
https://doi.org/10.1007/s00224-020-09986-5

Multiplication Algorithm Based on Collatz Function

David Barina1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This article presents a new multiplication algorithm based on the Collatz function.
Assuming the validity of the Collatz conjecture, the time complexity of multiplying
two n-digit numbers is O(kn), where the k is the number of odd steps in the Collatz
trajectory of the first multiplicand. Most likely, the algorithm is only of theoretical
interest.

Keywords Multiplication algorithm · Division algorithm · Computer arithmetic ·
Collatz conjecture

1 Introduction

One of the most famous problems in number theory that remains unsolved is the
Collatz conjecture, which asserts that, for arbitrary positive integer x, a sequence
defined by repeatedly applying the function

C(x) =
{
3x + 1 if xis odd, or
x/2 if xis even

(1)

will always converge to the cycle passing through the number 1. The terms of such
sequence typically rise and fall repeatedly, oscillate wildly, and grow at a dizzying
pace. The conjecture has never been proven. There are however experimental evi-
dence [1] and heuristic arguments [2–4] that support it. There is also an extensive
literature, [5, 6], on this question.

Quoting Chamberland [7], some authors work with the Collatz function, Z+
odd →

Z+
odd, defined by

F(x) = (3x + 1) / 2ctz(3x+1), (2)

� David Barina
ibarina@fit.vutbr.cz

1 Brno University of Technology, Faculty of Information Technology, Centre of Excellence
IT4Innovations, Brno, Czech Republic

Published online: 15 May 2020

Theory of Computing Systems (2020) 64:1331–1337

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-020-09986-5&domain=pdf
http://orcid.org/0000-0003-0917-5512
mailto: ibarina@fit.vutbr.cz

where ctz(x) equals the number of factors of 2 contained in x. In computer
science, the ctz(x) is also known as the count trailing zeros operation, and, con-
sidering binary number systems, can be computed in O(n). Please note that the
n denotes the number of digits (here specifically bits) of the x. Considering
this definition, the trajectory x, F (x), F 2(x), F 3(x), . . . , 1 can be computed using
Algorithm 1.

The algorithm starts with any positive odd integer. Every iteration of the while-
loop replaces the x with F(x), and therefore effectivelly computes odd integer as
defined by F i (ith function iterate). Let us denote the total number of iterations k.
Provided that the Collatz conjecture holds, the above algorithm will always halt (con-
verge to and return the number 1), for any initial x, after exactly k steps. Note that
although the F is defined only on positive odd integers, Algorithm 1 and all sub-
sequent algorithms in this paper also work on positive even integers. In this case,
however, the very first iteration is different from that one defined by the Collatz
function.

2 Towards Multiplication Algorithm

Note that multiplying the x by positive odd integer a does not affect the result of the
ctz operation. By multiplying the Collatz function by an odd integer a, and tracking
m = ax rather than x, we get

Ga(m) = (3m + a) / 2ctz(3m+a), (3)

where each iterate Gi
a(m) = a F i(x). Analogously, we get Algorithm 2.

1332 Theory of Computing Systems (2020) 64:1331–1337

Still, the algorithm will always halt for any initial m and a such that a | m, pro-
vided that the Collatz conjecture holds. In other words, theG-trajectory of any integer
m = ax will pass through the a.

The same idea can be used to construct a division Algorithm 3. The idea behind
this is to exploit the above algorithm to pull out the a fromm = ax, and then reassem-
ble the x. Or in other words, we will divide the dividend m by the divisor a, and get
the quotient x. The only question is how to reassemble the x.

1333Theory of Computing Systems (2020) 64:1331–1337

To do that, we need to store all decisions βi from all iterations of the algorithm,
and then use them in reverse order (run the algorithm backward). The only difference
is that we start with 1 (multiplicative identity) rather than a, and therefore get x rather
than ax at the end.

The algorithm basically computes the sequence m, Ga(m), G2
a(m), . . . , a which

is equal to a x, a F (x), a F 2(x), . . . , a. When it does, the algorithm remembers all
decisions ctz(3m + a) = ctz(3x + 1). In the next step, the a is replaced with 1, and
the algorithm uses an inverse of (2), namely

x = F(x) 2ctz(3x+1) − 1

3
, (4)

to recover the sequence 1, . . . , F 2(x), F 1(x), x (backward) and therefore gets the x

at the end.
Finally, we can use the above algorithm in the opposite manner. Instead of dividing

m by x, and then multiplying by 1, we divide x by 1, and multiply by a to get the
m = ax. Note that in this way, there is no restriction on a parity of the a. The
pseudocode is given in Algorithm 4.

Addition, subtraction, multiplication and division by two (suppose representation
in a binary system) are obviously in O(n). It may not be so obvious, but multipli-
cation and division by three are also in O(n). The algorithm essentially converts
multiplication to a series of k subtractions (see m − a instead of x × a). The subtrac-
tions are performed on numbers that occur in the trajectory of x, and these numbers
may be larger than x. The time complexity bound relies on the empirical observation

1334 Theory of Computing Systems (2020) 64:1331–1337

[8] and stochastic model [9] which assume that the maximum value attained by the
iterates starting at x grows like x2. In this case, the number of required bits should be
at most about twice as large as the number of bits required for the starting value. As
the run time is proportional to the k, the algorithm is fast if the number of steps k is
small. Putting it all together, the entire algorithm takes k × O(n), or simply O(kn).

The worst case that could happen is that, in each iteration of the algorithm, the βi

will be equal to 1 (except the very first step for even inputs). This would however
contradict the validity of the Collatz conjecture. Thus we have F(x) < 2x, and after
k steps, we have Fk(x) < 2kx. Thus the number of required bits is k + n, and the
hypothetical worst-case time complexity is O(k(k + n)), still assuming the validity
of the Collatz conjecture.

Similarly to the previous case, the algorithm initially computes the sequence
x, F (x), F 2(x), . . . , 1, while remembering all decisions ctz(3x + 1). Because the
number of decisions is equal to the k, the amount of memory space required to
solve this algorithm is bounded by O(k), or O(k + n) when inputs are included.
Then the algorithm runs backward, starting from a, and computes the sequence
a, . . . , a F 2(x), a F (x), a x, and therefore gets the a × x at the end. The key is that,
if the decision ctz(3x + 1) = ctz(3m + a) is known, one can quickly recover the
m = a x from Ga(m) = a F(x) using an inverse of (3), namely

m = Ga(m) 2ctz(3m+a) − a

3
. (5)

3 Comparison with other Algorithms

Consider the multiplication of two n-digit numbers. The time complexity of the long
grade-school multiplication is obviously in O(n2). Faster algorithms like Karatsuba
[10] or Toom–Cook [11] further decrease the exponent (e.g., up to O(n1.404) for
4-Way Toom–Cook algorithm). FFT-based multiplication algorithms can get the run-
time down to almost O(n log n). For example, the Schönhage–Strassen algorithm
[12] exhibits the time complexity O(n log n log log n).

From a practical perspective, the new O(kn) multiplication algorithm will be use-
ful if the number of steps k is known in advance (and can be assured that it is small
enough). This is, for example, the case of multiplication with numbers pre-calculated
in a lookup-table. If no prior knowledge of the multiplicand is known in advance, the
average speed of the algorithm will most likely be much slower than any other known
algorithm.

To illustrate the O(kn) complexity of the algorithm, see the experiment in Fig. 1,
which compares the O(kn) algorithm against the multiplication algorithm imple-
mented in the GNU MP library (libgmp). The libgmp switches different underlying
algorithms (Karatsuba, Toom-Cook, FFT), depending on the length of multiplicands.
The horizontal axis indicates the length of both multiplicands ranging from 1024 bits
to about 1 million bits). The first multiplicand has been chosen in such a way that the
number of steps k is 35. This is a very special case used just to illustrate the O(kn)

complexity. The second multiplicand has been generated as a uniformly distributed

1335Theory of Computing Systems (2020) 64:1331–1337

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1024 250000 500000 750000 1x106

tim
e

[m
ill

is
ec

on
ds

]

size [bits]

new algorithm
libgmp implementation

Fig. 1 Comparison of computing time for multiplying two n-bit numbers

random integer (a Mersenne Twister algorithm). The vertical axis indicates the time
(in milliseconds) needed for multiplication by both algorithms (average of 1000 mea-
surements). The results were obtained on 3.0GHz CPU (AMD Ryzen Threadripper
2990WX).

To recommend to the reader a number where the number of steps is not too large,
consider, for example, this 64-bit integer x = 10760600709663905109 with k = 6
steps. The integer contains 32 non-zero bits in its binary representation, so the long
multiplication would have to perform 32 additions, whereas our algorithm has to
perform 6 subtractions.

4 Conclusion

It is possible to perform multiplication of large n-digit numbers in fewer operations
than the state-of-the-art algorithms. However, this possibility is conditioned by the
prior knowledge of the number of steps k in the Collatz function for the multiplicand.
If this number is small enough, the new O(kn) algorithm achieves a higher speed
compared to the other algorithms. Since there is no known method for fast calculation
of the k (other than computing the iterates of the Collatz function), the algorithm is
most likely only of theoretical interest.

Acknowledgments Computational resources were supplied by the project “e-Infrastruktura CZ” (e-
INFRA LM2018140) provided within the program Projects of Large Research, Development and
Innovations Infrastructures. This work was supported by The Ministry of Education, Youth and Sports
from the National Programme of Sustainability (NPU II) project IT4Innovations excellence in science –
LQ1602 and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for
Research, Experimental Development and Innovations project IT4Innovations National Supercomputing
Center – LM2015070.

1336 Theory of Computing Systems (2020) 64:1331–1337

References

1. Hercher, C.: Über die Länge nicht-trivialer Collatz-Zyklen. Die Wurzel, 6 and 7 (2018)
2. Tao, T.: The Collatz conjecture, Littlewood-Offord theory, and powers of 2 and 3 (2011)
3. Lagarias, J.C.: The 3x + 1 problem and its generalizations. The American Mathematical Monthly

92(1), 3–23 (1985)
4. Crandall, R.E.: On the “3x + 1” problem. Mathematics of Computation 32(144), 1281–1292 (1978)
5. Lagarias, J.C.: The 3x + 1 problem: An annotated bibliography (1963–1999) (sorted by author).

arXiv:math/0309224 (2003)
6. Lagarias, J.C.: The 3x + 1 problem: An annotated bibliography, II (2000-2009). arXiv:math/0608208

(2006)
7. Chamberland, M.: Una actualizacio del problema 3x+1. Butlleti de la Societat Catalana de Matema-

tiques 22(2), 1–27 (2003). An English version “An Update on the 3x+1 Problem”
8. Oliveira e Silva, T.: Empirical verification of the 3x+1 and related conjectures. In: Lagarias, J.C. (ed.)

The Ultimate Challenge: The 3x+1 Problem, pp. 189–207. American Mathematical Society (2010)
9. Lagarias, J.C., Weiss, A.: The 3x + 1 problem: Two stochastic models. Annals of Applied Probability

2(1), 229–261 (1992)
10. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Physics

– Doklady 7, 595–596 (1963). Originally published in 1962
11. Toom, A.: The complexity of a scheme of functional elements realizing the multiplication of integers.

Soviet Mathematics – Doklady 3, 714–716 (1963). Originally published in Russian
12. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7(3), 281–292 (1971)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

1337Theory of Computing Systems (2020) 64:1331–1337

http://arxiv.org/abs/math/0309224
http://arxiv.org/abs/math/math/0608208

	Multiplication Algorithm Based on Collatz Function
	Abstract
	Introduction
	Towards Multiplication Algorithm
	Comparison with other Algorithms
	Conclusion
	References

