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Abstract
Since the early nineties the lack of scalability of fitness evaluation has been the main 
bottleneck preventing the adoption of evolutionary algorithms for logic circuits syn-
thesis. Recently, various formal approaches such as SAT and BDD solvers have been 
introduced to this field to overcome this issue. This made it possible to optimise 
complex circuits consisting of hundreds of inputs and thousands of gates. Unfor-
tunately, we are facing another problem—scalability of representation. The effi-
ciency of the evolutionary optimization applied at the global level deteriorates with 
the increasing complexity. To overcome this issue, we propose to apply the con-
cept of local resynthesis in this work. Local resynthesis is an iterative process based 
on the extraction of smaller sub-circuits from a complex circuit that are optimized 
locally and implanted back to the original circuit. When applied appropriately, this 
approach can mitigate the problem of scalability of representation. Two complemen-
tary approaches to the extraction of the sub-circuits are presented and evaluated in 
this work. The evaluation is done on a set of highly optimized complex benchmark 
problems representing various real-world controllers, logic and arithmetic circuits. 
The experimental results show that the evolutionary resynthesis provides better 
results compared to globally operating evolutionary optimization. In more than 85% 
cases,  a substantially higher number of redundant gates was removed while keep-
ing the computational effort at the same level. A huge improvement was achieved 
especially for the arithmetic circuits. On average, the proposed method was able to 
remove 25.1% more gates.

Keywords Cartesian genetic programming · Evolutionary resynthesis · Logic 
optimization
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1 Introduction

Logic synthesis, as understood by the hardware community, is a process that 
transforms a high-level description into a gate-level or transistor-level implemen-
tation. Due to the complexity of the problem, the synthesis process is typically 
broken into a sequence of steps. Among others, logic optimization represents an 
important part of the whole process. Due to the scalability issues, the problem 
is typically represented using a suitable internal representation. Current state-of-
the-art logic synthesis tools, such as ABC [1], represent circuits using a directed 
acyclic graph composed of two-input AND nodes connected by direct or negated 
edges denoted as an and-inverter graph (AIG). The optimization of AIGs is based 
on rewriting, a greedy algorithm which minimizes the size of AIG by iteratively 
selecting subgraphs rooted at a node and replacing them with smaller precom-
puted subgraphs, while preserving the functionality of the root node [19]. AIG 
rewriting is local, however, the scope of changes becomes global by application 
of rewriting many times. In addition to that, resubstitution and refactoring can 
be employed. Resubstitution expresses the function of a node using other nodes 
present in the AIG [18]. Refactoring iteratively selects large cones of logic rooted 
at a node and tries to replace them with a more efficient implementation [19]. 
Refactoring can be seen as a variant of rewriting. The main difference is that 
rewriting selects subgraphs containing few leaves because the number of leaves 
determines the number of variables of a Boolean function whose optimal imple-
mentation is sought.

The AIG representation is simple and scalable, and leads to simple algorithms 
but it suffers from an inherent bias in representation. While eight of ten possi-
ble two-input logic gates may be represented by means of a single AIG node, 
XOR and XNOR gate require three AIG nodes each. The efficiency of synthesis 
is then limited as it mostly relies on transformations that disallow an increase of 
the number of AIG nodes. It has been shown that there exists a huge class of real-
world circuits for which the synthesis fails and provides very poor results [3, 4, 
21]. In some cases, the area of the synthesized circuits is of orders of magnitude 
higher than the known optimum. If a large design is broken down to multiple 
smaller circuits and such a failure occurs during resynthesis, we obtain an unac-
ceptably large circuit.

Various evolutionary approaches working directly at the level of gates were 
successfully applied to address this problem [21, 27]. Vasicek demonstrated that 
the evolutionary synthesis using Cartesian Genetic Programming (CGP) con-
ducted directly at the level of common gates is able to provide significantly bet-
ter results compared to the state-of-the-art synthesis operating on AIGs [27]. On 
average, the method enabled a 34% reduction in gate count on an extensive set 
of benchmark circuits when executed for 15 minutes. It was observed, however, 
that the efficiency of the evolutionary approach deteriorates with an increasing 
number of gates. Substantially more generations were required to reduce cir-
cuits consisting of more than ten thousands gates. While [27] focuses strictly on 
the improvement of the scalability of the evaluation, Sekanina et al. employed a 
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divide and conquer strategy to address the problem of scalability of representa-
tion [21]. The authors were able to obtain better results than other locally operat-
ing methods reported in the literature, however, the performance of this method 
was significantly worse than the evolutionary global optimization proposed in 
[27].

Motivated by the problem above, we propose to combine evolutionary optimiza-
tion with the principle of so called Boolean network scoping. Boolean network scoping 
represents a common approach incorporated in conventional synthesis tools for main-
taining the good scalability of the synthesis process. In particular, we propose to use 
an iterative procedure which extracts sub-circuits that are subsequently optimized by 
Cartesian Genetic Programming and implanted back into the original circuit provided 
that there is an improvement at the global level. This approach can be understood as 
the EA-based resynthesis. The size of the sub-circuits has impact not only on the scal-
ability of the CGP but also on the efficiency of the whole optimization process. Small 
sub-circuits ensures a good scalability of the evolutionary optimization, but they lead to 
minor improvements at the global level because we obtained a method which operates 
mainly locally similarly to the conventional rewriting. Huge sub-circuits, on the other 
hand, increases possibilities for an improvement but the performance of the CGP dete-
riorates with increasing the size of the optimized circuit. In order to have a reasonable 
optimization method, it is necessary to find a good trade-off between the mentioned 
two extremes.

Several heuristics for Boolean network scoping on the level of AIGs have been pro-
posed in the literature (see Sect. 2.2). These heuristics have typically been introduced in 
the context of some more complex algorithms and used as a part of their functionality. 
It means that they are tailored to the particular scenario and need to be modified to be 
used for our needs. The rewriting, for example, is designed to work with sub-circuits 
having at most five inputs and exactly one output. In our case, we do not need to intro-
duce any hard limits on the number of inputs or outputs. Compared to rewriting, evo-
lutionary resynthesis has the potential to reduce a substantially larger number of gates 
(e.g. low hundreds of gates).

1.1  Goals and contributions

The work in this paper extends the preliminary results presented in [10] where we used 
a method of Boolean network scoping inspired by the conventional method based on 
computing so called k-feasible cuts. In this paper, we introduce an alternative method 
and evaluate its parameters compared to the cut-based method as well as conventional 
state-of-the-art synthesis. Our goal is to improve the efficiency of the evolutionary opti-
mization and get rid of some parameters and limitations connected with the usage of 
the cut-based method. In addition to that, a more detailed description and experimental 
evaluation of both methods is presented.
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1.2  Organization

The rest of this paper is organized as follow. Section  2 presents a background in 
Boolean networks and network scoping and the related work in the area of the evo-
lutionary synthesis of digital circuits. Section 3 introduces the proposed approach to 
the evolutionary resynthesis of large combinational circuits. Section 4 describes the 
experimental setup and experiments with the parameter setting. The obtained results 
are presented and discussed in Sect. 5. Finally, Sect. 6 provides the conclusions and 
some ideas for future work.

2  Background and related work

This section presents relevant background on conventional as well as EA-based opti-
mization of logic circuits and introduces the notation used in the rest of the paper.

2.1  Boolean networks

Every circuit can be represented using a Boolean network. A Boolean network is a 
directed acyclic graph (DAG) with nodes represented by Boolean functions [18]. 
The sources of the graph are the primary inputs (PIs) of the network and the sinks 
are the primary outputs (POs). The output of a node may be an input to other nodes 
called fanouts. The inputs of a node are called fanins. An edge connects two nodes 
that are in fanin/fanout relationship. Considering this notion, And-Inverter Graph is 
a Boolean network composed of two-input ANDs and inverters. The network pri-
mary inputs are signals that are driven by the environment, there is no node driving 
these signals in the network. Similarly, the primary outputs are signals that drive the 
environment and are needed by inner network nodes as well. The size of the network 
is the number of the nodes (primary inputs and outputs are not considered).

2.2  Limiting the scope of boolean networks

Network scoping represents a key operation to ensure a good scalability of synthesis 
tools when working with large Boolean networks. In addition, it forms an integral 
part of rewriting as well as refactoring. Two approaches have been proposed to limit 
the scope of logic synthesis to work only on a small portion of a Boolean network 
– windowing and cut-based network scoping [18].

The windowing algorithm determines the working area denoted as window by 
computing so called transitive fanin and transitive fanout. The algorithm takes 
a node (typically referred to as pivot node) and two integers m and n defining the 
number of logic levels on the fanin/fanout sides of the node to be included in the 
resulting window. The transitive fanin corresponds to a set of nodes on the fanin side 
that are distance-m or less from the pivot node. Similarly, the transitive fanout corre-
sponds to a set of nodes on the fanout side that are distance-n or less from the pivot 
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node. These two sets are then used to obtain so called leaf and root sets that uniquely 
determine the window1. The complete algorithm can be found in [18]. The main 
problem of this algorithm is that it is hard to predict how many logic levels have to 
be traversed to get a window of the desired parameters.

Apart from the windowing, many logic synthesis algorithms uses network scop-
ing based on computing so called k-feasible cuts. For example, the rewriting is 
based on 4-feasible cuts [18]. The principle of this technique is to compute a cut 
which is subsequently expanded to a window. A cut of a node, called root node, is 
a set of nodes of the network, called leaves, such that each path from PI to the root 
node passes through at least one leaf. A cut is k-feasible if the number of nodes (i.e. 
cut size) in the cut does not exceed k. An example of two different 3-feasible cuts 
is shown in Fig.  1. A reconvergence-driven heuristic is typically applied in prac-
tice to maximixe the cut volume, i.e. the total number of nodes encountered on all 
paths between the root node and the cut leaves. The problem is that the cut com-
puted using a naïve bread-first-search algorithm may include only few nodes and 
leads to tree-like logic structures (see Fig. 1a showing a cut determined by the naïve 
approach and Fig. 1b showing the output of reconvergence-driven heuristic). A tree-
like logic structure does not lead to any redundancy and attempting optimization 
using such cuts would be wasted time.

A simple and efficient cut computation algorithm producing a cut close to 
a required size while heuristically maximizing the cut volume and the num-
ber of reconvergent paths subsumed in the cut has been introduced in [18]. 
As our work uses the network scoping based on computation of the k-feasible 

(a) Cut CI = {7, 2, 9} (b) Cut CII = {1, 2, 9}

Fig. 1  Example of two possible 3-feasible cuts {C1,C2,C3} for root node m and given Boolean network 
consisting of 12 nodes. The nodes belonging to a particular cut are highlighted in grey color. The hatched 
nodes correspond to the contained nodes. The cut CII is preferred as its volume is four (root node m and 
contained nodes 5, 7, and 8). The volume of the cut CI is two because this cut contains only one con-
tained node (node 8)

1 The window of a Boolean network N is a connected subnetwork N′ ⊆ N that corresponds to the subset 
of nodes of the network containing nodes from root set together with all nodes on paths between the leaf 
set and the root set. The nodes in the leaf set are not included in the window.
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reconvergence-driven cuts, we briefly introduce this algorithm. The algorithm 
starts with a set of leaves consisting of a single root node (i.e. a trivial cut). This 
set is incrementally expanded in each step of a recursive procedure. If the set con-
sists of only PIs, the procedure quits. Otherwise, a non-PI node that minimizes 
a cost function is chosen from the set of leaves. The chosen node is removed 
from the leaf set and all its fanins are included instead of it. This causes expan-
sion of the cut. If the cut-size limit is exceeded, the procedure quits and returns 
the cut before expansion. The cost function returns the number of new nodes 
that should be added to the leaf set instead of the removed node. The sequence 
of four steps leading to the cut CII = {1, 2, 9} shown in Fig.  1b is as follows: 
{11⟨2⟩} → {8⟨2⟩, 9⟨2⟩} → {7⟨2⟩, 2⟨∞⟩, 9⟨2⟩} → {5⟨0⟩, 1⟨∞⟩, 2⟨∞⟩, 9⟨2⟩} → {1⟨∞⟩, 2⟨∞⟩, 9⟨2⟩}. 
The node removed in each step is underlined. The cost of the nodes included in 
the cut is shown using a superscript. The infinity means that the node is a primary 
input which cannot be removed from the set. Note that the algorithm returns the set 
{1, 2, 9} because removal of the node 9 would produce a 4-feasible cut (nodes 3 and 
4 would be included instead of 9, both with infinite cost).

The k-feasible cuts are important not only for the gate-level logic synthesis but 
also for FPGA-based synthesis as a k-feasible cut can be implemented as a k-input 
LUT. For resubstitution and FPGA-based mapping, so called maximum fanout free 
cone (a subnetwork where no node in the cone is connected to a node not in the 
cone) is requested. It means that the cut-based scoping must always produce a sin-
gle-output sub-circuit. Otherwise it would be impossible to replace the whole sub-
circuit by a precomputed optimal implementation / a single LUT. Compared to the 
windowing, much smaller windows are typically produced. Typically, 4-feasible and 
5-feasible cuts are used for rewriting-based logic synthesis [12, 18]. Small k is used 
not only to make the cut enumeration possible but also to manage memory require-
ments to store the precomputed optimal implementations of all k-input Boolean 
functions. For FPGA-based mapping, 5-input and 6-input LUTs are used. Apart 
from the rewriting, the reconvergence-driven cuts have been applied to refactoring 
and resubstitution [18]. Typically, k is between 5 and 12 for refactoring depending 
on the computation effort allowed [18].

2.3  Evolutionary synthesis of logic circuits

Advancements in technology developed in the early nineties enabled researchers 
to sucessfully apply techniques of evolutionary computation in various problem 
domains. In the middle nineties, Higuchi and Thompson, two of the most promi-
nent pioneers, demonstrated that evolutionary algorithms are able to solve non-triv-
ial hardware-related problems [9, 26]. The achievements presented in the seminal 
paper of Higuchi et  al. [9] motivated other scientists to intensively explore a new 
and promising research topic. As a consequence of that, a new research direction 
referred to as Evolvable hardware has emerged [7] focusing on the use of evolution-
ary algorithms to create specialized electronics without manual engineering.

Gate-level evolution has rarely been addressed before the year 2000. The first 
results in the area of digital circuit synthesis were reported by Koza in 1992, who 
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investigated the evolutionary design of even-parity circuits in his extensive dis-
cussions of the standard genetic programming (GP) paradigm [11]. Later, Thomp-
son used a form of direct encoding loosely based on the structure of an FPGA in 
his experiment with evolution of a square wave oscillator [26]. Genetic algorithm 
has been employed also by Coello who evolved various 2-bit adders and multipli-
ers [2]. Finally, Miller et  al. demonstrated that evolutionary design systems are 
not only able to rediscover standard designs as it has been shown in the past, but 
they can, in some cases, improve them [14, 17]. The method of evolving digital 
circuits developed by Miller in 1997 [17] was subsequently revised and a new 
evolutionary algorithm known as Cartesian genetic programming (CGP) was 
introduced in 2000 [13]. CGP, which is a general form of genetic programming, 
was designed to address two issues related to the efficiency of common tree-based 
genetic programming. Firstly, as GP represents candidate solutions using trees, 
it does not naturally capture the structure of digital circuits that typically form 
a directed acyclic graph (DAG). Secondly, GP exhibits the so-called bloat effect 
enabling the programs to grow uncontrollably until they reach the GP’s tree-depth 
maximum.

Miller is considered as a pioneer in the field of logic synthesis of gate-level cir-
cuits. He utilized CGP to demonstrate that evolutionary computing can improve 
results of conventional circuit synthesis and optimization algorithms. As a proof-of-
concept, small arithmetic circuits were considered. A 4-bit multiplier was the most 
complex circuit evolved in this category [29]. For the next decade, however, the 
problems addressed by the EHW community remained nearly of the same complex-
ity. The most complex combinational circuits that were directly evolved during the 
first two decades of EHW consisted of tens of gates and had around 20 inputs [23]. 
Many novel techniques including decomposition, development, modularization, new 
problem representations and function level evolution have been proposed [15, 20, 
22, 23, 31]. The projection-based decomposition approaches such as [24] or [25] 
helped to increase the complexity of problem instances that can be solved by EAs. 
Despite that, the gap between the complexity of problems addressed in industry and 
EHW continued to widen as the advancements in technology developed. Evolvable 
hardware found itself in a critical stage around the year 2010 and it was not clear 
whether there exists a path forward which would allow the field to progress [8]. The 
scalability problem has been identified as one of the most difficult problems the 
researchers are faced in this field and that should be, among others, addressed in the 
future.

In 2011, the scalability of CGP has been significantly improved by introducing a 
SAT-based CGP. The SAT-based CGP uses a modern SAT solver to avoid an expen-
sive exhaustive circuit simulation commonly used to determine the Hamming dis-
tance between a candidate solution and specification [28]. It exploits the fact that the 
candidate solutions must be functionally equivalent with their parent in logic optimi-
zation in order to be further accepted. In addition to that, it exploits the knowledge 
of differences between parental and candidate circuits. The efficiency of SAT-based 
method was further improved by combining a SAT solver with an adaptive high-
performance circuit simulator used to quickly identify the potential functional non-
equivalence [27]. The most advanced SAT-based CGP employs a simulator that is 
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driven by counterexamples produced by the SAT solver as suggested in [27]. Neither 
the original nor the latter approach rely on a decomposition. The gate-level circuits 
are optimized directly.

2.4  Cartesian genetic programming

Since its introduction, CGP remains the most powerful evolutionary technique in 
the domain of EA-based logic synthesis and optimization [13]. In this area, a linear 
form of CGP is preferred today. In this case, CGP models a candidate circuit having 
ni PIs and no POs as a linear 1D array of nn configurable nodes. Each node has na 
inputs and corresponds with a single gate with up to na inputs. Two-input and single-
output nodes are typically used. The inputs can be connected either to the output of 
a node placed in the previous L columns or directly to PIs. This avoids a feedback. 
The parameter L defines the level of connectivity and impacts the search space size. 
For example, if L = 1 only neighboring nodes may be connected; if L = nn , full con-
nectivity is enabled.

The function of a node can be chosen from a set �  consisting of |� | = nf  functions. 
Depending on the function of a node, some of its inputs may become redundant. In addi-
tion to that, some of the nodes may become redundant because they are not referenced 
by any node connected a PO. This means that the effective number of nodes is not fixed 
as many nodes may not be used. The redundant nodes and inputs lead to the presence of 
non-coding genes in the genotype. This feature makes the search effective [16].

The candidate circuits are encoded as follows. Each PI as well as each node has 
associated an unique index. Each node is encoded using na + 1 integers (x1,⋯ , xna , f ) 
where the first na integers denote the indices of its fanins and the last integer 
determines the function of that node. Every candidate circuit is encoded using 
nn(na + 1) + no integers where the last no integers specify the indices corresponding 
with each PO. The example of the CGP encoding is shown in Fig. 2.

The most common search technique used in connection with the CGP is an Evolu-
tionary strategy (ES) [13]. Typically (1 + �)-ES is employed, where � corresponds with 
the number of new candidate solutions generated from a single parental solution. In 

Fig. 2  Example of a CGP individual encoding a logic circuit (one-bit full adder) with ni = 3 inputs and 
no = 2 outputs. The individual is encoded using an array of nn = 6 two-input single-output nodes whose 
functions are chosen from a set of primitive functions � = {NOT,AND,OR,XOR} . Note that the nodes 
are arranged in a two-dimensional grid for improved readability. Redundant connections and nodes, i.e. 
those that do not contribute to the outputs, are highlighted using a dotted line
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circuit optimization, the initial population is seeded by the original circuit. Every new 
population consists of the best circuit chosen from the previous population and its � off-
spring created using a mutation operator. Either point or probabilistic mutation is used 
in the standard CGP. Point mutation is typically preferred because it is easier to imple-
ment and more efficient than using a probabilistic mutation [16].

Point mutation randomly modifies up to h genes (integers) of a parent genotype 
to create an offspring. Considering the CGP encoding, a single mutated gene causes 
either reconnection of a node, reconnection of a primary output or change in func-
tion of a node. Due to the presence of redundant genes, the mutation may occur in 
the redundant part, which means that the mutated genotype has the same phenotype 
as its parent. Such a mutation is sometimes denoted as neutral since the fitness value 
remains unchanged. To avoid wasted fitness evaluations, several mutation strategies 
have been proposed [5, 16]. Single Active Mutation strategy, for example, mutates 
the offspring until one active gene is changed. Another possibility is to detect the 
neutral mutations and skip the time-consuming fitness evaluation procedure. Con-
sidering the usage of CGP in the optimization of logic circuits, the latter approach 
has been typically used [27, 28]. Crossover is not used in the standard CGP because 
it was found that crossover has little effect on the efficiency of CGP [16].

The main disadvantage of the CGP encoding in connection with the point muta-
tion operator is the presence of a strong length and positional bias that results in 
large portions of the genotype that are always redundant and never used by any 
ancestor. To address this issue, several approaches have been proposed [16]. Gold-
man and Punch, for example, proposed to apply Reorder operation once each gener-
ation that shuffles the position of nodes in the parent [6]. Reorder does not semanti-
cally change the parent but it allows active nodes to be evenly distributed within the 
whole genotype. This approach eliminates the length as well as positional bias and 
improves the efficiency of the search.

The selection of the individuals is typically based on a cost function (e.g. the 
number of active nodes). In the case that there are more individuals with the same 
score, the individual that has not served as a parent will be selected as the new par-
ent. This procedure is typically repeated for a predefined number of iterations. The 
logic synthesis is a complex process that has to consider several aspects that are in 
principle mutually dependent. Two basic scenarios are typically conducted in prac-
tice – optimizing the power and/or area under some delay constraints, or optimiz-
ing the delay possibly under some power and/or area constraints. Depending on the 
goal and required precision, the cost function corresponds either with the number 
of gates, logic depth or a more precise but computationally more complex measure 
such as area on a chip or circuit delay.

3  The proposed approach

Let C be a combinational circuit described at the level of common gates represented 
by a Boolean network N consisting of |N| nodes. Each node corresponds with a sin-
gle gate in C . The pseudo-code of the proposed optimization procedure based on 
evolutionary resynthesis is shown in Algorithm 1. 
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We propose to apply an iterative process which consists of a sequence of three steps 
that are executed in a loop. A working area (Boolean network W) is extracted from the 
Boolean network N′ in the first step. The goal is to obtain a smaller, preferably com-
pact, circuit which is easier to manipulate. In the next step, each W that is not suitable 
for the subsequent optimization is skipped. The motivation is to eliminate execution of 
a relatively time-consuming resynthesis for the windows that are unlikely to lead to any 
improvement. The identification of the suitable windows can be based on the size of W 
(small windows are filtered out) or a more advanced metric which reflect, for example, 
the number of inputs and depth (thin windows are filtered out). In the third step, resynthe-
sis is applied to the extracted Boolean network. The resynthesis is performed by an evolu-
tionary algorithm which produces an optimized version of W denoted as W ′ . Depending 
on the success of the optimization, the cost of W ′ can be either better or the same as the 
cost of W. Finally, the optimized logic network W ′ is evaluated with respect to N′ and if 
it exhibits a better parameters, it replaces W in N′ . The whole optimization algorithm is 
terminated when a predefined number of iterations or a given runtime is exhausted.

3.1  Working area extraction

Two different approaches to the identification and extraction of a suitable subcircuit cor-
responding with the procedure GetSubcircuit in Algorithm 1 are proposed and evalu-
ated. The first implementation is based on the computation of the reconvergence-driven 
cuts which is the preferred approach applied during logic synthesis. This method, how-
ever, may produce subcircuits with a relatively small volume. To avoid this, we propose 
an alternative approach loosely inspired by the windowing introduced in Sect. 2.2. 

Algorithm GS1: Cut-based procedure GetSubcircuit
Input: A Boolean network N ,
minimum (cmin) and maximum (cmax) volume of cut C,
minimum (kmin) and maximum (kmax) size of cut C
Output: A working area W

1 m ← identify the best candidate root node m ∈ N
2 C ← ReconvergenceDrivenCut(m, cmin, cmax, kmin, kmax)
3 W ← ExpandCutToWindow(m, C)
4 return W

Algorithm 1: Optimization of digital circuits using EA-based resynthesis
Input: A Boolean network N
Output: Optimized network N , cost(N ) ≤ cost(N)

1 N ← N
2 while terminated condition not satisfied do
3 W ← GetSubcircuit(N) ;
4 if W is a suitable candidate then
5 W ← OptimizeNetworkUsingEA(W )
6 if cost((N \W ) ∪W ) < cost(N ) then
7 N ← (N \W ) ∪W

8 return N
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The pseudo-code of the cut-based approach is shown in Algorithm GS1. Firstly a 
node which may potentially lead to the best improvement of N is determined. Since 
the identification of this node itself is a nontrivial problem, some heuristic needs to be 
implemented. The size of transitive fanin cone, level of the node or a more complex 
information can be used to determine the most suitable candidate. Then, a working area 
is extracted from the Boolean network. This procedure starts with computation of the 
reconvergence-driven cut C as described in Sect. 2.2. From the practical reasons, is also 
beneficial to limit the size of C to be able to enumerate a large number of sub-circuits 
in a reasonable time. Hence, we can define four parameters: cmin and cmax restricting the 
volume of C ( cmin ≤ |C| ≤ cmax ), and kmin and kmax ( kmin ≤ kmax ) limiting the size of 
cut (feasibility).

This step is followed by expansion of the cut C into a window W, i.e. expansion 
of the set of leaf nodes to a set of contained nodes. In addition to the nodes inside 
the cut, we should consider also all nodes that are not contained in the cut but have 
fanins inside the cut. Our expansion is similar to that employed in the resubstitution 
[18] where transitive fanout of C is considered, however, we do not impose any limit on 
the number of included nodes or their maximum level. The process of cut identification 
and the subsequent expansion is illustrated in Fig. 3.

During the expansion, three set of nodes are created: the set of internal nodes I, the 
set of leaves L and the set of root nodes R. L contains nodes that will serve as PIs of 
the temporary network used in the subsequent optimization. Similarly R contains nodes 
whose outputs have to be connected to POs. Note that R contains not only the root node 
m but also other nodes whose fanouts are outside of the window (see Fig. 3). It holds 
that C ⊆ L since the expansion may cause that some leaves of C become a fanout of 
a node inside the window. Two situations can happen for a leaf node. If all fanins are 
inside the window, the leaf can be simply removed from L. Otherwise, all fanins of the 
original leaf node need to be added to L (the case of C1 in Fig. 3). This procedure has to 
be repeated iteratively to ensure that there are no leaves having a fanin already included 
the window. 

Algorithm GS2: Window-based procedure GetSubcircuit
Input: A Boolean network N ,
minimum (wmin) and maximum (wmax) size of W
Output: A working area W , wmin ≤ |W | ≤ wmax

1 m ← select a random node m ∈ N
2 init queue q with m
3 W ← ∅
4 while q not empty ∧ |W | < wmax do
5 m ← pop a node from q
6 W ← W ∪ {m}
7 X ← fanin(m) ∪ fanout(m)
8 push all nodes from X \W that are not already in q into q

9 if |W | < wmin then
10 W ← ∅
11 W ←

m∈W
fanin(m)

12 return W
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The pseudo-code of the second approach is given in Algorithm GS2. The pro-
cess starts with the selection of a node m ∈ N that will serve as a pivot. The pivot 
serves as an initial point for the expansion that iteratively marks neighboring nodes 
of already processed and marked nodes. By neighboring nodes of a node n we mean 
those belonging to fanin or fanout of that node. This mechanism enables the window 
to grow to both directions, i.e. towards PIs as well as POs. After a finite number of 
steps, we obtain a subcircuit W of the required size consisting of the pivot node and 
its neighbourhood.

To implement the expansion efficiently, we use a queue q whose content is ini-
tialized to m. In each iteration, one node is dequeued from q and included in W. 
Then, the neighboring nodes X (those that are directly connected to m) are identi-
fied. Finally, nodes that have not yet been processed and are not already in the queue 
are enqueued. Two parameters are used to restrict the size of W – wmin and wmax . 
The process ends when wmax nodes are included in W or no more nodes remain (all 
nodes surrounding m have been processed and included in W). Subcircuits smaller 
than wmin are ignored. In the final step (line 11 in Algorithm GS2), all the fanins of 
the nodes included in W are added into W. Then, the leaves of W serve as inputs and 
roots of W as outputs.

The whole process is illustrated in Fig. 4. The procedure starts with node m. In 
the first iteration, three nodes are pushed into queue, namely q1 , q2 and q3 . In the 
second iteration q1 is enqueued and three additional nodes are queued: q4 , q5 and 
q6 . Node m also belongs to fanout(q1) but this node is already included in W and is 
thus ignored. In the third iteration, q2 is enqueued and processed which gives also 
three new nodes q7 , q8 , and q9 . The process ends when q10 is dequeued and included 
in W. During the finalization phase, nodes having the index 5 and 4 are added into 
W because these nodes has to serve as new primary inputs. We received a subcir-
cuit with five inputs (nodes denoted with L) and five outputs (output of the nodes 
denoted as R).

m

C1

C2 C3 C4L L L L

R

R R

RR

C1
*

1 2 3 4

5 6

78 9 10

11 12

Fig. 3  Example of the window created using the cut-based algorithm GS1. The set of contained nodes of 
a 4-feasible cut C = {C1,C2,C3,C4} rooted in node m is highlighted using the filled nodes. The hatched 
nodes are added to the window during the expansion of the cut. As a consequence of that, leave C1 is 
replaced by C∗

1
 . The root and leaves of the window are denoted as R and L, respectively. The nodes in 

the window have assigned an index (the number located below a particular node) used to uniquely iden-
tify each node in the CGP. One of the many possibilities how to encode the window using CGP is for 
example: (2,3, f5 ) (2,3, f6 ) (4,1, f7 ) (1,5, f8 ) (8,2, f9 ) (3,4, f10 ) (9,10, f11 ) (6,10, f12 ) (7,8,9,11,12), where 
fi ∈ {NOT,AND,OR,XOR,…} is the function of the node with index i 
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Both approaches are complementary and have their own advantages and disad-
vantages. The cut-based windowing algorithm GS1 is in general very sensitive to 
the root node selection. In some cases, small windows can be produced. This can 
happen especially when the root node is located close to the primary inputs. The 
reason is that the cut-based algorithm allows the window to grow only towards the 
primary inputs. Unfortunately, selection of the best root node represents a hard prob-
lem. Depending on the structure of the circuits to be optimized, the obtained win-
dows can be narrow and tall.

Identification of the best pivot node in the alternative windowing approach GS2 
is also a non-trivial problem but its selection is not as critical as in GS1 because bi-
directional expansion is applied in this case. The algorithm allows the window to 
grow not only towards to the primary inputs but also to the primary outputs. Despite 
that, it can easily happen that the iterative procedure produces also unsatisfactory 
results. This can happen when we select a node with a high number of fanout nodes. 
In such a case, we receive the required number of nodes in the first iteration because 
the queue is filled with the necessary number of nodes when visiting the pivot node. 
Hence depending on the structure of the circuits to be optimized, the windows can 
be wide but with small depth.

3.2  Evolutionary optimization

The procedure OptimizeNetworkUsingEA is implemented as follows. At the begin-
ning, the extracted subcircuit (window) is encoded using the 1D CGP encoding. The 
received chromosome is used to seed the initial population. The evolutionary opti-
mization is then executed for a limited number of iterations (evaluations). The goal 
is to optimize the initial solution with respect to a chosen cost function. The number 
of iterations should be determined heuristically according to the size of the initial 

q1

L L L

R

1 2 3

5

6

8 9 10

11 12

m

q2

q3

q4

q5

q6

q7 q8

q9

q10

R R

LL 4
7

13
R

Fig. 4  Example of the window consisting of 10 nodes ( wmax = 10 ) created using the proposed alternative 
windowing algorithm GS2. The neighboring nodes added into W are highlighted using the filled nodes. 
The hatched nodes are those added during the final step. The nodes at the bottom are primary outputs. 
The root and leaves of the window are denoted as R and L, respectively. The nodes in the window have 
assigned an index (the number located below a particular node) used to uniquely identify each node in 
the CGP. The labels qi inside the nodes denote the order i in which the nodes were chosen
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circuit. The more iterations are allowed, the higher improvement can be achieved. 
On the other hand, many iterations on a small circuit wastes time. At the end, the 
best obtained circuit is returned and implanted back into the original Boolean net-
work instead of the original window.

The extracted window is encoded using CGP encoding as follows. All nodes 
n ∈ W contained in the window W are sorted in the topological order. We receive a 
list of nodes having the leaf nodes located at the beginning of the list. Each node is 
assigned an unique index which is equal to its position in the list. One to one map-
ping is then used to encode the nodes using CGP encoding. Only non-leaf nodes are 
encoded in the chromosome because the leaf nodes serve as inputs. It means that the 
size of the CGP grid is nn = |W ⧵ L| . There is no need to introduce any redundancy 
at this level as shown in [27]. To illustrate the principle, let us consider the window 
depicted in Fig. 3 consisting of 12 nodes. The window is mapped to a 1D array of 
eight CGP nodes ( nn = 8 ). The inputs are numbered 1 to 4 because four leaf nodes 
are present. The contained nodes have associated indices 5 to 12. To encode the first 
node associated with the index 5, for example, the following three genes are used: 
(2, 3, AND). The first gene encodes the connection of the first input (node 5 is con-
nected to the output of the leaf node 2), the second gene encodes the connection of 
the second output and the third gene encodes the function of the node assuming that 
the node 5 is AND gate. Five genes are used at the end of the chromosome to encode 
the output connections corresponding with five root nodes denoted as R. In sum-
mary, the window is encoded using a string of 8 × 3 + 5 = 29 genes.

Let C be a candidate solution (circuit) created by mutating a parental solution P. 
The fitness of the candidate solution fitness(C) is determined as

where cost(C) is a cost function to be minimized, f(C) is a Boolean function rep-
resenting C and f(P) is a Boolean function corresponding with P. Candidate cir-
cuits violating the requirement for the functional equivalence, i.e. those for that 
f (C) ≡ f (P) is violated, are assigned a high positive value and are discarded. 
Depending on the scenario, the cost function can reflect the number of gates, area on 
a chip, logic depth, delay or power consumption.

The computation of the fitness score is implemented as suggested in [27]. The 
overall principle is illustrated in Fig.  5. The process begins with the computa-
tion of the difference between a candidate and parental circuit. The difference is 
computed at the level of the phenotypes, i.e. Boolean networks, and its purpose 
is to enable equivalence checking, i.e. to check whether the candidate solution is 
functional equivalent with its parent. Only the functionally equivalent solution is 
further analysed to determine its cost. In order to perform the equivalence check-
ing as quick as possible, we combine a SAT solver with a circuit simulator to 
avoid excessive runtimes caused by some hard-to-solve SAT instances. The key 
idea is to use a small number of input vectors to disprove the equivalence using 
a fast circuit simulator. If the candidate circuit produces a different output value 

(1)fitness(C) =

{
cost(C), if f (C) ≡ f (P).

∞, otherwise,
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compared to the parental circuit serving as a reference, we can terminate the fit-
ness calculation because the candidate circuit violates the specification. If the 
output values are the same, we have to use a SAT solver to prove that there is no 
input assignment that produces different output values. Randomly generated input 
vectors have been used in [27]. In this work, we use a slightly advanced version 
where we feed the simulation engine with counter examples produced by the SAT 
solver. This mechanism helps to further improve the overall efficiency.

4  Experimental setup

The proposed method was implemented in C++ as a part of Yosys open synthesis 
suite [30]. The advantage of this tool, among others, is that it allows us to directly 
manipulate with Verilog files and that it integrates ABC [1], a state-of-the-art aca-
demic tool for hardware synthesis and verification.

The goal of this work is to evaluate the performance of the proposed approach 
and compare the results with the state-of-the-art evolutionary as well as conven-
tional method for optimization of digital circuits. In particular, we consider two vari-
ants of Algorithm 1 that differ in the implementation of the procedure GetSubcir-
cuit. The first one (denoted as GS1) is based on Algorithm GS1 and the second one 
(denoted as GS2) is based on Algorithm GS2. The state-of-the-art is represented by 
the EA-based optimization technique that optimizes the whole Boolean network at 
once [27]. This approach will be denoted as global. To represent the conventional 

CANDIDATE
CIRCUIT

PARENTAL
CIRCUIT

CIRCUIT
SIMULATOR

DIFFERENCE
COMPUTATION

SAT SOLVER
maybe

N

USE MODEL TO UPDATE
INPUT VECTORS DB

EQUIVALENT

FITNESS
VALUE

N

Y

model

Input
vectors

EQUIVALENCY
DISPROVED

EQUIVALENT

N

Y

CIRCUIT PARAMETERS
ESTIMATION

(AREA, DELAY, POWER, …)

Fig. 5  Principle of the fitness score computation using the hybrid approach combining a circuit simulator 
with a SAT solver
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tools, we chose ABC synthesis tool which is considered to be the best academia tool 
implementing the state-of-the-art synthesis algorithms.

The methods are evaluated on a recent set of benchmark circuits coming from 
the logic synthesis community. The benchmark set consists of 28 real-world circuits 
available in the form of Verilog netlists.2 Nineteen instances are various controllers 
taken from IWLS’05 Open Cores benchmarks. The remaining nine instances rep-
resent common arithmetic circuits. At the beginning, all the instances were deeply 
optimized by ABC (hundred iterations of ‘resyn‘ script) to make sure that our opti-
mization algorithms start with the best results produced by the conventional synthe-
sis. The optimized circuits were then mapped to gates (ABC command ‘map’) using 
a library of common 2-input gates including XORs/XNORs gates and exported back 
to Verilog. The mapped Verilog netlists then served as input to the EA-based meth-
ods. Compared to the ABC, the EA-based methods operate directly at the level of 
gates. The gate-level representation was chosen intentionally because it enables to 
avoid the bias of the AIG representation and better exploit the XOR decomposition.

Area-optimization is targeted in this work. It means that the only criterion in the 
fitness function considered in this paper is the area on a chip expressed as the num-
ber of gates. It means that the improvement is measured in terms of the number of 
removed gates. The other electrical parameters such as delay or power consumption 
are not reflected. The line 7 of Algorithm  1 thus reduces to |W ′| < |W| which is 
much simpler to evaluate. For each method and each benchmark, five independent 
runs were executed to obtain statistically valid results. All of the optimized circuits 
were formally verified with respect to their original form (ABC command ‘cec’) to 
avoid any error in the evaluation.

The procedure OptimizeNetworkUsingEA is based on the CGP implemented as 
described in Sects.  2.3 and  3.2. The CGP parameters were chosen in accordance 
with [27] and are summarized in Table 1. The termination conditions are designed 
as follows. The proposed method is allowed to execute niters iterations. Each itera-
tion corresponds with a single execution of the OptimizeNetworkUsingEA proce-
dure. This procedure terminates either when a given number of evaluations ( nevals ) is 
exhausted or when a predefined amount of time ( tmax ) has elapsed. The latter condi-
tion helps to ensure a good scalability and predictability of the worst-case CPU time 
of the optimization which could be enormous especially in those cases when many 
hard-to-solve candidate solutions are generated during the evolution. The global 
method terminates either when nevals × niters evaluations are exhausted or when the 
CPU time reaches tmax × niters seconds. The strategy with the fixed number of evalu-
ations is relatively naïve because it supposes that the computation effort does not 
depend on the size of the window. On the other hand, it helps to fairly evaluate all 
evolutionary methods because they are allowed to evaluate the same number of 
candidate solutions. We chose niters = 2 × 104 , nevals = 5 × 105 , and tmax = 10 sec-
onds in this work. This setup ensures that 1010 candidate solutions are generated and 
evaluated.

2 The Verilog netlists of the benchmark circuits are taken from https ://lsi.epfl.ch/MIG.
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4.1  Parameter setting

As both algorithms for sub-circuit extraction contain parameters that may have a 
huge impact on the efficiency of the optimization process, we need to ensure proper 
parameter configuration. To perform a fair evaluation, we ran experiments that help 
us to identify a suitable parameter setting. Due to the increased computational com-
plexity, we conducted the experiments on a limited set of benchmark circuits. We 
selected three benchmarks from each class of circuits to have a small yet representa-
tive set of circuits3.

Four parameters are present in Algorithm  GS1. Parameters kmin and kmax con-
trol the feasibility of the cuts. These parameters are fixed to 1 and 10,000, respec-
tively, because our SAT-based CGP optimizer does not need to put any restriction 
on the number of circuit inputs. The next two parameters cmin and cmax determine 
the size (i.e. the number of gates) of the extracted sub-circuits. We hypothesize that 
larger sub-circuits may lead to higher number of reduced gates in the sub-circuits 
and better improvement at the global level. To confirm this hypothesis and iden-
tify a suitable setting, we run many experiments with different values of cmin and 
cmax . Results for some settings are summarized in Table 2. Three efficiency indica-
tors were established and analysed. The first three rows report the average number 
of removed gates calculated over all benchmark circuits (first row) and for each class 
separately (second and third row). The next three rows report the average number of 
iterations that caused a reduction in the number of gates. The last three rows show 
the average number of iterations that produced a sub-circuit whose optimization by 
CGP time-outed. We firstly tried to restrict the size of the sub-circuits to a relative 
narrow range. The numbers shown in the first six columns, however, suggest that 
this strategy does not offer any advantage. The average improvement stagnates and 
does not increase with increasing the cmin and cmax . The achieved reduction in the 

Table 1  The CGP parameters used in the experiments

Parameter Description

CGP encoding n
n

A linear 1D array of n
n
= |W| CGP nodes 

is considered; n
n
 equals to the size of the 

optimized circuit
n
a

each CGP node has n
a
= 2 inputs and can 

implement one of eight predefined Boolean 
functions in � = {BUF,

� NOT,AND,OR,XOR,NAND,NOR,XNOR}

Mutation operator h Up to h = 2 active genes are modified
L Full connectivity is enabled, i.e. L = n

n

Search strategy � (1 + �)-ES is employed, where � = 1

3 The following circuits were used to determine the best parameter setting: dsp, mem_ctrl, tv80, diffeq1, 
max, revx.
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number of gates is around 8% for the arithmetic benchmarks and 4% for the logic 
benchmarks. For higher values ( cmin = 75 , cmax = 100 ), we can observe 1.7% drop in 
the performance (average improvement is 4.7% vs 6.4%). More than 10% iterations, 
on average, were terminated prematurely due to the tmax restriction for this setting. 
This behavior is caused by the fact that many hard-to-solve instances were gener-
ated. It means that the computationally expensive SAT solver needed to be used to 
decide equivalence of many complex candidate solutions. As a consequence of that, 
less than 1 ⋅ 1010 candidate solutions were generated and evaluated in those cases. 
Interestingly, the most advantageous setting was the least restrictive one where we 
chosen cmin = 5 and cmax = 1000 . The lower bound prevents the cut-based algorithm 
to generate too small sub-circuits. The upper bound was chosen to be a value higher 
than the largest volume that was ever observed on the reduced benchmark set across 
all experiments. This setting in practice means that no restrictions are applied at all.

Note that the root node m is chosen randomly. This strategy simplifies the 
problem but it may lead to degradation of the performance especially if many 
unacceptable windows are produced. If this happens in 10% cases, for example, 
the total number of effective generations is in fact reduced to 90%. Interestingly, 
we didn’t observed such degradation. This situation happened only in less than 
ten iterations.

Algorithm  GS2 has only two parameters, namely wmin and wmax , that have the 
same meaning as cmin and cmax in Algorithm GS1. Similarly to the cut-based algo-
rithm, we tried to identify the best values of these parameters. The results of the 
experiments on a reduced set of benchmark circuits are summarized in Table  3. 
Only the cases where wmin is fixed to the lower bound are listed. Compared to Algo-
rithm GS1, however, much larger windows has to be accepted because of the con-
struction of the sub-circuits. The method produces natively larger windows because 
all fanins and fanouts are included in the list of potential nodes in each iteration of 
the windowing algorithm. As shown in the first row of Table  3, the efficiency of 

Table 2  Impact of c
min

 and c
max

 parameters on the performance of the evolutionary optimization based 
on GS1 algorithm evaluated on a subset of six benchmark circuits

The best results in each row are italics

c
min

 / c
max

5/10 (%) 10/20 20/35 35/50 50/75 75/100 5/1000

Achieved improvement 5.5 6.2 6.5% 6.5% 6.4% 4.7% 8.2%
Controllers & logic 3.6 4.2 4.3% 4.2% 4.0% 2.3% 5.5%
Arithmetic circuits 7.4 8.2 8.8% 8.8% 8.8% 7.1% 10.9%
Iterations caused reduction 2.8 3.0 3.3 3.3 3.2 2.4 4.1
Controllers & logic 2.6 2.7 2.8 2.6 2.5 1.7 3.4
Arithmetic circuits 3.0 3.2 3.8 4.0 3.9 3.2 4.8
Iterations when EA time-outed 0.0 0.0 0.0 0.0 0.7 10.5 1.8
Controllers & logic 0.0 0.0 0.0 0.0 0.5 13.4 2.0
Arithmetic circuits 0.0 0.0 0.0 0.0 0.9 7.6 1.6
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the optimization increases with increasing wmax and it culminates for wmax = 100 . 
For sub-circuits having ten times higher number of gates, i.e. wmax = 1000 , the aver-
age number of removed gates drops down to 12.9%. In this case, majority of the 
CGP runs timed out. The results presented in the last three rows suggests that Algo-
rithm GS1 produces sub-circuits that are more complex compared to the cut-based 
method which tends to produce structures having a tree-like shape. The choice of the 
best setting is not as apparent as for GS1 because it depends on the preferred crite-
ria. As we are primarily interested in the best gate improvement, we decided to use 
wmin = 5 and wmax = 100 for the following experiments.

According to the obtained results, it can be concluded that GS2 performs sig-
nificantly better even though there is a relative high amount of premature terminated 
CGP runs. The best result was obtained for wmax = 100 . In this case, the method was 
able to reduce the optimized netlists by 14.4% in average. The best reduction for the 
cut-based approach is 8.2% and it was achieved when cmax = 1000.

5  Results

The results from running each method on each problem with the best parameter 
setting identified in the previous section are summarized by Table  4. The first 
three columns contain information related to the benchmarks: circuit name, the 
number of circuit inputs (PIs), and the number of circuit outputs (POs). The next 
two columns show parameters of the optimized and mapped circuits produced 
by ABC. In particular, the number of gates and logic depth are given and those 
numbers serve as a baseline for our comparison. Then, the achieved improvement 
expressed as the relative reduction with respect to the baseline is reported for 
the global and both proposed methods. For each method, we report not only the 
median (section average improvement) but also the best obtained results (section 

Table 3  Impact of w
min

 and w
max

 parameters on the performance of the evolutionary optimization based 
on GS2 algorithm evaluated on a subset of six benchmark circuits

The best results in each row are italics

w
min

 / w
max

5/10 (%) 5/20 (%) 5/50 (%) 5/100 (%) 5/1000 (%) 5/10000 (%)

Achieved improvement 7.4 9.0 12.6 14.4 12.9 12.2
Controllers & logic 3.9 5.1 6.9 8.8 13.5 23.5
Arithmetic circuits 10.8 12.9 18.3 19.9 12.2 0.8
Iterations caused reduction 18.7 19.1 23.2 17.8 5.1 2.2
Controllers & logic 32.4 31.0 37.5 27.9 5.1 4.3
Arithmetic circuits 4.9 7.1 8.9 7.8 5.0 0.1
Iterations when EA time-outed 5.6 16.2 5.3 13.2 76.2 95.8
Controllers & logic 0.0 7.7 5.8 13.1 66.5 92.3
Arithmetic circuits 11.2 24.7 4.9 13.2 85.9 99.4

Author's personal copy



306 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

best improvement). The statistics is based on all five independent runs. For each 
group of circuits, the mean improvement is provided. The values in the sixth, sev-
enth and eight column are calculated from all runs.

All the evolutionary approaches were able to further reduce the size of the 
benchmark circuits despite that the fact that they were highly optimized by the 
ABC synthesis tool. On average, the evolutionary resynthesis achieved 8.9% cir-
cuit size reduction on controllers and 21.4% reduction on arithmetic circuits. The 
best results obtained by a particular method are relatively close to the average 
ones which suggests that the evolutionary methods are quite stable although they 
are in principle non-deterministic. According to the number of highlighted cases 
showing the best results in each section of Table 4, the method GS2 introduced in 
this paper is the clear winner. Nevertheless, both methods mentioned in this work 
perform substantially better considering the average as well as the best results 
compared to the global method. Method GS1 won in 21 out of 28 cases. Method 
GS2 won in 24 cases. There are even cases, when the global method provided 
none or nearly no improvement (see benchmarks ‘des_perf‘, ‘dsp‘, ‘ethernet‘, 
‘systemcaes‘). Looking at the arithmetic circuits, the global method was able 
to slightly improve only two circuits – ‘hamming‘ and ‘sqrt32‘. In other cases, 
the reduction is negligible. There are, however, two problem instances (control-
ler ‘mem_ctrl‘ and ‘spi‘) for that the global method provided very competitive 
results. In addition there are three cases (‘aes_core‘, ‘pci_spoci_ctrl‘, ‘tv80‘) 
where the global method produced results that are very close to the best one 
obtained by the proposed methods. The common feature of these five cases is a 
very steep convergence curve (see Fig. 6 which contains the convergence curve 
for ‘spi‘ controller). We tried to identify the exact reason for that but it looks 
that such a behaviour is a result of the combination of several factors. It can be 
concluded, in general, that the global method works well especially for small 
instances that are compact (do not contain many independent sub-circuits) and 
that have a reasonable depth (10 to 25 levels). On the other hand, the optimization 
of circuits having a large depth, many gates or many independent sub-parts per-
forms unsatisfactory when the global method is applied.

All the evolutionary approaches were able to improve the original circuit sub-
stantially. A significant improvement was recorded for the arithmetic circuits. The 
number of gates was reduced by 27.4% using GS2 (15.3% for GS1) on average. 
The highest improvement, 59.9%, was recorded for the ‘hamming‘ benchmark. 
The detailed analysis revealed that this was possible due to better handling of 
XORs/XNORs compared to the conventional synthesis. The relative number of 
AND/OR/NAND/NOR gates remained nearly the same (around 74%) but the 
absolute number of XORs/XNORs increased from 10% to 15% for GS1 and 18% 
for GS2.

A more detailed analysis is provided in Table 5 showing the computational effort 
required to reduce the benchmark circuits by 1%, 5% and 10%. The computation 
effort is expressed as the average number of generations that have to be evaluated 
to obtain a circuit whose number of gates is reduced by a given level. The number 
of evaluations corresponds with the real number of evaluated candidate solutions. It 
means that we reflected the fact that the CGP may be prematurely terminated due to 
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the time limit. The empty cells in the table mean that none of the evolutionary runs 
produced a circuit satisfying the required condition. This can happen either because 

Fig. 6  The exemplary convergence curves representing the typical progress of the fitness score observed 
during the evolutionary optimization of digital circuits. Records from three independent evolutionary 
runs are shown in each figure. The lower number of gates, the better result. The data are downsampled to 
improve the readability. Each curve consists of up to 50 points

Author's personal copy
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it is in principle impossible to obtain such a circuit (we are already at the optimum 
or close to the optimum) or because of the insufficient number of evaluations ( nevals ) 
or iterations ( niters ). The cells containing the value > 1010 indicate that it was impos-
sible to reduce the number of gates to the required level within the allowed number 
of evaluations but it may happen that the required reduction can be achieved when 
more than 1010 evaluations are used.

If we compare the computation effort required for reduction by 1% shown in 
the first section of Table 5, we can easily identify that the global method converges 
faster compared to GS1 and GS2. On the other hand, the globally applied CGP has 
a tendency to get stuck at a local optima especially when complex benchmarks are 
optimized. The global method applied to the controllers and logic benchmarks was 
successful in 78% cases. In the remaining cases, no result was obtained within the 
allowed number of evaluations. A complete different situation can be observed for 
the arithmetic circuits. Nearly no improvement was achieved in this category of cir-
cuits. The benchmark circuits ‘hamming’ and ‘sqrt32’ represent the only exception 
where the evolution ended successfully. The proposed GS1 and GS2 exhibit a slow 
convergence but the iterative principle makes them more robust and less likely to 
converge prematurely to local optima. If we compare the success rate, it is evident 
that the EA-based resynthesis exhibits better overall performance. Method  GS2 
achieved the required reduction in all cases. Method GS1 performs similarly. The 
only failure is in the case of ‘ethernet‘ benchmark circuit. Considering the com-
putation effort, the proposed  GS2 typically requires lower number of generations 
than GS1. The superiority of GS2 over GS1 is more evident in the last section of 
Table 5 showing the computation effort required for reduction by 10%. GS1 signifi-
cantly outperforms the other methods on logic as well as arithmetic circuits.

The performance of the evolutionary methods can also be investigated by com-
paring the corresponding convergence curves. Figure 6 shows the exemplary con-
vergence curves. The first row illustrates the situation typical for the majority of 
the benchmarks. It corresponds with the situation when the proposed method GS2 
clearly outperforms the remaining two methods; it converges faster and achieves 
better reduction. The global method exhibits a quick convergence but the search 
mostly ends at a local optima. This is the case of ‘usb_phy’. For arithmetic circuits, 
no improvement was achieved due to the complex circuit structure. The second row 
illustrates what usually happened for instances where GS1 provided better results 
than GS2. We identified two different causes. Optimization based on Algoritm GS1 
performs better because it profits from the usage of smaller sub-circuits. The smaller 
sub-circuits require less computational effort to be optimized compared to the larger 
ones. Such a behavior was observed for ‘max‘, ‘des_area‘, ‘dsp‘, ‘ss_pcm‘ and 
‘max‘ benchmark. A different situation happened in case of ‘sqrt32‘ benchmark. We 
suppose that GS2 modified the original circuit in such a way that it was hard to 
further improve it. Considering the space of all valid circuit structures, the method 
probably reached a local optima that is hard to overcome. The last row in Fig.  6 
shows two examples where the global method achieved better results than at least 
single proposed method. The left part shows the typical progress observed in the 
case of the ‘spi‘, ‘aes_core‘, ‘mem_ctrl‘, and ‘tv80‘. The common feature is the 
steep convergence of the global method. The chosen ‘spi‘ benchmark is however, 
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a bit exceptional, because we can observe how the global method can get stuck at a 
local optima. As evident also from Table 4, there is a huge difference between the 
best and the average result. This is caused by the fact that only one run ended in the 
global optima (less than 2900 gates). We assume that the remaining four runs fol-
lowed a bad direction in the search space and got stuck at a local optima (see the 
divergence around 3400 gates). The right part of the last row shows the convergence 
curves that were observed for the following benchmarks: i2c, pci_spoci_ctrl, sys-
temcdes. In this case the global method provided results that are better than those 
obtained by GS1 but worse than those obtained by GS2.

As we already mentioned in the previous part, the evolutionary resynthesis con-
verges sometimes slowly compared to the CGP working at the global level. We 
assume that the slow convergence is caused by the fact that each sub-circuit pro-
duced by the proposed windowing algorithm is optimized for a fixed number of 
generations independently on its parameters such as the size or the number of PIs. 
This simplifies the problem but it may lead to a potential inefficiency. Many genera-
tions can be wasted to optimize small circuits. In order to elaborate on this prob-
lem, we logged all created sub-circuits (W in Algorithm 1) and analyzed their size 
and other parameters. The parameters of the sub-circuits produced by the proposed 
sub-circuit extraction algorithms are given in Table 6. The table contains the aver-
age number of inputs and outputs, and the average as well as the maximum size 
of the sub-circuits produced by the proposed windowing algorithms. Note that the 
leave nodes are not considered in the size. These numbers are provided separately 
for the case when |W ′| < |W| (CGP reduced the sub-circuit) and for the case when 
|W �| = |W| (CGP kept the sub-circuit unchanged considering the number of gates). 
Method  GS2 mostly produces windows having their size equal to wmax . Depend-
ing on the circuits structure, however, it may be impossible to create such a large 
working window because there may be independent parts that consist of the smaller 
number of gates. This was observed massively during the optimization of the fol-
lowing three benchmark circuits: ‘sasc‘, ‘ss_pcm‘, ‘usb_phy‘. According to Table 6, 
windows having less than 100 nodes were generated in more than half of the total 
number of iterations for those cases (please refer to the column ‘avg |W|‘). This does 
not mean, however, that this situation did not occur for the remaining benchmarks. 
Figure 7 shows boxplots of |W| for four selected evolutionary runs. The smaller win-
dows, represented by the outliers in the boxplots, were generated in many cases also 
for ‘usb_funct‘.

Surprisingly, even GS1 produces sub-circuits of a reasonable volume despite of 
the usage of the cut-based method with a simple root node selection strategy. On 
average, the size of the windows is much smaller than the chosen limit cmax . We can 
also observe that many windows consisting of less than 10 gates were generated. 
This is valid for ‘ac97_ctrl‘, ‘sasc‘, ‘ss_pcm‘ and ‘usb_phy‘. Much larger windows 
are generated for the arithmetic circuits than for the controllers and logic, on aver-
age. On the other hand, we can also see that the cut-based method is able to extract 
sub-circuits having significantly more than 100 gates but we never hit cmax . The 
number of inputs and outputs positively correlates with the size of W. The larger the 
number of gates in the window, the higher number of inputs and outputs. This obser-
vation is valid for both methods.
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The number of inputs of the sub-circuits optimized by the evolution is substantially 
higher compared to the numbers used by the rewriting algorithm which is applied in the 
conventional synthesis. Compared to the rewriting and other techniques mentioned in 
Sect. 2.2, a relatively complex portions of the original circuits are chosen for subsequent 
optimization. This could explain the reason, why the proposed EA-based method is able 
to achieve such reduction compared to the conventional state-of-the-art synthesis.

6  Conclusion

Compared to the conventional logic synthesis, state-of-the-art EA-based optimiza-
tion is able to produce substantially better results but at the cost of a higher run time. 
Unfortunately, the run time increases with the increasing complexity of the Boolean 

Fig. 7  Size of the sub-circuits extracted from the benchmark circuits in course of the optimization. Data 
from a single evolutionary run are plotted for each benchmark circuits. The boxes visualize distribution 
of |W| for sub-circuits generated in 2000 consecutive iterations. Outliers are plotted as individual points 
( + for successfully optimized sub-circuits, × for the sub-circuits that left unchanged). Note that the boxes 
are reduced to a single line and outliers in case of GS2
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networks. This work addressed this problem by combining the EA-based optimi-
zation with the principle of the so called Boolean network scoping. Our method 
extracts smaller sub-circuits from a complex circuit that are optimized locally and 
implanted back to the original circuit. This concept can be understood as the evolu-
tionary resynthesis. This approach helps to improve the scalability because the evo-
lution is applied on smaller portions of the original Boolean network.

We implemented and evaluated two different techniques to the sub-circuit extrac-
tion. One method is based on the computation of the so called reconvergence-driven 
cuts. This approach is used in the state-of-the-art logic synthesis algorithms but in a 
different scenario. Despite of many advantageous properties, the cut-based method 
has some limitations regarding our application. To avoid this, we proposed an alter-
native approach loosely inspired by a conventional windowing technique.

Even though we used a simple setting which may degrade the capabilities of the 
resynthesis (e.g. the fixed number of evaluations of EA or random root node selec-
tion), the proposed approach was able to outperform the EA-based optimization 
applied to the whole Boolean networks. The proposed sub-circuit extraction inspired 
by windowing was significantly better than the cut-based alternative. On average, 
the evolutionary resynthesis achieved 8.9% circuit size improvement on controllers 
and 21.4% improvement on arithmetic circuits. The globally applied evolution was 
able to improve the circuits belonging to the mentioned groups by 7.5% and 1.8%, 
respectively. Even though only the area was targeted in this study, the depth of the 
optimized circuits is comparable with the original circuits.

The capability of exploration of the evolutionary resynthesis is higher but at the 
cost of slower convergence. There are few instances where the EA-based optimi-
zation applied to the whole circuit produced better results. In our future work, we 
would like to implement an adaptive strategy that modifies the maximum number 
of evaluations according to the size of the optimized logic circuit. We suppose that 
this mechanism helps us to improve the convergence. In addition to that, we would 
like to focus on improvement of root node selection strategy. The question here is 
whether the result would be better if the cut is built from a node near to the previ-
ously chosen one.
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