
Noname manuscript No.
(will be inserted by the editor)

Multiplication Algorithm Based on Collatz function

David Barina

Received: date / Accepted: date

Abstract This article presents a new multiplication algorithm based on the Collatz
function. Assuming the validity of the Collatz conjecture, the time complexity of
multiplying two n-digit numbers is O(kn), where the k is the number of odd steps
in the Collatz trajectory of the first multiplicand. Most likely, the algorithm is only
of theoretical interest.

Keywords Multiplication algorithm · Division algorithm · Computer arithmetic ·
Collatz conjecture

1 Introduction

One of the most famous problems in number theory that remains unsolved is the
Collatz conjecture, which asserts that, for arbitrary positive integer x, a sequence
defined by repeatedly applying the function

C(x) =

{
3x+ 1 if x is odd, or

x/2 if x is even
(1)

will always converge to the cycle passing through the number 1. The terms of such
sequence typically rise and fall repeatedly, oscillate wildly, and grow at a dizzying
pace. The conjecture has never been proven. There are however experimental
evidence [1] and heuristic arguments [2–4] that support it. There is also an extensive
literature, [5, 6], on this question.

Quoting Chamberland [7], some authors work with the Collatz function, Z+
odd →

Z+
odd, defined by

F (x) = (3x+ 1) / 2ctz(3x+1), (2)

Brno University of Technology
Faculty of Information Technology
Centre of Excellence IT4Innovations
Brno, Czech Republic
E-mail: ibarina@fit.vutbr.cz

2 David Barina

where ctz(x) equals the number of factors of 2 contained in x. In computer science,
the ctz(x) is also known as the count trailing zeros operation, and, considering
binary number systems, can be computed in O(n). Please note that the n denotes
the number of digits (here specifically bits) of the x. Considering this definition,
the trajectory x, F (x), F 2(x), F 3(x), . . . , 1 can be computed using Algorithm 1. The

Algorithm 1 Trajectory of the Collatz function
Require: x is positive integer
Ensure: returns 1

1: function F-Trajectory(x)
2: output(x)
3: while x 6= 1 do
4: x← 3x+ 1
5: x← x / 2ctz(x)

6: output(x)
7: end while
8: return x
9: end function

algorithm starts with any positive odd integer. Every iteration of the while-loop
replaces the x with F (x), and therefore effectivelly computes odd integer as defined
by F i (ith function iterate). Let us denote the total number of iterations k. Provided
that the Collatz conjecture holds, the above algorithm will always halt (converge to
and return the number 1), for any initial x, after exactly k steps. Note that although
the F is defined only on positive odd integers, Algorithm 1 and all subsequent
algorithms in this paper also work on positive even integers. In this case, however,
the very first iteration is different from that one defined by the Collatz function.

2 Towards Multiplication Algorithm

Note that multiplying the x by positive odd integer a does not affect the result of
the ctz operation. By multiplying the Collatz function by an odd integer a, and
tracking m = ax rather than x, we get

Ga(m) = (3m+ a) / 2ctz(3m+a), (3)

where each iterate Gi
a(m) = aF i(x). Analogously, we get Algorithm 2. Still, the

algorithm will always halt for any initial m and a such that a | m, provided that the
Collatz conjecture holds. In other words, the G-trajectory of any integer m = ax

will pass through the a.
The same idea can be used to construct a division Algorithm 3. The idea behind

this is to exploit the above algorithm to pull out the a from m = ax, and then
reassemble the x. Or in other words, we will divide the dividend m by the divisor a,
and get the quotient x. The only question is how to reassemble the x. To do that,
we need to store all decisions βi from all iterations of the algorithm, and then use
them in reverse order (run the algorithm backward). The only difference is that
we start with 1 (multiplicative identity) rather than a, and therefore get x rather
than ax at the end.

Multiplication Algorithm Based on Collatz function 3

Algorithm 2 Trajectory of the Ga(m)

Require: m is positive and a is positive odd integer such that a | m
Ensure: returns a

1: function G-Trajectory(m,a)
2: output(m)
3: while m 6= a do
4: m← 3m+ a
5: m← m/ 2ctz(m)

6: output(m)
7: end while
8: return m
9: end function

Algorithm 3 Division algorithm

Require: m is positive and a is positive odd integer such that a | m
Ensure: returns x such that m = ax

1: function Div(m,a)
2: i← 0
3: while m 6= a do
4: m← 3m+ a
5: βi ← ctz(m)
6: m← m/2βi

7: i← i+ 1
8: end while
9: x← 1

10: while i 6= 0 do
11: i← i− 1
12: x← x× 2βi

13: x← (x− 1)/3
14: end while
15: return x
16: end function

The algorithm basically computes the sequence m,Ga(m), G2
a(m), . . . , a which

is equal to a x, aF (x), a F 2(x), . . . , a. When it does, the algorithm remembers all
decisions ctz(3m+ a) = ctz(3x+ 1). In the next step, the a is replaced with 1, and
the algorithm uses an inverse of (2), namely

x =
F (x) 2ctz(3x+1) − 1

3
, (4)

to recover the sequence 1, . . . , F 2(x), F 1(x), x (backward) and therefore gets the x
at the end.

Finally, we can use the above algorithm in the opposite manner. Instead of
dividing m by x, and then multiplying by 1, we divide x by 1, and multiply by a to
get the m = ax. Note that in this way, there is no restriction on a parity of the a.
The pseudocode is given in Algorithm 4. Addition, subtraction, multiplication and
division by two (suppose representation in a binary system) are obviously in O(n).
It may not be so obvious, but multiplication and division by three are also in O(n).
The algorithm essentially converts multiplication to a series of k subtractions (see
m− a instead of x× a). The subtractions are performed on numbers that occur in
the trajectory of x, and these numbers may be larger than x. The time complexity

4 David Barina

Algorithm 4 Multiplication algorithm
Require: x and a are positive integers
Ensure: returns m such that m = ax

1: function Mul(x, a)
2: i← 0
3: while x 6= 1 do
4: x← 3x+ 1
5: βi ← ctz(x)
6: x← x/2βi

7: i← i+ 1
8: end while
9: m← a

10: while i 6= 0 do
11: i← i− 1
12: m← m× 2βi

13: m← (m− a)/3
14: end while
15: return m
16: end function

bound relies on the empirical observation [8] and stochastic model [9] which assume
that the maximum value attained by the iterates starting at x grows like x2. In
this case, the number of required bits should be at most about twice as large as the
number of bits required for the starting value. As the run time is proportional to
the k, the algorithm is fast if the number of steps k is small. Putting it all together,
the entire algorithm takes k ×O(n), or simply O(kn).

The worst case that could happen is that, in each iteration of the algorithm,
the βi will be equal to 1 (except the very first step for even inputs). This would
however contradict the validity of the Collatz conjecture. Thus we have F (x) < 2x,
and after k steps, we have F k(x) < 2kx. Thus the number of required bits is k + n,
and the hypothetical worst-case time complexity is O(k(k + n)), still assuming the
validity of the Collatz conjecture.

Similarly to the previous case, the algorithm initially computes the sequence
x, F (x), F 2(x), . . . , 1, while remembering all decisions ctz(3x + 1). Because the
number of decisions is equal to the k, the amount of memory space required to
solve this algorithm is bounded by O(k), or O(k + n) when inputs are included.
Then the algorithm runs backward, starting from a, and computes the sequence
a, . . . , a F 2(x), a F (x), a x, and therefore gets the a× x at the end. The key is that,
if the decision ctz(3x + 1) = ctz(3m + a) is known, one can quickly recover the
m = a x from Ga(m) = aF (x) using an inverse of (3), namely

m =
Ga(m) 2ctz(3m+a) − a

3
. (5)

3 Comparison with Other Algorithms

Consider the multiplication of two n-digit numbers. The time complexity of the long
grade-school multiplication is obviously in O(n2). Faster algorithms like Karatsuba
[10] or Toom–Cook [11] further decrease the exponent (e.g., up to O(n1.404) for
4-Way Toom–Cook algorithm). FFT-based multiplication algorithms can get the

Multiplication Algorithm Based on Collatz function 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1024 250000 500000 750000 1x106

ti
m

e
 [

m
ill

is
e
co

n
d
s]

size [bits]

new algorithm
libgmp implementation

Fig. 1 Comparison of computing time for multiplying two n-bit numbers.

runtime down to almost O(n log n). For example, the Schönhage–Strassen algorithm
[12] exhibits the time complexity O(n log n log log n).

From a practical perspective, the new O(kn) multiplication algorithm will be
useful if the number of steps k is known in advance (and can be assured that it
is small enough). This is, for example, the case of multiplication with numbers
pre-calculated in a lookup-table. If no prior knowledge of the multiplicand is known
in advance, the average speed of the algorithm will most likely be much slower
than any other known algorithm.

To illustrate the O(kn) complexity of the algorithm, see the experiment in
Figure 1, which compares the O(kn) algorithm against the multiplication algorithm
implemented in the GNU MP library (libgmp). The libgmp switches different
underlying algorithms (Karatsuba, Toom-Cook, FFT), depending on the length
of multiplicands. The horizontal axis indicates the length of both multiplicands
ranging from 1024 bits to about 1 million bits). The first multiplicand has been
chosen in such a way that the number of steps k is 35. This is a very special case used
just to illustrate the O(kn) complexity. The second multiplicand has been generated
as a uniformly distributed random integer (a Mersenne Twister algorithm). The
vertical axis indicates the time (in milliseconds) needed for multiplication by both
algorithms (average of 1000 measurements). The results were obtained on 3.0 GHz
CPU (AMD Ryzen Threadripper 2990WX).

To recommend to the reader a number where the number of steps is not too
large, consider, for example, this 64-bit integer x = 10760600709663905109 with
k = 6 steps. The integer contains 32 non-zero bits in its binary representation, so
the long multiplication would have to perform 32 additions, whereas our algorithm
has to perform 6 subtractions.

6 David Barina

4 Conclusion

It is possible to perform multiplication of large n-digit numbers in fewer operations
than the state-of-the-art algorithms. However, this possibility is conditioned by
the prior knowledge of the number of steps k in the Collatz function for the
multiplicand. If this number is small enough, the new O(kn) algorithm achieves a
higher speed compared to the other algorithms. Since there is no known method for
fast calculation of the k (other than computing the iterates of the Collatz function),
the algorithm is most likely only of theoretical interest.

Acknowledgement

Computational resources were supplied by the project ”e-Infrastruktura CZ” (e-
INFRA LM2018140) provided within the program Projects of Large Research,
Development and Innovations Infrastructures. This work was supported by The
Ministry of Education, Youth and Sports from the National Programme of Sustain-
ability (NPU II) project IT4Innovations excellence in science – LQ1602 and by the
IT4Innovations infrastructure which is supported from the Large Infrastructures
for Research, Experimental Development and Innovations project IT4Innovations
National Supercomputing Center – LM2015070.

References

1. Christian Hercher. Über die Länge nicht-trivialer Collatz-Zyklen. Die Wurzel,
6 and 7, 2018.

2. Terence Tao. The Collatz conjecture, Littlewood-Offord theory, and powers of
2 and 3, 2011.

3. Jeffrey C. Lagarias. The 3x+ 1 problem and its generalizations. The American

Mathematical Monthly, 92(1):3–23, 1985.
4. Richard E. Crandall. On the “3x+ 1” problem. Mathematics of Computation,

32(144):1281–1292, 1978.
5. Jeffrey C. Lagarias. The 3x+1 problem: An annotated bibliography (1963–1999)

(sorted by author). September 2003. arXiv:math/0309224.
6. Jeffrey C. Lagarias. The 3x + 1 problem: An annotated bibliography, II

(2000-2009). August 2006. arXiv:math/0608208.
7. Marc Chamberland. Una actualizacio del problema 3x+1. Butlleti de la Societat

Catalana de Matematiques, 22(2):1–27, 2003. An English version “An Update
on the 3x+1 Problem”.

8. Tomás Oliveira e Silva. Empirical verification of the 3x+1 and related conjec-
tures. In Jeffrey C. Lagarias, editor, The Ultimate Challenge: The 3x+1 Problem,
pages 189–207. American Mathematical Society, 2010.

9. Jeffrey C. Lagarias and Alan Weiss. The 3x + 1 problem: Two stochastic
models. Annals of Applied Probability, 2(1):229–261, 1992.

10. Anatoly Karatsuba and Yuri Ofman. Multiplication of many-digital numbers by
automatic computers. Physics – Doklady, 7:595–596, 1963. Originally published
in 1962.

Multiplication Algorithm Based on Collatz function 7

11. Andrei Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. Soviet Mathematics – Doklady, 3:714–716, 1963.
Originally published in Russian.

12. Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen.
Computing, 7(3):281–292, 1971.

	Introduction
	Towards Multiplication Algorithm
	Comparison with Other Algorithms
	Conclusion

