
Model Repair Revamped

— On the Automated Synthesis of Markov Chains —

Milan Češka1, Christian Dehnert2, Nils Jansen3, Sebastian Junges2,
and Joost-Pieter Katoen2(B)

1 FIT, IT4I Centre of Excellence, Brno University of Technology,
Brno, Czech Republic

2 RWTH Aachen University, Aachen, Germany
katoen@cs.rwth-aachen.de

3 Radboud University, Nijmegen, The Netherlands

Abstract. This paper outlines two approaches—based on counter-
example-guided abstraction refinement (CEGAR) and counterexample-
guided inductive synthesis (CEGIS), respectively—to the automated
synthesis of finite-state probabilistic models and programs. Our CEGAR
approach iteratively partitions the design space starting from an abstrac-
tion of this space and refines this by a light-weight analysis of verification
results. The CEGIS technique exploits critical subsystems as counterex-
amples to prune all programs behaving incorrectly on that input. We
show the applicability of these synthesis techniques to sketching of proba-
bilistic programs, controller synthesis of POMDPs, and software product
lines.

1 Introduction

Model Repair. In 2011, Smolka et al. [5] coined the following model repair prob-
lem [8]: given a finite Markov chain D and a probabilistic specification ϕ such
that D �|= ϕ, find a Markov chain D′ that differs from D only in the transition
probabilities, such that D′ |= ϕ. Typical probabilistic specifications impose a
threshold on reachability probabilities, such as “is the probability to reach a
bad state at most 1/1000?” Model repair thus amounts to tweaking (some of)
the probabilities in a given Markov chain in order to obtain a chain satisfying
the specification. It can be solved using parameter synthesis [5] techniques as,
e.g., supported by the Prophesy tool [21]. An extension of model repair in which
repairs are associated a cost and a minimal-total-cost repair is to be found can
be solved by non-linear programming [5]. The scalability of model repair can be
improved in several ways: by solving a series of convex programs instead of a
non-linear program [19], by repairing abstractions of Markov chains [13], or by a
greedy approach exploiting monotonicity [32]. Particle swarm optimisation has
been used to model repair of Markov decision processes (MDPs) [14].

This work has been supported by the DFG RTG 2236 “UnRAVeL”, the ERC Advanced
Grant 787914 “FRAPPANT”, the Czech Science Foundation grant No. AUTODEV
GA19-24397S, and the IT4Innovations excellence in science project No. LQ1602.

c© Springer Nature Switzerland AG 2019
E. Bartocci et al. (Eds.): From Reactive Systems to Cyber-Physical Systems, LNCS 11500, pp. 107–125, 2019.
https://doi.org/10.1007/978-3-030-31514-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31514-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-31514-6_7


108 M. Češka et al.

Topology Changes. In the original setting of model repair, only transition prob-
abilities are subject to change. Adding or removing transitions is not admitted.
That is to say, every possible repair keeps the topology of the Markov chain
invariant. This notion of repair is thus in fact transition probability repair. In
this paper, we take this idea a step further, and allow for amending the Markov
chain’s topology. More precisely, in addition to the possibility of modifying tran-
sition probabilities, we consider the possible deletion and/or addition of transi-
tions. Changing the topology results in varying sets of reachable states. Viewing
Markov chains as operational model for (discrete) probabilistic programs, repairs
may affect the control structure as well as the probabilistic choices. Traditional
parameter synthesis techniques are inadequate for this problem, as these tech-
niques restrict parameter expressions like 1/2−ε to range over (0, 1), i.e., exclud-
ing zero (no transition) and one (a Dirac transition). Topology changes often
come at a price; e.g., for parametric Markov chains the complexity of qualitative
(i.e., zero-one) reachability becomes NP-complete whereas in absence of topology
changes a polynomial-time algorithm suffices [15].

Synthesis. Model (or: program) repair in the aforementioned sense is a nat-
ural instance of model (or: program) synthesis [1,22,23]. Program synthesis
amounts to automatically provide an instantiated probabilistic program sat-
isfying all quantitative properties, or returns that such design does not exist.
Though the synthesis problem is undecidable in general, there are interesting
sub-cases—such as our variant of model repair—that are decidable (but com-
putationally intensive). We consider a family D of Markov chains where each
family member can be viewed as an admissible repaired version of Markov chain
D ∈ D. Families are finite and consist of finite chains. As in syntax-guided syn-
thesis, possible repairs are described by some grammar rules, either at the model
level or in some high-level description language such as the probabilistic guarded
command language [30] or the PRISM modelling language [27]. The successful
approach of program sketching [35] naturally fits within this setting. Starting
from a program sketch, i.e., a program with “holes”, it aims to obtain a program
satisfying the specification ϕ by filling the holes with possible repairs. Holes are
the unknown parts of the program and can be replaced by one of finitely many
options. All possible program sketch realisations constitute the family D. The
synthesis problems considered in this paper can be used to answer queries like:
(a) give a possible repair (if one exists)?, (b) what are all possible repairs?, and
(c) which repairs are optimal in the sense of minimising the probability to reach
a bad state? Each of these queries can be considered under the additional con-
straint of minimising the total cost of repairs, e.g., what are all possible repairs
for ϕ that are cost minimal?

Our Synthesis Approaches. A naive enumerative solution is to analyse each
individual family member, i.e., each possible amendment, or each possible hole
instantiation. This is infeasible for large families. We therefore outline two
approaches to the automated synthesis of finite-state probabilistic models: the
first one fits within the realm of counterexample-guided abstraction refinement



Model Repair Revamped 109

family

abstract to quotient

quotients verify M |= ϕ

satisfied?
refine quotient:
split family

feasible realisationunsatisfiable

pick M
Pr(M |= ϕ) (+ CE)

yes
inconclusive no

empty

(a) The CEGAR approach

Verifier

instance

reject +
CE

family properties

unsatisfiable

no instance

feasible realisation

accept

(b) The CEGIS approach

Fig. 1. CEGAR and CEGIS approaches to (feasibility) synthesis.

(CEGAR [17]) while the second approach fits within counterexample-guided
inductive synthesis (CEGIS) [36]. Full details of the approaches can be found in
[37,38]. We present both techniques at the level of Markov chains for threshold
problems on reachability problems and illustrate their usage on simple proba-
bilistic programs.

Using CEGAR. We represent all possible designs, thus the entire family, by a
single MDP. A single, initial, non-deterministic choice determines according to
which family member the MDP behaves. This technique is adopted from [16] and
originated in software product lines [18]. As the MDP can be prohibitively large,
we do not solve the synthesis problems directly on this model, but rather on an
abstraction of it—similar in spirit as repairing abstract models [13]. Verifying the
abstraction, i.e., the quotient MDP M , yields under- and over-approximations of
the min and max probability of satisfying ϕ, respectively. A repair is impossible
if e.g., the verification reveals that the min probability exceeds r for ϕ with
threshold ≤r. If the model checking is inconclusive, i.e., the abstraction is too
coarse, we iteratively refine the quotient MDP by splitting the family into sub-
families, see Fig. 1(a). The refinement is guided using the so-called inconsistent
schedulers (aka: counterexamples) that optimise the probability on the MDP.

Using CEGIS. Starting from a family, a candidate realisation D is selected and
discharged to a verifier, see Fig. 1(b). Using off-the-shelf probabilistic model-
checking techniques [3,26], it verifies whether D |= ϕ in case a solution is found.
If D �|= ϕ, a counterexample (CE) is derived which in our setting is a fragment
[41] of the realisation D that refutes ϕ. The key is that this CE is exploited
in a clever way by an SMT (satisfiability modulo theory)-based synthesiser to
rule out potentially many realisations (the dashed area in Fig. 1(b))—rather
than the just refuted realisation D—at once. Thus, in a sense counterexamples
are “extended” to a set of refuting realisations. This synthesis-verification loop
is repeated until either a satisfying realisation is found or the entire family is
pruned implying the non-existence of a realisation D |= ϕ.



110 M. Češka et al.

Design Space Partitioning. Both the CEGAR and CEGIS approach iteratively
partition the family into “good”, “bad” and inconclusive realisations. Phrased
in terms of model repair, they partition the family into repaired, failed, and
unknown Markov chains. The two approaches use complementary partitioning
strategies. Whereas the CEGAR approach starts from considering all possible
realisations, and successively splits the entire family of realisations into sub-
families, the CEGIS approach starts with a single candidate realisation, and
rules out several realisations by effectively exploiting counterexamples.

2 Preliminaries

We start with basic foundations, for details, see [3,4]. Then, we formalise the
notion of families of Markov chains, and define various synthesis problems.

2.1 Probabilistic Models and Specifications

Probabilistic Models. A probability distribution over countable set X is a function
μ : X → [0, 1] with

∑
x∈X μ(x) = μ(X) = 1. Let Distr(X) denote the set of all

distributions on X.

Definition 1 (MC). A Markov chain (MC) D = (S, s0,P) with finite set S of
states, initial state s0 ∈ S, and transition probability function P : S → Distr(S).

MCs have unique distributions over successor states at each state. A sub-Markov
chain (sub-MC) is induced by a MC and a subset of its states. For X ⊆ S, let
the set Succ(X) denote the successor states of X, i.e., Succ(X) = {t ∈ S | ∃s ∈
X. P(s, t) > 0}.

Definition 2 (sub-MC). Let MC D = (S, s0,P) and C ⊆ S a set of (critical)
states with s0 ∈ C. The sub-MC of D,C is the MC D′ = (S′, s0,P′) with
S′ = C ∪ Succ(C), and

P′(s, t) =

⎧
⎪⎨

⎪⎩

P(s, t) s ∈ C, t ∈ S

1 s ∈ Succ(C) \ C ∧ t = s

0 otherwise.

Adding non-determinism over distributions leads to Markov decision processes.

Definition 3 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s0,Act ,P) where S, s0 as in Definition 1, Act is a finite set of actions, and
P : S × Act � Distr(S) is a partial transition probability function.

The available actions in s ∈ S are Act(s) = {a ∈ Act | P(s, a) �= ⊥}. An
MDP with |Act(s)| = 1 for all s ∈ S is an MC. A path of an MDP M is an
(in)finite sequence π = s0

a0−→ s1
a1−→ · · · , where si ∈ S, ai ∈ Act(si), and

P(si, ai)(si+1) �= 0 for all i ∈ N. For finite π, last(π) denotes the last state of π.
Let PathsMfin denote the set of finite paths of M . The notions of paths carry over
to MCs (actions are omitted).



Model Repair Revamped 111

Definition 4 (Scheduler). A scheduler for an MDP M = (S, s0,Act ,P) is a
function σ : PathsMfin → Act such that σ(π) ∈ Act(last(π)) for all π ∈ PathsMfin .
Scheduler σ is memoryless if last(π) = last(π′) =⇒ σ(π) = σ(π′) for all
π, π′ ∈ PathsMfin . Let ΣM denote the set of all schedulers of M.

Schedulers resolve the non-determinism over actions in the MDP. Applying
scheduler σ to an MDP M yields the induced Markov chain Mσ.

Specifications. For simplicity, we only consider reachability specifications ϕ =
P∼λ(♦G) where G ⊆ S is a set of goal states, λ ∈ [0, 1] ⊆ R is a threshold,
and ∼ ∈ {<,≤,≥, >} is a binary comparison operator. Extensions to expected
rewards, PCTL* [2], or ω-regular properties are rather straightforward.

The interpretation of ϕ for MC D is as follows. Let Prob(D,φ)(s) denote the
probability to satisfy φ = ♦G from state s ∈ S in MC D. For initial state s0,
we abbreviate Prob(D,φ)(s0) by Prob(D,φ). Then, D |= ϕ iff Prob(D,φ) ∼ λ.
The specification ϕ holds in MDP M , denoted M |= ϕ, iff it holds for the
induced MCs under all schedulers. The maximum probability to satisfy φ in
MDP M is given by a maximising scheduler σ∗ ∈ ΣM , i.e., there is no scheduler
σ′ ∈ ΣM with Prob(Mσ∗ , φ) < Prob(Mσ′ , φ). As we consider finite models,
such a maximising scheduler always exists. Minimum probabilities are defined
analogously.

2.2 Families of Markov Chains

We present our approaches on an explicit representation of a family of MCs
using a parametric transition probability function. Such an explicit representa-
tion allows to reason about practically interesting synthesis problems, see Sect. 4.

Definition 5 (Family of MCs). A family of MCs is a tuple D = (S, s0,K,P)
where S and s0 are as before, K is a finite set of discrete parameters such that
the domain of each parameter k ∈ K is Tk ⊆ S, and P : S → Distr(K).

The transition probability function of MCs maps states to distributions over
successor states. For families of MCs, this function maps states to distributions
over parameters. Instantiating each of these parameters with a value from its
domain yields a “concrete” MC, called a realisation.

Definition 6 (Realisation). A realisation of a family D = (S, s0,K,P) is a
function r : K → S where ∀k ∈ K : r(k) ∈ Tk. A realisation r yields an MC
Dr = (S, s0,P(r)), where P(r) is the transition probability matrix in which each
k ∈ K in P is replaced by r(k). Let RD denote the set of all realisations for D.

As a family D of MCs is defined over finite parameter domains, the number of
family members (i.e. realisations from RD) of D is finite, viz. |D| := |RD| =∏

k∈K |Tk|, but exponential in |K|. Subsets of RD induce so-called subfamilies
of D. While all these MCs share the same state space, their reachable states may
differ, as demonstrated by the following example.



112 M. Češka et al.

0 1 2 3 4

0.90.1

0.5

0.5

1 1

0.8

0.2

(a) Dr1 with r1(k2) = 2, r1(k3) = 2

0 1 2 3 4

0.90.1

0.5

0.5

1

0.8

1

0.2

(b) Dr2 with r2(k2) = 2, r2(k3) = 4

0 1 2 3 4

0.90.1

0.5

1 1

0.8

0.5 0.2

(c) Dr3 with r3(k2) = 3, r3(k3) = 2

0 1 2 3 4

0.90.1

0.5

1

0.5
0.8

1

0.2

(d) Dr4 with r4(k2) = 3, r4(k3) = 4

Fig. 2. The four different realisations of family D.

Example 1 (Family of MCs). Consider the family of MCs D = (S, s0,K,P)
where S = {0, . . . , 4}, s0 = 0, and K = {k0, . . . , k5} with domains Tk0 = {0},
Tk1 = {1}, Tk2 = {2, 3}, Tk3 = {2, 4}, Tk4 = {3} and Tk5 = {4}. The parametric
transition function is defined by:

P(0) = 0.5: k1 + 0.5: k2 P(1) = 0.1: k0 + 0.9: k1 P(2) = 1: k3

P(3) = 0.8: k3 + 0.2: k4 P(4) = 1: k5

We can simplify the representation by substituting the constants:

P(0) = 0.5: 1 + 0.5: k2 P(1) = 0.1: 0 + 0.9: 1 P(2) = 1: k3

P(3) = 0.8: k3 + 0.2: 3 P(4) = 1: 4

Figure 2 shows the four MCs that result from the realisations {r1, r2, r3, r4} =
RD of D. States that are unreachable from the initial state are greyed out. The
family has five states, each of which are reachable in one of the realisations. Yet,
every realisation has at most four reachable states.

2.3 Synthesis Problems

Problem 1 (Synthesis). Let D be a family of MCs and ϕ = P∼λ(φ) with φ = ♦G
for G ⊆ S. We consider the following synthesis problems:

1. Find a realisation r ∈ RD with Dr |= ϕ.
2. Partition RD into T and F with r ∈ T iff Dr |= ϕ and r ∈ F otherwise.
3. Find a realisation r∗ ∈ RD with r∗ = argmax

r∈RD
{Prob(Dr, φ)}.

The first synthesis problem (referred to as feasibility synthesis) is to determine a
realisation satisfying ϕ, provided some exists. The second problem (referred to as
threshold synthesis) is to identify the set of realisations satisfying and violating



Model Repair Revamped 113

a given specification, respectively. The feasibility synthesis problem is in a sense
just a simple instance of threshold synthesis to find one realisation r ∈ T . The
last problem (referred to as max synthesis) is to find a realisation that maximises
the reachability probability. It can be defined for minimising such probabilities
in a similar way. As our families are finite, such optimal realisations r∗ always
exist. Phrased in terms of model repair, the first problem is concerned with the
question whether a possible repair (under all admissible repairs) does exist, the
second problem partitions the realisations into those that are repaired and those
that cannot, while the last problem is about finding the repair that maximises
(or, dually, minimises) the objective. The simplest synthesis problem, feasibility,
is NP-complete [38] (for a minor extension to families).

Example 2 (Synthesis problems). Recall the family of MCs D from Example 1.
For the specification ϕ = P≥1/10(♦{4}), the solution to the threshold synthesis
problem is T = {r2, r4} and F = {r1, r3}, as the goal state 4 is not reachable for
Dr1 and Dr3 . For φ = ♦{4}, the solution to the max synthesis problem on D is
r2 or r4, as Dr2 and Dr4 almost surely reach state 1.

Remark 1. It is sometimes beneficial to consider a mild variant of the max-
synthesis problem in which the realisation r∗ is not required to achieve the
maximal reachability probability, but it suffices to be sufficiently close to it.
This notion of ε-optimal synthesis for a given 0 < ε ≤ 1 amounts to find a
realisation r∗ with Prob(Dr∗ , φ) ≥ (1−ε) · max

r∈RD
{Prob(Dr, φ)}.

2.4 Synthesis Costs

As in model repair [5], it is quite natural to associate non-negative integer costs
to the various realisation options. This enables distinguishing cheap and expen-
sive repairs. The realisation (aka: repair) costs should not be confused with the
concept of rewards in MCs; the latter impose a cost structure on the MC while
realisation costs impose costs on the realisation at hand.

Definition 7 (Realisation costs). For family D, the function c : RD → N

assigns to each realisation r of D a realisation cost c(r).

The realisation costs are deliberately defined in a rather abstract manner. Con-
crete instances may depend on the probability distribution over K, the number
of options, weighted combinations thereof, and so forth. By imposing an avail-
able budget on the possible realisations, we obtain the following cost-dependent
variants of the earlier synthesis problems.

Problem 2 (Cost-constrained synthesis). Let D be a family of MCs, ϕ and φ as
before, and B ∈ N a budget. Consider the synthesis problems:

1. Find a realisation r ∈ RD with Dr |= ϕ and c(r) ≤ B.
2. Partition RD with r ∈ T iff (Dr |= ϕ and c(r) ≤ B), and r ∈ F otherwise.
3. Find r∗ ∈ RD with r∗ = argmax

r∈RD

{Prob(Dr, φ) | c(r) ≤ B}.



114 M. Češka et al.

hole k2 either { 2, 3 }
hole k3 either { 2, 4 }
module encode
s : [0.. 4] init 0;
s = 0 -> 0.5 : s’=1 + 0.5 : s’=k2;
s = 1 -> 0.1 : s’=0 + 0.9 : s’=1;
s = 2 -> 1: s’=k3
s = 3 -> 0.2 : s’=3 + 0.8 : s’=k3;
s = 4 -> 1: s’=s
endmodule

Fig. 3. Toy-encoding of the family in Example 1.

Cost-constrained maximal synthesis does not need to have a solution; therefore
argmax ∅ equals undefined. Cost-optimal versions of the synthesis problems are:

Problem 3 (Cost-optimal synthesis). Let D be a family of MCs, ϕ and φ as
before. We consider the following cost-optimal synthesis problems:

1. Find a realisation r∗ ∈ T = {r ∈ RD | Dr |= ϕ} with c(r∗) = minr∈T {c(r)}.
2. Find a minimal-cost realisation r∗ for the max/min-synthesis problem.

Example 3 (Cost-constrained and cost-optimal synthesis). Consider our running
example, and let the cost of a realisation r be the sum of its number of reachable
states and their outgoing transitions. That is, c(r1) = 8, c(r2) = 10, c(r3) = 11,
and c(r4) = 11. For φ = ♦{4}, and budget B=10, cost-constrained max synthesis
yields r2. Lowering the budget B to 9, yields r1, while for B less than 8, no
realisation is found.

2.5 A Program Sketching Language

Probabilistic models are typically specified by means of a high-level modelling
language, such as PRISM [27], PIOA [42], JANI [9], or MODEST [7]. Let us
briefly describe how the model-based concepts translate to language concepts in
the PRISM guarded-command language. The aim is to describe families of MCs,
possible constraints on its members, and repair costs in a succinct manner. A
(basic) encoding for the family of Example 1 is given in Fig. 3.

A PRISM program consists of one or more reactive modules that may interact
with each other. Consider a single module. This is not a restriction as every
PRISM program can be flattened into this form. A module has a set of (bounded)
variables that span its state space. The possible transitions between states of a
module are described by a set of guarded commands of the form:

guard → p1 : update1 . . . . . . + pn : updaten

The guard is a boolean expression over the variables of the module. If the guard
evaluates to true, the module can evolve into a successor state by updating its
variables. An update is chosen according to the probability distribution given
by expressions p1 through pn. In every state enabling the guard, the evaluation
of these expressions must sum up to one.



Model Repair Revamped 115

A PRISM sketch is a program that may contain “holes”. Holes are the
unknown parts of the program and can be replaced by one of finitely many
options. A hole is of the form:

holeh either{ expr1, . . . , exprk }

where h is the hole identifier and expri is an expression over the program vari-
ables. A hole h can be used in commands in a similar way as a constant, and
may occur multiple times within a command. To distinguish cheap and expensive
options, options within a hole can have a cost:

hole h either{x1 is expr1 cost c1, . . . , xk is exprk cost ck }

where option i is named xi and has associated cost ci. Costs can be constants or
expressions that evaluate to natural numbers. The option names x1 through xn

can be used to describe constraint on realisations. These propositional formulae
over option names restrict hole instantiations, e.g.,

constraint(x1 ∨ x2) =⇒ x3

requires that whenever the options x1 or x2 are taken for some (potentially
different) holes, option x3 (for some hole) is also to be taken.

The family of realisations of a given PRISM program sketch is now obtained
by all possible substitutions of holes h by their options x1 through xn that satisfy
all specified constraints.

3 Counterexample-Guided Synthesis

Enumeration. A straightforward approach to the synthesis problems for finite
families of MCs is to just enumerate all realisations and analyse each of them
individually. This naive method is practically applicable to small- to medium-
sized families only. For more realistic settings, alternative approaches to this
baseline are needed. We present two different counterexample-guided approaches:
one based on CEGAR [17] and one on CEGIS [36].

A Bird’s Eye View on Our Two Approaches. Let us explain the intuition behind
the CEGAR and CEGIS approaches towards synthesis. Both approaches succes-
sively partition the family D into MCs satisfying ϕ and those refuting ϕ. Figure 4
illustrates this for a two-dimensional parameter space, each parameter having
five possible values. Each cell thus corresponds to a realisation. CEGAR first
checks if all realisations satisfy ϕ on a sound abstraction. Figure 4(a) shows the
situation when the verification fails, i.e. it gives an inconclusive result. This can
happen either due to the subfamily consisting of both satisfying and refuting
realisations, or because the abstraction is too coarse. In the next step, CEGAR
refines the family into two subfamilies and establishes e.g., that all members
in the subfamily represented by the first two columns refute ϕ (indicated in



116 M. Češka et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. CEGAR (a)–(d) vs. CEGIS (e)–(h) illustrated. The grid depicts a family with
two parameters, each with 5 possible values. Thus, each cell corresponds to a reali-
sation. Blue indicates a verification call that fails, green/red a covered region satisfy-
ing/refuting ϕ. The lighter shaded cells indicate realisations ruled out by counterex-
ample analysis. (Color figure online)

red in Fig. 4(b)), while verifying the remaining subfamily is again inconclusive
(Fig. 4(c)). Partitioning that subfamily reveals that the six realisations in the
lower two rows fulfil ϕ. In contrast, CEGIS starts to select a realisation r, e.g.,
the one in the lower left corner. As Dr �|= ϕ (indicated dark red in Fig. 4(e)),
the counterexample provided by the verifier rules out all realisations in the left-
most column (indicated in lighter shade). This scheme is repeated. In Fig. 4(f),
a realisation is selected (second column, lowest row), and similar to the first
case, its counterexample rules out all realisations in that column. In Fig. 4(g),
a satisfying realisation for ϕ is selected. In contrast to Fig. 4(g), (h) shows that
the analysis of counterexamples to ¬ϕ gives rise to more satisfying realisations.
Besides the selected candidate (lowest row), the counterexamples to ¬ϕ cover
the entire column.

3.1 CEGAR

We first represent the family D by a single all-in-one MDP. Selecting action ar

in the (fresh) initial state sD0 of the MDP corresponds to choosing the realisation
r ∈ RD and entering the concrete MC Dr. Let us illustrate this with our example.

Figure 5 shows the MDP MD for the family D from Example 1, where for the
sake of readability, only the transitions and states corresponding to realisations
r1 and r2 are included. Transitions to states (s, ri) are labeled with action ari

;
these action labels are omitted here. Unreachable states from the initial MDP
state sD0 are marked grey. There is a one-to-one relationship between a deter-
ministic memoryless scheduler of MDP MD and a realisation of D. Thus, model
checking MD yields extremal probabilities for all realisations of the family D.

The MDP model grows linearly with the number of family members. To
mitigate the complexity, we apply a simple abstraction where the realisation of



Model Repair Revamped 117

a state in the MDP MD is abstracted away, i.e. the item r is ignored in state
(s, r). Applying this to our running example amounts to a column-wise grouping
of states in Fig. 5. This results in the quotient MDP MD

∼ in Fig. 6. By the over-
approximation in the quotient MDP MD

∼ , a scheduler may first choose actions
ar and then ar′ . This corresponds to switching from realisation r to r′. Such
inconsistent regimes result in an MC outside the family D. There is one-to-one
relationship between consistent schedulers—those that globally stick to a single
realisation r—and the realisation of D.

sD0

(0, r2) (1, r2) (2, r2) (3, r2) (4, r2)
0.9

0.1

0.5

0.5
10.8

1

0.2

(0, r1) (1, r1) (2, r1) (3, r1) (4, r1)
0.9

0.1

0.5

0.5 1

0.8

1
0.2

1

1

Fig. 5. Reachable fragment of the all-in-one MDP MD for realisations r1 and r2.

sD0 [0]∼ [1]∼ [2]∼ [3]∼ [4]∼

0.90.10.5

0.5

1
0.8

1

0.2

0.90.10.5

0.5

10.81 0.2

1

Fig. 6. The quotient MDP MD
∼ for realisations r1 (top actions) and r2 (bottom actions)

Example 4. Consider the quotient MDP MD
∼ in Fig. 6. Transitions from previ-

ously unreachable states, marked grey before, are reachable in the quotient. The
scheduler σ on the quotient MD

∼ that picks ar1 in [2]∼ and ar2 in state [3]∼ is
inconsistent, as it behaves according to two different realisations r1 and r2.

3.2 CEGIS

We follow the typical separation of concerns as in oracle-guided inductive syn-
thesis [1,22,23]: a synthesiser selects single realisations that have not been con-
sidered before, and a verifier checks the selected realisation. Let us first focus
on the verifier. Consider our running example with ϕ = P≤2/5(♦{2}). Assume
the synthesiser picks realisation r1. The verifier then builds Dr1 and determines
Dr1 �|= ϕ. Observe that the verifier does not need the full realisation Dr1 to refute
ϕ. In fact, the paths in the fragment of Dr1 in Fig. 7(a) suffice to show that the
probability to reach state 2 exceeds 2/5. Formally, the fragment in Fig. 7(b) is a
sub-MC with critical states C = {0}. The essential property is [41]:

If a sub-MC of a MCD refutes the safety property ϕ, then D refutes ϕ too.



118 M. Češka et al.

0 1 2
0.5

0.5

(a) Fragment of r1

0 1 21 1
0.5

0.5

(b) Sub-MC of Dr1 with C = {0}

Fig. 7. Fragment and corresponding sub-MC that suffices to refute ϕ

Now observe that the considered sub-MC is part of realisation r2 too. Thus,
Dr2 �|= ϕ. This can be concluded by considering r2, D and C without constructing
Dr2 . First, take the parameters occurring in P(c) for any c ∈ C. This yields k1
and k2. The values for the other parameters thus do not affect the shape of the
sub-MC induced by C. Realisation r2 only varies from r1 in the value of k3.
Therefore, the sub-MC of Dr2 induced by C is isomorphic to the sub-MC of Dr1

induced by C. This results in concluding Dr2 �|= ϕ.
Let us generalise our observations: The verifier gets a realisation r, builds

Dr and checks whether Dr |= ϕ. If yes, then ¬ϕ is considered to seek for
other realisations satisfying ϕ1. Otherwise, some sub-MC of Dr refutes ϕ. (These
counterexamples can be constructed from MC models using techniques from
[41], or as snippets of PRISM programs using [20].) The verifier constructs the
conflict set C and checks which parameters K ′ occur on the outgoing transitions
of states in C. Each r′ with the same parameter values for K ′ can be immediately
refuted, without building the realisation Dr′ . Put in a nutshell, counterexamples
are exploited to rule out several realisations in one shot.

The main task that remains for the synthesiser is to book-keep the considered
and excluded realisations, and, heuristically select realisations that lead to small2

counterexamples, as these exclude potentially many realisations.

4 Applications

This section illustrates the potential wide applicability of probabilistic model
synthesis by providing examples from three different areas: program sketching,
software product lines, and controller synthesis for partially observable models.

4.1 Program Sketching

Background. The idea of program sketching [35] is to start with a program
sketch, a partial program in which difficult expressions, guards, and statements
are left unspecified. The hypothesis of program sketching is that programmers
often have an idea about the main control flow of the program but filling in all
low-level details is laborious and error prone. Completing these low-level details

1 Note that ¬ϕ is not a safety property, but the presented idea can be extended to
liveness properties too.

2 For some suitable measure of size.



Model Repair Revamped 119

is left to an automated synthesiser. Syntax generators are used to describe a
space of the possible code fragments that can be used to complete the program.
The synthesised program has to satisfy the specification ϕ. Program sketching
has been successfully applied to e.g., scientific programs and concurrent data
structures [1]. We show how our approaches can be applied to sketching of prob-
abilistic programs.

Concrete Challenge. Our program sketch is describing a dynamic power manager
(DPM), a key component in dynamically optimising energy consumption [6]. A
DPM controls changing the system’s power states at run time. Depending on
workload and performance constraints, it issues commands (e.g., go into sleep
mode, wake up) to the system. We consider a DPM system with two request
priorities, low and high; these priorities typically depend on the time-criticality.
Requests are placed in finite buffers (based on their priority), provided the buffers
are not full. Otherwise, the requests are lost. A similar DPM has been analysed
by probabilistic model checking [34].

Problem Statement. Our goal is to synthesise a DPM program that decides to
switch power state based on the current workload expressed in terms of the
occupancy of the low-priority and high-priority request buffers.

Approach. The starting point is a program sketch that includes partially specified
commands of the form:

gH & gL −→ 1 : state′ = X

where gH and gL are partially specified guards concerning the low-priority and
high-priority request buffer, respectively, and hole X represents an unknown
update of the DPM state. Possible code fragments to complete the commands
are e.g., in state = 1, the DPM sends a control signal to switch to an active
state, while gH (and similarly gL) indicates that the occupancy is within a given
interval, e.g., at most 50%. We synthesise the guards and updates such that the
resulting DPM control program meets a conjunction of objectives (inspired by
[22]) that constrain the expected number of lost low- and high-priority requests
and the expected energy consumption, for different thresholds λ imposed on
these expected values.

Results. The MC family has over 3 · 105 realisations, i.e., control programs. The
average realisation has more than 5000 states. We consider an unsatisfiable con-
junction of 3 properties describing a possible DPM specification. Within 20 min,
the conjunction is shown to be unsatisfiable (although each property alone is
satisfiable). An enumerative approach takes more than 20 h to show this. For a
satisfiable conjunction, we find a realisation within minutes.

4.2 Software Product Lines

Background. A software product line is (according to wikipedia) “a set of
software-intensive systems that share a common, managed set of features



120 M. Češka et al.

s

10

11

01

00

(1−fa)·(1−fb)

fa·(1−fb)

(1−fa)·fb

fa·fb

(a) Parametric MC

hole fa either { 0, 1 }
hole fb either { 0, 1 }
module encode
s : [0.. 1] init 0;
FA : [0 .. 1] init 0;
FB : [0 .. 1] init 0;
s = 0 -> 1: s’=1 & FA ’=fa & FB’=fb;
..
endmodule

(b) The PRISM encoding for the family

Fig. 8. Translating a parametric MC formulation to an encoding of a family of MCs.

satisfying the specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed way”. Products
in a software product line have different features which can be understood as
functionalities changing the behaviours of a core software system. They thus pro-
vide an elegant way to specify families of systems: every member of the family
comprises the core system and a combination of features. Randomness appears
when modelling energy consumption or failure probabilities.

Concrete Challenge. We consider the BSN (Body Sensor Network) software
product line benchmark from [33], the largest benchmark analysed by proba-
bilistic model checking with the ProFeat tool [16]. BSN describes a network of
connected sensors that send measurements to a unit identifying health-critical
situations. The family contains the various configurations of 10 binary features,
that is, whether a sensor is available or not. We are interested in the reliability
of the system, that is, in the probability that the system behaves as described.
The system is described as a parametric Markov chain:

Example 5. We consider a variation point (a state whose future behaviour
depends on the features) where depending on the availability of features Fa, Fb

the model behaves differently. For each feature, a Boolean parameter f is 1 if
the feature is active and 0 otherwise. At a variation point, the probability of
every transition is scaled by factor p, which equals f if the feature enables the
transition and 1−f otherwise. This results in parametric MC in Fig. 8(a).

Problem Statement. Find all features combinations where the induced system
does not meet a certain reliability.

Approach. The formulation in [33] is a parametric MC, and therefore seems
amenable to standard parameter synthesis in which probabilities have to be
synthesised. However, in absence of certain features, transitions are taken with
probability zero. Traditional parameter synthesis techniques do not allow for
such assignments. We translate the parametric MC into a PRISM-description of
a family, as illustrated in the following example:



Model Repair Revamped 121

Example 6. We adapt the encoding in Fig. 8(a) to an encoding in Fig. 8(b).

Results. Though this is the largest product line example used in [16], verifying
a family with just 1024 family members, with an average size of the realisation
of roughly 100 states is mostly trivial. Within seconds, we can categorise the
different realisations based on their reliability, either by our approaches or by
enumeration.

4.3 Controller Synthesis in Partially Observable Systems

Background. As a next application, we consider controller synthesis (aka: sched-
uler synthesis) in partially-observable MDPs (POMDPs, for short). A POMDP
[25] is an MDP in which an observation o(s) is associated with every state s.
POMDP controllers do not have access to the current state of the POMDP;
instead, they can only use the observations of the visited states. Thus, whereas
an MDP scheduler bases its decisions on finite paths of the form π = s0

a0−→
· · · an−1−−−→ sn, a POMDP controller does so using the observation sequence
o(π) = o(s0)

a0−→ · · · an−1−−−→ o(sn). Several paths in the underlying MDP M may
give rise to the same observation sequence. Controllers have to take this restricted
observability into account: They cannot distinguish paths with the same obser-
vation sequence. Controller synthesis for POMDPs is notoriously hard: Finding
an optimal strategy is undecidable [12] and finding an optimal memoryless strat-
egy is already NP- and SQRT-SUM hard [39]. The complexity of the problem
makes the possibility to guide the search for a strategy by means of synthesis
very interesting.

Concrete Challenge. We consider Maze, a classical motion planning problem
considered as POMDP, see e.g., [29]. A robot is put in a maze with paths sur-
rounded by walls, and its aim is to go to a goal position in the maze. The problem
is partially observable because the robot cannot perceive its true location, but
only the presence or the absence of a wall on either side of its current position.
There is a non-zero probability of slipping, so that the robot does not always
know if its last attempt to make a move had any consequence on its actual
position in the maze.

Problem Statement. The objective is to synthesise a deterministic finite-state
controller [11,29] for a Maze (of different size) with a bounded number of states
that minimises the expected time for the robot to reach the goal.

Approach. To cast this POMDP problem in our framework of families of MCs, we
adapt a recent result [24] that established a one-to-one correspondence between
finding finite memory randomised controllers in POMDPs and satisfying param-
eter valuations in parametric MCs. We sketch a controller by restricting the
memory to a fixed bound. Costs are used to penalise the complexity of the
controllers such that simple, i.e., easy implementable, finite-memory controllers



122 M. Češka et al.

result. The family describes all MCs induced by small-memory observation-based
deterministic strategies with a fixed upper bound on their amount of memory.
We are interested in the expected time to the goal. (This problem can be for-
malised by adding rewards to MDPs in the usual way.)

Results. The MC family has a bit more than 106 realisations, i.e., observation-
based strategies. The average realisation has 134 states. Among other results,
within seconds, we find the 4 strategies that were at most 2% off the maximum.
In comparison, an enumeration-based approach takes several hours, and enumer-
ating all consistent strategies of the quotient (see Sect. 3.1) takes more than an
hour.

5 Epilogue

Summary. This paper outlined two techniques for the automated synthesis of
finite-state probabilistic models or programs. The CEGAR approach takes as
a starting point an abstract representation of a family of Markov chains
and exploits inconsistent policies—policies that switch between different
realisations—to iteratively refine the design space. The CEGIS approach exploits
critical subsystems as counterexamples and uses SMT techniques to prune the
design space by analysing the counterexamples. We foresee a wide applicability
of these kind of synthesis techniques; we illustrated this by examples from pro-
gram sketching, controller synthesis, and software product lines. Both techniques
significantly outperform a naive enumerative approach and differ substantially
from the few existing approaches to synthesising probabilistic programs [10,31].
CEGAR works particularly well if the quotient MDP is succinct while CEGIS
excels the “more unsatisfiable” the synthesis problem is. CEGAR has difficulties
treating constraints on family members (which are straightforward with CEGIS),
whereas the performance of CEGIS significantly drops for synthesis problems for
which the threshold is close to the true reachability probability.

Future Work. The approaches in this paper are first stepping stones towards the
automated synthesis of probabilistic models. This topic has plenty of interesting
directions for future work. This includes synthesising infinite-state probabilistic
programs, integrating efficient parameter synthesis and model synthesis, devel-
oping adequate modeling formalisms for families of probabilistic models, and
learning algorithms for probabilistic models [28,40].

Acknowledgement. This chapter is a birthday salute to Scott Smolka on the occa-
sion of his 65th birthday. Scott’s research is extremely novel—he is always “ahead
of the pack”. He pioneered probabilistic aspects in formal modeling and verifi-
cation with his seminal works on probabilistic processes, testing pre-orders, and
approximate bisimulation. His work with Grosu on Monte Carlo model checking
emerged into (what others misnamed) statistical model checking. Scott was the
first to combine logical programming with model checking and applied formal



Model Repair Revamped 123

methods to new applications such as cardiac devices and, more recently, bird
flocking. His work has been (and still is) an enormous source of inspiration. This
paper celebrates his (and his co-authors’) work on model repair for probabilistic
models and illustrates how tweaking probabilities (as in model repair) can be
generalised towards synthesising model structures. Happy birthday, Scott!

References

1. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018)

2. Aziz, A., Singhal, V., Balarin, F., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It
usually works: the temporal logic of stochastic systems. In: Wolper, P. (ed.) CAV
1995. LNCS, vol. 939, pp. 155–165. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60045-0 48

3. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilis-
tic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 28

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9 30

6. Benini, L., Bogliolo, A., Paleologo, G.A., Micheli, G.D.: Policy optimization for
dynamic power management. IEEE Trans. CAD Integr. Circuits Syst. 18(6), 813–
833 (1999)

7. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

8. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in
verification by AI techniques. Artif. Intell. 112(1–2), 57–104 (1999)

9. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

10. Chasins, S., Phothilimthana, P.M.: Data-driven synthesis of full probabilistic pro-
grams. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part I. LNCS, vol. 10426,
pp. 279–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-
9 14

11. Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for
almost-sure reachability with small strategies in POMDPs. In: AAAI, pp. 3225–
3232. AAAI Press (2016)

12. Chatterjee, K., Chmelik, M., Tracol, M.: What is decidable about partially observ-
able Markov decision processes with ω-regular objectives. J. Comput. Syst. Sci.
82(5), 878–911 (2016)

13. Chatzieleftheriou, G., Bonakdarpour, B., Katsaros, P., Smolka, S.A.: Abstract
model repair. Log. Methods Comput. Sci. 11(3) (2015)

14. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model
repair for Markov decision processes. In: TASE, pp. 85–92. IEEE (2013)

https://doi.org/10.1007/3-540-60045-0_48
https://doi.org/10.1007/3-540-60045-0_48
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-63387-9_14
https://doi.org/10.1007/978-3-319-63387-9_14


124 M. Češka et al.

15. Chonev, V.: Reachability in augmented interval Markov chains. CoRR
arXiv:1701.02996 (2017)

16. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Asp. Comput.
30(1), 45–75 (2018)

17. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

18. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model checking
software product lines with SNIP. STTT 14(5), 589–612 (2012)

19. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in
pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 10

20. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debug-
ging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 11

21. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

22. Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of probabilis-
tic models for quality-of-service software engineering (T). In: ASE, pp. 319–330.
IEEE Computer Society (2015)

23. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017)

24. Junges, S., et al.: Finite-state controllers of POMDPs using parameter synthesis.
In: UAI, pp. 519–529. AUAI Press (2018)

25. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

26. Katoen, J.P.: The probabilistic model checking landscape. In: LICS, pp. 31–45.
ACM (2016)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

28. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016)

29. Meuleau, N., Kim, K., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. In: UAI, pp. 417–426. Morgan Kaufmann
(1999)

30. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996)

31. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. In: PLDI, pp. 208–217. ACM (2015)

http://arxiv.org/abs/1701.02996
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47


Model Repair Revamped 125

32. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy app-
roach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G.,
Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17524-9 21

33. Rodrigues, G.N., et al.: Modeling and verification for probabilistic properties in
software product lines. In: HASE, pp. 173–180. IEEE (2015)

34. Sesic, A., Dautovic, S., Malbasa, V.: Dynamic power management of a system with
a two-priority request queue using probabilistic-model checking. IEEE Trans. CAD
Integr. Circuits Syst. 27(2), 403–407 (2008)

35. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)
36. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-

ing for bit-streaming programs. In: PLDI, pp. 281–294. ACM (2005)
37. Češka, M., Hensel, C., Junges, S., Katoen, J.P.: Counterexample-driven synthesis

for probabilistic program sketches. CoRR abs/1904.12371 (2019)
38. Češka, M., Jansen, N., Junges, S., Katoen, J.-P.: Shepherding hordes of Markov

chains. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 172–
190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 10

39. Vlassis, N., Littman, M.L., Barber, D.: On the computational complexity of
stochastic controller optimization in POMDPs. TOCT 4(4), 12:1–12:8 (2012)

40. Wang, J., Sun, J., Yuan, Q., Pang, J.: Learning probabilistic models for model
checking: an evolutionary approach and an empirical study. STTT 20(6), 689–704
(2018)

41. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J., Becker, B.: Minimal counterex-
amples for linear-time probabilistic verification. Theor. Comput. Sci. 549, 61–100
(2014)

42. Wu, S., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O
automata. Theor. Comput. Sci. 176(1–2), 1–38 (1997)

https://doi.org/10.1007/978-3-319-17524-9_21
https://doi.org/10.1007/978-3-030-17465-1_10

	Model Repair Revamped
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Models and Specifications
	2.2 Families of Markov Chains
	2.3 Synthesis Problems
	2.4 Synthesis Costs
	2.5 A Program Sketching Language

	3 Counterexample-Guided Synthesis
	3.1 CEGAR
	3.2 CEGIS

	4 Applications
	4.1 Program Sketching
	4.2 Software Product Lines
	4.3 Controller Synthesis in Partially Observable Systems

	5 Epilogue
	References




