
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-020-03368-x

1 3

Convergence verification of the Collatz problem

David Barina1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This article presents a new algorithmic approach for computational convergence ver-
ification of the Collatz problem. The main contribution of the paper is the replace-
ment of huge precomputed tables containing O(2N) entries with small lookup tables
comprising just O(N) elements. Our single-threaded CPU implementation can verify
4.2 × 10

9 128-bit numbers per second on Intel Xeon Gold 5218 CPU computer, and
our parallel OpenCL implementation reaches the speed of 2.2 × 10

11 128-bit num-
bers per second on NVIDIA GeForce RTX 2080. Besides the convergence verifica-
tion, our program also checks for path records during the convergence test.

Keywords Collatz conjecture · Software optimization · Parallel computing · Number
theory

1 Introduction

One of the most famous problems in mathematics that remains unsolved is the
Collatz conjecture, which asserts that, for arbitrary positive integer n, a sequence
defined by repeatedly applying the function C(n) = 3n + 1 if n is odd, or C(n) = n∕2
if n is even will always converge to the cycle passing through the number 1. The
terms of such sequence typically rise and fall repeatedly, oscillate wildly, and grow
at a dizzying pace. The conjecture has never been proven. There is however experi-
mental evidence and heuristic arguments that support it. As of 2020, the conjecture
has been checked by computer for all starting values up to 1020 [1]. There is also an
extensive literature, [2, 3], on this question.

The most striking thing about the Collatz conjecture is that it would shed a light
on the relation between the prime factorizations of n and n + 1 . The Collatz function
consists of two multiplicative operations and adding 1 that has a huge effect on the
factorization. Note that this problem has led directly to theoretical work showing

 * David Barina
 ibarina@fit.vutbr.cz

1 Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno University
of Technology, Bozetechova 1/2, Brno, Czech Republic

http://orcid.org/0000-0003-0917-5512
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03368-x&domain=pdf

 D. Barina

1 3

that very similar questions are formally undecidable [4]. Another interesting relation
is that the Collatz problem can be encoded as a simple Emil Post’s tag system [5].

The competitive (past and other ongoing) projects verifying the convergence of
the Collatz problem use huge pre-computed sieves and lookup tables to calculate
multiple iterates in a single step. For k steps, the tables have a size of 2k entries, the
entry comprises usually two 64, 96, or 128-bit numbers. Our approach is fundamen-
tally different. We have realized that the additive step in the Collatz function can be
technically avoided. Rather than tracking the trajectory directly on n, we track the
same trajectory on n + 1 . The trick is that, when calculating the function iterates, we
switch between n and n + 1 domains in such a way that we always use only multipli-
cative operations. Considering the binary representation of the n, we only use the ctz
(count trailing zeros) operation, right shift, and a small lookup table with precom-
puted powers of three (tens of bytes in total).

The rest of the paper is organized as follows. Section 2 reviews related work,
especially competitive projects and the results achieved so far. Section 3 presents
a new algorithm for computing iterates of the Collatz function. Section 4 describes
optimization techniques used in conjunction with this algorithm. Section 5 presents
performance evaluation and results achieved using the algorithm. Finally, Sect. 6
concludes the paper.

2 Related work

Several past or ongoing projects are trying to verify or disprove the Collatz conjec-
ture. These projects can be divided into two groups according to the algorithm they
use: (1) The first group checks for the convergence of the problem for all numbers
up to some upper bound. The bottom line is that they calculate the Collatz function
iterates, starting from the initial number n, and stopping once an iterate drops below
n. This is also known as computing the stopping time [6], or glide. (2) The second
group also checks all numbers up to some upper bound but searches for the highest
number of iterates (steps) before reaching 1. This is known as computing the total
stopping time [6], or delay. Importantly, algorithms used for this second group are
at least one order of magnitude slower compared to the first group. Our work targets
the first group. The question is how fast (in terms of numbers per second) are state-
of-the-art methods in both these groups. The current upper bound under which the
problem is verified is 266.4 [1].

The ongoing project of Eric Roosendaal1 asserts that their problem can check
about 227.3 numbers per second. By examining his program on our AMD Ryzen
Threadripper 2990WX, we have however found out the speed of 225.7 numbers per
second. The algorithm belongs to the second group. All numbers up to 260 ≈ 1018
have been checked for convergence.

We are also aware of the ongoing BOINC project.2 But we are unable to find
how fast their program is, and which algorithm uses. Based on our personal

1 http://www.ericr .nl/wondr ous/.
2 https ://boinc .theso nntag s.com/colla tz/.

http://www.ericr.nl/wondrous/
https://boinc.thesonntags.com/collatz/

1 3

Convergence verification of the Collatz problem

correspondence with Eric Roosendaal, we found that this ongoing BOINC project
is meant to disprove the Collatz conjecture by trying to find a counter-example. The
project started off at 271 . It looks like they have reached roughly 272.3 . No informa-
tion can be found regarding whether all numbers up to that limit have indeed be
checked.

In 2017, the yoyo@home project [1] checked for convergence all numbers up to
1020 ≈ 266.4 . The work of Honda et al. [7] claims that they can check 240.25 numbers
per second for the convergence (the first group), or 229.9 numbers per second for the
delay, both on GPU. Their programs are however only able to verify 64-bit numbers
(which have been known to converge due to the yoyo@home project). The paper
by Tomáis Oliveira e Silva [8] from 2010 claims that the author verified in 2009
the conjecture up to 262.3 ≈ 5.76 × 1018 . According to information published on his
website, the speed of his program was about 2.25 × 109 numbers per second on com-
puters of that time. Earlier, in 2008, Tomáis Oliveira e Silva3 tested all numbers
below 19 × 258 . Much earlier, in 1992, Leavens and Vermeulen [9] verified the con-
vergence for all numbers below 5.6 × 1013 ≈ 245.67 . And as the first tracked record,
in 1973, Dunn [10] verified the convergence below ca. 224.78 . According to [8], there
exist other unpublished records before the year 1992.

3 New approach

Recall that the Collatz conjecture asserts that a sequence defined by repeatedly
applying the function

will always converge to the cycle passing through the number 1 for arbitrary positive
integer n. Note that the outcome of the odd branch in (1) is always even, and thus,
the next iteration must go through the even branch. Thus, the modified formulation

is often [2] used. Multiplying by 3 and factoring out a power of 2 have only a small
effect on the prime factorization of n. The question here is how does the prime fac-
torization of n affect the prime factorization of n + 1.

We have realized that the additive step in the T(n) can be technically avoided
when computing the function iterates. Rather than defining the T(n) as in (2), and
tracking the trajectory directly on n, we can track the same trajectory on n + 1 with
the auxiliary function

(1)C(n) =

{

3n + 1 if n is odd, or

n∕2 if n is even

(2)T(n) =

{

(3n + 1)∕2 if n ≡ 1 (mod 2), or

n∕2 if n ≡ 0 (mod 2)

3 http://sweet .ua.pt/tos/3x+1.html.

http://sweet.ua.pt/tos/3x+1.html

 D. Barina

1 3

Thus, the multiplying by 3 just moved to the even branch. The trick is that, when
calculating the function iterates, we switch between n and n + 1 in such a way that
we always use only the even branch of either T or T1 . Therefore, the above functions
can be expressed as

and

There is seemingly still an additive operation in each step. However, considering
the binary representation of the n, these additive operations can be almost avoided
by merging several even steps into a single one. In other words, we use operation
which counts the number of trailing zero bits following the least significant nonzero
bit (ctz operation) and then perform multiple divisions by two (right shifts) at once.
This also includes performing multiple multiplications by three at once. However,
the powers of three can be precomputed in a small lookup table and also these mul-
tiplications can be performed using a single one. The size of the small lookup table
can be arbitrarily small and correspond to the number of steps performed at once;
thus, the space complexity is O(N), where the N is the number of steps performed in
a single step.

(3)T1(n) =

{

(n + 1)∕2 if n ≡ 1 (mod 2),

3n∕2 if n ≡ 0 (mod 2).

(4)T(n) =

{

T1(n + 1) − 1 if n ≡ 1 (mod 2),

n∕2 if n ≡ 0 (mod 2),

(5)T1(n) =

{

T(n − 1) + 1 if n ≡ 1 (mod 2),

3n∕2 if n ≡ 0 (mod 2).

1 3

Convergence verification of the Collatz problem

Now we can formulate two convergence verification algorithms, in Algorithms
1 and 2, according to the division in Sect. 2. The first algorithm checks for the con-
vergence, maximum value reached during the progression, and glide. The second
one is above that able to check for the delay. Delay is computed as the sum of all
alphas and betas before reaching number 1. Given that Max(n) is maximum value
reached during the progression n, T(n),T2(n),… , 1 , a positive integer m is called a
path record if for all n < m the inequality Max(m) > Max(n) holds. We check for the
convergence of the problem for all numbers starting from 1 up to some upper bound.
Under this assumption, both above algorithms can check for path records (note that
for Algorithm 1 the path record always occurs before n < n0).

4 Sieve

The general form [11] of Tk(n) is

where odd(n
L
) is the number of odd steps of T(n) that were taken in the computation

of Tk(n
L
) . Competitive programs use this equation to perform k steps at once (the

tables have the size of 2k entries, indices correspond to n
L
). The difference between

this and competitive algorithms lies in the fact that the competitive algorithms
compute a fixed number of iterates in a single step (using the equation above). On
the contrary, the number of steps in our algorithm depends on the specific number
tested. One can verify that for odd n, the average number of iterates computed in
a single step for both Algorithms 1 and 2 is 4. Thus, using k > 4 in (6) leads to a
higher number of iterations calculated in one step of the algorithm.

However, even more important acceleration technique of the convergence test is
the usage of a sieve (the sieve has the size of 2k entries). Using the sieve, we test
only those numbers that do not either converge or join4 the path of a lower number
in k steps. The acceleration obtained from this method is significant. The disadvan-
tage is a huge memory footprint of such sieves. For example, the sieve having the

(6)T
k(2kn

H
+ n

L
) = 3odd(nL)n

H
+ T

k(n
L
),

4 Enhancement proposed by Eric Roosendaal.

 D. Barina

1 3

size of 234 occupies 234 bits which is exactly 2 gigabytes. We have however found
that these convergence sieves (considering values stored in bits) are formed by con-
stantly repeated bit patterns. Specifically, the 234 sieve may have a memory footprint
of 256 megabytes. The reason is that this sieve is formed by only fifty constantly
repeated 64-bit patterns, so we can store only indices into a small lookup table.
Here, we consider 8-bit indices. Similarly, the 224 sieve has a size of 256 kilobytes.
The compression ratio can reach the value around 1:10 (64 bits represented by 6-bit
index).

We experimented with many sieve sizes and came to the conclusion that the sieve
size 234 is optimal for our CPU implementation, whereas the sieve size 224 is optimal
for GPUs. We are aware that other authors have used even larger sieves (and there-
fore have reached higher performance), e.g., the sieve of the size 237 in [7]. However,
such a sieve is absolutely impractical since it occupies 16 gigabytes of memory.

To speed up the convergence verification even further, our CPU program verifies
240−34 numbers of the same congruence class modulo 234 concurrently. This particu-
larly means that the program verifies the work units having the size of 240 numbers
and solves the lowest 34 bits at once. Then, the code paths diverge, resulting in the
verification of individual numbers up to 240 . We are aware that Eric Roosendaal used
a similar “interlaced” technique in his convergence algorithm. Note that the size of
congruence class 234 exactly matches the sieve size.

5 Performance evaluation

Our CPU implementation (written in C), as well as GPU implementation (OpenCL),
can verify work units of 240 128-bit numbers. If the 128-bit arithmetic is not suffi-
cient, the program switches to multi-precision arithmetic for the necessary amount
of time. Both of these programs implement Algorithm 1. Partial (per work unit) path
records are stored during the verification. Additionally, the program sums all the
� s for all n inside a particular work unit as proof of work so that the results can be
independently verified. These data were not collected in [7], whereas our program
is focused on practical use. A comparison of our program with competing programs
is given in Table 1. Note that all other programs can process only 64-bit numbers

Table 1 Comparison with competitive programs

The speed is given in numbers per second

Authors Sieve Numbers Speed Hardware

Honda et al. 2
37 64-bit 1.31 × 10

12 NVIDIA GeForce GTX TITAN X
Honda et al. 2

37 64-bit 5.25 × 10
9 Intel Core i7-4790

Roosendaal 2
32 64-bit 4.63 × 10

8 Contemporary CPUs
Oliveira et al. 2

46 64-bit 2.25 × 10
9 CPUs of the 2004–2009 era

This paper 2
34 128-bit 4.21 × 10

9 Intel Xeon Gold 5218
This paper 2

24 128-bit 2.20 × 10
11 NVIDIA GeForce RTX 2080

1 3

Convergence verification of the Collatz problem

while our program natively operates on 128-bit arithmetic. Note also that the com-
parison is made on different hardware. Finally note that all other programs require
tables of the size O(2N) , whereas our program only requires a small table of the size
O(N). To allow other developers and scientists to benefit from this work and build
on it, the programs used in this article have been released as open-source software.5

The program presented in this paper runs as a part of a distributed computing
project to check the convergence of the Collatz problem. From September 2019
to May 2020, the project managed to verify this conjecture for all numbers below
268 . Define t(n) the highest number occurring in the sequence starting at n. The n is
called the path record if for all m < n the inequality t(m) < t(n) holds. Lagarias and
Weiss [12] predicted using the large deviation theory for random walks that

In other words, the highest number occurring in the sequence for a path record n
grows like n2 . The results recorded up to 268 confirm this prediction. The largest know
path record below 268 occurs for the starting value n = 274133054632352106267
(previously unpublished).

6 Conclusion

This article presents a new method for computing iterates of the Collatz function.
The advantage over existing approaches is that it only requires a table of the size
O(N) to compute N steps at once, whereas other approaches require tables of the
size O(2N) to do the same. In addition, the article presents a new memory-saving
method for representing a sieve that further accelerates the convergence test. Our
programs can process 128-bit numbers, whereas competitive programs can only pro-
cess 64-bit numbers. The programs used in this work have been released as open-
source software.

Acknowledgements Computational resources were supplied by the project “e-Infrastruktura CZ”
(e-INFRA LM2018140) provided within the program Projects of Large Research, Development and
Innovations Infrastructures. This work was supported by The Ministry of Education, Youth and Sports
from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4In-
novations National Supercomputing Center – LM2015070.”

References

 1. Hercher C (2018) Über die Länge nicht-trivialer Collatz-Zyklen. Die Wurzel 6 and 7
 2. Lagarias JC (2003) The 3x + 1 problem: an annotated bibliography (1963–1999) (sorted by author).

arXiv :math/03092 24

(7)lim sup
n→∞

log t(n)

log n
= 2.

5 https ://githu b.com/xbari n02/colla tz/.

http://arxiv.org/abs/math/0309224
https://github.com/xbarin02/collatz/

 D. Barina

1 3

 3. Lagarias JC (2006) The 3x + 1 problem: an annotated bibliography, II (2000–2009). arXiv
:math/06082 08

 4. Conway JH (1972) Unpredictable iterations. In: Proceedings of the 1972 Number Theory Confer-
ence, pp 49–52

 5. Mol LD (2008) Tag systems and Collatz-like functions. Theor Comput Sci 390(1):92–101. https ://
doi.org/10.1016/j.tcs.2007.10.020

 6. Lagarias JC (1985) The 3x + 1 problem and its generalizations. Am Math Mon 92(1):3–23. https ://
doi.org/10.2307/23221 89

 7. Honda T, Ito Y, Nakano K (2017) GPU-accelerated exhaustive verification of the Collatz conjec-
ture. Int J Netw Comput 7(1):69–85

 8. Oliveira e Silva T (2010) Empirical verification of the 3x+1 and related conjectures. In: Lagarias JC
(ed) The ultimate challenge: The 3x+1 problem. American Mathematical Society, Providence, pp
189–207

 9. Leavens GT, Vermeulen M (1992) 3x+1 search programs. Comput Math Appl 24(11):79–99. https
://doi.org/10.1016/0898-1221(92)90034 -F

 10. Dunn R (1973) On Ulam’s problem. Tech. rep., University of Colorado at Boulder
 11. Oliveira e Silva T (1999) Maximum excursion and stopping time record-holders for the 3x + 1 prob-

lem: computational results. Math Comput 68(225):371–384. https ://doi.org/10.1090/S0025 -5718-
99-01031 -5

 12. Lagarias JC, Weiss A (1992) The 3x + 1 problem: two stochastic models. Ann Appl Probab
2(1):229–261. https ://doi.org/10.1214/aoap/11770 05779

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/math/0608208
http://arxiv.org/abs/math/0608208
https://doi.org/10.1016/j.tcs.2007.10.020
https://doi.org/10.1016/j.tcs.2007.10.020
https://doi.org/10.2307/2322189
https://doi.org/10.2307/2322189
https://doi.org/10.1016/0898-1221(92)90034-F
https://doi.org/10.1016/0898-1221(92)90034-F
https://doi.org/10.1090/S0025-5718-99-01031-5
https://doi.org/10.1090/S0025-5718-99-01031-5
https://doi.org/10.1214/aoap/1177005779

	Convergence verification of the Collatz problem
	Abstract
	1 Introduction
	2 Related work
	3 New approach
	4 Sieve
	5 Performance evaluation
	6 Conclusion
	Acknowledgements
	References

