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a b s t r a c t

We present a novel approach for designing complex approximate arithmetic circuits that trade correct-
ness for power consumption and play important role in many energy-aware applications. Our approach
integrates in a unique way formal methods providing formal guarantees on the approximation error
into an evolutionary circuit optimisation algorithm. The key idea is to employ a novel adaptive search
strategy that drives the evolution towards promptly verifiable approximate circuits. As demonstrated in
an extensive evaluation including several structurally different arithmetic circuits and target precisions,
the search strategy provides superior scalability and versatility with respect to various approximation
scenarios. Our approach significantly improves capabilities of the existing methods and paves a way
towards an automated design process of provably-correct circuit approximations.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Approximate circuits are digital circuits that trade functional
correctness (precision of computation) for various other design
objectives such as chip area, performance, or power consumption.
Methods allowing one to develop such circuits are currently
in high demand as many applications require low-power cir-
cuits, and approximate circuits—trading correctness for power
consumption—offer a viable solution. Prominent examples of such
applications include image and video processing [1,2], or archi-
tectures for neural networks [3,4].

There exists a vast body of literature (see e.g. [5–8]) demon-
strating that evolutionary-based algorithms are able to auto-
matically design innovative implementations of approximate cir-
cuits providing high-quality trade-offs among the different design
objectives. As shown in [9,10], many applications favour prov-
able error bounds on resulting approximate circuits, which makes
automated design of such circuits a very challenging task.

To be able to provide bounds on the approximation error,
one can, in theory, simulate the circuit on all possible inputs.
Unfortunately, such an approach does not scale beyond circuits
with more than 12-bit operands even when exploiting mod-
ern computing architectures [4]. A similar scalability problem
does, in fact, emerge already when using evolutionary optimi-
sation of circuits while preserving their precise functionality. To
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solve the problem in that case, applications of formal verifica-
tion methods [11–13] have been proposed. Naturally, attempts
to use formal verification methods — including binary decision
diagrams (BDDs) [2], Boolean satisfiability (SAT) solving [14],
model checking [15], or symbolic computer algebra employing
Gröbner bases [16] — have appeared in design of approximate
circuits too. However, these approaches did still not scale beyond
approximation of multipliers with 8-bit operands and adders with
16-bit operands.

In this paper, based on our preliminary work [17], we propose
a new approximation technique that integrates formal meth-
ods, namely SAT solving, into evolutionary approximation. We
concentrate on using Cartesian genetic programming (CGP) for
circuit approximation under the worst case absolute error (WCAE)
metric, which is one of the most commonly used error metrics.
The key distinguishing idea of our approach is simple, but it
makes our approach dramatically more scalable comparing to
previous approaches. Namely, we restrict the resources (running
time) available to the SAT solver when evaluating a candidate
solution. If no decision is made within the limit, a minimal score
is assigned to the candidate circuit.

This approach leads to a verifiability-driven search strategy that
drives the search towards promptly verifiable approximate circuits.
Shortening of the evaluation time allows our strategy to increase
the number of candidate designs that can be evaluated within the
time given for the entire CGP run. As shown in [17], compared
with existing approximation techniques, our approach is able to
discover circuits that have much better trade-offs between the
precision and energy savings.
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To mitigate negative effects caused by shortening of the evalu-
ation time, we propose in this paper an adaptive control procedure
that dynamically adapts the limit on resources available to the
SAT solver during the evolution. It allows the verification proce-
dure to use more time when needed (typically at the end of the
evolution) in order to discover solutions requiring a longer verifi-
cation time and that would be rejected with a fixed resource limit.
On the other hand, the verification time can also be shortened
(typically, though not only, at the beginning of the evolution)
when many suitable candidate designs are produced.

We have implemented the adaptive strategy in ADAC [18],
our tool for automated design of approximate circuits, that is
now able to discover complex arithmetic circuits such as 32-
bit approximate multipliers, 32-bit approximate multiply-and-
accumulate (MAC) circuits, and 24-bit dividers providing high
quality trade-offs between the approximation error and energy
savings. Such circuits have been approximated by a
fully-automated approach with guaranteed error bounds for the
first time.

1.1. Contribution

The main contributions of this work can be summarised as
follows:

• We propose a new approach for automated design of ap-
proximate arithmetic circuits that integrates in a unique
way formal verification methods for circuit verification into
an evolutionary-driven circuit optimisation.
• We propose a novel adaptive strategy that controls the

evolutionary search by introducing adaptive limits on the
resources used by the verification procedure.
• Using a detailed performance evaluation, we demonstrate

that the proposed approach provides high-quality results for
a wide class of approximation problems including circuits
with different bit-widths, internal structure, and required
precision. The trials also show that our approach provides
superior scalability and versatility comparing to existing
approximation methods.

It should be noted that while the idea of verifiability-driven
search has appeared already in our preliminary work [17], the
current paper significantly extends this work in the following
two aspects. First, we propose and implement the adaptive search
scheme that considerably improves the original verifiability-
driven strategy. In particular, it improves the overall performance,
and, more importantly, it ensures that our approach is versatile,
i.e. in contrast to the method described in [17], it works well for
a wide range of arithmetic circuits and approximation scenarios
without manual tuning of the parameters of the evolutionary
algorithm. The adaptivity is an important methodological im-
provement as the versatility is indeed essential for applying the
approximation process into automated circuit design.

Second, we significantly extend the numerical evaluation to
demonstrate the impact of the features described above. The
evaluation newly includes approximate circuits (with different
bit-widths) for multiplier-accumulators and dividers representing
structurally more complex circuits when compared to adders and
multipliers typically used in the literature. It should be noted
that especially MACs play an important role in many energy-
aware applications — for example, MACs represent highly energy
demanding components in neural network hardware architec-
tures [19].

2. State of the art

Various approaches have been proposed to address the prob-
lem of rapidly growing energy consumption of modern computer
systems. As one of the most promising energy-efficient comput-
ing paradigms, approximate computing has been introduced [20].
Approximate computing intentionally introduces errors into the
computing process in order to improve its energy-efficiency. This
technique targets especially the applications featuring an intrinsic
error-resilience property where significant energy savings can be
achieved. The inherent error resilience means that it is not always
necessary to implement precise and usually area-expensive cir-
cuits. Instead, much simpler approximate circuits may be used to
solve a given problem without any significant degradation in the
output quality. Multimedia signal processing and machine learn-
ing represent typical examples that allow quality to be traded
for power, but approximate computing is not limited to those
applications only. A detailed study of Chippa et al. reported that
more than 83% of runtime is spent in computations that can be
approximated [21].

Many fundamentally different approaches have recently been
introduced under the term of approximate computing. The lit-
erature on the subject covers the whole computing stack, in-
tegrating areas of microelectronics, circuits, components, archi-
tectures, networks, operating systems, compilers, and applica-
tions. Approximations are conducted for embedded systems, or-
dinary computers, graphics processing units, and even field-
programmable gate arrays. A good survey of existing techniques
can be found, for example, in [20,22].

This paper is concerned with automated methods for func-
tional approximation of arithmetic circuits, where the original
circuit is replaced by a less complex one which exhibits some
errors but improves non-functional circuit parameters. In the
following subsections, we provide a brief survey of existing meth-
ods for functional circuit approximation. Our approach falls into
the category of search-based methods described in Section 2.2.
The performance of these methods is directly affected by the
performance of the candidate circuits evaluation. Therefore, in
Section 2.3, we survey existing methods for evaluating the error
of approximate circuits.

2.1. Functional approximation

Technology-independent functional approximation is the most
preferred approach to approximation of digital circuits described
at the gate or register-transfer level (RTL). The idea of functional
approximation is to implement a slightly different function to the
original one provided that the accuracy is kept at a desired level
and the power consumption or other electrical parameters are
reduced adequately. The goal is to replace the original accurate
circuit (further denoted as the golden circuit) by a less complex
circuit which exhibits some errors but improves non-functional
circuit parameters such as power, delay, or area on a chip. Func-
tional approximation is inherently a multi-objective optimisation
problem with several (typically conflicting) criteria.

Functional approximation can be performed manually, but the
current trend is to develop fully automated functional approxima-
tion methods that can be integrated into computer-aided design
tools for digital circuits. The fully-automated methods typically
employ various heuristics to identify circuit parts suitable for
approximation.

The Systematic methodology for Automatic Logic Synthesis of
Approximate circuits (SALSA) is one of the first approaches that
address the problem of approximate synthesis [23]. The authors
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mapped the problem of approximate synthesis into an equiv-
alent problem of traditional logic synthesis: the ‘‘don’t care’’-
based optimisation. Another systematic approach, Substitute-
And-SIMplIfy (SASIMI), tries to identify signal pairs in the circuit
that exhibit the same value with a high probability, and sub-
stitutes one for the other [24]. These substitutions introduce
functional approximations. Unused logic can be eliminated from
the circuit, which results in area and power savings. A different
approach was proposed by Lingamneni et al. that employed a
probabilistic pruning, a design technique that is based on remov-
ing circuit blocks and their associated wires to trade exactness of
computation against power, area, and delay saving [25].

Finally, inspired by the traditional simplification operation, AL-
FANS proposes an approximate simplification that removes some
literals from the original factored logic expression of a node [26].

2.2. Search-based functional approximation

The main limitation of the techniques based on a variant of
probabilistic or deterministic pruning is the inability to generate
novel circuit structures. None of them allows one to replace a part
of the original circuit with a sub-circuit that does not form a part
of the original circuit. This limitation considerably restricts the
space of the possible solutions as shown in [7]. In order to address
this issue and improve the quality of the obtained approximate
circuits, various artificial intelligence techniques have been ap-
plied to accomplish approximations. Nepal et al. introduced a
technique for automated behavioural synthesis of approximate
computing circuits (ABACUS) [6]. ABACUS uses a simple greedy
search algorithm to modify the abstract syntax tree created from
the input behavioural description. In order to approximate gate-
level digital circuits, Sekanina and Vasicek employed a variant
of CGP [5,27]. As shown in [7], this approach is able to produce
high-quality approximate circuits that are unreachable by tradi-
tional approximate techniques. A comprehensive library of 8-bit
adders and multipliers was built using multi-objective CGP. In
the context of FPGAs, circuit approximation has been introduced
and evaluated by means of the GRATER tool [8]. GRATER uses a
genetic algorithm to determine the precision of variables within
an OpenCL kernel.

The proposed search-based approaches share a common idea—
they map the problem of approximate synthesis to a search-based
design problem. An automated circuit approximation procedure
is seen as a multi-objective search process in which a circuit
satisfying user-defined constraints describing the desired trade-
off between the quality and other electrical parameters is sought
within the space of all possible implementations. The approx-
imation process typically starts with a fully-functional circuit
and a target error. A heuristic procedure (e.g. an evolutionary
algorithm) then gradually modifies the original circuit. The mod-
ification can affect either the node function (e.g. an AND node
can be modified to an inverter or vice versa), node input con-
nection, or primary output connection. It is thus able to not only
disconnect gates but also to introduce new gates (by activating
redundant gates).

2.3. Evaluating the error of approximate circuits

The success of approximate design methods depends on many
aspects. Among others, the efficiency and accuracy of the pro-
cedure evaluating the quality of candidate approximate circuits
generated by a chosen heuristic procedure has a substantial im-
pact on the overall efficiency. The quality of approximate circuits
is typically expressed using one or several error metrics such as
error probability, average-case error, or worst-case error.

The search-based synthesis is, in general, computationally ex-
pensive (hundred thousands of iterations are typically evaluated).
Hence, the evaluation needs to be fast as it has a great impact
on the scalability of the whole design process. In order to main-
tain reasonable scalability and avoid a computationally expensive
exhaustive simulation, many authors simplify the problem and
evaluate the quality of approximate circuits by applying a subset
of all possible input vectors. Monte Carlo simulation is typically
utilised to measure the error of the output vectors with respect
to the original solution [6,24,28]. Unfortunately, a small fraction
of the total number of all possible inputs vectors is typically used.
For example, 103 vectors were used to evaluate a perceptron
classifier and less than 104 vectors were employed for a 16 × 16
block matcher in [6]; 108 vectors were used to evaluate 16-
bit adders in [28]. It is clear that this approach cannot provide
any guarantee on the error and makes it difficult to predict the
behaviour of the approximate circuit under different conditions.
Not only that the obtained error value strongly depends on the
chosen vectors but this approach may also lead to overfitting.
Alternatively, the circuit error can be calculated using a statistical
model constructed for elementary circuit components and their
compositions [29,30]. However, reliable and general statistical
models can only be constructed in some specific situations.

Recently, various applications of formal methods have been
intensively studied in order to improve the scalability of the
design process of approximate circuits. As was already said in
the introduction, this step is motivated by the successful use of
such methods when optimising correct circuits (i.e. optimising
non-functional parameters while preserving the original func-
tionality). In this area, binary decision diagrams (BDDs) have
originally been extensively used for combinational equivalence
checking [31]. Currently, modern SAT solvers are substantially
more effective at coping with large problem instances and large
search spaces [32]. Other successful approaches then include,
e.g. symbolic computer algebra based on Gröbner bases [33].

Approaches designed for testing exact equivalence are not
directly applicable for evaluating the approximation error, i.e. for
relaxed equivalence checking. However, the ideas behind efficient
testing of exact equivalence can serve as a basis for developing
efficient methods for checking relaxed equivalence [34]. A com-
mon approach to error analysis is to construct an auxiliary circuit
referred to as the approximation miter [14]. This circuit instanti-
ates both the candidate approximate circuit and the golden circuit
and compares their outputs to quantify the error. The miter is
then converted either to the corresponding Boolean logic formula
in the conjunctive normal form and further solved using a SAT
solver, or represented as a BDD and analysed using a BDD library.
While SAT solvers are able to handle larger instances, they can
be used only when a binary output is sufficient (typically for the
worst case error where one can ask whether the produced error
is under a bound given by the designer as a parameter [4]). On
the other hand, BDDs allow one to efficiently examine the set
of satisfying truth assignments which represents a key feature of
model counting essential for calculating average-case error, error
probability, or Hamming distance [34]. Recently, model checking-
based techniques levering the approximate miter [15] as well as
symbolic computer algebra have also been applied in evaluating
and quantifying errors of approximate circuits [16].

However, the above mentioned approaches do still have a
problem to scale above multipliers with 12-bit operands and
adders with 16-bit operands. This scalability barrier is overcome
in our SAT-based approach that can scale much further due to
its verifiability-driven search strategy combined with an adaptive
control of the resource limits imposed on the SAT solver used.
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3. Problem formulation

In this section, we formalise the problem of designing approxi-
mate arithmetic circuits as a single-objective optimisation problem.
Recall that the aim of the circuit approximation process is to
improve non-functional characteristics (such as the chip area,
energy consumption, or delay) of the given circuit by introducing
an error in the underlying computation.

There exist several error metrics characterising different types
of errors such as the worst-case error, the mean error, or the
error rate. In this work, we primarily focus on the worst-case
error that is essential when guarantees on the worst behaviour
of the approximate circuits are required. For arithmetic circuits,
the worst-case behaviour is typically captured by the normalised
worst-case absolute error (WCAE) defined as follows.

For a golden (original) circuit G, which computes a function
fG, and its approximation C , which computes a function fC , where
fG, fC : {0, 1}n → {0, 1}m,

WCAE(G, C) = max
x∈{0,1}n

|int(fG(x))− int(fC (x))|
2m − 1

.

Here, n represents the number of primary inputs of the circuit
G, m represents the number of primary outputs of G, and int(a)
denotes the integer value of a binary vector a.

Alternatively, the worst-case behaviour can be characterised
by the worst-case relative error or maximal Hamming distance.
To simplify the presentation of the main contribution of this
work, a novel adaptive verifiability-driven approximation, we
restrict ourselves to WCAE. Remarkably, only the miter construc-
tion in SAT-based candidate circuit evaluation (see Section 4.2)
has to be adapted to work with other worst-case error metrics.
Moreover, as shown in [17], there is a close relation between the
circuits optimised for WCAE and for the mean absolute error rep-
resenting another important metric that requires more complex
evaluation procedure.

Non-functional characteristics of the circuit, such as the delay,
power consumption, or chip area, depend on the target tech-
nology the circuit is synthesised for. Computing these charac-
teristics precisely for every candidate solution would introduce
a significant computation burden for the approximation process.
Therefore, we approximate these characteristics by an estimated
size of the circuit computed as follows. We assume that we are
given a list of gates that can be used in the circuit and that each
gate is associated with a constant characterising its size. The size
of the particular gates is specified by the users and should respect
the target technology (see Table 1 for the gates and their sizes
used in our numerical trials). For a candidate circuit C , we then
define its size, denoted size(C), as the sum of the sizes of the gates
used in C . As shown in [2,4,35], size(C) typically provides a good
estimate for the chip area as well as for the power consumption.

The problem of finding the best trade-offs between the circuit
size and the WCAE can be naturally seen as a multi-objective
optimisation problem. In our approach, we, however, treat it as
a series of single-objective problems where we fix the required
values of the WCAE. This approach is motivated by the fact that
the WCAE is usually given by the concrete application where
the approximate circuits are deployed. Moreover, as shown in
several studies [36], optimising the chip size for a fixed error
allows one to achieve significantly better performance compared
to more general multi-objective optimisation producing Pareto
fronts. The performance directly affects the time required to find
high-quality approximation and is essential to scale to complex
circuits such as 16-bit multipliers and beyond.

The key optimisation problem we consider in the paper is
formalised as follows:

Problem. For a given golden circuit G and a threshold T , our goal
is to find a circuit C∗ with the minimal size such that the error
WCAE(G, C∗) ≤ T .

For the functionality given by the golden circuit G, the optimi-
sation attempts to find the minimum number of active gates and
the corresponding connections, represented by the approximate
circuit C∗, that guarantee the desired level of accuracy T .

Before presenting our approach, we emphasise that our aim
is not to provide a complete algorithm that guarantees the op-
timality of C∗: such an algorithm clearly exists as the number
of circuits with a given size is finite, and one can, in theory,
enumerate them one by one. We rather design an effective search
strategy that is able to provide high-quality approximations for
complex arithmetic circuits having thousands of gates in the
order of hours.

4. Adaptive verifiability-driven optimisation

In this section, we propose our novel optimisation scheme
employing four key components: (1) a generator of candidate
circuits that builds on Cartesian Genetic Programming (CGP), (2) an
evaluator that evaluates the error of the candidates by leveraging
SAT-based verification methods, (3) a verifiability-driven search
integrating the cost of the circuit evaluation into the fitness
function, and (4) an adaptive strategy adjusting the allowed cost
of evaluation of candidate solutions during the approximation
process.

4.1. Generating candidate circuits using CGP

CGP is a form of genetic programming where candidate so-
lutions are represented as a string of integers of a fixed length
that is mapped to a directed acyclic graph [37]. This integer
representation is called a chromosome. The chromosome can ef-
ficiently represent common computational structures including
mathematical equations, computer programs, neural networks
and digital circuits. In this framework, candidate circuits are typ-
ically represented in a two-dimensional array of programmable
two-input nodes. The number of primary inputs and outputs is
constant. In our case, every node is encoded by three integers
in the chromosome representation where the first two numbers
denote the node’s inputs (using the fact that each input of the
circuit and the output of each gate is numbered), and the third
represents the node’s function (see the illustration in Fig. 1).
The codes of the gates are ordered column-wise. At the end of
the chromosome, outputs of the circuit are encoded using the
numbers of gates from which they are taken. The so-called level-
back parameter specifies from how many levels before a given
column the source of data for the gates in that column can be
taken.

We use a standard CGP that employs the (1 + λ) search
method where a single generation of candidates consists of the
parent and λ offspring candidates. The fitness of each of the solu-
tions is evaluated and the best solution is preserved as the parent
for the next generation. Other candidates from the generation are
discarded.

In circuit approximation, the evolution loop typically starts
with a parent representing a correctly working circuit. New can-
didate circuits are obtained from the parent using a mutation
operator which performs random changes in the candidate’s chro-
mosome in order to obtain a new, possibly better candidate
solution. The mutations can either modify the node intercon-
nection or functionality. The number of the nodes of candidate
circuits is reduced by making some nodes inactive, i.e. discon-
nected from the outputs of the circuit. However, since such nodes
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Fig. 1. A full adder represented by CGP. Chromosome: (0, 2, 2) (0, 1, 0) (1, 3, 2) (3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8), node functions: AND (0), OR (1), XOR (2), NOT (3).

Fig. 2. A high-level view on the typical approximation miter for the WCAE
analysis, typically e(x) = fG(x)− fC (x).

are not removed, they can still be mutated and eventually become
active again.

The whole evolution loop is repeated until a termination cri-
terion (in our case, a time limit fixed for the evolution process) is
met. For more details of CGP, see [37].

4.2. Candidate circuit evaluation

Recall that the candidate circuit evaluation takes into con-
sideration two attributes of the circuit, namely, whether the
approximation error represented by WCAE is smaller than the
given threshold and the size of the circuit. Formally, we define
the fitness function f in the following way:

f (C) =
{
size(C) if WCAE(G, C) ≤ T ,

∞ otherwise.

The procedure deciding whether WCAE(G, C) ≤ T represents
the most time consuming part of the design loop. Therefore, we
call the procedure only for those candidates C that satisfy that
size(C) ≤ size(B) where B is the best solution with an acceptable
error that we have found so far.

To decide whether WCAE(G, C) ≤ T , we adopt the concept of
an approximation miter introduced in [14,15]. The miter is an aux-
iliary circuit that consists of the inspected approximate circuit C
and the golden circuit Gwhich serves as the specification. C and G
are connected to identical inputs. A subtractor and a comparator
then check whether the error introduced by the approximation
is greater than a given threshold T . The high-level structure of
the approximation miter is shown in Fig. 2. The output of the
miter is a single bit which evaluates to logical 1 if and only if
the constraint on the WCAE is violated for the given input x.

Once the miter is built, it is translated to a Boolean formula
that is satisfiable if and only if WCAE(G, C) > T . This approach
allows one to reduce the decision problem to a SAT problem and
use existing powerful SAT solvers. Of course, this is a high-level
view only. On the gate-level, we optimise the miter construc-
tion by using a novel circuit implementation of the subtractor,
absolute value, and comparator nodes as described in the con-
ference paper [17]. The construction, whose details we skip here
since they are rather hardware-oriented, leads to structurally
less complex Boolean formulae. In particular, it avoids long XOR
chains, which are a known cause of poor performance of the
state-of-the-art SAT solvers [38]. For details see [17].

Table 1
Sizes of the gates used in the numerical trials. The sizes are in µm2 and
correspond to the 45 nm technology.
Gate INV AND OR XOR NAND NOR XNOR

Size 1.40 2.34 2.34 4.69 1.87 2.34 4.69

4.3. Verifiability-driven search

In the initial trials on the approximation of large circuits, we
discovered that the time required for the miter-based circuit
evaluation can significantly differ even among structurally very
similar candidates. For example, there are 16-bit approximate
multipliers where checking that WCAE(G, C) ≤ T holds takes less
than a second, however, other similar approximations require
several minutes. Additionally, we observed that the more com-
plex the circuits to be approximated are, the higher are the
chances that the evolution stumbles upon a solution that requires
a prohibitive evaluation time. If such a candidate is accepted as a
parent, its offspring are likely to feature the same or even longer
evaluation time. Therefore, the whole evaluation process slows
down and does not achieve any significant improvements in the
time limit available for the entire optimisation.

To alleviate this problem, we propose a verifiability-driven
search strategy that uses an additional criterion for the evaluation
of the circuit C . The criterion reflects the ability of the decision
procedure, in our case a SAT solver, to prove that WCAE(G, C) ≤ T
with a given limit L on the resources available. It leverages the
observation that a long sequence of candidate circuits Bi improv-
ing the size and having an acceptable error has to be typically
explored to obtain a solution that is sufficiently close to an op-
timal approximation C∗. Therefore, both the SAT and the UNSAT
queries to the SAT solver have to be short. If the procedure fails
to prove WCAE(G, C) ≤ T within the limit L, we set f (C) = ∞
and generate a new candidate.

The interpretation of the resource limit L on checking that
WCAE(G, C) ≤ T depends on the implementation of the under-
lying satisfiability checking procedure. It should be noted that a
time limit is not suitable since it does not reflect how the struc-
tural complexity of candidate circuits affects the performance of
the procedure. Therefore, we employ the limit on the maximal
number of backtracks in which a single variable can be involved
during the backtracking process (also called the maximal number
of conflicts on a variable). As the solver gradually tries to assign
truth values to variables, a conflict happens when a variable has
to be true to satisfy a clause c1 and at the same time false to satisfy
a clause c2 (and both c1 and c2 have no other unassigned vari-
ables). Encountering a conflict means that the current assignment
of values cannot satisfy the formula. The solver then backtracks
to a previous decision point to continue the search. As the back-
tracking represents the key and computationally demanding part
of modern SAT solvers [39], it allows one to effectively control the
time needed for particular evaluation queries. Moreover, it takes
into account the structural complexity of the underlying Boolean
formula capturing the complexity of the circuit.
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Fig. 3. The main steps of the proposed verifiability-driven search scheme.

The overall optimisation loop using the verifiability-driven
search is illustrated in Fig. 3. The inputs of the design process
include: (1) the golden model G, (2) the threshold on the worst-
case absolute error T , (3) the initial circuit B having an acceptable
error (it can be either the golden model or its suitable approxi-
mation that we want to start with), and (4) the time limit on the
overall design process. The loop exploits the CGP principles for
the case of λ = 1, i.e. for populations consisting of the parent
and a single child, which turns out to be a suitable setting in
our computations discussed below. In other words, the loop uses
mutations to generate a single new candidate circuit C from the
candidate circuit B representing the best approximation of the cir-
cuit C∗ that we have found so far. The circuit C is then evaluated
using the fitness function f as described above. If the candidate
C belongs to an improving sequence (i.e. size(C) ≤ size(B) and
WCAE(G, C) ≤ T ), we replace B by C . The design loop terminates
if the overall time limit is reached, and B is returned as the output
of the design process.

4.4. Adaptive resource limit strategy

In our original conference paper [17], we performed a prelim-
inary evaluation of the verifiability-driven search strategy study-
ing how the limit L on the maximal number of backtracks in
the SAT decision procedure affects the performance of the ap-
proximation process applied on multipliers and adders of various
bit-widths. In particular, we considered 20k, 160k, and unbound-
edly many backtracks. The results clearly demonstrated that the
evolutionary algorithm found best solutions for the lowest of
these three limit settings for a wide range of circuits. However,
the question whether a still lower SAT limit would improve
the performance even further remained open. Likewise, there
remained a question what limits would be appropriate for other
circuits than those considered in the trials.

Apparently, the lower the limit is the faster the evaluation
of each candidate solution will be. This results in processing a
higher number of generations in a given time interval, hope-
fully leading to better results. On the other hand, aggressive
limit settings reduce the search space of candidate solutions that
can be evaluated within the given limit. A too tight restriction
might prevent the candidate solutions from diverting from the
original solution and reaching significant improvements (most
of the newly generated candidates will likely be skipped due to
exceeding the evaluation limit). Also, the type and complexity of
the approximated circuit and the approximation error can play

a significant role in choosing ideal limit settings. Thus, to reach
the best performance of the method, each new instance of the
problem would require an evaluation of different limit values.
Moreover, a fixed limit value might not be optimal during the
course of the evolutionary process even if it is optimal in some of
its phases.

Therefore we propose a new adaptive strategy that alters the
limit within the evolutionary run and tries to set it to the most
suitable value with regards to the recently achieved progress. We
designed the strategy scheme based on our previous observations
that the limit should be kept low in the early stages of the evolu-
tion so that the clearly redundant logic can be quickly eliminated.
Later in the evolutionary process, the algorithm converges to a
locally optimal solution and improvements in the fitness cease
to occur. When such a stage is reached, the limit needs to be in-
creased in order to widen the space of feasible candidate solutions
at the expense of slower candidate evaluation. Moreover, once
some more significantly changed solution is found, it may again
be possible to shorten the time limit needed for the evaluation,
and the process of extending and shrinking the time limit may
repeat (as witnessed also in our numerical trials).

Algorithm 1 Adapting the time limit for evaluating candidates
1: lastGens← 0
2: improvementCount ← 0
3: function updateLimit(limit, improvement)
4: lastGens← lastGens+ 1
5: if improvement then
6: improvementCount ← improvementCount + 1
7: if lastGens mod period = 0 then
8: if improvementCount > τdec then
9: limit ← limit − δ ∗ limit

10: else if improvementCount < τinc then
11: limit ← limit + δ ∗ limit
12: improvementCount ← 0
13: lastGens← 0
14: else if improvementCount > τres then
15: lastGens← 0
16: improvementCount ← 0
17: limit ← limit − δ ∗ limit
18: limit ← max(limit,minLimit)
19: limit ← min(limit,maxLimit)
20: return limit
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Our strategy is described in pseudocode in Algorithm 1. The
strategy changes the limit during the evolution process and is
driven by four main parameters and two additional limit values
with the following semantics:

• period: the number of generations after which a periodic
check whether the evaluation limit should be changed is
triggered.
• δ: the increase/decrease ratio which says by what fraction of

the current limit the limit is increased/decreased when such
a change is considered useful.
• τdec : if the number of improvements that occur in a period

is above this threshold, the time limit for the evaluation will
be decreased.
• τinc : if the number of improvements that occur in a period is

below this threshold, the time limit for the evaluation will
be increased.
• τres: if this threshold is hit, an immediate decrease of the time

limit and a reset of the generation counter is triggered. This
threshold applies when the limit becomes clearly too high,
which can happen as witnessed by our computations.
• minLimit: a minimum limit bound that restricts the possible

values of the time limit achievable by the adaptive strategy
from below.
• maxLimit: a maximum limit bound that restricts the possible

values of the time limit achievable by the adaptive strategy
from above.

Algorithm 1 allows the strategy to track the current progress
of the evolutionary algorithm and adapt the resource limit ac-
cordingly. The key purpose of the algorithm is to keep the limit
low while the evolutionary process achieves improvements in
the candidate solutions, and to increase the available resources
once the progress is seemingly stalled by the imposed limit. The
algorithm tracks the number of improvements made in the last
lastGen generations in the global variable improvementCount . In
every generation, the algorithm calls the function updateLimit
that accepts two parameters: an integer value limit that rep-
resents the current resource limit value and a Boolean value
improvement that records whether an improvement occurred
in the current generation. If the number of current improve-
ments exceeds the value of τres, the limit is immediately de-
creased. Otherwise, the algorithm waits until the period num-
ber of generations is reached (the condition on line 7 is true,
where mod denotes the modulo operation) and then either in-
creases or decreases the limit based on the comparison of the
improvementCount and the thresholds τinc or τdec , respectively.

The value of the increment/decrement of the resource limit
is relative to the current limit value. This allows the strategy to
both delicately alter small limit values and reach high limit values
in reasonable time. The limit value is restricted to stay within
the interval ⟨minLimit,maxLimit⟩. This ensures that we do not get
too small limit values that would reject all candidates nor too big
limit values that would feature a very long evaluation time, which
would practically stop the approximation process.

5. Evaluation of the proposed adaptive search approach

In this section, we present a detailed numerical evaluation
of the proposed method for evolutionary-driven circuit approx-
imation. We first describe the computational setting and briefly
discuss the CGP parameters we used in the evaluation. After-
wards, we present a thorough evaluation of the adaptive feature
of our approach as well as a detailed comparison of our approach
with other existing approaches. In particular, our computations
focus on answering the following questions:

Q1 Can the adaptive strategy reduce the randomness of the
evolution-based approximation process?

Q2 Can the adaptive strategy efficiently handle different circuit
approximation problems — is it more versatile than the
fixed-limit strategies?

Q3 Can the adaptive strategy outperform the best fixed-limit
strategy for a given circuit approximation problem?

Q4 Does the proposed method significantly outperform other
circuit approximation techniques?

5.1. Computational setup

The proposed circuit approximation method was implemented
in our tool called ADAC—Automatic Design of Approximate Cir-
cuits [18]. ADAC is implemented as a module of ABC [32], a
state-of-the-art academic tool for hardware synthesis and ver-
ification. ABC provides means for exact equivalence checking
but also general SAT solving. We use the latter for solving our
approximation miters.

In the computations, we consider the following circuits for
evaluating the performance of the proposed method1:

• 16-bit multipliers (the input is two 16-bit numbers) having
1525 gates (501 xors and logic depth 34),

• 24-bit multipliers having 3520 gates (1157 xors and logic
depth 40),

• 24-bit multiply-and-accumulate (MAC) circuits (the input is
two 12-bit numbers and one 24-bit number) having 1023
gates (321 xors and logic depth 39),

• 32-bit MAC circuits having 1788 gates (565 xors and logic
depth 44),

• 20-bit squares (the input is one 20-bit number, the result is
second power of the input) with 2213 gates (789 xors and
logic depth 38),

• 28-bit squares with 4336 gates (1547 xors and depth 40).

• 23-bit dividers (the input is 23-bit and 12-bit numbers)
having 1512 gates (253 xors and logic depth 455),

• 31-bit dividers with 2720 gates (465 xors and depth 799),

It should be noted that the number of gates directly affects
the complexity of the approximation process—the more gates a
circuit has, the harder the approximation problem is. The number
of XOR gates is especially important as they are difficult for
current SAT solvers to deal with. We further report the depth
of the circuits as another important structural characteristic. It
should also be noted that we use the synthesised gate level
implementations (i.e. the golden models) as the seeding circuit
(i.e. the initial B-circuit) for the evolutionary approximation.

Recall that we consider the circuit size as the key
non-functional characteristic we want to improve by allowing an
error in the circuit computation. To estimate the circuit size, we
use the gate sizes listed in Table 1. These sizes correspond to
the 45 nm technology which we consider in Section 5.7 when
comparing the power-delay product2 of our resulting circuits
with state-of-the-art solutions.

Justification for the selected benchmark set:

1 Gate-level implementations of the considered multipliers, MACs and
squares were designed using the Verilog ‘‘∗’’ and ‘‘+’’ operators and subsequently
synthesised by the Yosys hardware synthesis tool using the gates listed in
Table 1. Gate-level representations of the dividers were created according
to [40].
2 Power-delay product is a standard characterisation capturing both the

circuit power consumption and performance.
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Approximation of 16-bit multipliers represents the cutting
edge of circuit approximation techniques due to the circuit size
(i.e. the number of gates) and structural complexity (i.e. the
presence of carry chains), especially when some formal error
guarantees are expected from the approximation method [41].
We use such multipliers in Section 5.7 to compare our approach
with state-of-the-art techniques. The other circuits we consider
go beyond this edge: MACs have a more complicated structure
and the error of the involved multiplication is further propagated
in the consequent accumulation. Square circuits computing the
second power of the input represent a specialised version of
multipliers. While these circuits feature less inputs than other ex-
amined instances, their internal structure is much more complex
than the structure of arithmetic circuits with comparable input
bit widths. Approximation of dividers represents a true challenge
since they are structurally more complicated, much deeper, and
significantly less explored (e.g. when compared with multipliers).

For all 8 circuits, we consider various WCAE values, namely,
we let WCAE range from 10−4% to 1%. The given bound on the
WCAE value determines permissible changes in the circuit struc-
ture (i.e. a small error allows only smaller changes in the circuit).
Therefore, different WCAE values lead to significantly different
approximation problems. We also consider two time limits (1 and
6 h) for the approximation process. It should be noted that the
time limit also considerably affects the approximation strategy
as the given time has to be effectively used with respect to the
complexity of approximation problem.

In our evaluation, we explore all three dimensions character-
ising the circuit approximation problems: (i) the circuit type re-
flecting both the size and the structural complexity, (ii) the error
bound, and (iii) approximation time. In total, we examine more
than 70 instances of the approximation problems that sufficiently
cover practically relevant problems in the area of arithmetic
circuit approximation. Therefore, the considered benchmark al-
lows us to answer the research questions and, in particular, to
robustly evaluate the versatility of the adaptive strategies and
their benefits with respect to the fixed-limit strategies.

It should be noted that we exclude adders from the present
evaluation as they represent a much simpler approximation prob-
lem — comparing to 16-bit multipliers, 128-bit adders have only
around 1/3 of the gates and are structurally less complex. There-
fore, the miter-based candidate evaluation can handle these cir-
cuits without leveraging the resource limits.

5.2. CGP parameters

The performance of CGP for particular application domains can
be tuned by various CGP parameters out of which the following
are relevant in our case:

• the number of offspring (λ),

• the frequency of mutations and

• the CGP grid size and the L-back parameter (i.e. connectiv-
ity in the chromosome).

We now briefly discuss our choice of the values of these parame-
ters that will later be used for the main part of the evaluation of
the proposed method.

The literature shows that, for a fixed number of generated and
evaluated candidate solutions, CGP-based circuit optimisation
(i.e. when circuits are not evolved from scratch) with a smaller
value of λ usually leads to better fitness values than CGP using
larger values of λ [42].

Aside from the population size, we also examine the effect of
the mutation frequency on the performance of circuit approx-
imation. Each time the mutation operator is applied, it alters

a single integer in the chromosome. When we generate a new
candidate from a parent, we apply the mutation operator up to
M times, M = 0.01 ∗ X ∗ gates(G) where X is the mutation
frequency parameter and gates(G) is the number of gates of the
golden solution G that is approximated. In our particular trial,
in which gates(G) = 1525, the performance was evaluated for
X ∈ ⟨0.5, 10⟩, i.e. M ∈ ⟨8, 153⟩ mutations per chromosome.

Fig. 4 provides the results of approximation of 16-bit multi-
pliers with 0.1% WCAE using different combinations of λ and X
(the x-axis). The y-axis characterises the size (obtained as the
sum of gate sizes) of the best candidate found in every 2-hour
run. The SAT resource limit was set to 100. We do not present
results for other approximate circuits as they exhibit similar pat-
terns. The boxplots are grouped by mutation frequency. We can
see that the performance within each group is very similar and
lower mutation frequencies perform better than higher mutation
frequencies. We also applied Friedman and Nemenyi statistical
tests [43–45] to evaluate these results. According to Nemenyi
post hoc test, the differences between various λ values within
the same mutation frequency are not significant at α = 0.05.
Mutation frequencies X = 0.5 and X = 2 are equivalent and
perform significantly better than X = 4 and X = 10.

The numerical trials confirm general observations known from
the literature (see, e.g. [4]): the number of mutations should be
small. This way, the mutations perform slight changes between
the generations only. Otherwise, for a high mutation frequency,
the function of a new solution is usually completely altered. Such
a solution is then rejected with a high probability, the search gets
close to a random one, and its efficiency deteriorates. Therefore,
in the following computations, we choose the mutation frequency
X = 0.5%. As population size does not seem to significantly
matter, we choose the simplest λ = 1 scheme.

Finally, we set the dimensions of the chromosome gate matrix
as 1 × W where W equals the number of gates in the correct
circuit (i.e. all the gates of the original circuit are in one row)
and use L-back =W , i.e. we allow the maximum connectivity of
the chromosomes. This setting gives the evolutionary algorithm
maximal freedom with respect to the candidate solutions that can
be created. This fact is desirable in case of area optimisation we
aim at [36,37].

5.3. Comparison of adaptive strategies

In the next cycle of simulations, we examine different versions
of the adaptive strategy corresponding to different instantiations
of the adaptive scheme presented in Section 4.4. The goal of
this phase is to select the best adaptive strategies that efficiently
work for a wide class of approximation problems. These strategies
are further thoroughly evaluated and compared with fixed limit
strategies on the selected benchmark.

Based on our experience with the limit values used in [17],
we consider five versions of the adaptive strategy given by the
parameter values listed in Table 2. These versions have been
chosen to adequately cover the space of adaptive strategies and
thus they range from strategies that try to promptly react to
changes in the evolutionary process (ada1, ada3) to strategies that
evaluate the progress of the evolution over longer periods of time
(ada2). The remaining strategies (ada4, ada5) lie in the middle of
the range.

The strategies differ mainly in two basic aspects: the length of
the period with which the adaption happens and the thresholds
used for the adaption (τdec , τinc , τres). Larger values of the thresh-
olds with respect to the period mean that the resource limit will
more likely be increased. Strategies with such thresholds (ada1,
ada3 and ada5) are faster to magnify the limit once the evolution
seemingly gets stuck in a local optimum. Thus, the possible search
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Fig. 4. Impact of the number of offspring (λ) and mutation frequency (X) on the final circuit area of approximated 16-bit multipliers obtained by CGP with a fixed
time limit for each evolutionary run.

Table 2
Adaptive strategy parameters.
Strategy τdec τinc τres Period minLimit maxLimit

ada1 4 2 10 1000 500 15 000
ada2 2 1 5 15000 500 15 000
ada3 4 4 8 3000 500 15 000
ada4 1 1 3 5000 500 15 000
ada5 5 4 8 5000 500 15 000

space is broadened, but each candidate evaluation is likely to take
longer time. On the other hand, strategies ada2 and ada4 try to
keep the resource limit as low as possible, and each evaluation
is therefore very fast. However, once there are no improvements
possible with the current limit value, these strategies are slower
to react.

The minimal limit value minLimit and the maximum limit
value maxLimit are set to 500 and 15,000, respectively, based on
the experience we gained from our previous work [17].

We evaluate the performance of the described strategies on
the approximation scenario of 16-bit multipliers with a total
of 8 target WCAE values ranging from 10−4% to 1% with 50
independent 1 h and 6 h long evolutionary runs. The quality of
the obtained final solutions was evaluated using Friedman and
Nemenyi statistical tests with results illustrated in Table 3.

For 1 h runs, strategy ada5 performs the best, but its perfor-
mance is statistically equivalent to ada4 and ada3. This group of
strategies is significantly better than ada1 and ada2.

For 6 h runs, ada2 significantly outperforms the rest of strate-
gies, followed by ada4 which also significantly outperforms its
successors.

In the overall evaluation, the performance of strategies ada2,
ada4, and ada5 is statistically equivalent and significantly better
than the performance of strategies ada1 and ada3. As we aim
to acquire the best solutions that our method can provide, we
select the strategies ada2 and ada4 as representatives of adaptive
strategies for the following computations.

We further show how the adaptive strategies ada2 and ada4
change the resource limits during the approximation process.
Fig. 5 shows how the limits change (increase as well as decrease)
over the time during the approximation of the 16-bit multipliers
with target 0.1% WCAE. The approximation ran for 6 h, and the
plot shows the maximum number of SAT backtracks (i.e. the
resource limit) that was allowed to be used during the verification
of candidate circuits in particular generations of the evolutionary
optimisation. The top two plots of the figure illustrate five se-
lected runs for both strategies, and the bottom plot shows the

Table 3
Pairwise p-values of Nemenyi statistical test and average rank values for 1 h
trials, 6 h trials and combined.
1 h runs ada1 ada2 ada3 ada4 ada5

ada2 0.74708 – – – –
ada3 6.50E−06 0.00155 – – –
ada4 4.30E−07 0.00019 0.98709 – –
ada5 9.20E−13 4.10E−09 0.09467 0.27627 –
Rank 3.4275 3.2925 2.87125 2.815 2.59375

6 h runs ada1 ada2 ada3 ada4 ada5

ada2 2.00E−16 – – – –
ada3 0.28188 4.90E−14 – – –
ada4 5.40E−14 0.01082 3.10E−12 – –
ada5 0.00013 6.50E−14 0.12034 9.10E−06 –
Rank 3.6275 2.23125 3.4075 2.5925 3.14125

Overall ada1 ada2 ada3 ada4 ada5

ada2 6.10E−14 – – – –
ada3 9.00E−06 1.80E−05 – – –
ada4 5.20E−14 0.9483 3.60E−07 – –
ada5 5.30E−14 0.6686 0.0053 0.2326 –
Rank 3.5275 2.761875 3.139375 2.70375 2.8675

aggregated results for 50 independent runs. It shows the median
of the resource limits plotted by the full lines and quartiles Q1
and Q3 plotted by the dashed lines.

The figure confirms our expectations: in the initial stages of
the approximation, the limit is kept low because improvements
are found frequently. We can also see that the limit increases as
well as decreases, and a closer evaluation of our data reveals that
both the periodic and immediate decrease are used. Furthermore,
it should be noted that ada4 increases the limit much sooner than
ada2, and the rate of the increase is also much steeper. This fact
allows ada4 to use more time out of the total time available for
the entire evolutionary run for evolving and evaluating solutions
that need larger resource limits for their verification. On the
other hand, the higher limit slows the evolutionary process down
significantly—we see that none of the ada4 runs reaches the num-
ber of 1.2 ∗ 106 generations in this numerical trial. The particular
runs of the strategies also demonstrate that ada4 exhibits more
changes (including periodic drops of the limits) compared with
the more stable strategy ada2. The impact of these differences on
the quality of the obtained final solutions will be evaluated in the
further subsections of this section.

Finally, Fig. 6 shows the aggregated results for approximation
of 23-bit dividers (with the same WCAE) representing a very dif-
ferent approximation scenario. We observe that the approxima-
tion of the dividers requires higher resource limits (i.e. more time



10 M. Češka, J. Matyáš, V. Mrazek et al. / Applied Soft Computing Journal 95 (2020) 106466

Fig. 5. The resource limits chosen by the adaptive strategies ada2 and ada4 during the approximation of the 16-bit multiplier. The top two plots illustrate five
selected runs. The bottom plot shows the medians (full lines) and the quartiles Q1 and Q3 (dotted lines) over 50 runs.

Fig. 6. The resource limits chosen by the adaptive strategies ada2 and ada4 during the approximation of a 23-bit divider. The plot shows the median values (full
lines) and the quartiles Q1 and Q3 (dotted lines) over 50 runs.
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for the verification of the candidate solutions) when compared
with the multipliers: this is due to the structural complexity of
the circuits. For example, in the 400kth generation, ada4 sets the
limit to about 2k for the multipliers and to about 12k for the
dividers. The difference is, however, less significant in the case
of ada2.

5.4. Reduction of randomness (Q1)

Evolutionary algorithms involve a significant amount of ran-
domness, and the quality of the final solutions produced by
independent runs can considerably vary. One of the goals of the
newly designed adaptive strategies is to reduce the amount of the
involved randomness and ensure that most of the approximation
runs will lead to high-quality solutions. In these numerical trials,
we analyse the quality and variability of sets of 50 independent
evolutionary runs for the adaptive strategies as well as for various
fixed limit resource settings.

For the following simulations, we denote the fixed resource
limit strategies as lim100, lim2k, lim10k, lim20k, and lim50k for
the resource limits of 100, 2000, 10 000, 20 000, and 50 000
backtracks on a single variable, which are used through the whole
evolutionary process. We chose these values to represent small,
mid range and large values. In our previous work [17], we used
lim20k as the standard resource limit setting.

The plots in Fig. 7 demonstrate how the size of the candi-
date solutions decreases during particular runs. In particular, the
dashed red lines show the best and the worst run; and median,
first (Q1) and third (Q3) quartile are illustrated by the full blue
line and the red lines, respectively.

The figure shows that the adaptive strategies as well as the
strategies with lower resource limit values are significantly more
stable than the strategies with higher limits. This is caused by
the fact that the evolution has to explore solutions requiring a
long verification time. Such solutions are immediately refused by
the lower resource limits (100, 2k) and by the adaptive strate-
gies but more likely accepted by the other strategies (10k, 20k,
and 50k). The long evaluation time is inherited from parents
to offspring. The strategies with higher limit settings are there-
fore much slower to converge to a near optimum solution. The
previously described slowdown of the evolution also leads to
higher variation in the candidate quality throughout the evolu-
tion, which can be observed as the wide interquartile range (IQR)
for limits 10k, 20k, and 50k. Other strategies feature a narrow
IQR—a desirable attribute of a good resource limit strategy. The
convergence of the strategy lim50k is so slow that we exclude this
strategy from the rest of the simulations to save computational
time.

We obtained similar observations for other WCAE values and
bit-width settings for multipliers, MACs and square circuits. The
difference between strategies is even more pronounced for
smaller approximation errors which represent a harder optimi-
sation problem. On the other hand, large approximation errors
diminish the differences.

The approximation of dividers represents another class of
optimisation problems with a different behaviour. The variance of
the solutions is very similar for all resource limit settings. As an
example, the variance for approximation of a 23-bit divider with
the strategy ada2 is illustrated in the bottom part of Fig. 7. Plots
for other resource limit strategies are omitted as they feature
almost identical variance. What differs between the strategies
is the quality of final solutions that can be achieved. This is
described in greater detail in the next section.

Summary for Q1: For a wide class of circuits, the adaptive strate-
gies as well as the low-limit strategies are significantly more
stable than other fixed limit strategies (i.e. the effect of the

Fig. 7. Convergence curves for resource limit strategies showing the estimated
area for the best, worst, Q1, Q3, and median solutions during 16-bit multiplier
and 23-bit divider approximation.

randomness is smaller). All strategies show good stability for
the approximation of dividers, however, the low-limit strategies
provide considerably smaller reductions of the circuit area.

Note: Since it would be very difficult to present our results while
also showing the randomness of the evolutionary runs at the
same time, we present only the quality of the median solutions
in the rest of our paper when not stated otherwise.
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Fig. 8. Convergence plots of median solutions calculated from 50 independent evolutionary runs for various combinational circuits.

5.5. Versatility of adaptive strategies (Q2)

The key feature of circuit approximation strategies is ver-
satility, an ability to provide excellent performance for various
approximation scenarios including different circuits, WCAE values
and time limits. Although the verifiability-driven strategy itself
leads to unprecedented performance and scalability of circuit
approximation [17], the fixed-limit resource limits do not ensure
versatility. This fact is demonstrated in Fig. 8 where we fix WCAE
to 0.1% for multipliers, squares, MACs, and dividers, and explore
the progress of the approximation process. The right part of each
plot illustrates the quality of the final solutions.

When comparing the performance of the fixed-limit strategies
on the approximation of 16-bit multipliers, we can see that the

strategy lim100 dominates in the first hour of the approximation
process since it provides the fastest convergence. Strategies ada2,
ada4, and lim2k converge slower, but around after the first hour
their median solutions outperform lim100 which cannot achieve
further improvements due to the tight resource limit. Strategies
lim10k and lim20k provide a significantly slower convergence:
lim10k needs around 2.5 h to provide solutions that are compa-
rable to the aforementioned strategies, lim20k is too slow and its
final solution lags behind.

Similar trends among the inspected strategies are observed
for the 32-bit MACs (see the second plot in Fig. 8). It should be
noted that, in general, the convergence is much slower because
this circuit is larger and represents a harder optimisation problem
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Table 4
Relative sizes in % of median solutions with respect to the size of the golden solution for multiplier approximation.
16-bit multiplier 24-bit multiplier

1 h runs lim100 lim2k lim10k lim20k ada2 ada4 1 h runs lim100 lim2k lim10k lim20k ada2 ada4

0.001% 82.2 85.8 95.7 98.1 82.4 81.1 0.001% 91.2 87.6 96.7 97.7 89.0 87.2
0.01% 61.1 60.4 88.6 96.7 59.3 57.9 0.01% 32.1 59.7 89.3 94.4 32.8 31.5
0.1% 37.7 37.0 58.9 86.2 36.8 36.7 0.1% 19.0 19.8 78.7 86.3 18.4 18.5
1% 18.8 17.9 20.2 43.5 18.6 17.7 1% 9.2 8.6 21.1 79.9 9.1 8.9

6 h runs lim100 lim2k lim10k lim20k ada2 ada4 6 h runs lim100 lim2k lim10k lim20k ada2 ada4

0.001% 74.0 72.8 77.6 82.4 72.5 71.5 0.001% 43.0 40.4 79.3 82.6 41.8 41.0
0.01% 56.4 55.4 56.8 63.2 55.0 54.0 0.01% 27.1 27.1 30.2 42.7 26.8 26.3
0.1% 35.5 33.4 34.6 38.5 33.2 33.5 0.1% 16.3 15.9 18.1 23.4 15.9 16.0
1% 17.4 15.7 16.4 17.2 15.7 15.9 1% 8.7 7.6 7.6 8.6 7.4 7.4

Table 5
Relative sizes in % of median solutions with respect to the size of the golden solution for MAC approximation and divider approximation.
24-bit MAC 32-bit MAC

1 h runs lim100 lim2k lim10k lim20k ada2 ada4 1 h runs lim100 lim2k lim10k lim20k ada2 ada4

0.0001% 96.7 96.9 97.7 97.8 96.7 97.1 0.0001% 94.6 95.7 98.7 98.9 95.0 94.8
0.001% 94.3 93.7 95.0 95.3 94.0 93.9 0.001% 94.3 94.0 97.5 97.6 93.8 93.6
0.01% 91.3 82.1 83.0 95.5 90.0 93.9 0.01% 87.1 81.2 90.0 95.5 85.5 89.3
0.1% 73.1 67.8 93.2 92.6 65.8 64.1 0.1% 87.1 57.8 85.7 90.8 77.3 86.2
1% 38.2 28.9 45.4 67.9 31.1 28.5 1% 24.8 19.1 32.0 58.3 19.4 19.7

6 h runs lim100 lim2k lim10k lim20k ada2 ada4 6 h runs lim100 lim2k lim10k lim20k ada2 ada4

0.0001% 95.9 96.2 95.8 96.2 95.5 95.8 0.0001% 93.7 88.9 93.7 94.3 91.2 88.0
0.001% 92.3 90.4 89.4 89.4 88.7 88.5 0.001% 91.9 78.0 83.4 80.8 80.5 76.9
0.01% 84.9 76.0 75.0 78.7 76.6 75.2 0.01% 61.1 60.4 55.6 62.5 57.9 62.7
0.1% 59.1 56.7 61.2 65.6 53.1 53.0 0.1% 39.7 34.0 39.1 54.8 37.4 35.1
1% 31.8 27.3 26.1 26.9 24.7 24.9 1% 20.3 17.1 16.4 16.4 15.5 15.3
23-bit divider 31-bit divider

1 h runs lim100 lim2k lim10k lim20k ada2 ada4 1 h runs lim100 lim2k lim10k lim20k ada2 ada4

0.05% 76.8 76.6 76.4 74.2 76.7 76.6 0.05% 62.4 62.5 63.1 60.5 62.3 62.3
0.1% 72.7 71.1 66.7 65.1 71.3 68.4 0.1% 55.8 56.0 53.3 51.1 55.8 55.2
0.5% 51.4 48.2 43.1 43.4 48.9 46.0 0.5% 42.5 38.4 31.6 29.8 38.3 36.8
1% 42.3 37.2 33.2 34.6 39.8 35.7 1% 33.9 28.3 21.6 22.6 31.5 29.7

6 h runs lim100 lim2k lim10k lim20k ada2 ada4 6 h runs lim100 lim2k lim10k lim20k ada2 ada4

0.05% 73.7 74.3 72.4 69.9 72.6 72.5 0.05% 61.8 62.0 60.5 58.2 59.1 59.0
0.1% 66.5 67.8 63.9 61.4 62.7 62.8 0.1% 55.1 55.2 51.8 47.5 51.2 50.4
0.5% 47.8 44.0 38.6 39.9 40.1 39.8 0.5% 37.9 37.2 27.8 26.9 30.6 28.2
1% 39.0 32.2 29.4 30.2 30.3 31.0 1% 30.4 26.0 19.1 19.0 22.0 20.3

Table 6
Relative sizes in % of median solutions with respect to the size of the golden solution for square approximation.
20-bit square 28-bit square

1 h runs lim100 lim2k lim10k lim20k ada2 ada4 1 h runs lim100 lim2k lim10k lim20k ada2 ada4

0.0001% 92.7 97.6 98.8 99.3 94.6 93.4 0.0001% 95.0 97.0 98.4 98.6 95.8 96.2
0.001% 81.8 93.4 98.5 98.9 85.7 80.6 0.001% 90.4 91.0 96.6 97.9 90.3 92.3
0.01% 40.2 82.6 95.7 97.8 71.4 51.2 0.01% 50.6 81.2 96.4 97.2 60.2 62.6
0.1% 29.4 25.4 90.3 89.2 25.7 26.9 0.1% 30.2 67.2 95.1 95.8 19.0 30.1
1% 13.4 10.5 9.3 9.0 13.1 12.2 1% 9.0 16.3 9.1 6.6 9.9 8.6

6 h runs lim100 lim2k lim10k lim20k ada2 ada4 6 h runs lim100 lim2k lim10k lim20k ada2 ada4

0.0001% 70.1 82.9 92.2 97.6 70.5 68.8 0.0001% 56.1 77.1 93.0 96.8 67.5 70.4
0.001% 54.6 61.2 94.5 96.0 55.1 54.3 0.001% 31.4 40.1 81.0 87.9 32.0 32.3
0.01% 38.6 37.4 51.1 81.4 38.0 36.3 0.01% 20.6 22.7 73.9 86.4 21.0 20.5
0.1% 22.8 22.6 31.4 21.9 21.9 21.1 0.1% 12.3 16.0 57.9 43.3 12.2 12.0
1% 12.2 7.9 7.1 7.2 7.7 7.3 1% 6.5 4.6 4.1 4.0 4.8 4.2

compared with the multipliers. Moreover, we observe a larger
diversity among the strategies.

The progress tendencies for 28-bit square circuit (see the third
plot in Fig. 8) significantly differ. The strategies lim10k and lim20k
provide an extremely slow converge and even after 6-hours runs
they significantly lag behind the other strategies. The strategy
lim2k also converges much slower than the remaining strategies,
which show similar performance. After an 1-hour run, lim2k
returns circuits that are about two-times larger than the circuits
provided by the strategy lim100, however, after 5 h it catches up
with the other strategies.

The bottom part of Fig. 8 illustrates results for the dividers.
We observe a very different trend in the approximation process.
In particular, all strategies converge very quickly to a sub-optimal
solution, but the fixed-limit strategies with small resource limits
(lim100 and lim2k) are not able to achieve any further improve-
ment, and they significantly lag behind other strategies in the fi-
nal solutions. We further observe that the strategy lim20k, which
performs very poorly on the previous circuits, is the best strategy
in this case. The proposed adaptive strategies inherit the initial
fast convergence using a small limit, but they adapt the limit after
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Table 7
Overall versatility scores for the considered strategies aggregated over the
bit-widths for each of the circuits.

Multiplier Divider MAC Square

Time limit 1 h 6 h 1 h 6 h 1 h 6 h 1 h 6 h AVG

lim100 104.1 106.9 121.7 124.1 109.8 114.4 116.3 115.4 114.1
lim2k 113.7 101.3 113.6 117.2 102.2 104.5 160.9 117.7 116.4
lim10k 201.7 118.8 102.6 103.0 126.3 106.0 196.7 206.6 145.2
lim20k 322.2 136.0 101.2 100.8 151.1 113.2 193.5 208.2 165.8
ada2 102.5 101.1 116.6 106.4 108.0 102.6 120.2 106.6 108.0
ada4 100.6 100.5 111.9 104.2 108.8 101.7 118.7 103.6 106.3

the first hour and arrive to results comparable with the strategy
lim10k.

Fig. 8 indicates that the performance of the particular fixed-
limit strategies fundamentally varies for different circuits under
approximation. For example, the strategy lim2k gives the best
results for the MACs, but it behaves very poorly on the dividers,
which clearly require a very high resource limit. In Tables 4–
6, depicting the results for particular circuits, we show that the
selection of the best strategy also depends on the required WCAE
and on the bit-width of the particular circuits. The tables list the
relative size reductions of the median solutions with respect to
the golden circuit obtained using different strategies after 1 and
6 h for different circuit types, bit-widths and WCAEs. The best
solution for each target approximation error is highlighted in bold
text. For instance, Table 4 shows that the median solution for 16-
bit multipliers with 0.01% WCAE obtained by ada4 in 6 h has the
area of 54% of the original 16-bit multiplier. The quality of this
solution dominates the solutions obtained by other strategies for
this problem setup.

In order to effectively evaluate the overall performance and
versatility of the different strategies, we introduce a versatility
score. For each selected problem setting, we set the versatility
score of the strategy B that found the best solution to 100%, and
other strategies S are assigned the score of area(S)/area(B)∗100%.
In other words, this measure shows how many per cent larger the
solution obtained by the chosen strategy is with respect to the
best solution for the trial (i.e. a lower score is better). As before,
we compute the score from the median solutions produced by 50
independent evolutionary runs.

Table 7 shows the versatility scores of the inspected strategies
computed for particular circuits considering 1 and 6 h runs. These
scores aggregate the results presented in Tables 4–6 and give
us a better comparison among the strategies. The right-most
column of Table 7 contains the versatility scores aggregated over
all numerical trials. These scores allow us to answer the research
question Q2, namely, we can compare the versatility of the fixed
limit strategies and the selected adaptive strategies.

The best versatility is achieved by the adaptive strategy ada4.
The score 106.3 shows that a median solution produced by this
strategy is on average by about 6 percentage points worse than
a median solution produced by the best strategy for a given
scenario. Strategy ada4 is closely followed by ada2 which is by
roughly 2 percentage points worse. The best performance from
fixed-limit strategies is provided by lim100 that has the versatility
score of 114.1.

However, since the final values are computed as averages, the
final ranking is skewed by lim2k’s poor performance for some
problem instances in square circuit approximation (see Table 6: 1
h runs for 0.01% WCAE). If we excluded these trials from the final
evaluation, lim2k would perform considerably better than lim100.

We further perform Friedman statistical test with Nemenyi
post hoc analysis to assess the significance of the results we ob-
tained. In particular, we analyse the statistical significance of the

Table 8
Pair-wise p-values obtained using Nemenyi post-hoc test evaluated over all
strategies and conducted trials.

lim100 lim2k lim10k lim20k ada2

lim2k 3.90E−14 – – – –
lim10k 0.278 8.50E−11 – – –
lim20k 0.021 2.00E−16 2.10E−06 – –
ada2 2.00E−16 5.30E−14 2.00E−16 2.00E−16 –
ada4 2.00E−16 2.00E−16 2.00E−16 2.00E−16 4.40E−13

versatility scores for particular approximation strategies across
all conducted trials. Friedman test returns chi-squared = 71.39
and p-value < 5.2E−14. These values clearly demonstrate that
the versatility scores for particular strategies are not statistically
equivalent. Therefore, we use Nemenyi post hoc analysis to iden-
tify the groups of statistically equivalent strategies. Table 8 shows
the pair-wise p-values for all strategy pairs. It should be noted
that these values take into consideration the evaluation over all
strategies and conducted trials. Fig. 9 illustrates the average ranks
(with respect to the versatility scores) of examined strategies
and also visualises the groups that are not significantly different
at α = 0.05 We can conclude that strategy ada4 is highly
significantly better (p-value < 0.01) than all examined fixed
limit strategies.

The statistical methods are rank based and thus they do not
suffer from excessive sensibility to a few trials with major dif-
ferences in performance. Interestingly, the final placings in Fig. 9
(rank based) and Table 7 (average based) are identical with the
exception of lim100. Lim100 provides decent solutions for each
problem instance, hence scores well in the average based ver-
satility score. On the other hand, it is slightly outperformed in
each case by other strategies and so its rank is even worse than
that of lim10k. Except for a few trials, lim2k places among the top
strategies and comes third in the rank based rankings.

Summary for Q2: The adaptive strategies, in contrast to the fixed-
limit strategies, are able to provide very good performance for a
wide class of approximation problems. This is demonstrated by
the highest versatility score as well as by the statistical signifi-
cance tests.

5.6. A comparison of adaptive and fixed-limit strategies (Q3)

We saw that the adaptive strategies provide the best ver-
satility score as well as rank score which indicates that they
can effectively handle various approximation scenarios. In this
section, we look closer at the results presented in Tables 4–6
and focus on interesting data points revealing weak and strong
properties of the adaptive strategies. In particular, we will discuss
if a single adaptive strategy can outperform the best fixed-limit
strategy for a given circuit approximation problem.

Table 4 shows that the adaptive strategies dominate in almost
all approximation scenarios for multipliers. In two scenarios, the
strategy lim2k slightly outperforms the adaptive strategies, how-
ever, it significantly lags behind for 1 h runs and selected WCAEs
(i.e. 24-bit version and 0.001% WCAE).

On the other hand, the adaptive strategies lag behind the best
strategies mainly in two sets of trials: MACs in 1 h evolution and
dividers in 1 h evolution (see Table 5). Their performance is simi-
lar to that of lim100, and they are outperformed by strategies with
higher limit values. Since the adaptive strategies are designed
to keep the limit as low as possible while still achieving some
improvements in the candidate solutions, they do not increase
their limit value during the first hour of the numerical evaluation.
Our numerical trials show that even with a low resource limit,
the strategies find improvements, but many of the candidate
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Fig. 9. Pair-wise comparison of all strategies obtained by Nemenyi test. Groups of strategies that are not significantly different (at p-value = 0.05) are connected.

Fig. 10. Comparison of 16-bit approximate multipliers obtained using the proposed approach and state-of-the-art approximation techniques. The plots show Pareto
optimal solutions and their trade-offs between the precision and the power-delay-product (PDP)—the top plot depicts WCAE while the bottom plot depicts the mean
absolute error (MAE). The filled marks represent solutions providing the best PDP for the given precision.

solutions are rejected because they cannot be evaluated within
the limit. The difference in performance is reduced as the opti-
misation process continues and the adaptive strategies increase
their resource limit. After 6 h, the adaptive strategies outperform
other settings for MACs and come close to the performance of
lim10k and lim20k for dividers.

In case of square approximation, the adaptive strategies al-
ways produce a solution that is either the best or close to the
best solution found. The exceptions are 1-hour runs for 0.01%
WCAE, and 6-hour run for 28-bit version and 0.0001% WCAE,
where lim100 significantly outperforms the other strategies.

Summary for Q3: The adaptive strategies provide the best per-
formance (or are very close) for a wide class of approximation
problems except for MACs with the short approximation time
where low-limit strategies are slightly better due to faster con-
vergence, and for dividers where high-limit strategies are better,
due to the initial phase of the adaptive strategies.

5.7. Comparison with state-of-the-art techniques (Q4)

In this section, we demonstrate that our adaptive approach
generates approximate circuits that significantly outperform cir-
cuits obtained using state-of-the-art approximation techniques.
In particular, we show that our circuits provide significantly

better trade-offs between the precision and energy consumption.
We focus on multipliers since their approximation represents a
challenging and widely studied problem—see, e.g. the compara-
tive study of [28]. On the other hand, the existing literature does
not offer a sufficient number of high-quality approximate MACs
or dividers to carry out a fair comparison: indeed, our work is the
first one that automatically handles such circuits.

In the comparison, we consider two approximate architec-
tures for multipliers that are known to provide the best results,
namely truncated multipliers (TMs) that ignore the values of least
significant bits and broken-array multipliers (BAMs) [46]. TMs
and BAMs can be parameterised to produce approximate circuits
for the given bit-width and the required error. In contrast to
our search-based approach, these circuits are constructed using
a simple deterministic procedure based on simplifying accurate
multipliers. However, the method is applicable for design of ap-
proximate multipliers only. To demonstrate the practical impact
of the proposed adaptive strategy, we also consider circuits pre-
sented in [17] obtained using verifiability-driven approximation
with a fixed limit strategy — this is a prominent representative of
the search-based strategies.

Fig. 10 shows the parameters of resulting circuits belonging to
Pareto front. For each circuit, the figure illustrates the trade-off
between the precision and the power-delay-product (PDP) that
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adequately captures both the circuit’s energy consumption and its
delay. The top plot of the figure illustrates the WCAE–PDP trade-
offs. We also evaluated the mean absolute error (MAE) [15] of the
solutions since MAE represents another important circuit error
metric. The results are presented in the bottom plot of the figure.

The orange boxes represent circuits obtained using the adap-
tive strategy ada4. The green boxes represent circuits presented
in [17] and obtained using the fixed limit strategy lim20k. In
both cases, the circuits were generated as follows: we selected
15 target values of WCAE (10 values for the strategy lim20k) and
for each of these values, we executed 50 independent 2-hour
runs using λ = 1 and the mutation frequency 0.5%. The 10 best
solutions for each WCAE were selected and synthesised to the
target technology. It should be noted that the strategy lim20k
provides a much smaller reduction of the chip area when very
small values of WCAE are required and thus these small target
values were not reported in [17].

As we have already shown in [17], the fixed-limit verifiability-
driven approach leveraging SAT-based circuit evaluation is able
to significantly outperform both TMs and BAMs and represents
state-of-the-art approximation method for arithmetic circuits.
Still, Fig. 10 shows that the proposed adaptive strategy improves
our previously obtained results even further—given the same
time limit, it generates circuits having significantly better char-
acteristics.

Summary for Q4: The proposed approach combining the SAT-
based candidate evaluation with the adaptive verifiability-driven
search strategy provides a fundamental improvement of the per-
formance and versatility over existing circuit approximation tech-
niques.

6. Conclusion

Automated design of approximate circuits with formal er-
ror guarantees is a landmark of provably-correct construction
of energy-efficient systems. We present a new approach to this
problem that uniquely integrates evolutionary circuit optimisa-
tion and SAT-based verification techniques via a novel adaptive
verifiability-driven search strategy. By being able to construct
high-quality Pareto sets of circuits including complex multipliers,
MACs, and dividers, our method shows unprecedented scalability
and versatility, and paves the way for design automation of
complex approximate circuits.

In the future, we plan to extend our approach towards differ-
ent error metrics and further classes of approximate circuits. We
will also integrate the constructed circuits into real-world energy-
aware systems to demonstrate practical impacts of our work.
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