
Using Control Logic Drivers for Automated
Generation of System-level Portable Models

Petr Bardonek
Brno University of Technology

Brno, Czech Republic
ibardonek@fit.vutbr.cz

Marcela Zachariášová
Brno University of Technology

Brno, Czech Republic
zachariasova@fit.vutbr.cz

Abstract—Portable Test and Stimulus Standard is a new
Accellera standard for an abstract definition of the verification
intent that can be used for stimuli generation for different types
of verification environments and at different levels of design
hierarchy. Despite the idea behind the standard is clear and
well received by the general public, there is still a lot of work
to make the magic happen inside of the interpretation tools. In
this paper, we focus on vertical reuse of portable models which is
basically about adapting portable models for block-level designs
to portable models defined at the subsystem or system-level. This
adaptation is usually based on manually defined (sub)system-level
control restrictions and resources sharing restrictions. Our goal is
to define algorithms which do transformations of portable models
so as the restrictions are automatically added or suggestions for
the user are made. In our first experiments, we focus on building
control restrictions based on the control logic drivers extracted
from the subsystem-level design. We present our first results on
the floating-point unit and RISC-V processor-based subsystem
as they fit to represents the vertical reuse in a clear manner.

Index Terms—PSS, portable stimuli, portable models, Univer-
sal Verification Methodology (UVM)

I. INTRODUCTION

From the work of the first adopters of Portable Test and
Stimulus Standard (PSS) [1], it can be seen that PSS is mostly
used for defining an abstract verification intent that can be
used for generating stimuli (tests) to different platforms such
as logical simulators, FPGAs, or emulators (see Platform reuse
definition in Section II). For example, authors in [3] and [4]
explain how Platform reuse is executed via the test realization
code encapsulated into platform-targeted exec blocks.

In general, the quality of the generated tests is better because
the PSS interpretation tools (Questa InFact from Mentor,
Perspec from Cadence, or Trek from Breker) allow to see
every verification intent captured by a portable model (PM)
as a graph and this helps engineers to gradually improve their
models by adding constraints to define only legal transitions
between states or coverage goals that should be reached by
the generated stimuli. All of this helps to have the state space
well defined and systematically explored by the tools, which
significantly reduces redundancy in the generated data.

Redundancy is a frequent problem in verification envi-
ronments which utilize a generator for creating stimuli (e.g.
UVM). The reason is that the generator usually doesn’t have
a feedback about functionality that was already covered and
therefore, produces the same stimuli all over again. That is why

it is understandable that authors who are using PSS claim bet-
ter verification performance, reaching coverage closure faster,
or significant time savings in tests implementation [3], [7].
Utilization of PSS and Cadence’s tool Perspec for verification
of WIFI component is described in [6]. Authors highlight PSS
advantages based on great results but admit that without help
of a Perspec expert, the definition of PM would take much
more time and would not have such a good quality. That is why
there are several papers that aim at improving the engineer’s
experience with PSS or helping them to create PMs effectively.
For example, authors in [8] defined the PSS framework
in which PSS is automatically translated to ruby tests and
ruby uvm which contain Ruby classes enveloping C-functions
exported from UVM. The paper [9] exploits an option of
incorporating PSS into IP-XACT, which is used for generating
IP blocks, subsystems, or even SoCs. The idea is to use the
same flow but in addition, extracting the verification intent
from PSS for generating tests.

The goal of our work is to help engineers even more by
defining algorithms which will do semi-automated transforma-
tions of PMs for different reuse scenarios. We focus mainly
on Vertical reuse of PMs (see definition of Vertical reuse in
Section II), because from our understanding, it is the most
complex and challenging one. This paper covers:

1) Vertical reuse definition and selection of representative
designs (floating point unit (FPU) and RISC-V processor
subsystem) that clearly show vertical reuse in PMs.

2) Defining PMs for these designs.
3) Analyzing how the logic drivers of control inputs of FPU

can be used for defining control restrictions in the PM
at the processor subsystem-level.

4) Defining the outcomes of the analysis which can help
to automate creation of such control restrictions.

The paper consists of six sections. Section II describes PSS
and PM in more details, mainly how the process of defining
the abstract verification content looks like and how stimuli
can be generated by dedicated tools. It also explains the reuse
options while most of the attention is paid to vertical reuse.
This section also contains a related work connected to the
vertical reuse. Section III outlines FPU and RISC-V processor
subsystem which were selected as representative designs for
vertical reuse. We have implemented PM for FPU. Section IV

978-1-7281-9938-2/20/$31.00 ©2020 IEEE

!

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 28,2020 at 11:49:01 UTC from IEEE Xplore. Restrictions apply.

shows a complete analysis of the control flow assigned to
control inputs of FPU, while Section V describes an idea
of algorithmization of the findings. Section VI concludes the
paper and outlines the ideas of our future work.

II. PORTABLE MODELS AND REUSE

The description of the verification intent (in the form of
the so-called rules) results in a PM representing all possible
scenarios for the verified system that will be explored during
verification. Nowadays, the creation of such description is a
manual job done by verification engineers.

Based on the rules, the PSS interpretation tool constructs
a graph as a visual representation of the described model
to give the verification engineer an easier way to debug.
The main abstraction mechanism in PSS is called action,
which represents a unit of behavior (leaf nodes of the graph).
Actions can be directly connected to the operations/functions
of the design under test (DUT) or to operations/functions
of the verification environment. This is done inside of the
structures called exec blocks (these actions are then called
atomic actions). The content of exec block depends on both
the platform and the design hierarchy level where verification
takes place. Therefore, this content is usually modified when
porting is executed. Moreover, actions can be compounded of
more actions, while defining ordering and scheduling and thus
specifying more complex scenarios. Atomic, as well as com-
pound actions, are instantiated inside of components, which are
the group elements intended for reuse and composition. Next
to the actions, there are passive entities defined in PSS, such as
resources, states, and data-flow items, which are collectively
called objects. They constrain scenarios that can be actually
generated (we call them resources restrictions).

PM represents a set of scenarios that can be generated and
PSS tool automatically enumerates the minimum set of runs
needed to cover the whole state space defined by PM. Because
this state space still can be quite big, we can further narrow
it by defining coverage and constraints (we call them control
restrictions). The focus can be on specific values or preferred
ranges. The aim of the tool will be reaching 100% of the
defined coverage goals.

As for the portability, it is possible to categorize PSS
applications according to what type of reuse is most central
to the application. In [4], three reuse options were identified:

• Platform reuse – Reuse of verification intent on different
platforms (UVM/SystemVerilog verification environment,
FPGA, emulator).

• Vertical reuse – Reuse of verification intent from block-
to subsystem- or to system-level verification.

• Horizontal reuse – Reuse of verification intent across
derivatives of the same design or across designs with
significant similarities.

In this paper, we focus on vertical reuse. Several different
languages and techniques are used to create verification stimuli
depending on whether a block, subsystem, or system is being
verified. When verifying RTL blocks and small subsystems,
SystemVerilog or ‘e’ sequence items, sequences and tests can

be used, usually inside of UVM-based verification environ-
ments. Occasionally, SystemC, Verilog or VHDL test-benches
are applied. However, at the SoC-level, the main source of
stimuli for different parts of the system is embedded software
running on one or more processors. What does it mean from
the PM point of view?

1) We need PMs for blocks, as well as a PM for the whole
system, while the first ones would be ideally a subset
of the second one and to model system scenarios, only
control and resources restrictions are added.

2) We need to achieve that stimulus representation gener-
ated from PMs at the block-level can be different than
the one generated from PM at the SoC-level. This can
be accomplished by defining various exec blocks inside
of actions that reflect the target design hierarchy level.

From the related work connected to vertical reuse it is clear
that it is important to involve some up-front planning [4]. In [5]
it is stated that while moving from block to subsystem or
system-level, there may be several details different from the
block-level environment, such as memory addresses, device
IDs, different constraints on certain operations, sharing of
resources. Overall, there are additional layered constraints in
PMs. Paper [11] describes a complete cycle of an interconnect
bus verification - from IP to SoC-level, using PSS. One PM
was reused on all levels but exec blocks must be rewritten to
reflect specific requirements on every level.

III. PORTABLE MODEL FOR FPU

We have selected RISC-V processor subsystem as a suitable
candidate for vertical reuse demonstration. In particular, it
is represented by an open-source processor implementation
called RI5CY, which was developed as a part of the PULP
platform [2].

In the verification of RISC-V processors, a hierarchical
approach at the block-level, at the processor top-level and at
the SoC-level is usually applied. At the block-level, we verify
that the functionality of the independent blocks from which
the processor consists of, is fine. The examples of such blocks
are: pipeline control, FPU, memory management unit, register
array, or interrupt controller. Subsequently, the processor as
a complex unit is verified, and in this case, we focus on
the cooperation of all blocks together. In the final phase,
integration of the processor into SoC is checked, mainly its
connection to the surrounding IP blocks, memory subsystems
or other processors.

At this point we will shortly describe how our PM for FPU
look like as it forms the base for our experimental work.

A. FPU Portable Model

FPU in the PULP platform has a lot of possible configura-
tions but we have selected only one of them to target vertical
reuse. Nevertheless, for the future experiments there is a nice
variety of configurations representing horizontal reuse.

FPU has some standard inputs defining floating point opera-
tions and operands. From the PSS point of view, all operations
have the same structure - one operation working with required

!

!

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 28,2020 at 11:49:01 UTC from IEEE Xplore. Restrictions apply.

number of operands. Therefore, it can be represented by one
base model which is further constrained or extended.

We started by defining two atomic actions, one for sending
data to FPU (fpu send data) and one for checking the control
signal which determines that FPU is ready to start a new
computation (fpu wait rdy). The later one is enclosed in the
cycle, because the model must wait for a component to be
ready and just after that send data. Without waiting, we would
throw away a lot of stimuli we wanted to use for verification
as they would never be processed by the component. We
encapsulated these two actions to a compound action called
fpu wait rdy. The last step was to create a separate atomic
action for generating data for these inputs. Furthermore, We
created a compound action called fpu wait done. It is similar
by structure to fpu wait rdy, but waits on the output signal of
FPU determining the validity of the computed result. Both
compound actions were enclosed into another one called
fpu operation to have the whole basic behaviour of FPU
grouped together.

With the basic computational model of the verification intent
ready, we had to consider the remaining inputs of FPU - reset
and flush. We created a single atomic action for generating
both of these inputs, because setting them to an active value
results in same behaviour of FPU. We extended the already
created atomic action fpu send data with these two inputs.
We created a model for the situation when flush or reset
is set while generating the duration of their active value.
This behaviour is enclosed to the compound action called
flush reset rnd.

As for the overall data flow of PM, first we generate all the
inputs. If flush or reset is active we go to the branch containing
the action flush reset rnd, otherwise we go to the branch
containing the action fpu operation. Coverage and constraints
on generated data are defined only for the fpu operation
branch, because we do not need to specify values if flush/reset
branch is selected. The base model is demonstrated in Figure 1.

Fig. 1. The FPU base model.

IV. ANALYSIS OF INPUT DRIVERS FOR CONTROL
RESTRICTIONS DEFINITION

In this section, we explore options how to semi-
automatically create a PM for a subsystem (RI5CY) when we

already have a PM of its sub-block available (FPU). First, we
need to identify blocks in the subsystem and determine how
they are connected together. We can do that by analyzing RTL
and tracking sources for every input and tracking destinations
for every output. This provides an insight, how the behaviour
of the block (with its PM implemented like FPU), is potentially
influenced by its environment (surrounding blocks). For this
purpose, we decided to isolate the input control signals of FPU
and analyze drivers of these control signals. Based on that
it is possible to estimate control restrictions in the processor
subsystem PM.

A. Control Signals Isolation

Our assumption is that control connections and also restric-
tions between blocks are usually based on control input port
signals of those blocks. Therefore, we divided the port signals
of FPU into four categories:

• control inputs: in valid i, out ready i, flush i, rst ni
• control outputs: in ready o, out valid o, busy o
• data inputs: operands i, rnd mode i, op i, op mod i,

src fmt i, dst fmt i, int fmt i, vectorial op i, tag i
• data outputs: result o, status o, tag o

B. Control Flow

At this point, it is important to define the control flow
assigned to these control inputs. For this purpose, most of the
simulation tools can help because they build a comprehensive
model of logic drivers. In other words, for every single
control input, it is possible to track assignments throughout
the hierarchy of blocks and see, which signals can influence
the behavior of a particular block.

When considering FPU, we have analyzed all logic drivers
for all control inputs: the reset signal, the input valid signal
and the output ready signal. Based on the analysis, the flush
input is constant-driven to the 0 value, which means that FPU
never executes flush (interrupt and throw away) of already
started operations. Almost the same applies to the output ready
signal, because it is constant-driven to the 1 value, which
means that the receiver of FPU outputs must be always ready.
The reset signal is globally driven for the whole processor
subsystem thus there is not much to analyze either, it is
a fairly straightforward implication. The input valid signal,
which determines the validity of inputs, is, on the other hand,
much more interesting. When is the RI5CY core configured
in a way it includes FPU, also a component called APU
dispatcher is connected which has control over the FPU instead
of ALU. If we look inside of the APU dispatcher, we will find
out that the setup of the input valid signal of FPU depends on a
combination of six signals. They are part of the logic inside of
APU which is responsible for solving dependencies between
requests. The solution comprises storing a request when the
previous one is getting processed, stalling the processing if
requests cannot be stored anymore or if there is a type conflict
caused by different latency of requests. The most important
thing to note here is that the APU logic directly depends on
two signals coming from another component, the decoder. The

!

!

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 28,2020 at 11:49:01 UTC from IEEE Xplore. Restrictions apply.

decoder needs to set an enable signal to activate the APU
dispatcher and the instruction latency. See Figure 2.

Fig. 2. Logic drivers of the FPU input valid control signal.

Based on the overall analysis, it is possible to recognize the
following control restrictions. It is clear that control inputs
of FPU are directly influenced by the control outputs of the
APU dispatcher block (a block responsible, in general, for
control over special units, shared or integrated, instead of
ALU) and the decoder block (responsible for the decoding
stage of the pipeline). Furthermore, scheduling of these control
points, modelled by actions, can be deduced from the ordering
of drivers themselves, where every step is constrained by the
previous one:

• Setting up the right instruction.
• Decoder setting up the enable signal and instruction

latency.
• APU dispatcher setting up the FPU input validity signal.

V. ALGORITHMIZATION

Based on the analysis in Section IV, we have defined the
following ideas for automation:

Automated analysis of RTL implementation of the sub-
system/system. This analysis can be built on existing tools
(simulation tools) completely, or based on post-processing
of their logs by a series of scripts. This will depend on
the outputs of the tools while taking into account the needs
of the next processing. The output from this step should
provide identification of the blocks and connections between
them (dependencies). The dependency analysis will result into
the dependency model between identified components. The
dependency model can be divided into two separate models,
one focusing on the control logic drivers, the second one on
the data paths. This step can help a user significantly as it
gives a picture of the subsystem/system that is being verified.

Automated generation of empty PMs for blocks. Based
on the previous step, empty PMs for all identified blocks will
be generated. Moreover, not only blocks as separate units but
also common data flow objects can be generated based on the
dependency model. This step allows an easy interconnection
between generated PMs and provides an option of pairing
existing PMs with the generated ones. It would require as-
sistance from the user who can also replace/adjust the data
flow objects. The later one could be semi-automated resulting
in the creation of a connection layer between user-specified
and generated data flow objects.

Automated creation of subsystem/system-level PM from
existing block-level PMs. Using the dependency model, com-
ponents with compound actions connecting existing PMs into

one bigger model of subsystem/system is created. This step
will use the dependency model focused on control logic drivers
for generation of control restrictions for scheduling compound
actions and connections inside of the created components.

VI. CONCLUSION

In this paper, we presented our first ideas of utiliz-
ing control logic drivers for semi-automated creation of
subsystem/system-level PMs from existing block-level PMs.
The purpose of this work is to help verification engineers with
vertical reuse of PMs, as it is recognized as a challenging
task when applying PSS and PSS-dedicated tools into the
process of functional verification. In our future work, we
plan to implement an example of the algorithm proposed in
Section V and refine it based on further experiments with
different blocks. Of course, there are still open questions about
how other control aspects can be automatically added to PMs.
For example, we plan to explore coverage control or power
management control based on UPF models.

ACKNOWLEDGMENT

This work was supported by Brno University of Technology
under grant number FIT-S-20-6309.

REFERENCES

[1] Accellera Systems Initiative, PSS 1.0a Language Reference Manual,
https://www.accellera.org/downloads/standards/portable-stimulus, 2020.

[2] Integrated Systems Laboratory of ETH Zürich and Energy-efficient Em-
bedded Systems group of the University of Bologna, “PULP platform”,
https://pulp-platform.org/index.html, 2020.

[3] S. Rosenberg, “The Powerful Synergy Between UVM and PSS”, Design
and Verification Conference Europe 2019 (DVCon Europe 2019), 2019.

[4] M. Ballance, “Designing a PSS Reuse Strategy”, Design and Verification
Conference Europe 2019 (DVCon Europe 2019), 2019.

[5] T. Fitzpatrick, M. Ballance, “Results Checking Strategies with the
Accellera Portable Test Stimulus Standard”, Design and Verification
Conference Europe 2019 (DVCon Europe 2019), 2019.

[6] E. Shneydor, S. Salnikov, S.L. Kosovizer, S. Greenberg, “Portable
Stimuli Over UVM, Using Portable Stimuli in HW Verification Flow”,
Design and Verification Conference Europe 2019 (DVCon Europe 2019),
2019.

[7] G. Bhatnagar, D. Brownell, “Portable Stimulus vs Formal
vs UVM: A Comparative Analysis of Verification Method-
ologies Throughout the Life of an IP Block”, Design
and Verification Conference US 2018 (DVCon US 2018),
http://events.dvcon.org/2018/proceedings/papers/02 1.pdf, 2018.

[8] T. Yang, E. Qin, “Bridge the Portable Test and Stim-
ulus to UVM Simulation Environment”, Design and
Verification Conference US 2018 (DVCon US 2018),
http://events.dvcon.org/2018/proceedings/papers/02 3.pdf, 2018.

[9] P. Karppa, L. Matilainen, M. Ballance, “Building
Portable Stimulus Into Your IP-XACT Flow”, Design
and Verification Conference US 2018 (DVCon US 2018),
http://events.dvcon.org/2018/proceedings/papers/02 2.pdf, 2018.

[10] A. Vintila, I. Tolea, “Portable Stimulus Driven SystemVerilog/UVM
Verification Environment for the Verification of a High-
capacity Ethernet Communication Endpoint”, Design and
Verification Conference Europe 2018 (DVCon Europe 2018),
http://events.dvcon.org/Europe/2018/proceedings/papers/061.pdf, 2018.

[11] G. Bhatnagar, C. Fricano, “Product Life Cycle of Intercon-
nect Bus: A Portable Stimulus Methodology for Performance
Modeling, Design Verification, and Post-Silicon Validation”, De-
sign and Verification Conference US 2019 (DVCon US 2019),
http://events.dvcon.org/2019/proceedings/papers/103.pdf, 2019.

!

!

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 28,2020 at 11:49:01 UTC from IEEE Xplore. Restrictions apply.

