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Source image with unknown font New vectorized text using imitated font

Google Docs rendering with missing diacritics (above), and the same Latvian pangram using automatically generated diacritics

Figure 1: Font capture enables editing text in photographs by capturing the original font, and extrapolating to unseen glyphs, as well as
extension of existing TrueType fonts with vectorized diacritics

Abstract
Editing text in photographs requires the ability to find the same font, which is impossible in many settings, such as historical
or manually painted text. We present a method of extracting the font from a single photographed word, without relying on
the retrieval of similar fonts. A deep net extracts style information and constructs the font for all characters, enabling novel
applications in image editing, font creation, and the addition of language-specific characters with diacritics to existing fonts. A
qualitative user study shows that this method improves convincing font capture by over 500% over prior work.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

The use of varied fonts is ubiquitous, from corporation logos, to
newspapers and banknotes. Type designers define vector graphics
for each character manually, and extrapolating the entire typeset
given a small sample of text takes several days. This work presents
a deep learning approach to capturing fonts, as well as two practical
applications: editing fonts in photographs and creating diacritics for
known fonts.

Digital editing and rendering allows working with lighting, tex-
tures, shapes, position, color, and numerous other factors. However,
editing text in digital media requires a definition of the desired font,

which may be difficult to acquire, unavailable, or non-existent. Pho-
tographs may contain typefaces which are not based on digitally
defined fonts, but instead unique artistic realizations. This work
presents an original approach to extrapolate other glyphs given a
small sample of text in any font, enabling re-writing of text.

Another application demonstrated in this work is automatic
extension of any existing typeface by characters with diacritics.
Worldwide, 750 million people are native speakers of a language
written in a Latin-derived alphabet with diacritics such as accents,
subscripts, and superscripts [wik18]. However, out of an estimated
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100 thousand digital fonts widely available, only a few hundred
include these non-English characters.

Font extraction on characters of the Latin alphabet has been
attempted before, either with limited applications to classical
fonts [CK14], or with blurry or noisy results [Bal16, USB16], and
always by using characters as input. Thanks to a novel architecture,
this work creates sharp fonts extracted directly from a line of text,
suitable for use in photo editing as well as vectorization. This work
makes it possible to take an existing TrueType font, render new
characters, convert them to vector graphics, and incorporate them
in the original, thus effectively closing the loop.

2. Previous Work

Since the invention of the printing press in the fifteenth century,
movable inverted glyphs of the Latin alphabet have been used to
print text. Until the advent of mass digital printing, the physical
type of every point size had to be designed and kept for each de-
sired font, Figure 2. Personal computers and document editors ush-
ered an explosion of existing fonts as well as their variety, with
each glyph defined manually as a vector graphic. As in the era of
metal/wood type, only those with access to these vector definitions
are able to create text in a given font.

Figure 2: Wooden type. The umlaut affects the base glyph A

Although fonts are widely shared on the internet, and font search
engines are freely available, few fonts can be acquired to per-
fectly match a desired input. Finding a font given an image is a
challenging task, undertaken by domain experts or automated pro-
cesses. Identification methods range from pixel differences on de-
tected aligned characters [squ17] to matching manually entered de-
tailed features [ide17] based on standard font classification tech-
niques [CGL13], or automatically extracted attributes [OLAH14].
If these methods fail, fonts can be identified by a community of ex-
perts, such as Fontid.co. However, exotic fonts may be unknown to
experts, unavailable to identification systems, or non-digitized. For
example, Figure 3 shows a query text, along with nearest retrieved
fonts by existing methods. This demonstrates that pixel difference
is not a sufficient metric in font style matching.

Limits of finding existing fonts sparked an interest in extrapolat-
ing the entire style of a font from a single example. Font extrapola-
tion with warp mappings dates to the nineties [TF97], inspired by
the effect on shape of charge on ink particles. A manifold over fonts
has allowed smooth traversal of the font space [CK14], and was

(a) Query text from image - hand-drawn

(b) Nearest match by pixel difference - JollyGood Sans Condensed

(c) Nearest match by property matching - Keynote (caron unavailable)

(d) Nearest match by expert community - Krinkes

Figure 3: Comparison of font retrieval methods

applied to classical typefaces to interpolate fonts [YW20]. Extrap-
olation of numerals on the MNIST and SVHN datasets was made
possible by deep generative models, creating a latent space which
allows traversal across glyphs [KMRW14].

More recently, a fully connected deep net has been used to cre-
ate an embedding of 50 thousand fonts [ana17]. A feed-forward
neural network has been used to generate the entire font from four
characters [Bal16], see Figure 4 for results taken from the paper.
In addition to limited quality, this technique suffers from requiring
specific characters, which may not occur in the sample text. Varia-
tional Autoencoders have been used to generate fonts from a single
example glyph [USB16], but with a small dataset of 1’839 fonts and
a fully connected network, the results are still blurry. The 50k fonts
dataset [ana17] has been used to train a VAE and a GAN [gan16],
using the principles outlined in [RMC15]. Fonts are extrapolated
from varying characters with a Multi-Content GAN [AFK∗18], in
color in Figure 5. The same approach has been adapted to Chinese
characters by significantly extending the dataset and using One-
stage Few-shot learning [YYZ∗19]. However, existing methods are
impractical in applications for graphics because they require seg-
mented characters, rather than analyzing text directly in the image.
Most crucially, results of all existing methods are blurry or noisy
for all but the most standard fonts.

The history of Chinese printing is quite separate, with the first
use of movable type dating back to the eleventh century. Since there
are thousands of glyphs, rather than a few dozen, designing and
managing the typeface has been a comparatively mammoth task. To
make a font compatible with the Chinese standardized character set,
designers need to design more than 26 000 characters, a challenging
task that can take years to complete. However, since Chinese char-
acters are composed of a core set of 270 radicals, style transfer tech-
niques produce successful results [rew17,ZCZ17], as shown in Fig-

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.
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(a) Input (b) Output (c) Reference

Figure 4: A forward neural network extrapolating “R” from
“BASQ” [Bal16] on three random fonts

Figure 5: Multi-Content GAN results [AFK∗18]. Ground truth
characters are on the top and synthesized results on the bottom
of each row

ure 6. Such a style transfer network [GEB16] extrapolates content
information from a given glyph and applies a style to it, rather than
rendering the entire alphabet, or using one-hot encoding to ren-
der a single glyph. These findings have since been extended to two
other logographic writing systems, Korean and Japanese kanji us-
ing Conditional Adversarial Networks [IZZE16, zi217]. However,
these methods are not applicable to alphabetic languages, because
network module encoding a character will not see sufficient variety
to train effectively, since the graphemes lack repeating radicals.

Figure 6: Pairs of characters, where ground truth characters are
on the left and synthesized results on the right [zi217]

Handwriting style can be successfully imitated using a recurrent
neural network [Gra13]. Such an approach may extrapolate style
for calligraphic cursive fonts, or stroke-based geometric fonts.

3. Font Capture

This section describes the presented method. Our contribution lies
in a improved font dataset collected by Active Learning, and a font
capture network which reads text, rather than single characters.

3.1. Font Dataset

Fonts used in this paper have been acquired online, with 222 462
used out of 272 849 unique fonts, including 7 089 fonts with se-
lected diacritical marks (an acute accent ´, circle ˚, or caronˇ on
eight characters). A font family is typically a group of related fonts
which vary only in weight, orientation, width, etc., so it is desirable
to include fonts with similar variations. Downloaded fonts have
been filtered with a deep net trained to detect foreign non-Latin
fonts, dingbats, emojis, and ornamental typefaces, which may pro-
duce unexpected characters for standard glyphs. See Figure 7 for a
random sample from the cleaned dataset.

(a) Input Style (b) (c) (d) (e)

Figure 7: Effects of various parts of the architecture. (b) is the
forward network without a discriminator, (c) is the GAN with a
discriminator that does not see the input style, (d) is the network
with GAN looking at style, and (e) is the larger, final network. Note
that the pre-gan results may be convincing, but blurry.

3.2. Font Capture Network

Previous work attempts to extrapolate font style from a sin-
gle capital character [USB16], from four selected capital charac-
ters [Bal16], or from all but one capital character [TF97]. However,
this is impractical when font definitions are not available. There-
fore, this work is the first to extrapolate a font style from an ar-
bitrary short line of text, which can be easily extracted from pho-
tographs, as shown in Figure 1. For experiments, we chose this style
source image to have resolution 64×500 which captures from two
up to five words (see Figure 3a and 8).

The previous work using variational autoencoders [USB16,
KMRW14] produces low quality and blurry outputs. On the other
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hand various versions of conditional Generative Adversarial Net-
works [MO14] have demonstrated high quality results in related
tasks [zi217, LBY∗17].
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Figure 8: Network shape

Our Font Capture Network (Figure 8) is an extension of con-
ditional Generative Adversarial Networks [MO14] (cGAN). The
Generator takes as an input real vectors representing a font style
and a requested glyph identity and renders a single 64× 64 glyph
image. The glyph vectors are learned by an embedding layer (look-
up table) and the style vector is extracted by a Style Capture Net-
work from a font style source image. The Discriminator outputs a
binary real/fake decision for a glyph image, while making use of
the extracted font style vector.

The network is trained using two loss functions: L2 loss with re-
spect to ground truth images and an adversarial loss on the Discrim-
inator. The pixel-wise L2 loss, which compares a generated glyph
to its ground truth, ensures that a correct glyph is generated and that
it has roughly correct shape. However, this results in blurry out-
puts as the pixel loss forces the network to produce averaged pixel
values in areas which can not be reliably predicted. This blurri-
ness is suppressed by an adversarial loss which forces the rendered
glyphs to be indistinguishable from real images. We observed that
making the Discriminator conditional on the style vector results in
improved rendering of small details. These include defining font
features such as serifs, slants, and spurs. The effect of the adversar-
ial loss and the style-conditional adversarial loss is clearly demon-
strated by Figure 7.

The Style Capture network aggregates information from a style
source by four convolution layers each followed by max pooling
(reducing resolution 16×) and a final global max-pooling operation
which results in a single 512-d vector. All convolutional layers have
3×3 kernels.

The network is trained using Adam [KB14] with learning rate
0.0002 on mini-batches of 64 glyphs. The training iterates between
one update of the Discriminator with cross-entropy loss and the
Generator and the Style Capture networks with the pixel L2 loss
and the adversarial loss from the Discriminator with real labels.
For further implementation details and results, see the code made
available online†. The networks were trained for 150k iterations

† included in material for review

Method success rate adjusted success rate

VAE [KMRW14] 4.7% 9.4%
ADV-VAE [USB16] 1.6% 3.1%
Ours 25.6% 51%

Table 1: User Study Results. If the method produces indistinguish-
able outputs with respect to the ground truth, the user performs a
random binary choice. This corresponds to a 100% method success
rate for an ideal output, versus 50% measured in the experiment.
The adjusted success rate is doubled accordingly.

and we observed reasonable outputs after 10k iterations. Thanks to
the large fontbase, overfitting does not occur and we did not observe
any differences between training and held-out validation fonts.

4. Evaluation

The benefits of Font Capture described above are demonstrated
through a comparative user study which shows five-fold im-
provement over state-of-the-art. Furthermore, two applications are
shown, the first autonomously creating vectorized diacritics, and
the second for editing text in photographs.

4.1. User Study

A user study with 17 participants compared generated char-
acters from state-of-the-art methods: VAE [KMRW14], ADV-
VAE [USB16], and this work. The study was performed with three
triplets of characters, as shown in Figure 9. Each participant re-
ceived 72 rows of triplets, printed on four sheets, and was asked
to identify the different triplet. If the user fails to identify the gen-
erated triplet, the methods output can be considered indistinguish-
able from the original font. Correct and incorrect user classifica-
tions are summed for each method, and results are presented in
Table 1. The proposed method recreates fonts convincingly in 51%
of cases, compared to 3% and 9% for the previous methods. This
is a 566% increase in precision. According to the randomization
permutation test, these results are highly significant (p<0.0001).
Furthermore, our tests show that VAE outperforms ADV-VAE with
p-value 0.059.

4.2. Generating diacritics

Out of the 26 base letters of the alphabet, 18 are base glyphs
for an additional 71 diacritical letters in European languages
alone [cod17], all of which are to be rendered in lower and up-
per case for a total of 178 characters. In addition, numerals and
punctuation constitute another 40 highly used characters. Further-
more, ligatures (such as æ) and additional diacritics (such as in
Vietnamese) comprise dozens of additional glyphs that a font may
be required to contain.

However, rendering accents is more complex than simply place-
ment. Diacritics may vary in appearance on different base glyphs,
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Figure 9: User Study Setup. Each row contains three triplets, two
of which are ground truth, and one is generated by one of the three
methods. Their order is randomized, except for the middle triplet,
which is always the ground truth.

Figure 10: A font which changes the standard writing of i when
rendering í, and uses varying form and placement of the caron on
t, d, and c

affect the shape of the base glyph, and be placed in different loca-
tions (Figure 10 and Figure 2). Furthermore, certain diacritics may
be combined, such as ǟ in Lithuanian. Document editors revert to
similar standard fonts when diacritics are unavailable, leading to
visible undesirable renderings, as shown in Figure 11.

Figure 11: Google Docs Rendering text with diacritics

Vectorization is performed with Potrace [Sel03], with default
settings, on the thresholded outputs. Finally, the glyphs are placed
into the existing font definition (.ttf), where the ascender height,

x-line, descender height, and others are already defined. Kerning
is copied from base glyph definition. Therefore, the entire process
can be automated.

(a) Original style

(b) Generated “a” with dia-
critic

(c) Vectorized output placed
into the font definition of the
base glyph “a”

Figure 12: Synthesized diacritics are placed into the font defini-
tion, thereby acquiring kerning and positioning parameters from
the base glyph

Figures 19 and 20 demonstrate the versatility of the method on
sample outputs. It can be seen that the method works robustly on
unseen validation fonts, and can reliably be used to generate char-
acters with and without diacritics.

4.3. Editing text in photographs

Figure 13 to Figure 18 show the process of replacing text in an
image. The original image (Fig. 13) is rectified, and the text is
cropped (Fig. 14), and thresholded (Fig. 15). This is the input seen
by the deep net. The network renders each desired output character
(Fig. 16), which undergo manual kerning (Fig. 17) and placement
into the original using standard editing tools (Fig. 18).

Methods exist that can allow text detection [VAMM∗08] and rec-
tification [TN11] to automated for any task-specific application.
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Figure 13: Original image

Figure 14: Cropped image

Figure 15: Thresholded image

Figure 16: Generated characters

Figure 17: Text after kerning

5. Conclusion

Fonts are present in all forms of visual media, but working with
them remains possible only for those with access to the type defi-
nitions. This work widens the possibilities for tools such as Photo-
shop and Google image translate, where recreating text in a given
font is key.

Furthermore, automatically expanding the diacritical sets for ex-
isting fonts brings all fonts to a wider audience of hundreds of mil-
lions of users whose language includes diacritics. Office suites such

Figure 18: Generated text in image

as Microsoft Office & Google Docs can benefit from incorporating
such tools in the future.

Font artists and type designers can also take advantage of Font
Capture, designing a subset of the font or using existing images to
generate new fonts. This functionality could be improved by out-
putting vector graphics, although this can already be done with Po-
trace [Sel03] or splines.

A limitation of this work is the lack of kerning information. Cur-
rently, kerning is being done manually, so automated letter spacing
is only possible for monospaced fonts, but this can be incorporated
as an additional specialized task.

Using this approach, fonts may be extended to other alphabets
and non-alphabetic languages for the benefit of billions of people
whose native languages are not written in Latin alphabets. Unicode
defines 136900 characters [The11], all of which can be generated
in any font using this approach.
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