and step 2 solution. In
particular, the step 4 solutions represent the best results of this
paper so that a more detailed comparison with other existing
generic algorithms will be described.

As two further sorting network construction methods, the
Bitonic sort and odd–even merge-sort have been chosen for
comparison. These methods belong to the best known generic
approaches, although their principles are different from those
considered in this paper. The original idea of these meth-
ods are based on a direct construction (i.e., not growing) of
sorting networks whose number of inputs equals a power of
two. Therefore, only the numbers of inputs 8, 16, and 32
have data specified in Tables III and IV. Although none of
the results proposed in this paper overcame the Bitonic or
odd–even method, our best result (step 4B) definitely has some
advantages.

1) The proposed step 4B solution creates sorting networks
for more values of the number of inputs than the
aforementioned existing methods. More specifically, any
number of inputs given by 4i + 2, where i ≥ 0 is an
integer parameter, is possible.

2) We determined that any 4i-input network may be con-
structed from the 4i + 2-input network, provided by

the original step 4B solution, by removing the two
top wires and the comparators connected to them. The
properties of these 4i-input networks are summarized
in Tables III and IV in the rows denoted “From 4B.”
It is evident from the tables that these networks still
exhibit better properties compared to all previous results
(i.e., steps 2, 3, or 4A). This way, any even-input
sorting network can be obtained using the step 4B
solution.

3) Since the proposed method for growing sorting networks
assumes that the smaller k-input network, from which
the k + �-input network ought to be grown (� is the
step size), is valid, it is possible (by means of the solu-
tions obtained) to create a k+�-input network from any
valid k-input network. For example, a 36-input network
may be created from the 32-input odd–even merge-sort
network by appending 4 inputs and the set of com-
parators from the result step 4B whereas the resulting
network will exhibit substantially better properties than
if constructed by means of another conventional method
(e.g., the Bubble-Sort).

We have analyzed the obtained results and identified the
following aspect regarding the rewriting rules of the result-
ing solutions. Surprisingly, context-sensitive rules occur very
rarely. In fact, none of the best solutions in this paper contain
such a rule. Furthermore, most of the solutions utilize only one
or two rules which expand the string, all other rules remove
symbols from the string.

V. CONCLUSION

In this paper, an EA has been applied in order to design
rules of a rewriting system for the generic construction of
sorting networks. The main idea is based on encoding various
comparator structures of sorting networks by means of text
strings over a suitable alphabet of the rewriting system. A
sequence of derivations using a set of evolved rewriting rules
from a suitable initial string (axiom) allows us to develop
growing sorting networks. Several sets of experiments have
been presented in which we have shown that various sort-
ing networks can be developed from a simple initial instance.
Various sizes of the developmental step, by which the num-
ber of inputs of the growing networks is increased, have been
investigated with respect to the properties of the resulting sort-
ing networks. It has been shown that for larger developmental
steps, the solutions obtained allow us to develop more efficient
sorting networks (considering both the number of comparators
and delay) in comparison with similar approaches published
in the past.

Although successful experiments have been presented in
this paper, from which the best result exhibits remarkably
better properties against some of the known methods, it is
not possible to say whether the solutions obtained for the
given settings are optimal. Since the proposed evolutionary
system involves a higher number of control parameters, some
of which have been the subject of experimental evaluation,
their fine-tuning represents a challenging task. We believe,
however, that more in-depth investigation of the evolutionary
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system and developmental model together with a theoretical
analysis of the resulting sorting networks may provide us with
valuable information for further research.
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