
Semantically-Oriented Mutation Operator in Cartesian Genetic
Programming for Evolutionary Circuit Design

David Hodan

ihodan@fit.vutbr.cz

Vojtech Mrazek

mrazek@fit.vutbr.cz

Zdenek Vasicek

vasicek@fit.vutbr.cz

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Brno, Czech Republic

ABSTRACT
Despite many successful applications, Cartesian Genetic Program-

ming (CGP) suffers from limited scalability, especially when used

for evolutionary circuit design. Considering the multiplier design

problem, for example, the 5×5-bit multiplier represents the most

complex circuit evolved from a randomly generated initial popu-

lation. The efficiency of CGP highly depends on the performance

of the point mutation operator, however, this operator is purely

stochastic. This contrasts with the recent developments in Genetic

Programming (GP), where advanced informed approaches such as

semantic-aware operators are incorporated to improve the search

space exploration capability of GP. In this paper, we propose a

semantically-oriented mutation operator (SOMO) suitable for the

evolutionary design of combinational circuits. SOMO uses seman-

tics to determine the best value for each mutated gene. Compared to

the common CGP and its variants as well as the recent versions of

Semantic GP, the proposed method converges on common Boolean

benchmarks substantially faster while keeping the phenotype size

relatively small. The successfully evolved instances presented in

this paper include 10-bit parity, 10+10-bit adder and 5×5-bit multi-

plier. The most complex circuits were evolved in less than one hour

with a single-thread implementation running on a common CPU.

KEYWORDS
cartesian genetic programming, semantic operator, semantic muta-

tion, evolutionary circuit design

ACM Reference Format:
David Hodan, Vojtech Mrazek, and Zdenek Vasicek. 2020. Semantically-

Oriented Mutation Operator in Cartesian Genetic Programming for Evolu-

tionary Circuit Design. In Genetic and Evolutionary Computation Conference
(GECCO ’20), July 8–12, 2020, Cancún, Mexico. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3377930.3390188

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’20, July 8–12, 2020, Cancún, Mexico
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00

https://doi.org/10.1145/3377930.3390188

1 INTRODUCTION
The design of combinational logic circuits represents a popular

research topic addressed by the evolutionary computing commu-

nity since the early nineties. The first efforts for evolving various

combinational circuits were made by Koza [12], Coello et al [4]

and Miller et al [18]. Koza investigated the evolutionary design of

the even-parity problem in his extensive study related to Genetic

Programming (GP). Coello et al. employed the same algorithm to

evolve 2-bit adders and multipliers. In contrast to these studies,

Miller used a variant of genetic algorithm and successfully evolved

more complex circuits such as 4-bit adders and 3-bit multipliers.

But the evolutionary design of logic circuits has attracted more

attention of researchers with the advent of a new form of genetic

programming called Cartesian Genetic Programming (CGP) pro-

posed in 2000 [14].

Since its introduction, CGP has been adopted bymany researchers

and successfully applied to many application areas including opti-

mization of Boolean circuits [15, 17, 24]. Despite its success, CGP

suffers from limited scalability, especially when used for evolu-

tionary circuit design (i.e. when evolving Boolean circuits from

scratch) [25]. To address this issue, researchers introduced vari-

ous strategies [6, 10, 26]. Nevertheless, the most complex circuit

evolved directly (i.e., without introducing a decomposition) from a

randomly generated initial population is a 28-input benchmark [26].

Considering the common arithmetic circuits, 5×5-bit multiplier and

9+9-bit adder represent the largest problem instances evolved from

scratch [11]. In fact, the evolutionary design of multipliers repre-

sents a tough problem even for small bit widths. A multi-thread

parallel CGP accelerator running for 4 hours on a cluster of 60 com-

puters was used by Hrbacek et al. [11] to obtain a single 5×5-bit

multiplier.

Crossover and mutation operators are typically used to create off-

spring in standard GP. In contrast to that, CGP was designed and is

still used with a mutation operator representing the driving force of

the evolution [15]. Despite several attempts to introduce a crossover

operator to CGP [3, 5, 23], the standard CGPwith mutation operator

remains the best strategy, especially when considering the design

of logic circuits. One of the possible explanations of the mutation

operator’s superiority over crossover is that the Boolean domain

implies a challenging search space, especially for non-trivial circuit

structures such as multipliers [16, 22].

The point and probabilistic mutation are the most used forms of

mutation in standard CGP [15]. However, there is a considerable

length and positional bias associated with the usage of these opera-

tors [15]. Moreover, the efficiency of the search deteriorates with

940

https://doi.org/10.1145/3377930.3390188
https://doi.org/10.1145/3377930.3390188

GECCO ’20, July 8–12, 2020, Cancún, Mexico David Hodan, Vojtech Mrazek, and Zdenek Vasicek

increasing the problem size due to the presence of inactive gates.

Sincemany genes in CGP are redundant, mutations often occur only

in the redundant regions, which means that the mutated genotype

has the same phenotype as its parent. Various improvements have

been proposed to increase the efficiency of the CGP. For example,

Single Active Mutation (SAM) operator [8] was proposed to reduce

the wasted objective function evaluations. SAM ensures that in

addition to some inactive genes, exactly one active gene is mutated.

Moreover, different strategies have been proposed to compensate

the positional bias [15]. Despite these improvements, the mutation

operator remains still blind in the sense that mutated genes, as

well as the value of the mutated genes, are chosen randomly. This

contrasts with the recent development in GP, where the researchers

try to incorporate more advanced informed approaches such as

semantic-aware operators to improve the capability of exploring

the search space [7, 19, 21]. According to our best knowledge, the

only approach employing a kind of informed (or biased) mutation

operator in CGP is the work of Silva et al. [6]. The authors intro-

duced a guided active mutation (GAM) which aims to reduce the

number of evaluations needed to find feasible solutions. GAM con-

sists of modifying one or more active nodes on the subcircuit from

the inputs to the output with the smallest number of correct values

when compared to the truth table. It means that only genes asso-

ciated with the active nodes are mutated. The mutated genes and

their values are chosen randomly. GAM does not mutate the sub-

graphs of outputs that already produce a valid response according

to the truth table. When evaluated on Boolean problems, however,

GAM achieved low success rates when compared to SAM, and it

seems to be necessary to combine both strategies together [6]. For

single-output problems, it degrades to SAM.

This paper proposes a new mutation operator aiming to reduce

the number of evaluations needed to design fully working combina-

tional circuits. The semantic is used to guide the mutation operator

and avoid wasted evaluations. The point mutation in CGP replaces

the mutated genes with randomly chosen (but valid) values. When

a gene associated with input connection is mutated in our case, we

try to compute the optimal connection. Moreover, a different seed-

ing strategy is used in our case. We always start with a candidate

solution consisting of inactive nodes only. Similarly to SAM, only

genes associated with the active nodes and program outputs are

mutated. The efficiency of the proposed method is evaluated on

standard benchmark problems such as parity circuits and adders

as well as on hard benchmark problems, which is the design of

combinational multipliers in which the fitness in CGP typically

stagnates for many generations without any improvement. The

method is compared to the best CGP-based and GP-based methods

available in the literature.

2 RELEVANTWORK
2.1 Semantic Genetic Programming
GP operators traditionally work in the syntactic space and manipu-

late the syntax of parents. The parents can also be modified based

on their semantics. The semantics of a program can be formally

defined in a number of ways. It can be a canonical representation,

a description of the behavior based on a logical formalism, or a set

of input-output pairs making up the computed function [20]. In the

latter case, we can sample the inputs at random, or we can enumer-

ate all possible input combinations. The exhaustive enumeration is

typical, especially for Boolean problems.

Semantic GP is a branch of GP that involves semantic informa-

tion to improve various aspects of GP. The semantic, for example,

can be used to enforce semantic diversity during the evolutionary

process [20]. Moreover, we can use semantics to boost the perfor-

mance of the search space exploration by avoiding returning to

points that have already been traversed. Another possibility is to

prevent genetic operators from causing a destructive change in

fitness[1].

In 2012, Moraglio et al proposed Geometric Semantic Genetic

Programming (GSGP) which uses specific genetic operators, the

so-called geometric semantic operators [20]. On many various sym-

bolic regression and classification problems, it has been shown that

GSGP provides statistically better results than a common genetic

programming and other machine learning methods in terms of the

error score [13]. The reason is that by applying these operators,

one can effectively create a unimodal error surface for problems

such as symbolic regression. The search process conducted in such

a search space is more efficient than in the case of a standard GP.

However, geometric semantic operators, by construction, always

produce offspring that are larger than their parents, causing a fast

growth in the size of the individuals. The growth is linear for muta-

tion and exponential for crossover [20]. As a consequence of that,

the evolved programs undergo unprecedented growth in their size.

This leads to excessive usage of memory and computational power,

and also results in non-interpretable solutions [2].

Several approaches addressing the problem of the exponential

growth of GSGP individuals have been developed, but the problem

is still considered unsolved. One branch of the methods is based on

simplifying the offspring during the evolution. The other approach

is to find new and better versions of the semantic crossover oper-

ators [13, 20]. Another possibility is making the algorithm more

efficient in terms of memory and computational resources [2].

2.2 Cartesian Genetic Programming
CGP grew from a method of evolving digital circuits developed

by Miller et al. in 1998 [18] to address two issues related to the

efficiency of common GP – poor ability to represent digital circuits,

and the presence of bloat. Compared to tree-based GP, CGP repre-

sents the problems using directed acyclic graphs (DAGs) encoded

using fixed length structures called netlists (i.e., one-dimensional

or two-dimensional grid of nodes). This representation has many

advantages [15]. The graphs can represent many types of compu-

tational structures with arbitrary number of outputs. The nodes

can be multiply used to create more complex blocks. The fixed-

length netlists can contain non-coding (inactive) genes allowing

the presence of variable-length phenotypes.

2.2.1 Circuit Representation. A two-dimensional array of com-

putational nodes arranged in nc columns and nr rows is used to

represent the programs (individuals). CGP utilizes the following

encoding scheme. The program inputs and node outputs are la-

beled 0, 1, . . . ,ni − 1 and ni ,ni + 1, . . . ,ni +nc .nr − 1, respectively,
where ni is the number of program inputs. Each node input can

be connected either to the output of a node placed in previous l

941

Semantically-Oriented Mutation Operator in Cartesian Genetic Programming for Evolutionary Circuit Design GECCO ’20, July 8–12, 2020, Cancún, Mexico

Genotype

Phenotype

Decoded circuit
A0

A1

B1

B0

O0

O1

O2

O3

1 2 0 0 3 0 4 5 1 4 5 0 6 2 1 1 7 1 10 3 0 9 6 11 7
O0O1O2O3C4 C5 C6 C7 C8

0 2 0
C9 C10 C11

C4 C5 C6 C7 C9 C10 C11

A0
A1

B1
B0

O0
O1

O3

C8

input connections logic functions

inputs outputs
0
1
2
3

O2

Figure 1: Example of a CGP individual representing a 2-bit
multiplier having four inputs and four outputs encoded by
one-dimensional CGP with parameters: ni = no = 4, nc = 8,
nr = 1, l = 8, Γ = {0 : and, 1 : xor, 2 : or}.

columns or to one of the program inputs. This avoids feedback

which is not desirable for combinational circuits. A candidate solu-

tion consisting of two-input computational nodes is represented

in the chromosome by nc .nr triplets (cin1, cin2, cψ) consisting of

three genes determining for each node its functionψ ∈ Γ, and label
of nodes cin1 and cin2 to which its inputs are connected. The last

part of the chromosome contains no genes specifying the labels of

nodes or program inputs where the program outputs are connected

to.

Depending on the function of a node, some of its inputs may

become redundant. For example, a two-input computational node

that implements inverter does effectively utilize only one input.

Moreover, some of the nodes may become redundant because they

are not directly or indirectly connected to a program output. These

nodes are typically referred to as inactive nodes. The presence of
inactive nodes enables the existence of neutral mutations. Accord-

ing to many studies, this neutrality is important for an effective

search in CGP [28]. Figure 1 demonstrates the principle of CGP

encoding. It can be seen that although eight computational nodes

are available in total, not all the nodes have to be employed in the

phenotype (resulting circuit). The computational node C8 is inac-

tive so three corresponding genes can be mutated without affecting

the phenotype.

2.2.2 Search Strategy. CGP employs a (1 + λ) evolutionary strat-

egy [17]. The algorithm is summarized in Algorithm 1 and consists

of the following steps. The initial population P of the size 1 + λ is
generated randomly. Then, the following steps are repeated until

the termination condition is satisfied: (i) the population is evaluated,

(ii) a new parent p is selected, (iii) λ offspring are created from the

parent using mutation operator.

CGP utilizes a point mutation that modifies up to h randomly

chosen genes. The value of a selected gene is replaced with a ran-

domly generated new one. Note that only certain values can be

assigned to each gene to avoid feedback. The range of valid values

depends on the gene position and can be determined in advance. It

Algorithm 1: Standard (1 + λ)-CGP algorithm

1 create initial population P = {p0, . . . ,pλ }; p ← NULL;

2 while terminating condition not satisfied do
3 EvaluatePopulation(P);

4 α ← SelectFittestIndividual(P);

5 if fitness(α) ≤ fitness(p) then p ← α ;

6 P ← {p} ∪ {p′
1
= Mutate(p), . . . ,p′λ = Mutate(p)};

7 end
8 return p;

is worthwhile to mention that the previous parent is never selected

by SelectFittestIndividual procedure as the new parent if there ex-

ists at least one individual who obtained the same or better fitness.

This strategy is important because it ensures diversity between

populations in different generations [17].

When considering an evolution from scratch, the fitness of a can-

didate solution is typically determined as follows. All the requested

assignments are applied to the program inputs, and the number of

bits that the candidate solution computes correctly corresponds to

the fitness value (additional criteria can be incorporated as well). In

case of circuit evolution, this procedure is, in fact, the computation

of the Hamming distance (HD) between the specification given in

the form of Truth table (TT) and the response of a candidate circuit

p:

f itness(p) = HD(p,TT) =
∑
∀x ∈Bni

OnesCount(p(x) ⊕ TT(x))

The algorithm is terminated when the maximum number of

generations is exhausted, or a required solution is obtained, i.e.,

when f itness(p) = 0. Note that f itness(NULL) = ∞.

3 PROPOSED APPROACH
3.1 Semantically-Oriented Mutation Operator
In this work, we propose to replace the purely stochastic muta-

tion operators used in CGP with semantically-oriented mutation

operator (SOMO). This work aims to improve the efficiency of

the evolutionary design of combinational circuits. The principle

of the proposed operator which replaces the Mutate procedure of

Algorithm 1 is summarized in Algorithm 2.

The algorithm accepts the parental solution p and produces its

mutated version p′. The mutation operator is operating in pheno-

type space, hence the first step consists of decoding p and obtaining

a DAG formed by a set of nodes denoted as C and a set of edges

denoted as E. Every CGP computational node is included in C
independently, whether it is active or not. Besides, the program

inputs, as well as the program outputs, are treated as nodes. To

distinguish between program inputs, program outputs, active, and

inactive nodes, the set of nodes forming the program inputs CP I
and program outputs CPO are provided. Moreover, a mapping ψ
assigning a function from Γ to each node is produced. In the next

step (line 2), active nodes are identified. The active nodes are those

that are directly or indirectly connected to program output. Then

one of the internal active nodes is chosen randomly for mutation.

The mutated node is denoted as c . The mutation can affect either

a node function (i.e., ψ) or a node connection (i.e., E). Note that

942

GECCO ’20, July 8–12, 2020, Cancún, Mexico David Hodan, Vojtech Mrazek, and Zdenek Vasicek

Algorithm 2: Semantically-oriented mutation operator

Input: A CGP individual p consisting of |C | nodes
Output: A mutated individual p′

1 (C, E,CP I ,CPO ,ψ) ← decode(p) ; // decode p as a DAG (C , E)

with CP I leaves and CPO roots (outputs); ψ : C → Γ

2 N ← {c ∈ C | ∃co ∈ CPO : c ⊣∗E co } ; // get active nodes

3 c ← selectNodeRandomly(N \CP I);

4 if (rand(0, 1) < pf) ∧ (c < CPO) then // mutate node function

5 ψ (c) ← rand(0, Γ − 1)

6 else // mutate node connection

7 change connection and function of pq inactive nodes;

8 e ← selectInputEdgeRandomly({(x, c) ∈ E |x ∈ N });

9 n ← identifyBestNode(c, e, (C, E),ψ);

10 E ← (E \ {e}) ∪ {(n, c)};

11 end
12 return p′ ← encode(C, E,CP I ,CPO ,ψ)

only node connection is mutated for a node from CPO . The func-
tion of an internal node is mutated with probability pf . Otherwise,
the connection of a single input is mutated. Finally, the modified

DAG is encoded using CGP encoding scheme. The encoding works

as follows. All the nodes are topologically sorted. The unchanged

nodes preceding the mutated node c are placed at the beginning of

the chromosome, followed by the nodes that have been originally

inactive. Finally, the nodes following c together with c are encoded.
This arrangement is not, in fact, necessary from the theoretical

point of view. Still, it simplifies the implementation of the mutation

operator because we can use the advantage of the CGP encoding

and use the connections based on the node indices (i.e., a node

can be connected only to those nodes having the lower index to

produce acyclic graphs.

Themutation of a node input connection consists of several steps.

First, some inactive nodes are modified (the amount is defined as

ratio pq). The modification of a node includes the reconnection of

all node inputs causing update of E and the change of node function

causing update ofψ . The node can be connected to any active node

preceding c or any inactive node. New node function is chosen

randomly from Γ. This step ensures that new genetic material is

generated before performing the actual mutation. As a consequence

of that, several sub-circuits with provisionally unconnected outputs

can arise during this step. After that, one input of a mutated node c
is chosen and reconnected to a noden identified as the most suitable

node, i.e., a node whose connection to c causes improvement of the

fitness value.

The identification of the most suitable node is based on semantics

and is formally defined in Algorithm 3. The procedure uses the

set of input-output pairs making up the computed function and

calculates score for every node of DAG (C, E) that may potentially

be connected to the mutated node c . Then, the highest-score node
is returned. If more nodes receive the same score, the node closest

to the program inputs is preferred. The score reflects the Hamming

distance between values expected at the selected input e of the

mutated node c and output values computed by a particular node.

To determine the distance, the algorithm needs to know the set of

input-output pairs and outputs for every node, which is obtained

by simulating the DAG. We propose to perform the simulation for

Algorithm 3: Procedure identifyBestNode
Input: DAG (C, E), node function assignmentψ , selected

node c and its input e , specification in the form of a

Truth table TT (x), where x ∈ Bni , B = {‘0‘, ‘1‘}
Output: The most suitable node n ∈ C

1 initialize score(n) to 0 for every n ∈ C;

2 N ← {n ∈ C |¬(c ⊣∗E n)}; // get candidates for connection

3 foreach x ∈ Bni do // perform simulation for all inputs

4 val ← evaluate N for input x ;

5 vale=‘0‘ ← evaluateC \N for input x and e forced to ’0’ ;

6 vale=‘1‘ ← evaluateC \N for input x and e forced to ’1’ ;
// determine desired input value for each output

7 req ← ⊙o∈CPO

(
Θ

(
TT (x)[o],val

[o]
e=‘0‘,val

[o]
e=‘1‘

))
// update score of each node

8 foreach n ∈ N do
9 score(n) ← score(n) + HD∗(req,val [n]);

10 end
11 end
12 return argmaxn∈N score(n);

every possible input combination, which is formally defined as Bni ,
but the computation of the score can be in general based on a subset

of all possible input combinations.

Algorithm 3 starts with determining the set of candidate nodesN .

This set includes nodes that are not directly or indirectly connected

to c and whose connection thus does not cause a cycle. Then, DAG

is simulated for every input combination. A particular input combi-

nation x is applied at the program inputs (i.e., the outputs of DAG

leaves CP I) and value at the output of every node is determined.

The simulation is divided into three parts. Nodes included in N are

simulated at first. Then, the remaining nodes are simulated with the

knowledge of the outputs at nodes included in N for two different

cases. The first case reflects the situation when the mutated input

e is forced to logic zero, and the second one the situation when

e is equal to logic one. This arrangement helps us to investigate

which value the input e should take for a particular combination

at program inputs (denoted as x) to achieve a match between the

value at the program outputs (denoted as val
[o]
e=0 or val

[o]
e=1) and the

specification given in form of a Truth table (denoted as TT (x)[o]).
Note that the term [o] in superscript points to a Boolean value

associated with a program output node o. The desired input value is
denoted as req and it can be equal to ‘0‘, ‘1‘ or ‘X‘, where ‘X‘ means

that it does not matter what Boolean value the input e takes. This
can happen in two cases. One situation is that neither ‘0‘ nor ‘1‘

presented at e leads to expected output response that matches the

specification. The another situation that can happen is that both

input values lead to required response and it does not matter which

one will be chosen. To determine the value of req, we use ternary
operatorΘ and reduction operator ⊙ defined as follows:

Θ(t,v0,v1) =

‘X‘ if v0 = v1

‘0‘ if v0 = t

‘1‘ if v1 = t

⊙(a,b) =

{
a when a , ‘X‘

b otherwise

943

Semantically-Oriented Mutation Operator in Cartesian Genetic Programming for Evolutionary Circuit Design GECCO ’20, July 8–12, 2020, Cancún, Mexico

c0

c1 c2 c3 c4 c5

c7
c8c6

c7 c8c6

 0

 1

 1 0 1 0 1 0 0 0
MSB

 1 1 0 0 1 0 1

 0 0 1 0

 1 0 0 1

 0 1 1 1 0

 1 0 0 1

 1 1 1 0

Θ 0 1 0 1

expected
output

c0
c1 c2 c3 c4 c5 c7

c8c6
e

c

 X 1 0 0
desired node input (req)

score(c1) =	1 score(c3)	=	2

score(c0) =	3 score(c2) =	1

score(c4) =	1

score(c5)	=	2

 0 1 1 0

a)

b)

e

e

N

Figure 2: Principle of the most suitable node identification
(part b) when mutating a DAG consisting of six computa-
tional nodes (part a) given a specification defining the ex-
pected output values and mutated node c6 whose second in-
put e is going to be changed. At the end of the process, node
c0 is determined as the most suitable candidate.

For a particular program output, the operator Θ takes the re-

quired output value according to TT together with the output val-

ues obtained when e = ‘0‘ and e = ‘1‘ and determines what input

produces the required output. The reduction operator is used to

combine the identified values from multiple program outputs to

a single value denoted as req. Finally, the score of each candidate

node is updated. In this step, the algorithm compares the value

at the node output val [n] which can be either ‘0‘ or ‘1‘ with req
and increments the score provided that a match is detected. The

increment corresponds with the inverted Hamming distance which

is defined as follows:

HD
∗(req,a) =

{
1 when (req , ‘X‘) ∧ (req ≡ val)

0 otherwise

The whole process is illustrated in Figure 2 on a simple problem

having two program inputs and single program output. The DAG

consists of six nodes denoted as c2, . . . , c7. Node c6 is the mutated

node whose second input will be reconnected. Node c4 and c5 are
not active and were produced at line 7 of Algorithm 2. We simulate

the left part of the DAG denoted as N for every input combina-

tion, i.e., x = (‘11‘, ‘10‘, ‘01‘, ‘00‘). The right part is divided into

two separate cases as described above and simulated too. At the

end of the simulation, we receive four responses at the output of

every node in N . For node c5, for example, we obtained these val-

ues: val [c5] = (‘1‘, ‘1‘, ‘1‘, ‘0‘) for the inputs in x . The specification

requires the combination TT [c8] = (‘0‘, ‘1‘, ‘0‘, ‘1‘) at the program
output corresponding to the node c8. We obtained the response

val
[c8]
e=‘0‘ = (‘1‘, ‘0‘, ‘0‘, ‘1‘) and val

[c8]
e=‘1‘ = (‘1‘, ‘1‘, ‘1‘, ‘0‘) when e is

forced to ‘0‘ and ‘1‘, respectively. Looking at the rightmost value,

we can see that the specification requires ‘1‘, which is available

when e = ‘0‘. The next required value is available when e = ‘1‘ and

the third when e = ‘0‘. In the last, i.e. leftmost, case neither e = ‘0‘

nor e = ‘1‘ provide ‘0‘ at the output, hence the corresponding po-

sition of req will be equal to ‘X‘. The complete content of req is

equal to (‘X ‘, ‘1‘, ‘0‘, ‘0‘) and forms a kind of pattern which needs

to be compared with outputs of all nodes that can potentially be

connected at the input of c6. The highest score is received for c0 be-
cause three out of four values corresponds to the pattern. Therefore,

c0 is returned as the result of the procedure identifyBestNode.

3.2 Population Initialization
Compared to the standard CGP, we propose to use a different strat-

egy for population initialization. We hypothesize that it is better to

start with a candidate solution having no active gate to maximize

the efficiency of the proposed approach and minimize the number

of active gates of the evolved solutions. Therefore, the initial popu-

lation consists of individuals whose program outputs are connected

directly to one of the program inputs. The selection of the inputs

is done randomly. As the program outputs are treated as nodes

in Algorithm 2, the mutation operator naturally selects one of the

output nodes in the first generations.

3.3 Properties
3.3.1 Linear size-dependent overhead against CGP. Similarly to

SAM [8], mostly adopted in CGP, a single active node is always

mutated. The mutation of active nodes helps to reduce the wasted

evaluations and improves the efficiency of the search. Considering

this fact, the efficiency of the search performed by SOMO expressed

in terms of the number of generations needed to find a fully working

solution needs to be at least the same as in CGPwith SAM. However,

the computational complexity required to create a single generation

is higher in SOMO. The overhead compared to the CGP is linear

w.r.t. the number of nodes and can be controlled by pq , which
determines together with the number of active nodes the total

number of simulated nodes. Compared to CGP, we need to simulate

a part of the circuit twice. In addition, comparison with values at

node outputs is needed in SOMO to calculate score of each node

(line 8 in Algorithm 3).

3.3.2 Absence of uncontrollable growth in the size. As discussed
in Section 2.1, semantic GP suffers from fast growth in the size

of the individuals because the semantic operators always produce

offspring that are larger than their parents. In our case, the growth

in the size is linear in the worst case (a constant number of nodes

can be activated in each generation). But the main feature of SOMO

is that it can deactivate already active nodes in the course of the

evolution. Moreover, some other advantages of CGP encoding have

been implicitly inherited. For example, CGP uses a limited num-

ber of computational nodes and naturally does not suffer from a

phenomenon called bloat [15].

3.3.3 Compensation of positional and length bias. It has been shown
that CGP is naturally biased towards phenotypes of a given size [9,

10]. Typically a small percentage of the available nodes is utilized.

In addition, there is a strong positional bias in CGP causing an

increase in the likelihood that nodes close to the inputs will be

active [15]. To compensate both these effects, Reorder operator was

introduced by Goldman et al. [10]. Both phenomena are naturally

944

GECCO ’20, July 8–12, 2020, Cancún, Mexico David Hodan, Vojtech Mrazek, and Zdenek Vasicek

mitigated in SOMO. Node reordering is, in fact, performed by the

Encode procedure (line 12 in Alg. 2). Moreover, the number of active

nodes may increase naturally due to the construction of SOMO.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
The proposed semantically-oriented operator was implemented

in C++ and integrated within a standard CGP algorithm. The ap-

plication is implemented as a single thread code. We adopted the

principle of parallel simulation introduced in [27] to maximize the

performance of the circuit simulation. Following Hrbacek et al. [11],

each candidate solution is transformed into native 256-bit AVX2

instructions. This arrangement helps us to evaluate circuits having

up to 8 inputs in a single pass through the CGP nodes.

The proposed method is evaluated on the evolutionary design of

adders, multipliers, and parity circuits. Although the construction of

an optimal parity circuit is a straightforward process, parity circuits

are considered to be an appropriate benchmark problem within

the evolutionary computation community. Usually, a small set of

gates (and, or, not) is used. But even if we allow the usage of the

xor gates, the design of parity circuits is hard due to the presence

of a deceptive landscape, especially for higher bit widths [25]. The

evolutionary design of multipliers represents a hard problem due

to the complexity of the multiplication (the multipliers consist of a

sequence of adders reducing the partial products to a single output

vector).

The evolutionary algorithm uses population of 1 + λ individuals

where λ = 1. This setting enables us to investigate exclusively the

impact of the proposed mutation operator. In each mutation, all

inactive nodes are randomly changed, i.e. pq = 100%. This design

choice allows us to investigate the rate of growth in the size. Only

the connections are modified, i.e. pf = 0. The function set consists

of common binary logic gates Γ⊕ = {not, and, or, xor, nand, nor,
xnor}. To provide a fair comparison with the literature, the parity

circuits are also evaluated with a reduced function set Γ⋆ = {not,
and, or, nand, nor}.

As recommended in the literature, we use the one-dimensional

form of CGP array consisting of a single row of computational

nodes. The number of rows nr is fixed to 1. The number of columns

nr needs to be chosen according to the complexity of the addressed

problem. Moreover, the standard CGP typically works better un-

der the presence of a reasonable degree of redundancy [15], i.e.

larger genotypes are needed compared to the minimum number of

logic gates required to implement a fully functional circuit. Table 1

reports the number of standard gates denoted as N required to im-

plement ripple-carry adder, array multiplier, and parity circuit. The

number of the available CGP nodes is derived from this parameter

as nc ∈ {N , 2N , 5N , 10N , 20N , 50N , 100N , 200N , 500N , 1000N }.
In total, 270 configurations (defined by circuit, chromosome size

nc and function set Γ⊕/Γ⋆) are analyzed and for each configuration,

15 independent runs are executed. The search is terminated either

when a fully functional solution is evolved or when the 12-hour

limit is elapsed. As a consequence of the chosen parameter setting

(pf = 0, pq = 100%), there is a high chance that the search gets

stuck in a local optimum when all the available nodes are active.

Therefore, we implemented an additional termination condition to

Table 1: The minimal number of gates N required to imple-
ment the selected benchmark problems for a given number
of inputs ni . Parameter no is the number of outputs. For par-
ity circuits, the number of and/or/not gates is reported.
Adder 2+2 3+3 4+4 5+5 6+6 7+7 8+8 9+9 10+10

ni 4 6 8 10 12 14 16 18 20

no 3 4 5 6 7 8 9 10 11

N 7 12 17 22 27 32 37 42 47

Multiplier 2×2 3×3 4×4 5×5

ni 4 6 8 10

no 4 6 8 10

N 11 33 67 113

Parity 4 5 6 7 8 9 10

ni 4 5 6 7 8 9 10

no 1 1 1 1 1 1 1

N 9 12 15 18 21 24 27

avoid wasted CPU time. After 15 minutes without any progress,

the algorithm is aborted with the result counted as unsuccessful.

All experiments are conducted on Intel
®
CPU E5-2630 @ 2.20 GHz.

For each run, it is evaluated how long it takes to find a fully func-

tional solution p exhibiting f ittness(p) = 0 (denoted as execution
time), how many generations are needed (denoted as # generations)
and how many nodes are active in the discovered solution (denoted

as active nodes). For each configuration we calculated computational
effort as defined in [12, 17] and success rate (the proportion of runs

where a fully functional circuit is found). The computational effort

is calculated for z = 0.99.

4.2 Role of the Available Number of Nodes
First, we analyze the impact of the amount of available CGP nodes

nc on the efficiency of the search process. Three aspects are investi-

gated – the number of generations and the execution time required

to evolve a fully functional solution, size of the evolved solutions

and the success rate. The statistics calculated from all 15 runs are

shown in Figure 3. To give a better idea about the real computa-

tional complexity, we report the average time needed to find a fully

functional solution in this figure. Due to the limited space, only

two instances of each benchmark problem are presented.

As can be seen, the success rate increases with increasing nc .
The results show that it is necessary to introduce some degree of

redundancy in nc . If nc is equal to N , it is hard to find any solution,

and the success rate is very low (see 3-bit multiplier) or even zero

(adders, 5-bit multiplier, parity circuits). This is caused by the fact

that all the available nodes are active. It is thus hard to make any

progress because pf = 0.

A typical dependency of the execution time on nc is visible

for the 3-bit multiplier. If nc is close to N , many generations are

needed to find a solution. The number of generations decreases

with increasing success rate and then remains relatively constant.

This effect is visible in Figure 5. The problem is, however, that the

execution time increases with increasing nc because more nodes

need to be simulated in each generation. Let us recall that all nodes

may be modified (and thus simulated) in every mutation due to the

setting of pq parameter. This setting was chosen intentionally to

see this effect. In a real scenario, it is better to mutate a constant

amount of non-active nodes. According to the statistical evaluation,

around one hundred nodes were activated at most during a single

mutation.

The circuit size grows with the increasing number of available

nodes. Despite the exponential growth in nc , the growth in the

945

Semantically-Oriented Mutation Operator in Cartesian Genetic Programming for Evolutionary Circuit Design GECCO ’20, July 8–12, 2020, Cancún, Mexico

102 103 104
0.0

1.5

3.0

Ex
ec

ut
io

n
tim

e
[s

] ×104

8+8-bit adder
Γ ⊗

0

1

2

ac

tiv
e

no
de

s

×103

0
25
50
75
100

Su
cc

es
s r

at
e

[%
]

102 103
0

4

8

Ex
ec

ut
io

n
tim

e
[s

] ×103

10+10-bit adder
Γ ⊗

0.0

1.5

3.0

ac

tiv
e

no
de

s

×102

0
25
50
75
100

Su
cc

es
s r

at
e

[%
]

102 103 104
0.0

2.5

5.0

Ex
ec

ut
io

n
tim

e
[s

] ×101

3x3-bit multiplier
Γ ⊗

0

4

8

ac

tiv
e

no
de

s

×102

0
25
50
75
100

Su
cc

es
s r

at
e

[%
]

102 103 104 105
0.0

1.5

3.0

Ex
ec

ut
io

n
tim

e
[s

] ×104

5x5-bit multiplier
Γ ⊗

0

1

2

ac

tiv
e

no
de

s

×104

0
25
50
75
100

Su
cc

es
s r

at
e

[%
]

102 103 104
0

2

Ex
ec

ut
io

n
tim

e
[s

]

6-bit parity
Γ *

0

2

4

ac

tiv
e

no
de

s

×102

0
25
50
75
100

Su
cc

es
s r

at
e

[%
]

102 103 104

available nodes (nc)

0

2

4

Ex
ec

ut
io

n
tim

e
[s

] ×102

10-bit parity
Γ *

0

2

4

ac

tiv
e

no
de

s

×103

0
25
50
75
100

Su
cc

es
s r

at
e

[%
]

Figure 3: The median execution time needed to find fully
functional circuits, the median success rate and the median
circuit size for various setting of nc .

size is quite linear. Surprisingly, the evolved circuits are relatively

compact even thoughwe did not implement any explicit mechanism

which forces the search towards more compact solutions. For 10-bit

parity and nc = 5N , for example, we obtained circuits with less

than 40 gates even though the number of available nodes is 135.

The evolution of the 5-bit multipliers exhibits the worst success

rate. The first four configurations of nc never reached a solution.

The search typically got stuck at local optima for a longer period

and it was prematurely terminated due to the presence of a hard

time limit. When we removed the limit, we were able to evolve

multipliers for nc = 10N . Despite that, no multiplier was evolved

for lower values of nc . The explanation can be seen when we look

at the results shown in Figure 5. Around 60 times more generations

are needed to evolve 3-bit multiplier for nc = N compared to

the setting nc = 10N . It means that the insufficient number of

generations is provided for 5-bit multipliers. Figure 4 shows the

101 102 103 104 105 106 107 108

Generation

0

10

20

30

40

50

60

Re
la

tiv
e

fit
ne

ss
 [%

]

nc =N (113)
nc = 2N (226)
nc = 5N (565)
nc = 10N (1130)
nc = 20N (2260)

nc = 50N (5650)
nc = 100N (11300)
nc = 200N (22600)
nc = 500N (56500)
nc = 1000N (113000)

Figure 4: The convergence curves for 5-bit multiplier design
and given configuration of nc . The median fitness value is
reported. A fully functional circuit has zero fitness.

typical convergence curves for all configurations. The higher nc ,
the faster convergence.

Minimum, maximum and the median number of generations

needed to find a fully functional 3-bit and 5-bit multiplier is analysed

in Figure 5.We can see that the performance of the proposedmethod

is relatively robust regarding parameter setting. This property is

visible on 3-bit multipliers and is also observable on adders and

parity circuits where we can see a relative low sensitivity of the

computational complexity to the chosen value nc .

4.3 Overall results
The overall results are summarized in Table 2. For each circuit,

the statistics related to the execution time, required number of

evaluations, and the number of nodes is provided for such nc that
achieves the best mean search time. The minimal, maximal, and

mean values are reported together with the 0.95 confidence level.

We can see that the execution time increases exponentially with

the increasing bit width, however, it is still acceptable even for

the largest circuits. The number of active nodes is enormous con-

sidering the conventional circuit implementations, but the circuit

size is not subject of the evolution. For parity circuits, we report

the results for the complete as well as reduced function set. The

reduced function set causes a 20× increase in the execution time

and produces approximately 2× larger circuits.

33 66 165 330 660 1650 3300 6600 16500 33000
available nodes (nc)

103

104

105

106

ge

ne
ra

tio
ns

3x3-bit multiplier

113 226 565 1130 2260 5650 11300 22600 56500 113000
available nodes (nc)

105

106

107

108

ge

ne
ra

tio
ns

5x5-bit multiplier

Figure 5: The number of generations required to find a fully
functional 3-bit (top) and 5-bit (bottom) multiplier.

946

GECCO ’20, July 8–12, 2020, Cancún, Mexico David Hodan, Vojtech Mrazek, and Zdenek Vasicek

Table 2: Overall statistics computed for a configuration exhibiting the best mean time required to find a working solution

Circuit ni no nc
Succ. Comp. Execution time [s] # Generations (evaluations) # Active nodes (circuit size)
rate effort min mean max min mean max min mean max

Adder
Γ⊕

2+2 4 3 350 100% 365 0.01 0.04 ±0.01 0.07 66 166.9 ±52.7 365 36 64.5 ±8.1 102

4+4 8 5 85 100% 5,972 0.16 0.44 ±0.13 1.12 830 2,376 ±744 5,972 32 41.2 ±2.9 48

6+6 12 7 270 100% 20,461 0.64 2.25 ±0.79 4.93 2,381 8,466 ±3, 058 20,461 73 97.7 ±12.9 150

8+8 16 9 185 100% 29,922 5.39 20.82 ±5.42 37.36 4,074 13,872 ±3, 665 29,922 76 85.9 ±4.3 102

9+9 18 10 210 100% 31,206 60.69 169.99 ±56.27 412.08 6,041 14,801 ±4, 267 31,206 72 90.8 ±5.4 114

10+10 20 11 235 100% 42,739 532.77 1,326 ±383 2,384 9,300 23,544 ±6, 158 42,739 78 101.8 ±6.3 124

Mult.
Γ⊕

2x2 4 4 220 100% 287 0.01 0.03 ±0.007 0.06 58 164.0 ±38.9 287 33 52.3 ±4.5 64

3x3 6 6 660 100% 15,134 0.33 1.26 ±0.47 3.21 1,576 5,977 ±2, 184 15,134 141 196.8 ±14.6 244

4x4 8 8 3,350 100% 188,710 11.83 38.59 ±11.53 97.21 28,743 85,253 ±24, 848 188,710 773 1,049 ±82 1,328

5x5 10 10 11,300 27% 742,497 1,278 2,556 ±1, 495 3,493 387,860 712,077 ±465, 540 1,090,909 3,671 4,476 ±1, 012 5,189

Parity
Γ⊕

5 5 1 60 100% 147 0.002 0.009 ±0.004 0.03 5 38.9 ±21.6 147 6 18.1 ±4.3 30

6 6 1 75 100% 235 0.005 0.02 ±0.006 0.04 23 87.1 ±35.1 235 11 23.7 ±6.0 51

7 7 1 90 100% 450 0.007 0.04 ±0.01 0.07 28 191.8 ±69.9 450 12 28.1 ±6.8 50

8 8 1 105 100% 705 0.007 0.04 ±0.02 0.13 33 185.9 ±107.5 705 13 33.7 ±5.9 53

9 9 1 240 100% 1,029 0.009 0.05 ±0.03 0.19 43 280.5 ±137.9 1,029 47 71.1 ±12.8 119

10 10 1 270 100% 1,794 0.02 0.12 ±0.05 0.35 77 596.5 ±281.3 1,794 43 79.6 ±12.6 125

Parity
Γ⋆

5 5 1 240 100% 1,636 0.06 0.13 ±0.05 0.34 264 616.1 ±217.4 1,636 61 70.6 ±3.8 86

6 6 1 300 100% 2,991 0.13 0.28 ±0.07 0.56 591 1,376 ±393 2,991 52 84.1 ±12.0 131

7 7 1 180 100% 9,406 0.19 0.61 ±0.30 1.92 1,019 3,132 ±1, 449 9,406 55 74.9 ±7.3 100

8 8 1 210 100% 13,078 0.38 1.13 ±0.38 2.42 2,045 5,772 ±1, 910 13,078 58 85.0 ±8.5 109

9 9 1 240 100% 14,102 0.61 1.59 ±0.35 2.65 2,872 7,793 ±1, 741 14,102 78 106.5 ±11.8 151

10 10 1 135 100% 18,950 0.67 2.36 ±0.56 3.71 3,544 11,647 ±2, 662 18,950 63 78.1 ±5.6 98

4.4 Comparison with the literature
4.4.1 Evolutionary circuit design using CGP. The 6-bit adders were
successfully evolved using an advanced mutation operator GAM

in [6]. More than 10
6
evaluations were needed for the best con-

figuration (1+3) producing circuits having from 116 to 175 gates.

SOMO requires 127x fewer evaluations on average and produces

more compact circuits (73 - 150 gates). As discussed in Section 3.3.1,

a single SOMO evaluation corresponds up to two truth table evalu-

ations in common CGP. Considering this fact, SOMO still performs

substantially better than GAM.

The computational effort of different CGPmutation and crossover

operators is evaluated in [5]. Although many powerful techniques

improving CGP for digital circuit design have been proposed, the

SOMO achieves 30 - 114x lower computational effort compared to

the best method (see Table 3). Note that adders with carry input

are considered in this comparison.

The most complex arithmetic circuits evolved using CGP were

reported by Hrbacek et al. [11]. Their multi-threaded parallel imple-

mentation of CGP discovered a 5-bit multiplier on a supercomputer

cluster in 548 core-hours. Due to high computational requirements,

only a single run was executed. SOMO can design this multiplier

in 42 minutes on average (i.e., 771x faster) on a standard CPU. The

9-bit adders were discovered in 2.3 core-hours compared to the

average 170 seconds (50x speedup) needed by SOMO.

4.4.2 Evolutionary circuit design using Semantic GP. Ffrancon et

al. reports results for parity circuits with the reduced function set

Table 3: Computational effort of different variants of CGP
(results for CGP, MC-CGP, MC-ECGP, and X-CGP taken from [5])

Circuit CGP MC-CGP MC-ECGP X-CGP Our Reduction

Adder 3+2 496,200 140,800 24,200 54,661 798 30×

Adder 4+3 8,190,400 1,286,000 1,230,400 360,746 3,171 114×

Mult. 2x2 52,000 11,200 22,400 32,962 287 39×

Mult. 3x3 18,509,600 873,600 867,600 950,374 15,134 57×

Γ⋆ [7]. The authors were able to design 6-, 8-, and 9-bit parity in

164, 622, and 5850 seconds on average, respectively. SOMO accel-

erates the design process 119x, 586x, and 5098x, respectively. The

experiments were conducted on a comparable CPU. However, it is

fair to say that the authors implemented the algorithm in Python.

The obtained circuits were quite bulky (435, 1972, and 4066 gates)

compared to SOMO (75, 106 and 75 gates).

Parity circuits were also evolved by Pawlak and Krawiec using

Geometric Semantic GP [21]. 6-bit, 7-bit, and 8-bit parity circuits

were found with RTsSgxm operator after 100 generations using

a population of thousand individuals (i.e., 10
5
evaluations). The

average reported circuit size was 298 – 331 gates (3.7x larger than

in our case). On average, SOMO requires 5772 evaluations to find a

solution for 8-bit parity.

5 CONCLUSIONS
We proposed semantically-oriented mutation operator and took a

first step towards a more advanced mutation in CGP. The obtained

results clearly indicate that the use of the semantically oriented

operator is beneficial and significantly improves the search perfor-

mance of CGP when applied to evolutionary design of combina-

tional circuits.

In our future work, we would like to also use the semantics

during mutation of the node functions. This improvement enables

us to create a unimodal fitness landscape. In addition, we would

like to apply the idea of semantic CGP via semantic mutation to

non-Boolean problems.

ACKNOWLEDGMENTS
This work was supported by The Ministry of Education, Youth

and Sports of the Czech Republic from the National Programme

of Sustainability (NPU II); project IT4Innovations excellence in

science-LQ1602.

947

Semantically-Oriented Mutation Operator in Cartesian Genetic Programming for Evolutionary Circuit Design GECCO ’20, July 8–12, 2020, Cancún, Mexico

REFERENCES
[1] L. Beadle and C. G. Johnson. 2009. Semantically driven mutation in genetic

programming. In 2009 IEEE Congress on Evolutionary Computation. 1336–1342.
https://doi.org/10.1109/CEC.2009.4983099

[2] Mauro Castelli, Sara Silva, and Leonardo Vanneschi. 2015. A C++ framework for

geometric semantic genetic programming. Genetic Programming and Evolvable
Machines 16, 1 (01 Mar 2015), 73–81. https://doi.org/10.1007/s10710-014-9218-0

[3] Janet Clegg, James Alfred Walker, and Julian Frances Miller. 2007. A New

Crossover Technique for Cartesian Genetic Programming. In Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation (London, Eng-

land) (GECCO ’07). Association for Computing Machinery, New York, NY, USA,

1580–1587. https://doi.org/10.1145/1276958.1277276

[4] Coello Carlos A. Coello, A. D. Christiansen, and A. Hernández Aguirre. 1998.

Automated Design of Combinational Logic Circuits by Genetic Algorithms. In

Artificial Neural Nets and Genetic Algorithms: Proceedings of the International
Conference in Norwich, U.K., 1997. Springer Vienna, Vienna, 333–336. https:

//doi.org/10.1007/978-3-7091-6492-1_73

[5] J. E. da Silva and H. S. Bernardino. 2018. Cartesian Genetic Programming with

Crossover for Designing Combinational Logic Circuits. In 2018 7th Brazilian
Conference on Intelligent Systems (BRACIS). 145–150. https://doi.org/10.1109/

BRACIS.2018.00033

[6] José Eduardo H. da Silva, Lucas A. M. de Souza, and Heder S. Bernardino. 2019.

Cartesian Genetic Programming with Guided and Single Active Mutations for

Designing Combinational Logic Circuits. In Machine Learning, Optimization,
and Data Science, Giuseppe Nicosia, Panos Pardalos, Renato Umeton, Giovanni

Giuffrida, and Vincenzo Sciacca (Eds.). Springer International Publishing, Cham,

396–408.

[7] Robyn Ffrancon and Marc Schoenauer. 2015. Memetic Semantic Genetic Program-

ming. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation (Madrid, Spain) (GECCO ’15). Association for ComputingMachinery,

New York, NY, USA, 1023–1030. https://doi.org/10.1145/2739480.2754697

[8] B.W. Goldman and W.F. Punch. 2013. Reducing wasted evaluations in cartesian

genetic programming. Lecture Notes in Computer Science 7831 LNCS (2013), 61–72.
https://doi.org/10.1007/978-3-642-37207-0_6

[9] Brian W Goldman and William F Punch. 2013. Length bias and search limitations

in Cartesian genetic programming. In Proceedings of the 15th annual conference
on Genetic and Evolutionary Computation. 933–940.

[10] B. W. Goldman and W. F. Punch. 2015. Analysis of Cartesian Genetic Program-

ming’s EvolutionaryMechanisms. IEEE Transactions on Evolutionary Computation
19, 3 (June 2015), 359–373. https://doi.org/10.1109/TEVC.2014.2324539

[11] Radek Hrbacek and Lukas Sekanina. 2014. Towards Highly Optimized Cartesian

Genetic Programming: From Sequential via SIMD and Thread to Massive Parallel

Implementation. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation (Vancouver, BC, Canada) (GECCO ’14). Association
for Computing Machinery, New York, NY, USA, 1015–1022. https://doi.org/10.

1145/2576768.2598343

[12] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA.

[13] Joao Francisco B. S. Martins, Luiz Otavio V. B. Oliveira, Luis F. Miranda, Felipe

Casadei, and Gisele L. Pappa. 2018. Solving the Exponential Growth of Symbolic

Regression Trees in Geometric Semantic Genetic Programming. In Proceedings
of the Genetic and Evolutionary Computation Conference (Kyoto, Japan) (GECCO
’18). Association for Computing Machinery, New York, NY, USA, 1151–1158.

https://doi.org/10.1145/3205455.3205593

[14] J. Miller and P. Thomson. 2000. Cartesian Genetic Programming. In Proc. of the
3rd European Conference on Genetic Programming EuroGP2000 (LNCS), Vol. 1802.
Springer, 121–132.

[15] Julian Francis Miller. 2019. Cartesian genetic programming: its status and future.

Genetic Programming and Evolvable Machines (06 Aug 2019). https://doi.org/10.

1007/s10710-019-09360-6

[16] Julian F. Miller, Dominic Job, and Vesselin K. Vassilev. 2000. Principles in the

Evolutionary Design of Digital Circuits – Part II. Genetic Programming and
Evolvable Machines 1, 3 (2000), 259–288.

[17] Julian F. Miller and Peter Thomson. 2000. Cartesian Genetic Programming. In

Genetic Programming. Springer Berlin Heidelberg.

[18] J. F. Miller, P. Thomson, and T. Fogarty. 1998. Designing Electronic Circuits Using
Evolutionary Algorithms. Arithmetic Circuits: A Case Study. Wiley, 105–131.

[19] Alberto Moraglio and Krzysztof Krawiec. 2017. Geometric Semantic Genetic

Programming for Recursive Boolean Programs. In Proceedings of the Genetic and
Evolutionary Computation Conference (Berlin, Germany) (GECCO ’17). Association
for Computing Machinery, New York, NY, USA, 993–1000. https://doi.org/10.

1145/3071178.3071266

[20] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. 2012. Geometric

Semantic Genetic Programming. In Parallel Problem Solving from Nature - PPSN
XII, Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie Forrest,

Giuseppe Nicosia, and Mario Pavone (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 21–31.

[21] Tomasz P. Pawlak and Krzysztof Krawiec. 2018. Competent Geometric Semantic

Genetic Programming for Symbolic Regression and Boolean Function Synthesis.

Evolutionary Computation 26, 2 (2018), 177–212. https://doi.org/10.1162/evco_a_

00205

[22] Lukas Sekanina. 2017. Approximate Computing: An Old Job for Cartesian Genetic

Programming? In Inspired by Nature: Essays Presented to Julian F. Miller on the
Occasion of his 60th Birthday, Susan Stepney and Andrew Adamatzky (Eds.).

Emergence, Complexity and Computation, Vol. 28. Springer, Chapter 9, 195–212.

https://doi.org/doi:10.1007/978-3-319-67997-6_9

[23] Karel Slany and Lukas Sekanina. 2007. Fitness Landscape Analysis and Image

Filter Evolution Using Functional-Level CGP. In Proc. of European Conf. on Genetic
Programming (LNCS), Vol. 4445. Springer-Verlag, 311–320.

[24] Zdenek Vasicek. 2015. Cartesian GP in Optimization of Combinational Circuits

with Hundreds of Inputs and Thousands of Gates. In EuroGP’15 (Berlin, DE)

(LCNS 9025). Springer International Publishing, 139–150.
[25] Zdenek Vasicek. 2017. Bridging the Gap Between Evolvable Hardware and

Industry Using Cartesian Genetic Programming. In Inspired by Nature: Essays
Presented to Julian F. Miller on the Occasion of his 60th Birthday, Susan Stepney

and Andrew Adamatzky (Eds.). Emergence, Complexity and Computation, Vol. 28.

Springer, Chapter 2, 39–55. https://doi.org/doi:10.1007/978-3-319-67997-6_2

[26] Zdenek Vasicek and Lukas Sekanina. 2014. How to Evolve Complex Combina-

tional Circuits From Scratch?. In 2014 IEEE International Conference on Evolvable
Systems Proceedings. IEEE, 133–140.

[27] Zdenek Vasicek and Karel Slany. 2012. Efficient Phenotype Evaluation in Carte-

sian Genetic Programming. In Proc. of the 15th European Conference on Genetic
Programming (LNCS 7244). Springer Verlag, 266–278.

[28] Vesselin K. Vassilev and Julian F. Miller. 2000. The Advantages of Landscape

Neutrality in Digital Circuit Evolution. In Evolvable Systems: From Biology to Hard-
ware, Julian Miller, Adrian Thompson, Peter Thomson, and Terence C. Fogarty

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 252–263.

948

https://doi.org/10.1109/CEC.2009.4983099
https://doi.org/10.1007/s10710-014-9218-0
https://doi.org/10.1145/1276958.1277276
https://doi.org/10.1007/978-3-7091-6492-1_73
https://doi.org/10.1007/978-3-7091-6492-1_73
https://doi.org/10.1109/BRACIS.2018.00033
https://doi.org/10.1109/BRACIS.2018.00033
https://doi.org/10.1145/2739480.2754697
https://doi.org/10.1007/978-3-642-37207-0_6
https://doi.org/10.1109/TEVC.2014.2324539
https://doi.org/10.1145/2576768.2598343
https://doi.org/10.1145/2576768.2598343
https://doi.org/10.1145/3205455.3205593
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1145/3071178.3071266
https://doi.org/10.1145/3071178.3071266
https://doi.org/10.1162/evco_a_00205
https://doi.org/10.1162/evco_a_00205
https://doi.org/doi:10.1007/978-3-319-67997-6_9
https://doi.org/doi:10.1007/978-3-319-67997-6_2

	Abstract
	1 Introduction
	2 Relevant Work
	2.1 Semantic Genetic Programming
	2.2 Cartesian Genetic Programming

	3 Proposed Approach
	3.1 Semantically-Oriented Mutation Operator
	3.2 Population Initialization
	3.3 Properties

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Role of the Available Number of Nodes
	4.3 Overall results
	4.4 Comparison with the literature

	5 Conclusions
	Acknowledgments
	References

