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Abstract

Accurate online estimation of the structure of
the environment together with the pose of the
robot is an important component to enable
autonomous robotic applications. This paper
analyses the different parameterisations used in
structure from motion (SFM) problem in the
context of accuracy and efficiency of the on-
line solutions. Three point parameterisations
are compared: FEuclidean, inverse depth and
inverse distance. At the same time two repre-
sentations, global and local point coordinates
are tested. Different metrics are used to com-
pare the results, camera localisation errors, re-
projection errors, execution time as well as a
complete analysis on how different parameter-
isations affect the convergence, system’s con-
dition number and the incremental solving are
provided. The paper shows that, with the cor-
rect parameterisation, efficient globally consis-
tent SFM is possible, which under the assump-
tion of small, bounded number of correspon-
dences performs in constant time in open loop.

1 Introduction

The three dimensional representation of the environ-
ment is an important component to enable autonomous
robotic applications. In order to perform tasks, the robot
needs to know where it is and how the environment looks
like. For that, it continuously builds and updates its
position and the environment representation. Simulta-
neous localisation and mapping (SLAM) and structure
from motion (SFM) are the techniques used for this pur-
pose, both sharing similar mathematical formulations.
The only difference appears in the type of measurements
which are integrated in the estimation process, SFM be-
ing restricted to image based sensing. This paper focuses
on the SFM problems, but the presented methods and
results directly apply to any type of SLAM problems
which integrate image sensing of the environment.

Several methods for processing and tracking every
pixel in the image in order to obtain a dense reconstruc-
tion of the environment exist, but they apply only to
small scale applications [Newcombe and Davison, 2010].
In application such as surveillance, monitoring or any
other tasks where the robot operates in large scale envi-
ronment, sparse reconstruction is the method of choice.
The sparse reconstruction is always a good starting
point to recover the dense structure in a more efficient
way [Pollefeys et al., 2001]. The SFM is used to estimate
the camera poses and a sparse number of feature points
in the environment. The online reconstruction pipeline
starts by extracting salient features and matching them
over two or more images. This will produce an initialisa-
tion of the camera pose and 3D points. The initialisation
is followed by tracking the points and updating their es-
timation together with the new camera poses in an SFM
framework. The SFM minimises the reprojection errors
of all the points visible in all the cameras. Assuming
Gaussian noise, this problem became a nonlinear least
squares NLS, where the variables are the 3D points and
the camera poses.

This paper analyses the incremental sparse SFM accu-
racy and efficiency, while several different design options
are being considered. The aim is to find the most ad-
equate parameterisation for incremental processing. A
good parameterisation should provide an accurate solu-
tion, yet be efficient. At the same time we analyse the
system variable affected by the updates under different
point parameterisations. This has a great importance
in applying incremental optimisation strategies as de-
scribed in [Polok et al., 2013], and which are proven to
be very efficient.

2 Existing SFM Approaches

The SFM approaches in the literature can be roughly
categorized by the parameterisation they are using. The
following chapters introduce work done in two basic cat-
egories of parameterization, global and local.



2.1 Global Parameterisations

A global parameterisation is the popular choice among
the early implementations of SFM or visual SLAM sys-
tems. This includes Davison et al.’s Extended Kalman
Filter (EKF) approach along with Eade and Drum-
mond’s [Eade and Drummond, 2006] particle-filter based
system. Due to the computational complexity of updat-
ing the filter, both systems could only handle a small
number of landmarks.

Approaching structure from motion and visual SLAM
as a bundle adjustment (BA) allows for more accurate
yet efficient solution. The problem is formulated as max-
imum likelihood estimation over all the points and the
camera poses given a set of measurements. Those prob-
lems are, in general, denser than the SLAM problem,
one point being seen by many cameras, therefore specific
techniques need to be applied in order to obtain online
results. Separating the structure from the camera poses
and solving first the reduced camera poses system and
then the structure is the most common approach [Agar-
wal et al., 2010]. Recently, some techniques consider
excluding the structure from the optimisation process
and use only the multi view constraints that the struc-
ture adds to the problems to find optimal position of
the cameras [Indelman and Dellaert, 2015]. These tech-
niques are suitable for robot localisation using cameras,
but will not provide a map for of the environment for
performing path planning or other tasks.

An improvement in capability of handling the number
of landmarks is shown in Klein and Murray’s Parallel
Tracking and Mapping (PTAM) system [Klein and Mur-
ray, 2007]. This is made possible by separating tracking
the points and the structure estimation into two asyn-
chronous threads, where tracking is serviced at frame
rate whereas structure estimation does not have to run
at frame-rate. However, some applications require the
map to be available every step, so that the robot can
perform its tasks.

2.2 Relative Parameterisations

In a relative parameterisation, camera poses are only de-
fined relative to one another. Using a graph structure,
the cameras are represented as vertices and an edge be-
tween two vertices represents a relative camera pose. In
this representation, landmark estimates have to be re-
covered using graph traversal techniques such as breadth
first search or shortest path computation using Dijkstra’s
algorithm. Some examples of SLAM systems using rel-
ative representations are in [Guivant and Nebot, 2001;
Bosse et al., 2003; Eade and Drummond, 2008; Konolige
and Agrawal, 2008].

Mei et al’s RSLAM [Mei et al., 2010] exploits the
relative parameterisation by proposing a relative bundle
adjustment technique where both, the landmarks and

Figure 1: Selection of reference views for visual tracking.
The local neighbourhood changes as the current camera’s
position changes (from dashed cyan to solid cyan). The
master view is shown in green and the current neighbour
views are shown in solid yellow. The previous neighbour
view is shown in translucent yellow.

the camera poses are represented in relative coordinates.
This reduces the cost of optimising the map as it allows
a subset of keyframes and landmarks to be optimised at
any one time. A similar representation is also adopted
by Lim et al. [Lim et al., 2014], allowing their system
to perform local bundle adjustment on a small subset of
keyframes.

There are also systems which use a hybrid representa-
tion. For example, Lim et al. [Lim et al., 2011] proposed
a SLAM system which alternates bundle adjustment in
a local window with global optimisation of keyframe seg-
ments. The bundle adjustment in a local window is done
using a relative parameterisation whereas the global op-
timisation of keyframe segments is done using a global
parameterisation. A similar representation is proposed
by Strasdat et al.’s [Strasdat et al., 2011] double win-
dow optimisation (DWO) system. In DWO, an inner
window performs local bundle adjustment [Sibley et al.,
2009] on a small subset of keyframes whereas the outer
window marginalises landmarks to perform pose-graph
optimisation.

3 Incremental Structure from Motion

This section describes the point tracking strategy and
the graph optimisation technique used in the SFM
pipeline, independent from the types of parameterisa-
tions to be used.

3.1 Visual Tracking

The first step in the SFM pipeline is calculation of the
initial camera pose from the incoming images. In this pa-
per, we use the front-end of the monocular visual SLAM
system described in [Lui and Drummond, 2015]. Note
that all the measurements are in relative coordinates,
although the state representation can be either in local
or global coordinate frame. Here, we provide a brief
summary of the visual tracking component. The visual
tracker computes the pose of the current camera relative
to an existing keyframe in the graph using ORB feature



matches [Rublee et al., 2011] as well as the landmarks
that are observed by the current camera. In order to
get better accuracy, four existing images are selected to
provide 2D measurements to the tracker.

The image with the highest number of feature matches
with the current view provides the local coordinate sys-
tem for computing the current measurement. We call
this camera the master view. Among the images that
are connected to the master view through an edge in the
global graph, three complementary views that provide
the highest number of feature matches to the current
view are selected, and are denoted as meighbour views,
see Fig. 1. Using these 2D feature matches, the visual
tracker minimises the re-projection error of the land-
marks from the current view into the four selected cam-
eras from the graph, and at the same time estimates the
inverse distance of each landmark. Subsequently, as the
camera moves around, the master view, and hence the
local coordinate frame is passed from one keyframe to
another. In order to improve the efficiency of feature
matching, we restrict feature matching to be performed
between the current view and the cameras that are in the
local neighbourhood of the previous master view and its
adjacent vertices. For more details on the visual track-
ing system, we refer the reader to [Lui and Drummond,
2015].

3.2 Graph Optimization

Assuming Gaussian noise models, we formulate the SEFM
problem as an incremental nonlinear least squares (NLS)
over a set of variables @ = [y ...0,], the camera poses
given by the set ¢ = [c¢1...¢ue] and the points on the
structure given by the set p = [p1...pnp), together
forming the state 8 = [c,p]. We want to find the op-
timal configuration satisfying a set of measurements,
Z = [21...%m], given by the reprojected points on the
image. This can be done by performing a maximum

likelihood estimation (MLE):

0" = argmax P(0 | z) = argmin {—log(P(0 |2)} , (1)
) 0

where Pr(-) is the projection function of a point, p;,
onto the camera, ¢;. Each observation is assumed with
zero-mean Gaussian noise with the covariance Y and
we measure the re-projection error:

1
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where 2z, is the actual pixel measurement. Note that this
paper considers only re-projection error minimisation,
other measurement functions are not analysed.

Finding the MLE from (1) is done by solving the fol-

lowing nonlinear least squares problem:

. . 1 m )
0 :arg;mn{2zzk—Prk(ci,pj)HEk} . (3)

k=1

Iterative methods such as Gauss-Newton (GN) or
Levenberg-Marquard (LM) are used to find the solution
of the NLS in (3). An iterative solver starts with an
initial point 6° and, at each step, computes a correction
d towards the solution. For small ||d]|, a Taylor series
expansion leads to linear approximations in the neigh-
bourhood of 6°:

&(0° +6) ~e(8°)+J5, (4)

where e = [ey, ..., em]' is the set of all nonlinear repro-
jection errors between the observed and reprojected 3D
points, ey (c;, pj, 2k) = 2k — Pri(c;, pj), with [¢;,p;] C 0
and J is the Jacobian matrix which gathers the deriva-
tive of the components of e.

Thus, at each i*" iteration, a linear LS problem is
solved:

1
6" = argmin = |Ad —b|* , (5)
s 2

where the A = X~T\2J(0%) is the system matrix,
b =X"T"\2¢(6") the right hand side (r.h.s.) and
& = (6 — 6%) the correction to be calculated [Dellaert and
Kaess, 2006]. The the minimum is attained where the
first derivative cancels:

ATA§=A"b or As=n, (6)
with A = AT A, the square symmetric system matrix and
1 = A"b, the right hand side. The solution to the linear
system can be obtained either by sparse matrix factoriza-
tion followed by backsubstitution or by linear iterative
methods. After computing 8, the new linearization point
becomes 81! = 0° @ 4.

In BA applications the initial solution 6° can be rela-
tively far from the minimum, therefore LM is preferred
over the GN methods. LM is based on efficient damping
strategies which allow convergence even from poor initial
solutions. For that, LM solve a slightly modified variant
of (6), which involves a damping factor A:

(A+XD)d=n or Hé=n, (7)
where D can be either the identity matrix, D=1 or
the diagonal of the matrix A, D = diag(A).

3.3 Incremental SFM

In an online application the system grows every step.
New measurements (2) are added to the system incre-
mentally. A new solution @ is computed only when all
the measurements corresponding to the current camera



Figure 2: System matrix of the New College dataset,
after a new camera and the associated landmarks have
been added. Updated values encoded in red.

pose are integrated into the system. In general, given
that in robotic applications most of the points are seen
only by a handful of cameras, the updates have rela-
tively small rank. An example from of that can be seen
in Fig. 2. The size depends only on the number of cam-
eras seeing a point and those cameras are close to each
other. Therefore, online SFM can highly benefit from
the incremental solving methods introduced in [Polok
et al., 2013]. At the same time, by checking the magni-
tude of the correction § corresponding to each variable at
each nonlinear iteration, a partial, fluid re-liniarization
of the system can be obtain similar to the one proposed
in [Kaess et al., 2011], which in turn translates to effi-
ciency.

Another factor which affects the computational com-
plexity is the sparsity of the system matrix A. In SFM
the sparsity is affected by the number of cameras seeing
each point as well as how the points are parameterised in
the system. The sparsity of the system matrix is directly
related to the connectivity in the underlying graph. Fig-
ure 4 shows the graph structure of the SFM problem.
We use factor graphs graphical models to represent the
joint distribution in (1). A desired parameterisation is
the one that reduces the graph connectivity maintaining
a good accuracy of the estimate.

4 Parameterisations in SFM

As mentioned in Section 2, there are several approaches
to parametrising the SFM problem. This section de-
scribes the parameterisations examined in detail in this

paper.

4.1 Point Parameterisations

Frequently, landmarks in the environment are pa-
rameterised as 3D points in Fuclidean coordinates,
pi = [7;,Y;,7;]" resulting in a 3D vector. Nevertheless,
this parameterisation allows only estimation up to scale.
Scale can be introduced as a parameter resulting in a 4D
vector of homogenous coordinates p; = ¢;[x;,y;, 25, 1]T,
where ¢ is the scale factor.

Inverse depth Inverse distance

Euclidean

Figure 3: An illustration of the different landmark pa-
rameterisations in SEFM. Left: Euclidean, where the scale
factor ¢ is 1.0. Center: Inverse depth, where 1/q rep-
resents depth and lies in the direction of the camera’s
principal axis. Right: Inverse distance, where 1/¢ points
towards the direction of the landmark from the camera
center.

A commonly used factor is ¢; = 1/z; , which yields the
inverse depth parameterisation of the points, resulting
in a 3D vector p; = [;/2;,Y;/2j,1/2;]". If the scale is

qj = 1/4/x% 4+ y3 + 27, the landmark p; becomes:

['rﬁy'vZ'}T
- ®)

The landmark p; in (8) can be re-written in a more com-
pact form p; = [uj,vj,w;,q;]7, where [uj,vj, w;]7 is a
unit vector representing the normalised camera coordi-
nates of a 2D measurement. The scale factor g;, on the
other hand, represents the inverse distance of the land-
mark from the observing camera. In this parameterisa-
tion, the only variable parameter is the inverse distance
q, while the normalised camera coordinates remain con-
stant. Figure 3 illustrates the difference between the
three different landmark parameterisations in SFM.

4.2 Camera Parameterisations

If the robot equipped with a camera can freely move in
the 3D space, camera poses can be parameterised using
6D vectors. It is common to consider a camera pose as
an element of the Lie algebra ¢; € se(3) of the special
Euclidean group SE(3) with ¢; being the matrix form of
the pose ¢; = [v,w]", ¢; € RE:

o |:[W]>< 8} 7 ©)

01><3

with [w]x the skew symmetric matrix of the rotation
component w € R3, and v € R? the translation compo-
nent. In this case, the nonlinear least squares problem
in (3) can be solved preforming iterative optimisations
on the manifold.

Optimising only for the camera poses requires the
camera parameters to be known so that the re-projection
error in (4) can be calculated. In general, in an SFM



robotic application those parameters can be estimated a-
priori by calibrating the camera. On the other hand, per-
forming an on-line structure from motion using SFE(3)
poses is problematic, due to the scale drift. In case of
monocular observation of a forward motion, the scale is
ambiguous. Therefore, a good robust estimate of the
scale is required in order to obtain a consistent solution.
For instance detection of the ground plane and calcula-
tion of the scale as a function of distance of a camera
from the ground (assuming that the camera does not
move vertically) can be used.

Nevertheless, the scale can be better estimated dur-
ing the optimisation process, and this can be achieved
by considering the camera poses as elements of the Lie
algebra ¢; € sim(3) of the Similarity group Sim(3) with:

5= |:[w]>< Jqusx?s 8] 7 (10)

q € R being the scale factor [Strasdat et al., 2011].

4.3 Point Coordinate Frames

Every point p; from the state vector 6 is expressed in a
reference frame, either globally in the world coordinate
frame or locally in one of the camera’s coordinate frame.

Points in Absolute Coordinate Frames

It is common to consider that the SFM problem has a
common world reference frame for all points and cam-
eras, {W}. In this case the measurement function
Pry(c;i,p;j) projects a point »p; from the world coor-
dinates to image pixels in the image coordinates Tp;. If
Cp; is the point in the camera coordinate frame {C} and
K; are the intrinsic parameters of the camera ¢; in a
matrix form, we can write this projection as:

T% = eXp(W/C\i) ) (11)
ij = Tiil ij ) (12)
Ip; = K;°p;, (13)

where T; is the transformation matrix corresponding to
the pose of camera ¢; (in world coordinate frame), exp(-)
being the exponential map from the Lie algebra to the
manifold for any camera parameterisation described in
section 4.2. Note that in (13), the coordinates of Zp; are
homogenous, but the measurement function Pry(c;, p;)
returns them dehomogenized. The factor graph repre-
sentation of the global parameterisation is shown in Fig.
4 a), each binary factor being a function ¢("e;, VWp;)
and represented using light-blue points.

Points in Local Coordinate Frames

In a relative representation, each point is represented
in the coordinate frame of a selected camera. We will
refer to this camera as the owner camera. The choice

Q}"‘: (»)

a)

Figure 4: Factor graph representation of the SFM prob-
lem. Points are represented in a) global coordinates,
measurements are binary factors (blue), or b) local co-
ordinates, measurements are unary factors (green) and
ternary factors (red). Dark blue is the prior on the first
camera pose.

of the owner camera has to be made when the point
is added to the system, which is typically immediately
after being triangulated. If a point is triangulated e.g.
from two cameras, one of them must become its owner.
The second camera is preferable, as it is likely closer to
any other cameras that might re-observe the point in the
future, making the transformations more local.

The easiest way to understand the local coordinate
frame representation is by looking at the associated fac-
tor graph. Fig. 4 b) shows the types of factors involved
in a local coordinates representation. Each point p; can
be ”observed “ by a camera ¢, but actually ”represented “
in the coordinate frame {R} of the owner camera c,.

A unary factor corresponds to the owner camera c,
observing the point p; in its own coordinate frame. The
measurement function Pri(Me,,® p;) is:

ij =K, 7zpj : (14)

Note that the pose of ¢, does not play a role in this func-
tion, hence the corresponding factor is unary. On the
other hand, a ternary factor ¢(*ec,,"V ¢,,% p;) is needed
to re-project Rpj into c,:

Wp, = T.%p;, (15)
Op; = T, Wp;, (16)
Tp; = K, “pj, (17)

T, = exp(¢,.) being the transformation from the owner
camera c, coordinate frame to the world coordinate
frame and subsequently 7, ! = exp(—¢,) being the
transformation that brings it to the observing camera
coordinate frame {O}.

4.4 Camera Coordinate Frames

Much like the points, the cameras can also be represented
relative to each other. While this may be beneficial from
the point of view of convergence, it also changes the
structure of the graph substantially. While relative point
representation requires ternary factors, relative cameras



with relative points would require arbitrary size factors.
Each loop closure would then form a clique in the fac-
tor graph, leading to pathological performance in online
solving. Therefore, only the case of global camera coor-
dinates is considered in this paper.

5 Analysis of Different
Parameterisations for Online SFM

In this section we evaluate the accuracy and efficiency
of several SFM point parameterisations in online appli-
cations. Several types of metrics are proposed in the
literature, mainly testing the accuracy of the estimated
camera poses not the reconstruction itself. If a ground
truth is available, relative pose error (RPE) can be calcu-
lated. It was used in [Kummerle et al., 2009] and [Sturm
et al., 2012] for the evaluation of the graph SLAM and
Kinect SLAM, and involves calculating the difference be-
tween the estimated relative poses and the true relative
poses of the camera. A more intuitive way is to com-
pare the absolute trajectory error (ATE) by registering
the ground truth and the estimated camera pose graph
[Sturm et al., 2012].

Table 1 evaluates the precision of two structure from
motion datasets using the above-mentioned metrics. The
Loop dataset is a synthetic dataset, generated for eval-
uation of the frontend. It consists of a sequence of 180
poses, observing uniformly distributed points while mov-
ing in a circle. The last cameras re-observe the first
points, i.e. the loop is closed. The second dataset is the
TUM Frei 3 dataset, which is a sequence of monocular
images with ground truth generated by a motion capture
system. The estimated poses are aligned to the ground
truth poses using the Kabsch algorithm and then the
error metrics are evaluated. The precisions of different
parameterisations are comparable, with the notable ex-
ception of global inverse distance. This parameterisation
is somewhat limited, as the landmarks are restricted to
a single degree of freedom (they are only free to move
along the axis of projection) and may not converge well.

Table 2 evaluates of the same SFM datasets, with the
addition of the New College dataset for which the ground
truth is not available. Given that the precision of the
different parameterisations is similar, this second test
aims to show their influence on online optimisation al-
gorithm, analysing the convergence and the efficiency.
The re-projection error is evaluated as x2, mean of the
re-projection error in pixels and RMSE of the same. In
addition, we calculated the condition numbers of the in-
formation matrix for each dataset and parameterisation,
and also measured the time spent in the nonlinear least
squares solver. The local parameterisations have consis-
tently better condition number, which is important in
solving large systems, or in cases where precise float-
ing point calculations are restricted, such as on a GPU.

The inverse distance parameterisations are faster (while
the global inverse distance is slightly faster than local,
possibly due to simpler factors), although at the cost of
slightly lower precision.

With the incremental solving on mind, the incremen-
tal updates were analysed and compared. Figure 5 plots
the incremental updates on the New College dataset us-
ing the global Fuclidean parameterisation. Note that the
size of the state is growing almost linearly, as every cam-
era observes new landmarks. The value of norm(d) is
changing in the whole time span, which indicates that
the solution is being optimized, rather than settled. The
important part to note are the numbers of changing vari-
ables. To calculate these numbers, norm of the segment
of § corresponding to each variable was calculated and
compared to the thresholds (1076, 1075 and 107%). We
can see that all the variables change, all the time, and
incremental solving is therefore bound to run in expo-
nential time.

On the other hand, in Fig. 6, there is the same plot for
the local inverse depth parameterisation. Note that this
time, the number of changing variables does not follow
the number of variables in the system, and with time set-
tles around 9000 variables being updated at every frame
for the 1076 threshold, or about 4000 for 10~°. Finally,
in Fig. 7, shows a comparison of update sizes of differ-
ent parameterisations for the threshold 10~°. Note that
the updates of the inverse distance have a different di-
mensionality than Euclidean or inverse depth, and are
plotted on the secondary axis. We can see that both the
local Euclidean and local inverse depth parameterisation
settle with constant number of updates per frame. No-
tably, the local inverse distance does not hold this trend,
and despite the drop around the 70th frame, keeps rising.

In Table 3, there are results of evaluations on bundle
adjustment datasets. While not quantitatively the same
as the results on the SfM datasets, the parameterisations
examined in this paper apply to bundle adjustment solv-
ing as well. The datasets include the Guildford Cathe-
dral! and Fast & Furious 6 which was kindly provided
by Double Negative Visual Effects®. Similar behaviour
to the SFM datasets can be observed in here as well.

6 Conclusions and Future Work

In this paper, we have examined some of the popular pa-
rameterisations used in the structure from motion frame-
work, with focus towards globally consistent incremen-
tal solving. The current state of the art incremental
SFM solvers aim to work in constant time, in order to
provide the ability to map large environments. Never-
theless, the commonly used techniques for that are ei-

Lcan be obtained at http://cvssp.org/impart/
2http://www.dneg. com/
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Dataset

Param.

RMSE ATE
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loc. Euclidean
loc. inv. depth
loc. inv. dist.
glob. Euclidean
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glob. inv. dist.
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0.000186 m, 0.020732°
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0.000363 m, 0.020619°
0.000247 m, 0.013945°
0.000531 m, 0.021737°
0.002158 m, 0.070572°
0.008588 m, 0.423213°

loc. Euclidean
loc. inv. depth
loc. inv. dist.
glob. Euclidean
glob. inv. depth
glob. inv. dist.

0.622578 m, 10.620843°
0.645346 m, 11.304622°
0.646779 m, 11.303658°
0.619225 m, 10.618006°
0.620440 m, 10.676661°
0.623242, m, 10.624283°

0.022810 m, 0.626021°
0.035738 m, 1.231776°
0.034766 m, 1.178380°
0.022909 m, 0.659206°
0.023971 m, 0.684937°
0.027379 m, 0.899663°

0.745422 m, 9.734252°
0.762337 m, 10.703952°
0.761142 m, 10.692832°
0.742262 m, 9.732721°

0.743851 m, 9.793333°

0.745059 m, 9.783204°
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Figure 5: Comparison of effects of the global Euclidean
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Table 1: Error evaluation.
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Figure 6: Comparison of effects of the local inverse depth
parameterization on the incremental updates on the New

parameterization on the incremental updates on the New
College dataset.

ther postponing the global optimization (PTAM), use
an iterative solver rather than a direct one [Eustice et
al., 2006] or produce only locally consistent solution by
the means of windowed optimization. In this paper, we
show that efficient and scalable globally consistent SFM
is possible with the right parameterisation. Using local
inverse depth parameterisation the number of variables
affected by integrating new measurements into the op-
timiser stays bounded, even if the size of the state con-
tinuously grows. In our future work, we will focus on
implementation of an incremental NLS solver, suitable
for optimising such problems in constant time.
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