
Security and Encryption at Modern Databases
Martin Ocenas

Brno University of Technology
iocenas@fit.vutbr.cz

Ivan Homoliak
Brno University of Technology

ihomoliak@fit.vutbr.cz

Kamil Malinka
Brno University of Technology

malinka@fit.vutbr.cz

Petr Hanacek
Brno University of Technology

hanacek@fit.vutbr.cz

ABSTRACT
Data is a most valuable part of most of nowadays system. A lot of
hackers and criminals are trying to steal this data all the time. Due
to that data should also be the best protected part of every
company's systems. We would like our systems to be
impenetrable, but that is not possible. If we want to protect the
data, in case our system is compromised, we need to use
encryption.

This article describes traditional ways of database encryption,
modern concept of securing data and some possible concepts how
to secure the data using encryption. All of these approaches are
discussed from high-level point of view to show their impact on
security of entire system.

CCS Concepts
• Theory of computation➝Theory and algorithms for
application domains •Database theory➝Theory of
database privacy and security
Keywords
Database; DBMS; Encryption; Security; Threat; Performance;
SQL

1. INTRODUCTION
In todays world, data are the most valuable part of IT

systems. In enterprise sector it contains business plans, models,
know how, information about customers, employees, other
companies etc. All of these is a pretty attractive target for hackers
and malicious users which can take advantage of them and sell or
disclose them. Another threat is loss of the data, through
ransomware infection or it's unauthorized modification. Loss or
disclosure of internal data can be devastating for most of big
companies, and companies does not want to take this risk. To
avoid these threats we need to secure them. The best way is, of
course, to secure our systems and make them impenetrable, but
that is an ideal case which we can never completely achieve in
real world. To make our data really secure, we need to protect
them even in case, that attacker has some access to our system.

Way to protect a data, during security breach, is an
encryption. Proper usage of encryption can make it impossible to
understand the data content, even if attacker can access them but
do not have encryption key. Encryption can also protect the data
against modification, or at least let us know that the data has been
modified. In modern systems there are a lot of ways how to use
encryption to protect data. Each of this way works differently and
can protect the data against different threat.

We distinguish two types of threats: insider threat [1] and
outsider threat. The insider threat is divided to intentional and
unintentional. Both types of insider threat present danger to
database system but in different ways. Intentional insider threat
represents an entity that wants to somehow harm the company --
steal the data, sabotage the system, or do a fraud [2].
Unintentional threats may be hardware malfunction, natural
disasters, but also users who put system's data on the public web
page or make some other mistake [3]. Outsider threat represent
penetration made from outside by various kind of attackers that
want to steal some private data or sabotage the company.

In this paper, we will describe data encryption and how to
use it, to protect our data mainly from outsider and intentional
insider threat.

2. Database encryption
Encryption can prevent disclosure of data, even if attacker

can access them. Only problem is if he can break thought the
encryption. So data security depends on entity which performs the
encryption and what exactly is encrypted.

2.1 Where can we perform encryption
There are multiple levels where can perform encryption. Each of
them have different possibilities of what can they encrypt and
what are possible consequences of successful attack against entity
performing it.

2.1.1 File system encryption
We can encrypt hard drive, partition or just file container.

We may use tools on system level - such as Linux Unified Key
Setup (LUKS), or at user space like VeraCrypt [4], BitLocker [5].
Also we can take advantage of security hardware, such as
Hardware Security Modules (HSM) or Trusted platform module
(TPM).

Advantage of this approach is, that it is completely
transparent to the rest of system, so there is no need to modify the
application. Unfortunately this advantage is also a disadvantage.
In the case that attacker gain control of our system, this encryption
will not stop him from reading the data, because the encrypted
volumes will probably be unlocked.

2.1.2 Database management system
Another place to perform encryption in is the Database

Management System (DBMS). There are multiple possibilities of
how to encrypt data using DBMS, and what to encrypt. Such as
encryption of databases, tables and specific columns in SQL
databases. These possibilities are further described in subsection
2.3.

Encrypting data at DBMS level will help us in the case
attacker gain access to the machine's OS, but cannot break into
DBMS. Attacker may extract the key from DBMS process or
directly from the system's memory dump, but due to the required
technical skills is this unlikely to happen.

2.1.3 Application
In this scenario, the data would be in database encrypted, but

the database itself would not be able to decrypt it.

Advantages of this approach contains the independence on
database's ability to encrypt data. Also application can choose,
which data will be encrypted.

Main disadvantage is that we need to implement it in the
application. Which adds implementation overhead and add a
considerable danger of inproper implementation which may lead
to security flaw.

2.2 Key storage
Encryption itself is safe and useful only as long as encryption key
is not compromised. Generally it is a good idea to store the
encryption key separately from the encrypted data on some other
place. This safe place might be different computer, TPM, HSM,
some hardware token etc. Also it is possible to store the
encryption key on same place, but encrypt the key itself, before it
is stored.

2.2.1 Key management for file system encryption
We can distinguish two possibilities of when to get the

encryption key. In pre-boot phase we get the before the operating
system is booted. This way allow us to encrypt even the system
partitions, but we are not able to use much of the system's
functions. If retrieving the key in the post-boot phase, the
situation is almost opposite. We are not able to encrypt system's
partitions, only the data, but we are able to use full power of the
operating system.

And where can we get the encryption key from?
First possibility is to manually enter the encryption password

before each boot. This is a secure way, but may lead to delays
because of need of manual actions.

Another possibility is to retrieve encryption key from the
TPM (Trusted Platform Module). TPM has the ability to
distinguish which operating system is running and asking for the
encryption key. Because of that, it is unlikely that TPM will leak
the key to someone else than rightful operating system.

Next possibility is to get they key from key-management
server though the network. In that case, the booting system
authenticates to the key-management server and gets the key. This
case is suitable for the post-boot authentication.

2.2.2 Key management for the DBMS
In this case we assume that encryption keys are used by the

DBMS and, at runtime, they are in DBMS's memory. To make
this work, we need to pass the encryption key to the DBMS each
time it is started.

Simplest way is to create a script, that will insert the
encryption key, into the DBMS process, after it starts. To make it
secure we store the key on different machine and insert it via push
model. In this case, attacker cannot access the encryption key if he
takes control over the database machine.

Another possibility is to use special software for key storing,
such as Oracle wallet [6]. This software provides a secure place to
store the keys and reveals them only to the DBMS process. This

solution should be secure, but it requires cooperation between
DBMS and wallet system, which means specific implementation
for each DBMS.

2.2.3 Key management for the application
Passing keys to the application is, in principle, very similar

like passing key to the DBMS. We can use the same or very
similar techniques.

But if we assume that application is running on different
machine than database, then we can use more straight approach
and add the encryption key into the application's configuration.

2.3 Encryption in SQL databases
This section describes encryption possibilities specific to SQL
databases. Level of encryption differs from use cases of what are
we going to defend, and against what threat.

2.3.1 Database system encryption
In this case we are encrypting the entire database system. It is

a similar solution to the encryption of file system. Also in this
case are all the data encrypted by the same key. Mayor difference
is, that in this case, the encryption is performed by the DBMS, so
the storage is not opened for other processes.

Advantage is that it can protect the data, even if DBMS's
operating system is compromised. Encryption keys should be only
stored in DBMS's memory, so the attacker cannot easily access
the data. Another advantage of this solution is, that it is simpler to
implement, that solutions with more granular approach.

2.3.2 Database encryption
In this solution each database is encrypted by different key. The
encryption keys themselves are encrypted by master key as show
in the Figure 1. At this approach the master key is delivered to the
DBMS at a start of it's process. Advantage against the approach of
encrypting entire database with one key, are a more granular key
management. That allows us to change the encryption key to one
database with no need to re-encrypt entire DBMS's storage, but
only the impacted database.

Figure 1: Database encryption keys

2.3.3 Table encryption
In this approach the system will distinguish the encryption on

per table basis. This allows us to separate access into the tables,
and we should use it only we want to protect only some tables.

Advantage of this solution is, that it is not mandatory to
encrypt all the tables, which can save performance.

Disadvantage of this solution is, that structure of the database
is not protected by the encryption. So if attacker gains access to
the data-at-rest, then he can extract metadata from the database
and it's tables. In that case, the data itself will not be leaked, but
attacker will at least find out which data are stored in each table.

2.3.4 Column encryption
Encrypting only specific columns, we can hide only the

sensitive data from each record. This can be useful to address law
requirements, to protect personal data of customers or employees,
so that only data-administrating employees have full access to it.
Disadvantage is a rising complexity of key and system
management.

3. Modern database possibilities
In time technology does change, and so does demands on it.

Application needs to process big and flexible data, and be able to
store it. This lead to creation of NoSQL databases. Also in
nowadays the companies search for a ways to not administer their
own IT infrastructure and outsource it, if possible.

This section describe technologies and approaches, usable for
databases, that came up in recent years. It will briefly describe the
technologies themselfs and discuss their impact on security.

3.1 Cloud
Nowadays we can hear the name cloud set on a lot of
technologies, which sometimes have nothing in common. In this
article by the word cloud we understand an environment which
can run and scale the containers inside, across multiple physical
machines. As a container we take a package of operating system,
environment and application, such as docker container, which can
be deployed at a cloud and run exactly the same functionality, no
matter the host.

We need to distinguish types of cloud - public, private and on
premise. Using the public cloud, the operator usually buys the
computing resources from cloud provider, and deploys it's own
containers with application, database or any other kind of service.
This infrastructure is shared with other customers. Following this
scheme, the operator has full control over software, running inside
the containers, but has no control over the hardware nor over the
hypervisor.

In private cloud, it is similar to public but the infrastructure is
dedicated to one customer.

Using on premise cloud, the operator is also a cloud administrator
and has control over both containers and environment. In that case
the operator can take advantage of cloud's container system and
still run it in private environment.

3.1.1 Microservice architecture
In cloud we often use a service (or microservice)

architecture. This design pattern suggests to run separable parts of
system in different runtimes. Database can be one of these
services, as it is independent of application. Mayor advantage of
microservice architecture is a good scalability and possible
redundancy of services.

Because the communication between services is performed
on the network layer, we need to also secure the communication.
Even in cloud it is possible to hijack the traffic, or deploy
malicious version of some service. For database it should not be a
problem, because most of databases support TLS, which should
be sufficient if trustworthy certificates are used.

3.1.2 Database as a service
Another approach is to not run in own container but use

cloud possibility of Database as a service (DaaS or DbaaS).
Difference is, that with DaaS the operator has no control over

DBMS. Using DaaS also removes operator's possibility to control
way how data is stored and secured.

Security of the data here relies entirely on the DaaS provider
and it's ability to protect the data. While storing data in DaaS we
must consider possibility of provider's failure to protect the data
and also intentional data theft by the provider. Using business
level clouds we can settle this in Service Level Agreement (SLA).
Using free clouds makes a significant risk for storing the sensitive
data in this way.

If we want to secure the data, no matter the provider, we
need to encrypt them outside database, either by application
encryption or techniques used for encrypted search.

3.1.3 Security at cloud
In public and private clouds infrastructure is run by provider,

which has access to all data and containers in it. To protect our
data we need to cover it's protection in SLA or other form of
agreement. Provider will always have some way to access our
data, which are placed in his cloud. Only other way is to
manipulate only with encrypted data inside cloud.

Also in public clouds, environment is shared with multiple
customers. This can be a security problem when bugs like L1
Terminal Fault appears. These bugs allow malicious customer to
steal data from other containers running on same hypervisor. Due
to that the public clouds are not sufficient for application which
works with sensitive data.

Using on-premise cloud, all of the environment is under
operator's control so there is no need for additional security.

Advantage of containers is an easy way to install and deploy
security updates, which is a common source of security problems.
Updates can be easily installed just by updating the impacted
image layer and deploying the updated container. Due to the
advantages of service architecture and scaling, this can be
performed without outage.

3.2 Encrypted search
When encrypting data in database, we need to ask, how will

it affect search of data? Will DBMS be able to determine which
data we seek? And how encryption affect indexes, and thought
them the search performance?

This is no problem with encryption that are transparent to the
DBMS, such as file system encryption. Schemes where DBMS
has access to the encryption key, and can decrypt the data should
not be a problem. Problem arises in case, that encryption is
performed in the application, or generally in data provider. In this
case the DBMS does not know the stored data, but we would like
to be able to search in them.

All the queries in the DBMS are build upon several base
operations. SQL systems are mostly build upon relational algebra
and it's operations like set union, difference, projection, selection,
etc. NoSQL system are mostly build upon Associative arrays and
it's operations like construction, find, addition. If the DBMS is
able to perform all of these operations over encrypted data, it
would be possible to perform even entire queries over encrypted
data.

Solution which enables to do this is called Homomorphic
encryption. Fully Homomorphic Encryption (FHE) is an
encryption system, which allows to do arbitrary computation
operation over encrypted data and get an encrypted result. Basic
idea came in 1978 in [7]. By that time is was uncertain if it is even
possible to create a FHE. A lot of partially homomorphic
cryptosystems were created since that. These allowed to perform
several operations over the encrypted data, but rest of the

operation must have been done over the plaintext. First
construction of FHE was introduced in 2009 in [8]. Since that a
lot of improvements and usage of these were made, e.g. [9], [10],
[11]. Another approach to this problem were introduced in [12]
and is called Searchable Symmetric Encryption. These approaches
enables us to separate providing, administering and querying the
data to different entities without security flaws. DBMS can
receive the encrypted data from the provider, and administer
them. By administering the data we understands storing them,
search in them but also enforcing the access rules. With all that
accomplished, DBMS is able to accept query from querier and
return exactly the data, that was queried for. Decryption of the
data is performed by querier. This approach do not disclose the
data to the DBMS, and also do not disclose any additional data to
the querier.

Encrypting data at the provider and storing them in the
database only in encrypted form, also makes the data more secure
in case the of attack. Even if attacker takes control over the
DBMS, he is not able to decrypt the data. Disadvantage of this is a
performance overhead, due to the [11] the overhead is between
30%-500% in the standard SQL databases.

3.3 SGX
For a long time there have been attempts to create a

computation resource, which cannot be hacked and thus can be
trusted. Result of such a work is called Trusted Computation Base
(TCB). TCB is a hardware device, which can store data or
perform operation and is by design resistant to any kind of
malicious behavior. Another intention is to achieve a "Secure
Remote computation" - ability to perform computation on remote
machine and can prove, that the machine does not do something
malicious.

One of the recent concept, designed and implemented by
Intel in it's processors, is called Software Guard Extensions
(SGX). SGX is a hardware inside the CPU and a set o CPU
instructions to communicate with the HW. Concept and design of
SGX is in more detail described in [13].

In shortcut SGX allows developer to create a container inside
the CPU, this container is called enclave. Enclave stores data and
code, and is able to execute the code in a secure environment.
Enclaves are stored in special DRAM memory called PRM
(Processor Reserved Memory). It is a memory placed in the CPU,
and CPU protects the access to it, so no software, except the
enclaves can access it, and even enforces the enclaves to be able
to access only part of PRM assigned to them. Enclaves are once
initiated by any process, and since that no process can directly
access them, only way to communicate to the enclave is though
predefined entry points.

Next part of the problem is communication with the TCB.
Even we really trust SGX to be flawless and secure, we need to be
able to securely communicate with it. To solve this problem, SGX
can perform a software attestation - it is able to prove to the user,
that he communicates with certain software inside trusted
hardware. To achieve this, every SGX contains an asymmetric
key pair, and a certificate signed by it's manufactured. Any remote
machine may verify the certificate and use it to establish a secure
channel directly with the SGX. This enables us to securely
communicate with SGX even if SGX resides in a compromised
machine.

SGX may solve the problem of untrusted environment, such
as public clouds, where even a system administrator is a potential
threat. There are already concepts of real data processing systems
getting advantage of SGX, such as EnclaveDB [14] or VC3 [15].

These systems are designed to be secure, even if entire technology
stack, except SGX, on server is compromised.

4. Related work
This section present articles, which covers multiple

approaches of securing and encrypting the databases.
The article [16] describes database security model, treats to

the database and security considerations to the databases. It also
covers several ways of how to encrypt the database, but only of
few. This article describes more ways of using the encryption end
describes their impact on the security

The article [17] discuses a layers, where can we perform the
encryption and impact of encryption on performance. Then it
describes a problems and solutions with implementations of
database encryption.

In difference to mentioned articles, this article provide an
overview of classical and modern encryption possibilities and
their impact on database security.

5. Conclusion
Encryption and security of data is an important task which

every system developer and provider must take into account. We
have described and discussed a traditional ways of securing
databases through the encryption. These approaches are well
supported in popular SQL databases.

Last chapters presented some modern possibilities and use
cases for databases, such as cloud and containers, secure remote
computation using SGX, homomorphic encryption etc. and
discussed their impact on security. These technologies are still
subjects of research and will take time to have them in production.
But if they prove successful they can solve a lot of the security
problems with DaaS, untrustworthy environments and hacked
machines.

6. Acknowledgments
This work was supported by the BUT project FIT-S-17-4014 and
the IT4IXS: IT4Innovations Excellence in Science project
(LQ1602).

7. REFERENCES
[1] I. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and M.

Ochoa, “Insight into insiders and it: A survey of insider
threat taxonomies, analysis, modeling, and
countermeasures,” ACM Computing Surveys (CSUR), vol.
52, no. 2, p. 30, 2019.

[2] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak, The CERT
guide to insider threats: how to prevent, detect, and respond
to information technology crimes (Theft, Sabotage, Fraud).
Addison-Wesley, 2012.

[3] F. L. Greitzer, J. R. Strozer, S. Cohen, A. P. Moore, D.
Mundie, and J. Cowley, “Analysis of unintentional insider
threats deriving from social engineering exploits,” in 2014
IEEE Security and Privacy Workshops, pp. 236–250, IEEE,
2014.

[4] “Veracrypt - free open source disk encryption with strong
security for the paranoid.”
https://www.veracrypt.fr/en/Home.html.

[5] “Bitlocker.”
https://docs.microsoft.com/en-us/windows/security/informati
on-protection/bitlocker/bitlocker-overview.

[6] “Using oracle wallet manager.”
https://docs.oracle.com/cd/B28359
01/network.111/b28530/asowalet.htm. Accessed: 2018-05-
25.

[7] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data
banks and privacy homomorphisms,” Foundations of secure
computation, vol. 4, no. 11, pp. 169–180, 1978.

[8] C. Gentry, “Fully homomorphic encryption using ideal
lattices,” in the 41st ACM Symposium on Theory of
Computing (STOC), 2009.

[9] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù,
“Homomorphic secret sharing: optimizations and
applications,” in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, pp.
2105–2122, ACM, 2017.

[10] H. Chen, K. Laine, and P. Rindal, “Fast private set
intersection from homomorphic encryption,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1243–1255, ACM, 2017.

[11] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin,
V. Gadepally, R. Shay, J. D. Mitchell, and R. K.
Cunningham, “Sok: Cryptographically protected database
search,” in Security and Privacy (SP), 2017 IEEE
Symposium on, pp. 172–191, IEEE, 2017.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: improved definitions and
efficient constructions,” Journal of Computer Security, vol.
19, no. 5, pp. 895–934, 2011.

[13] V. Costan and S. Devadas, “Intel sgx explained.,” IACR
Cryptology ePrint Archive, vol. 2016, p. 86, 2016.

[14] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure
database using sgx,” in EnclaveDB: A Secure Database using
SGX, p. 0, IEEE, 2018.

[15] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M.
Peinado, G. Mainar-Ruiz, and M. Russinovich, “Vc3:
Trustworthy data analytics in the cloud using sgx,” in
Security and Privacy (SP), 2015 IEEE Symposium on, pp.
38–54, IEEE, 2015.

[16] I. Basharat, F. Azam, and A. W. Muzaffar, “Database
security and encryption: A survey study,” International
Journal of Computer Applications, vol. 47, no. 12, 2012.

[17] E. Shmueli, R. Vaisenberg, E. Gudes, and Y. Elovici,
“Implementing a database encryption solution, design and
implementation issues,” Computers & security, vol. 44, pp.
33–50, 2014.

Authors’ background

*Title can be chosen from: master student, Phd candidate, assistant professor, lecture, senior lecture, associate professor,
full professor

Your Name Position* Email Research Field Personal website
Martin Ocenas Phd candidate iocenas@fit.vutbr.cz Computer security
Ivan Homoliak Assistant

professor
ihomoliak@fit.vutbr.cz Computer security

Kamil Malinka Assistant
professor

malinka@fit.vutbr.cz Computer security

Petr Hanacek Associate
professor

hanacek@fit.vutbr.cz Computer security

	1. INTRODUCTION
	2. Database encryption
	2.1 Where can we perform encryption
	2.1.1 File system encryption
	2.1.2 Database management system
	2.1.3 Application

	2.2 Key storage
	2.2.1 Key management for file system encryption
	2.2.2 Key management for the DBMS
	2.2.3 Key management for the application

	2.3 Encryption in SQL databases
	2.3.1 Database system encryption
	2.3.2 Database encryption
	2.3.3 Table encryption
	2.3.4 Column encryption

	3. Modern database possibilities
	3.1 Cloud
	3.1.1 Microservice architecture
	3.1.2 Database as a service
	3.1.3 Security at cloud

	3.2 Encrypted search
	3.3 SGX

	4. Related work
	5. Conclusion
	6. Acknowledgments
	7. REFERENCES
	Authors’ background

