
1 23

Genetic Programming and Evolvable
Machines

ISSN 1389-2576
Volume 21
Number 3

Genet Program Evolvable Mach (2020)
21:287-319
DOI 10.1007/s10710-020-09376-3

EA-based resynthesis: an efficient tool for
optimization of digital circuits

Jitka Kocnova & Zdenek Vasicek

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2020) 21:287–319
https://doi.org/10.1007/s10710-020-09376-3

1 3

EA‑based resynthesis: an efficient tool for optimization
of digital circuits

Jitka Kocnova1 · Zdenek Vasicek1

Received: 13 October 2019 / Revised: 1 January 2020 / Published online: 30 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Since the early nineties the lack of scalability of fitness evaluation has been the main
bottleneck preventing the adoption of evolutionary algorithms for logic circuits syn-
thesis. Recently, various formal approaches such as SAT and BDD solvers have been
introduced to this field to overcome this issue. This made it possible to optimise
complex circuits consisting of hundreds of inputs and thousands of gates. Unfor-
tunately, we are facing another problem—scalability of representation. The effi-
ciency of the evolutionary optimization applied at the global level deteriorates with
the increasing complexity. To overcome this issue, we propose to apply the con-
cept of local resynthesis in this work. Local resynthesis is an iterative process based
on the extraction of smaller sub-circuits from a complex circuit that are optimized
locally and implanted back to the original circuit. When applied appropriately, this
approach can mitigate the problem of scalability of representation. Two complemen-
tary approaches to the extraction of the sub-circuits are presented and evaluated in
this work. The evaluation is done on a set of highly optimized complex benchmark
problems representing various real-world controllers, logic and arithmetic circuits.
The experimental results show that the evolutionary resynthesis provides better
results compared to globally operating evolutionary optimization. In more than 85%
cases, a substantially higher number of redundant gates was removed while keep-
ing the computational effort at the same level. A huge improvement was achieved
especially for the arithmetic circuits. On average, the proposed method was able to
remove 25.1% more gates.

Keywords Cartesian genetic programming · Evolutionary resynthesis · Logic
optimization

This work was supported by Czech Science Foundation Project 19-10137S.

 * Zdenek Vasicek
 vasicek@fit.vutbr.cz

Extended author information available on the last page of the article

Author's personal copy

http://orcid.org/0000-0002-2279-5217
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-020-09376-3&domain=pdf

288 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

1 Introduction

Logic synthesis, as understood by the hardware community, is a process that
transforms a high-level description into a gate-level or transistor-level implemen-
tation. Due to the complexity of the problem, the synthesis process is typically
broken into a sequence of steps. Among others, logic optimization represents an
important part of the whole process. Due to the scalability issues, the problem
is typically represented using a suitable internal representation. Current state-of-
the-art logic synthesis tools, such as ABC [1], represent circuits using a directed
acyclic graph composed of two-input AND nodes connected by direct or negated
edges denoted as an and-inverter graph (AIG). The optimization of AIGs is based
on rewriting, a greedy algorithm which minimizes the size of AIG by iteratively
selecting subgraphs rooted at a node and replacing them with smaller precom-
puted subgraphs, while preserving the functionality of the root node [19]. AIG
rewriting is local, however, the scope of changes becomes global by application
of rewriting many times. In addition to that, resubstitution and refactoring can
be employed. Resubstitution expresses the function of a node using other nodes
present in the AIG [18]. Refactoring iteratively selects large cones of logic rooted
at a node and tries to replace them with a more efficient implementation [19].
Refactoring can be seen as a variant of rewriting. The main difference is that
rewriting selects subgraphs containing few leaves because the number of leaves
determines the number of variables of a Boolean function whose optimal imple-
mentation is sought.

The AIG representation is simple and scalable, and leads to simple algorithms
but it suffers from an inherent bias in representation. While eight of ten possi-
ble two-input logic gates may be represented by means of a single AIG node,
XOR and XNOR gate require three AIG nodes each. The efficiency of synthesis
is then limited as it mostly relies on transformations that disallow an increase of
the number of AIG nodes. It has been shown that there exists a huge class of real-
world circuits for which the synthesis fails and provides very poor results [3, 4,
21]. In some cases, the area of the synthesized circuits is of orders of magnitude
higher than the known optimum. If a large design is broken down to multiple
smaller circuits and such a failure occurs during resynthesis, we obtain an unac-
ceptably large circuit.

Various evolutionary approaches working directly at the level of gates were
successfully applied to address this problem [21, 27]. Vasicek demonstrated that
the evolutionary synthesis using Cartesian Genetic Programming (CGP) con-
ducted directly at the level of common gates is able to provide significantly bet-
ter results compared to the state-of-the-art synthesis operating on AIGs [27]. On
average, the method enabled a 34% reduction in gate count on an extensive set
of benchmark circuits when executed for 15 minutes. It was observed, however,
that the efficiency of the evolutionary approach deteriorates with an increasing
number of gates. Substantially more generations were required to reduce cir-
cuits consisting of more than ten thousands gates. While [27] focuses strictly on
the improvement of the scalability of the evaluation, Sekanina et al. employed a

Author's personal copy

289

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

divide and conquer strategy to address the problem of scalability of representa-
tion [21]. The authors were able to obtain better results than other locally operat-
ing methods reported in the literature, however, the performance of this method
was significantly worse than the evolutionary global optimization proposed in
[27].

Motivated by the problem above, we propose to combine evolutionary optimiza-
tion with the principle of so called Boolean network scoping. Boolean network scoping
represents a common approach incorporated in conventional synthesis tools for main-
taining the good scalability of the synthesis process. In particular, we propose to use
an iterative procedure which extracts sub-circuits that are subsequently optimized by
Cartesian Genetic Programming and implanted back into the original circuit provided
that there is an improvement at the global level. This approach can be understood as
the EA-based resynthesis. The size of the sub-circuits has impact not only on the scal-
ability of the CGP but also on the efficiency of the whole optimization process. Small
sub-circuits ensures a good scalability of the evolutionary optimization, but they lead to
minor improvements at the global level because we obtained a method which operates
mainly locally similarly to the conventional rewriting. Huge sub-circuits, on the other
hand, increases possibilities for an improvement but the performance of the CGP dete-
riorates with increasing the size of the optimized circuit. In order to have a reasonable
optimization method, it is necessary to find a good trade-off between the mentioned
two extremes.

Several heuristics for Boolean network scoping on the level of AIGs have been pro-
posed in the literature (see Sect. 2.2). These heuristics have typically been introduced in
the context of some more complex algorithms and used as a part of their functionality.
It means that they are tailored to the particular scenario and need to be modified to be
used for our needs. The rewriting, for example, is designed to work with sub-circuits
having at most five inputs and exactly one output. In our case, we do not need to intro-
duce any hard limits on the number of inputs or outputs. Compared to rewriting, evo-
lutionary resynthesis has the potential to reduce a substantially larger number of gates
(e.g. low hundreds of gates).

1.1 Goals and contributions

The work in this paper extends the preliminary results presented in [10] where we used
a method of Boolean network scoping inspired by the conventional method based on
computing so called k-feasible cuts. In this paper, we introduce an alternative method
and evaluate its parameters compared to the cut-based method as well as conventional
state-of-the-art synthesis. Our goal is to improve the efficiency of the evolutionary opti-
mization and get rid of some parameters and limitations connected with the usage of
the cut-based method. In addition to that, a more detailed description and experimental
evaluation of both methods is presented.

Author's personal copy

290 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

1.2 Organization

The rest of this paper is organized as follow. Section 2 presents a background in
Boolean networks and network scoping and the related work in the area of the evo-
lutionary synthesis of digital circuits. Section 3 introduces the proposed approach to
the evolutionary resynthesis of large combinational circuits. Section 4 describes the
experimental setup and experiments with the parameter setting. The obtained results
are presented and discussed in Sect. 5. Finally, Sect. 6 provides the conclusions and
some ideas for future work.

2 Background and related work

This section presents relevant background on conventional as well as EA-based opti-
mization of logic circuits and introduces the notation used in the rest of the paper.

2.1 Boolean networks

Every circuit can be represented using a Boolean network. A Boolean network is a
directed acyclic graph (DAG) with nodes represented by Boolean functions [18].
The sources of the graph are the primary inputs (PIs) of the network and the sinks
are the primary outputs (POs). The output of a node may be an input to other nodes
called fanouts. The inputs of a node are called fanins. An edge connects two nodes
that are in fanin/fanout relationship. Considering this notion, And-Inverter Graph is
a Boolean network composed of two-input ANDs and inverters. The network pri-
mary inputs are signals that are driven by the environment, there is no node driving
these signals in the network. Similarly, the primary outputs are signals that drive the
environment and are needed by inner network nodes as well. The size of the network
is the number of the nodes (primary inputs and outputs are not considered).

2.2 Limiting the scope of boolean networks

Network scoping represents a key operation to ensure a good scalability of synthesis
tools when working with large Boolean networks. In addition, it forms an integral
part of rewriting as well as refactoring. Two approaches have been proposed to limit
the scope of logic synthesis to work only on a small portion of a Boolean network
– windowing and cut-based network scoping [18].

The windowing algorithm determines the working area denoted as window by
computing so called transitive fanin and transitive fanout. The algorithm takes
a node (typically referred to as pivot node) and two integers m and n defining the
number of logic levels on the fanin/fanout sides of the node to be included in the
resulting window. The transitive fanin corresponds to a set of nodes on the fanin side
that are distance-m or less from the pivot node. Similarly, the transitive fanout corre-
sponds to a set of nodes on the fanout side that are distance-n or less from the pivot

Author's personal copy

291

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

node. These two sets are then used to obtain so called leaf and root sets that uniquely
determine the window1. The complete algorithm can be found in [18]. The main
problem of this algorithm is that it is hard to predict how many logic levels have to
be traversed to get a window of the desired parameters.

Apart from the windowing, many logic synthesis algorithms uses network scop-
ing based on computing so called k-feasible cuts. For example, the rewriting is
based on 4-feasible cuts [18]. The principle of this technique is to compute a cut
which is subsequently expanded to a window. A cut of a node, called root node, is
a set of nodes of the network, called leaves, such that each path from PI to the root
node passes through at least one leaf. A cut is k-feasible if the number of nodes (i.e.
cut size) in the cut does not exceed k. An example of two different 3-feasible cuts
is shown in Fig. 1. A reconvergence-driven heuristic is typically applied in prac-
tice to maximixe the cut volume, i.e. the total number of nodes encountered on all
paths between the root node and the cut leaves. The problem is that the cut com-
puted using a naïve bread-first-search algorithm may include only few nodes and
leads to tree-like logic structures (see Fig. 1a showing a cut determined by the naïve
approach and Fig. 1b showing the output of reconvergence-driven heuristic). A tree-
like logic structure does not lead to any redundancy and attempting optimization
using such cuts would be wasted time.

A simple and efficient cut computation algorithm producing a cut close to
a required size while heuristically maximizing the cut volume and the num-
ber of reconvergent paths subsumed in the cut has been introduced in [18].
As our work uses the network scoping based on computation of the k-feasible

(a) Cut CI = {7, 2, 9} (b) Cut CII = {1, 2, 9}

Fig. 1 Example of two possible 3-feasible cuts {C1,C2,C3} for root node m and given Boolean network
consisting of 12 nodes. The nodes belonging to a particular cut are highlighted in grey color. The hatched
nodes correspond to the contained nodes. The cut CII is preferred as its volume is four (root node m and
contained nodes 5, 7, and 8). The volume of the cut CI is two because this cut contains only one con-
tained node (node 8)

1 The window of a Boolean network N is a connected subnetwork N′ ⊆ N that corresponds to the subset
of nodes of the network containing nodes from root set together with all nodes on paths between the leaf
set and the root set. The nodes in the leaf set are not included in the window.

Author's personal copy

292 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

reconvergence-driven cuts, we briefly introduce this algorithm. The algorithm
starts with a set of leaves consisting of a single root node (i.e. a trivial cut). This
set is incrementally expanded in each step of a recursive procedure. If the set con-
sists of only PIs, the procedure quits. Otherwise, a non-PI node that minimizes
a cost function is chosen from the set of leaves. The chosen node is removed
from the leaf set and all its fanins are included instead of it. This causes expan-
sion of the cut. If the cut-size limit is exceeded, the procedure quits and returns
the cut before expansion. The cost function returns the number of new nodes
that should be added to the leaf set instead of the removed node. The sequence
of four steps leading to the cut CII = {1, 2, 9} shown in Fig. 1b is as follows:
{11⟨2⟩} → {8⟨2⟩, 9⟨2⟩} → {7⟨2⟩, 2⟨∞⟩, 9⟨2⟩} → {5⟨0⟩, 1⟨∞⟩, 2⟨∞⟩, 9⟨2⟩} → {1⟨∞⟩, 2⟨∞⟩, 9⟨2⟩}.
The node removed in each step is underlined. The cost of the nodes included in
the cut is shown using a superscript. The infinity means that the node is a primary
input which cannot be removed from the set. Note that the algorithm returns the set
{1, 2, 9} because removal of the node 9 would produce a 4-feasible cut (nodes 3 and
4 would be included instead of 9, both with infinite cost).

The k-feasible cuts are important not only for the gate-level logic synthesis but
also for FPGA-based synthesis as a k-feasible cut can be implemented as a k-input
LUT. For resubstitution and FPGA-based mapping, so called maximum fanout free
cone (a subnetwork where no node in the cone is connected to a node not in the
cone) is requested. It means that the cut-based scoping must always produce a sin-
gle-output sub-circuit. Otherwise it would be impossible to replace the whole sub-
circuit by a precomputed optimal implementation / a single LUT. Compared to the
windowing, much smaller windows are typically produced. Typically, 4-feasible and
5-feasible cuts are used for rewriting-based logic synthesis [12, 18]. Small k is used
not only to make the cut enumeration possible but also to manage memory require-
ments to store the precomputed optimal implementations of all k-input Boolean
functions. For FPGA-based mapping, 5-input and 6-input LUTs are used. Apart
from the rewriting, the reconvergence-driven cuts have been applied to refactoring
and resubstitution [18]. Typically, k is between 5 and 12 for refactoring depending
on the computation effort allowed [18].

2.3 Evolutionary synthesis of logic circuits

Advancements in technology developed in the early nineties enabled researchers
to sucessfully apply techniques of evolutionary computation in various problem
domains. In the middle nineties, Higuchi and Thompson, two of the most promi-
nent pioneers, demonstrated that evolutionary algorithms are able to solve non-triv-
ial hardware-related problems [9, 26]. The achievements presented in the seminal
paper of Higuchi et al. [9] motivated other scientists to intensively explore a new
and promising research topic. As a consequence of that, a new research direction
referred to as Evolvable hardware has emerged [7] focusing on the use of evolution-
ary algorithms to create specialized electronics without manual engineering.

Gate-level evolution has rarely been addressed before the year 2000. The first
results in the area of digital circuit synthesis were reported by Koza in 1992, who

Author's personal copy

293

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

investigated the evolutionary design of even-parity circuits in his extensive dis-
cussions of the standard genetic programming (GP) paradigm [11]. Later, Thomp-
son used a form of direct encoding loosely based on the structure of an FPGA in
his experiment with evolution of a square wave oscillator [26]. Genetic algorithm
has been employed also by Coello who evolved various 2-bit adders and multipli-
ers [2]. Finally, Miller et al. demonstrated that evolutionary design systems are
not only able to rediscover standard designs as it has been shown in the past, but
they can, in some cases, improve them [14, 17]. The method of evolving digital
circuits developed by Miller in 1997 [17] was subsequently revised and a new
evolutionary algorithm known as Cartesian genetic programming (CGP) was
introduced in 2000 [13]. CGP, which is a general form of genetic programming,
was designed to address two issues related to the efficiency of common tree-based
genetic programming. Firstly, as GP represents candidate solutions using trees,
it does not naturally capture the structure of digital circuits that typically form
a directed acyclic graph (DAG). Secondly, GP exhibits the so-called bloat effect
enabling the programs to grow uncontrollably until they reach the GP’s tree-depth
maximum.

Miller is considered as a pioneer in the field of logic synthesis of gate-level cir-
cuits. He utilized CGP to demonstrate that evolutionary computing can improve
results of conventional circuit synthesis and optimization algorithms. As a proof-of-
concept, small arithmetic circuits were considered. A 4-bit multiplier was the most
complex circuit evolved in this category [29]. For the next decade, however, the
problems addressed by the EHW community remained nearly of the same complex-
ity. The most complex combinational circuits that were directly evolved during the
first two decades of EHW consisted of tens of gates and had around 20 inputs [23].
Many novel techniques including decomposition, development, modularization, new
problem representations and function level evolution have been proposed [15, 20,
22, 23, 31]. The projection-based decomposition approaches such as [24] or [25]
helped to increase the complexity of problem instances that can be solved by EAs.
Despite that, the gap between the complexity of problems addressed in industry and
EHW continued to widen as the advancements in technology developed. Evolvable
hardware found itself in a critical stage around the year 2010 and it was not clear
whether there exists a path forward which would allow the field to progress [8]. The
scalability problem has been identified as one of the most difficult problems the
researchers are faced in this field and that should be, among others, addressed in the
future.

In 2011, the scalability of CGP has been significantly improved by introducing a
SAT-based CGP. The SAT-based CGP uses a modern SAT solver to avoid an expen-
sive exhaustive circuit simulation commonly used to determine the Hamming dis-
tance between a candidate solution and specification [28]. It exploits the fact that the
candidate solutions must be functionally equivalent with their parent in logic optimi-
zation in order to be further accepted. In addition to that, it exploits the knowledge
of differences between parental and candidate circuits. The efficiency of SAT-based
method was further improved by combining a SAT solver with an adaptive high-
performance circuit simulator used to quickly identify the potential functional non-
equivalence [27]. The most advanced SAT-based CGP employs a simulator that is

Author's personal copy

294 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

driven by counterexamples produced by the SAT solver as suggested in [27]. Neither
the original nor the latter approach rely on a decomposition. The gate-level circuits
are optimized directly.

2.4 Cartesian genetic programming

Since its introduction, CGP remains the most powerful evolutionary technique in
the domain of EA-based logic synthesis and optimization [13]. In this area, a linear
form of CGP is preferred today. In this case, CGP models a candidate circuit having
ni PIs and no POs as a linear 1D array of nn configurable nodes. Each node has na
inputs and corresponds with a single gate with up to na inputs. Two-input and single-
output nodes are typically used. The inputs can be connected either to the output of
a node placed in the previous L columns or directly to PIs. This avoids a feedback.
The parameter L defines the level of connectivity and impacts the search space size.
For example, if L = 1 only neighboring nodes may be connected; if L = nn , full con-
nectivity is enabled.

The function of a node can be chosen from a set � consisting of |� | = nf functions.
Depending on the function of a node, some of its inputs may become redundant. In addi-
tion to that, some of the nodes may become redundant because they are not referenced
by any node connected a PO. This means that the effective number of nodes is not fixed
as many nodes may not be used. The redundant nodes and inputs lead to the presence of
non-coding genes in the genotype. This feature makes the search effective [16].

The candidate circuits are encoded as follows. Each PI as well as each node has
associated an unique index. Each node is encoded using na + 1 integers (x1,⋯ , xna , f)
where the first na integers denote the indices of its fanins and the last integer
determines the function of that node. Every candidate circuit is encoded using
nn(na + 1) + no integers where the last no integers specify the indices corresponding
with each PO. The example of the CGP encoding is shown in Fig. 2.

The most common search technique used in connection with the CGP is an Evolu-
tionary strategy (ES) [13]. Typically (1 + �)-ES is employed, where � corresponds with
the number of new candidate solutions generated from a single parental solution. In

Fig. 2 Example of a CGP individual encoding a logic circuit (one-bit full adder) with ni = 3 inputs and
no = 2 outputs. The individual is encoded using an array of nn = 6 two-input single-output nodes whose
functions are chosen from a set of primitive functions � = {NOT,AND,OR,XOR} . Note that the nodes
are arranged in a two-dimensional grid for improved readability. Redundant connections and nodes, i.e.
those that do not contribute to the outputs, are highlighted using a dotted line

Author's personal copy

295

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

circuit optimization, the initial population is seeded by the original circuit. Every new
population consists of the best circuit chosen from the previous population and its � off-
spring created using a mutation operator. Either point or probabilistic mutation is used
in the standard CGP. Point mutation is typically preferred because it is easier to imple-
ment and more efficient than using a probabilistic mutation [16].

Point mutation randomly modifies up to h genes (integers) of a parent genotype
to create an offspring. Considering the CGP encoding, a single mutated gene causes
either reconnection of a node, reconnection of a primary output or change in func-
tion of a node. Due to the presence of redundant genes, the mutation may occur in
the redundant part, which means that the mutated genotype has the same phenotype
as its parent. Such a mutation is sometimes denoted as neutral since the fitness value
remains unchanged. To avoid wasted fitness evaluations, several mutation strategies
have been proposed [5, 16]. Single Active Mutation strategy, for example, mutates
the offspring until one active gene is changed. Another possibility is to detect the
neutral mutations and skip the time-consuming fitness evaluation procedure. Con-
sidering the usage of CGP in the optimization of logic circuits, the latter approach
has been typically used [27, 28]. Crossover is not used in the standard CGP because
it was found that crossover has little effect on the efficiency of CGP [16].

The main disadvantage of the CGP encoding in connection with the point muta-
tion operator is the presence of a strong length and positional bias that results in
large portions of the genotype that are always redundant and never used by any
ancestor. To address this issue, several approaches have been proposed [16]. Gold-
man and Punch, for example, proposed to apply Reorder operation once each gener-
ation that shuffles the position of nodes in the parent [6]. Reorder does not semanti-
cally change the parent but it allows active nodes to be evenly distributed within the
whole genotype. This approach eliminates the length as well as positional bias and
improves the efficiency of the search.

The selection of the individuals is typically based on a cost function (e.g. the
number of active nodes). In the case that there are more individuals with the same
score, the individual that has not served as a parent will be selected as the new par-
ent. This procedure is typically repeated for a predefined number of iterations. The
logic synthesis is a complex process that has to consider several aspects that are in
principle mutually dependent. Two basic scenarios are typically conducted in prac-
tice – optimizing the power and/or area under some delay constraints, or optimiz-
ing the delay possibly under some power and/or area constraints. Depending on the
goal and required precision, the cost function corresponds either with the number
of gates, logic depth or a more precise but computationally more complex measure
such as area on a chip or circuit delay.

3 The proposed approach

Let C be a combinational circuit described at the level of common gates represented
by a Boolean network N consisting of |N| nodes. Each node corresponds with a sin-
gle gate in C . The pseudo-code of the proposed optimization procedure based on
evolutionary resynthesis is shown in Algorithm 1.

Author's personal copy

296 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

We propose to apply an iterative process which consists of a sequence of three steps
that are executed in a loop. A working area (Boolean network W) is extracted from the
Boolean network N′ in the first step. The goal is to obtain a smaller, preferably com-
pact, circuit which is easier to manipulate. In the next step, each W that is not suitable
for the subsequent optimization is skipped. The motivation is to eliminate execution of
a relatively time-consuming resynthesis for the windows that are unlikely to lead to any
improvement. The identification of the suitable windows can be based on the size of W
(small windows are filtered out) or a more advanced metric which reflect, for example,
the number of inputs and depth (thin windows are filtered out). In the third step, resynthe-
sis is applied to the extracted Boolean network. The resynthesis is performed by an evolu-
tionary algorithm which produces an optimized version of W denoted as W ′ . Depending
on the success of the optimization, the cost of W ′ can be either better or the same as the
cost of W. Finally, the optimized logic network W ′ is evaluated with respect to N′ and if
it exhibits a better parameters, it replaces W in N′ . The whole optimization algorithm is
terminated when a predefined number of iterations or a given runtime is exhausted.

3.1 Working area extraction

Two different approaches to the identification and extraction of a suitable subcircuit cor-
responding with the procedure GetSubcircuit in Algorithm 1 are proposed and evalu-
ated. The first implementation is based on the computation of the reconvergence-driven
cuts which is the preferred approach applied during logic synthesis. This method, how-
ever, may produce subcircuits with a relatively small volume. To avoid this, we propose
an alternative approach loosely inspired by the windowing introduced in Sect. 2.2.

Algorithm GS1: Cut-based procedure GetSubcircuit
Input: A Boolean network N ,
minimum (cmin) and maximum (cmax) volume of cut C,
minimum (kmin) and maximum (kmax) size of cut C
Output: A working area W

1 m ← identify the best candidate root node m ∈ N
2 C ← ReconvergenceDrivenCut(m, cmin, cmax, kmin, kmax)
3 W ← ExpandCutToWindow(m, C)
4 return W

Algorithm 1: Optimization of digital circuits using EA-based resynthesis
Input: A Boolean network N
Output: Optimized network N , cost(N) ≤ cost(N)

1 N ← N
2 while terminated condition not satisfied do
3 W ← GetSubcircuit(N) ;
4 if W is a suitable candidate then
5 W ← OptimizeNetworkUsingEA(W)
6 if cost((N \W) ∪W) < cost(N) then
7 N ← (N \W) ∪W

8 return N

Author's personal copy

297

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

The pseudo-code of the cut-based approach is shown in Algorithm GS1. Firstly a
node which may potentially lead to the best improvement of N is determined. Since
the identification of this node itself is a nontrivial problem, some heuristic needs to be
implemented. The size of transitive fanin cone, level of the node or a more complex
information can be used to determine the most suitable candidate. Then, a working area
is extracted from the Boolean network. This procedure starts with computation of the
reconvergence-driven cut C as described in Sect. 2.2. From the practical reasons, is also
beneficial to limit the size of C to be able to enumerate a large number of sub-circuits
in a reasonable time. Hence, we can define four parameters: cmin and cmax restricting the
volume of C (cmin ≤ |C| ≤ cmax), and kmin and kmax (kmin ≤ kmax) limiting the size of
cut (feasibility).

This step is followed by expansion of the cut C into a window W, i.e. expansion
of the set of leaf nodes to a set of contained nodes. In addition to the nodes inside
the cut, we should consider also all nodes that are not contained in the cut but have
fanins inside the cut. Our expansion is similar to that employed in the resubstitution
[18] where transitive fanout of C is considered, however, we do not impose any limit on
the number of included nodes or their maximum level. The process of cut identification
and the subsequent expansion is illustrated in Fig. 3.

During the expansion, three set of nodes are created: the set of internal nodes I, the
set of leaves L and the set of root nodes R. L contains nodes that will serve as PIs of
the temporary network used in the subsequent optimization. Similarly R contains nodes
whose outputs have to be connected to POs. Note that R contains not only the root node
m but also other nodes whose fanouts are outside of the window (see Fig. 3). It holds
that C ⊆ L since the expansion may cause that some leaves of C become a fanout of
a node inside the window. Two situations can happen for a leaf node. If all fanins are
inside the window, the leaf can be simply removed from L. Otherwise, all fanins of the
original leaf node need to be added to L (the case of C1 in Fig. 3). This procedure has to
be repeated iteratively to ensure that there are no leaves having a fanin already included
the window.

Algorithm GS2: Window-based procedure GetSubcircuit
Input: A Boolean network N ,
minimum (wmin) and maximum (wmax) size of W
Output: A working area W , wmin ≤ |W | ≤ wmax

1 m ← select a random node m ∈ N
2 init queue q with m
3 W ← ∅
4 while q not empty ∧ |W | < wmax do
5 m ← pop a node from q
6 W ← W ∪ {m}
7 X ← fanin(m) ∪ fanout(m)
8 push all nodes from X \W that are not already in q into q

9 if |W | < wmin then
10 W ← ∅
11 W ←

m∈W
fanin(m)

12 return W

Author's personal copy

298 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

The pseudo-code of the second approach is given in Algorithm GS2. The pro-
cess starts with the selection of a node m ∈ N that will serve as a pivot. The pivot
serves as an initial point for the expansion that iteratively marks neighboring nodes
of already processed and marked nodes. By neighboring nodes of a node n we mean
those belonging to fanin or fanout of that node. This mechanism enables the window
to grow to both directions, i.e. towards PIs as well as POs. After a finite number of
steps, we obtain a subcircuit W of the required size consisting of the pivot node and
its neighbourhood.

To implement the expansion efficiently, we use a queue q whose content is ini-
tialized to m. In each iteration, one node is dequeued from q and included in W.
Then, the neighboring nodes X (those that are directly connected to m) are identi-
fied. Finally, nodes that have not yet been processed and are not already in the queue
are enqueued. Two parameters are used to restrict the size of W – wmin and wmax .
The process ends when wmax nodes are included in W or no more nodes remain (all
nodes surrounding m have been processed and included in W). Subcircuits smaller
than wmin are ignored. In the final step (line 11 in Algorithm GS2), all the fanins of
the nodes included in W are added into W. Then, the leaves of W serve as inputs and
roots of W as outputs.

The whole process is illustrated in Fig. 4. The procedure starts with node m. In
the first iteration, three nodes are pushed into queue, namely q1 , q2 and q3 . In the
second iteration q1 is enqueued and three additional nodes are queued: q4 , q5 and
q6 . Node m also belongs to fanout(q1) but this node is already included in W and is
thus ignored. In the third iteration, q2 is enqueued and processed which gives also
three new nodes q7 , q8 , and q9 . The process ends when q10 is dequeued and included
in W. During the finalization phase, nodes having the index 5 and 4 are added into
W because these nodes has to serve as new primary inputs. We received a subcir-
cuit with five inputs (nodes denoted with L) and five outputs (output of the nodes
denoted as R).

m

C1

C2 C3 C4L L L L

R

R R

RR

C1
*

1 2 3 4

5 6

78 9 10

11 12

Fig. 3 Example of the window created using the cut-based algorithm GS1. The set of contained nodes of
a 4-feasible cut C = {C1,C2,C3,C4} rooted in node m is highlighted using the filled nodes. The hatched
nodes are added to the window during the expansion of the cut. As a consequence of that, leave C1 is
replaced by C∗

1
 . The root and leaves of the window are denoted as R and L, respectively. The nodes in

the window have assigned an index (the number located below a particular node) used to uniquely iden-
tify each node in the CGP. One of the many possibilities how to encode the window using CGP is for
example: (2,3, f5) (2,3, f6) (4,1, f7) (1,5, f8) (8,2, f9) (3,4, f10) (9,10, f11) (6,10, f12) (7,8,9,11,12), where
fi ∈ {NOT,AND,OR,XOR,…} is the function of the node with index i

Author's personal copy

299

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

Both approaches are complementary and have their own advantages and disad-
vantages. The cut-based windowing algorithm GS1 is in general very sensitive to
the root node selection. In some cases, small windows can be produced. This can
happen especially when the root node is located close to the primary inputs. The
reason is that the cut-based algorithm allows the window to grow only towards the
primary inputs. Unfortunately, selection of the best root node represents a hard prob-
lem. Depending on the structure of the circuits to be optimized, the obtained win-
dows can be narrow and tall.

Identification of the best pivot node in the alternative windowing approach GS2
is also a non-trivial problem but its selection is not as critical as in GS1 because bi-
directional expansion is applied in this case. The algorithm allows the window to
grow not only towards to the primary inputs but also to the primary outputs. Despite
that, it can easily happen that the iterative procedure produces also unsatisfactory
results. This can happen when we select a node with a high number of fanout nodes.
In such a case, we receive the required number of nodes in the first iteration because
the queue is filled with the necessary number of nodes when visiting the pivot node.
Hence depending on the structure of the circuits to be optimized, the windows can
be wide but with small depth.

3.2 Evolutionary optimization

The procedure OptimizeNetworkUsingEA is implemented as follows. At the begin-
ning, the extracted subcircuit (window) is encoded using the 1D CGP encoding. The
received chromosome is used to seed the initial population. The evolutionary opti-
mization is then executed for a limited number of iterations (evaluations). The goal
is to optimize the initial solution with respect to a chosen cost function. The number
of iterations should be determined heuristically according to the size of the initial

q1

L L L

R

1 2 3

5

6

8 9 10

11 12

m

q2

q3

q4

q5

q6

q7 q8

q9

q10

R R

LL 4
7

13
R

Fig. 4 Example of the window consisting of 10 nodes (wmax = 10) created using the proposed alternative
windowing algorithm GS2. The neighboring nodes added into W are highlighted using the filled nodes.
The hatched nodes are those added during the final step. The nodes at the bottom are primary outputs.
The root and leaves of the window are denoted as R and L, respectively. The nodes in the window have
assigned an index (the number located below a particular node) used to uniquely identify each node in
the CGP. The labels qi inside the nodes denote the order i in which the nodes were chosen

Author's personal copy

300 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

circuit. The more iterations are allowed, the higher improvement can be achieved.
On the other hand, many iterations on a small circuit wastes time. At the end, the
best obtained circuit is returned and implanted back into the original Boolean net-
work instead of the original window.

The extracted window is encoded using CGP encoding as follows. All nodes
n ∈ W contained in the window W are sorted in the topological order. We receive a
list of nodes having the leaf nodes located at the beginning of the list. Each node is
assigned an unique index which is equal to its position in the list. One to one map-
ping is then used to encode the nodes using CGP encoding. Only non-leaf nodes are
encoded in the chromosome because the leaf nodes serve as inputs. It means that the
size of the CGP grid is nn = |W ⧵ L| . There is no need to introduce any redundancy
at this level as shown in [27]. To illustrate the principle, let us consider the window
depicted in Fig. 3 consisting of 12 nodes. The window is mapped to a 1D array of
eight CGP nodes (nn = 8). The inputs are numbered 1 to 4 because four leaf nodes
are present. The contained nodes have associated indices 5 to 12. To encode the first
node associated with the index 5, for example, the following three genes are used:
(2, 3, AND). The first gene encodes the connection of the first input (node 5 is con-
nected to the output of the leaf node 2), the second gene encodes the connection of
the second output and the third gene encodes the function of the node assuming that
the node 5 is AND gate. Five genes are used at the end of the chromosome to encode
the output connections corresponding with five root nodes denoted as R. In sum-
mary, the window is encoded using a string of 8 × 3 + 5 = 29 genes.

Let C be a candidate solution (circuit) created by mutating a parental solution P.
The fitness of the candidate solution fitness(C) is determined as

where cost(C) is a cost function to be minimized, f(C) is a Boolean function rep-
resenting C and f(P) is a Boolean function corresponding with P. Candidate cir-
cuits violating the requirement for the functional equivalence, i.e. those for that
f (C) ≡ f (P) is violated, are assigned a high positive value and are discarded.
Depending on the scenario, the cost function can reflect the number of gates, area on
a chip, logic depth, delay or power consumption.

The computation of the fitness score is implemented as suggested in [27]. The
overall principle is illustrated in Fig. 5. The process begins with the computa-
tion of the difference between a candidate and parental circuit. The difference is
computed at the level of the phenotypes, i.e. Boolean networks, and its purpose
is to enable equivalence checking, i.e. to check whether the candidate solution is
functional equivalent with its parent. Only the functionally equivalent solution is
further analysed to determine its cost. In order to perform the equivalence check-
ing as quick as possible, we combine a SAT solver with a circuit simulator to
avoid excessive runtimes caused by some hard-to-solve SAT instances. The key
idea is to use a small number of input vectors to disprove the equivalence using
a fast circuit simulator. If the candidate circuit produces a different output value

(1)fitness(C) =

{
cost(C), if f (C) ≡ f (P).

∞, otherwise,

Author's personal copy

301

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

compared to the parental circuit serving as a reference, we can terminate the fit-
ness calculation because the candidate circuit violates the specification. If the
output values are the same, we have to use a SAT solver to prove that there is no
input assignment that produces different output values. Randomly generated input
vectors have been used in [27]. In this work, we use a slightly advanced version
where we feed the simulation engine with counter examples produced by the SAT
solver. This mechanism helps to further improve the overall efficiency.

4 Experimental setup

The proposed method was implemented in C++ as a part of Yosys open synthesis
suite [30]. The advantage of this tool, among others, is that it allows us to directly
manipulate with Verilog files and that it integrates ABC [1], a state-of-the-art aca-
demic tool for hardware synthesis and verification.

The goal of this work is to evaluate the performance of the proposed approach
and compare the results with the state-of-the-art evolutionary as well as conven-
tional method for optimization of digital circuits. In particular, we consider two vari-
ants of Algorithm 1 that differ in the implementation of the procedure GetSubcir-
cuit. The first one (denoted as GS1) is based on Algorithm GS1 and the second one
(denoted as GS2) is based on Algorithm GS2. The state-of-the-art is represented by
the EA-based optimization technique that optimizes the whole Boolean network at
once [27]. This approach will be denoted as global. To represent the conventional

CANDIDATE
CIRCUIT

PARENTAL
CIRCUIT

CIRCUIT
SIMULATOR

DIFFERENCE
COMPUTATION

SAT SOLVER
maybe

N

USE MODEL TO UPDATE
INPUT VECTORS DB

EQUIVALENT

FITNESS
VALUE

N

Y

model

Input
vectors

EQUIVALENCY
DISPROVED

EQUIVALENT

N

Y

CIRCUIT PARAMETERS
ESTIMATION

(AREA, DELAY, POWER, …)

Fig. 5 Principle of the fitness score computation using the hybrid approach combining a circuit simulator
with a SAT solver

Author's personal copy

302 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

tools, we chose ABC synthesis tool which is considered to be the best academia tool
implementing the state-of-the-art synthesis algorithms.

The methods are evaluated on a recent set of benchmark circuits coming from
the logic synthesis community. The benchmark set consists of 28 real-world circuits
available in the form of Verilog netlists.2 Nineteen instances are various controllers
taken from IWLS’05 Open Cores benchmarks. The remaining nine instances rep-
resent common arithmetic circuits. At the beginning, all the instances were deeply
optimized by ABC (hundred iterations of ‘resyn‘ script) to make sure that our opti-
mization algorithms start with the best results produced by the conventional synthe-
sis. The optimized circuits were then mapped to gates (ABC command ‘map’) using
a library of common 2-input gates including XORs/XNORs gates and exported back
to Verilog. The mapped Verilog netlists then served as input to the EA-based meth-
ods. Compared to the ABC, the EA-based methods operate directly at the level of
gates. The gate-level representation was chosen intentionally because it enables to
avoid the bias of the AIG representation and better exploit the XOR decomposition.

Area-optimization is targeted in this work. It means that the only criterion in the
fitness function considered in this paper is the area on a chip expressed as the num-
ber of gates. It means that the improvement is measured in terms of the number of
removed gates. The other electrical parameters such as delay or power consumption
are not reflected. The line 7 of Algorithm 1 thus reduces to |W ′| < |W| which is
much simpler to evaluate. For each method and each benchmark, five independent
runs were executed to obtain statistically valid results. All of the optimized circuits
were formally verified with respect to their original form (ABC command ‘cec’) to
avoid any error in the evaluation.

The procedure OptimizeNetworkUsingEA is based on the CGP implemented as
described in Sects. 2.3 and 3.2. The CGP parameters were chosen in accordance
with [27] and are summarized in Table 1. The termination conditions are designed
as follows. The proposed method is allowed to execute niters iterations. Each itera-
tion corresponds with a single execution of the OptimizeNetworkUsingEA proce-
dure. This procedure terminates either when a given number of evaluations (nevals) is
exhausted or when a predefined amount of time (tmax) has elapsed. The latter condi-
tion helps to ensure a good scalability and predictability of the worst-case CPU time
of the optimization which could be enormous especially in those cases when many
hard-to-solve candidate solutions are generated during the evolution. The global
method terminates either when nevals × niters evaluations are exhausted or when the
CPU time reaches tmax × niters seconds. The strategy with the fixed number of evalu-
ations is relatively naïve because it supposes that the computation effort does not
depend on the size of the window. On the other hand, it helps to fairly evaluate all
evolutionary methods because they are allowed to evaluate the same number of
candidate solutions. We chose niters = 2 × 104 , nevals = 5 × 105 , and tmax = 10 sec-
onds in this work. This setup ensures that 1010 candidate solutions are generated and
evaluated.

2 The Verilog netlists of the benchmark circuits are taken from https ://lsi.epfl.ch/MIG.

Author's personal copy

https://lsi.epfl.ch/MIG

303

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

4.1 Parameter setting

As both algorithms for sub-circuit extraction contain parameters that may have a
huge impact on the efficiency of the optimization process, we need to ensure proper
parameter configuration. To perform a fair evaluation, we ran experiments that help
us to identify a suitable parameter setting. Due to the increased computational com-
plexity, we conducted the experiments on a limited set of benchmark circuits. We
selected three benchmarks from each class of circuits to have a small yet representa-
tive set of circuits3.

Four parameters are present in Algorithm GS1. Parameters kmin and kmax con-
trol the feasibility of the cuts. These parameters are fixed to 1 and 10,000, respec-
tively, because our SAT-based CGP optimizer does not need to put any restriction
on the number of circuit inputs. The next two parameters cmin and cmax determine
the size (i.e. the number of gates) of the extracted sub-circuits. We hypothesize that
larger sub-circuits may lead to higher number of reduced gates in the sub-circuits
and better improvement at the global level. To confirm this hypothesis and iden-
tify a suitable setting, we run many experiments with different values of cmin and
cmax . Results for some settings are summarized in Table 2. Three efficiency indica-
tors were established and analysed. The first three rows report the average number
of removed gates calculated over all benchmark circuits (first row) and for each class
separately (second and third row). The next three rows report the average number of
iterations that caused a reduction in the number of gates. The last three rows show
the average number of iterations that produced a sub-circuit whose optimization by
CGP time-outed. We firstly tried to restrict the size of the sub-circuits to a relative
narrow range. The numbers shown in the first six columns, however, suggest that
this strategy does not offer any advantage. The average improvement stagnates and
does not increase with increasing the cmin and cmax . The achieved reduction in the

Table 1 The CGP parameters used in the experiments

Parameter Description

CGP encoding n
n

A linear 1D array of n
n
= |W| CGP nodes

is considered; n
n
 equals to the size of the

optimized circuit
n
a

each CGP node has n
a
= 2 inputs and can

implement one of eight predefined Boolean
functions in � = {BUF,

� NOT,AND,OR,XOR,NAND,NOR,XNOR}

Mutation operator h Up to h = 2 active genes are modified
L Full connectivity is enabled, i.e. L = n

n

Search strategy � (1 + �)-ES is employed, where � = 1

3 The following circuits were used to determine the best parameter setting: dsp, mem_ctrl, tv80, diffeq1,
max, revx.

Author's personal copy

304 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

number of gates is around 8% for the arithmetic benchmarks and 4% for the logic
benchmarks. For higher values (cmin = 75 , cmax = 100), we can observe 1.7% drop in
the performance (average improvement is 4.7% vs 6.4%). More than 10% iterations,
on average, were terminated prematurely due to the tmax restriction for this setting.
This behavior is caused by the fact that many hard-to-solve instances were gener-
ated. It means that the computationally expensive SAT solver needed to be used to
decide equivalence of many complex candidate solutions. As a consequence of that,
less than 1 ⋅ 1010 candidate solutions were generated and evaluated in those cases.
Interestingly, the most advantageous setting was the least restrictive one where we
chosen cmin = 5 and cmax = 1000 . The lower bound prevents the cut-based algorithm
to generate too small sub-circuits. The upper bound was chosen to be a value higher
than the largest volume that was ever observed on the reduced benchmark set across
all experiments. This setting in practice means that no restrictions are applied at all.

Note that the root node m is chosen randomly. This strategy simplifies the
problem but it may lead to degradation of the performance especially if many
unacceptable windows are produced. If this happens in 10% cases, for example,
the total number of effective generations is in fact reduced to 90%. Interestingly,
we didn’t observed such degradation. This situation happened only in less than
ten iterations.

Algorithm GS2 has only two parameters, namely wmin and wmax , that have the
same meaning as cmin and cmax in Algorithm GS1. Similarly to the cut-based algo-
rithm, we tried to identify the best values of these parameters. The results of the
experiments on a reduced set of benchmark circuits are summarized in Table 3.
Only the cases where wmin is fixed to the lower bound are listed. Compared to Algo-
rithm GS1, however, much larger windows has to be accepted because of the con-
struction of the sub-circuits. The method produces natively larger windows because
all fanins and fanouts are included in the list of potential nodes in each iteration of
the windowing algorithm. As shown in the first row of Table 3, the efficiency of

Table 2 Impact of c
min

 and c
max

 parameters on the performance of the evolutionary optimization based
on GS1 algorithm evaluated on a subset of six benchmark circuits

The best results in each row are italics

c
min

 / c
max

5/10 (%) 10/20 20/35 35/50 50/75 75/100 5/1000

Achieved improvement 5.5 6.2 6.5% 6.5% 6.4% 4.7% 8.2%
Controllers & logic 3.6 4.2 4.3% 4.2% 4.0% 2.3% 5.5%
Arithmetic circuits 7.4 8.2 8.8% 8.8% 8.8% 7.1% 10.9%
Iterations caused reduction 2.8 3.0 3.3 3.3 3.2 2.4 4.1
Controllers & logic 2.6 2.7 2.8 2.6 2.5 1.7 3.4
Arithmetic circuits 3.0 3.2 3.8 4.0 3.9 3.2 4.8
Iterations when EA time-outed 0.0 0.0 0.0 0.0 0.7 10.5 1.8
Controllers & logic 0.0 0.0 0.0 0.0 0.5 13.4 2.0
Arithmetic circuits 0.0 0.0 0.0 0.0 0.9 7.6 1.6

Author's personal copy

305

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

the optimization increases with increasing wmax and it culminates for wmax = 100 .
For sub-circuits having ten times higher number of gates, i.e. wmax = 1000 , the aver-
age number of removed gates drops down to 12.9%. In this case, majority of the
CGP runs timed out. The results presented in the last three rows suggests that Algo-
rithm GS1 produces sub-circuits that are more complex compared to the cut-based
method which tends to produce structures having a tree-like shape. The choice of the
best setting is not as apparent as for GS1 because it depends on the preferred crite-
ria. As we are primarily interested in the best gate improvement, we decided to use
wmin = 5 and wmax = 100 for the following experiments.

According to the obtained results, it can be concluded that GS2 performs sig-
nificantly better even though there is a relative high amount of premature terminated
CGP runs. The best result was obtained for wmax = 100 . In this case, the method was
able to reduce the optimized netlists by 14.4% in average. The best reduction for the
cut-based approach is 8.2% and it was achieved when cmax = 1000.

5 Results

The results from running each method on each problem with the best parameter
setting identified in the previous section are summarized by Table 4. The first
three columns contain information related to the benchmarks: circuit name, the
number of circuit inputs (PIs), and the number of circuit outputs (POs). The next
two columns show parameters of the optimized and mapped circuits produced
by ABC. In particular, the number of gates and logic depth are given and those
numbers serve as a baseline for our comparison. Then, the achieved improvement
expressed as the relative reduction with respect to the baseline is reported for
the global and both proposed methods. For each method, we report not only the
median (section average improvement) but also the best obtained results (section

Table 3 Impact of w
min

 and w
max

 parameters on the performance of the evolutionary optimization based
on GS2 algorithm evaluated on a subset of six benchmark circuits

The best results in each row are italics

w
min

 / w
max

5/10 (%) 5/20 (%) 5/50 (%) 5/100 (%) 5/1000 (%) 5/10000 (%)

Achieved improvement 7.4 9.0 12.6 14.4 12.9 12.2
Controllers & logic 3.9 5.1 6.9 8.8 13.5 23.5
Arithmetic circuits 10.8 12.9 18.3 19.9 12.2 0.8
Iterations caused reduction 18.7 19.1 23.2 17.8 5.1 2.2
Controllers & logic 32.4 31.0 37.5 27.9 5.1 4.3
Arithmetic circuits 4.9 7.1 8.9 7.8 5.0 0.1
Iterations when EA time-outed 5.6 16.2 5.3 13.2 76.2 95.8
Controllers & logic 0.0 7.7 5.8 13.1 66.5 92.3
Arithmetic circuits 11.2 24.7 4.9 13.2 85.9 99.4

Author's personal copy

306 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

best improvement). The statistics is based on all five independent runs. For each
group of circuits, the mean improvement is provided. The values in the sixth, sev-
enth and eight column are calculated from all runs.

All the evolutionary approaches were able to further reduce the size of the
benchmark circuits despite that the fact that they were highly optimized by the
ABC synthesis tool. On average, the evolutionary resynthesis achieved 8.9% cir-
cuit size reduction on controllers and 21.4% reduction on arithmetic circuits. The
best results obtained by a particular method are relatively close to the average
ones which suggests that the evolutionary methods are quite stable although they
are in principle non-deterministic. According to the number of highlighted cases
showing the best results in each section of Table 4, the method GS2 introduced in
this paper is the clear winner. Nevertheless, both methods mentioned in this work
perform substantially better considering the average as well as the best results
compared to the global method. Method GS1 won in 21 out of 28 cases. Method
GS2 won in 24 cases. There are even cases, when the global method provided
none or nearly no improvement (see benchmarks ‘des_perf‘, ‘dsp‘, ‘ethernet‘,
‘systemcaes‘). Looking at the arithmetic circuits, the global method was able
to slightly improve only two circuits – ‘hamming‘ and ‘sqrt32‘. In other cases,
the reduction is negligible. There are, however, two problem instances (control-
ler ‘mem_ctrl‘ and ‘spi‘) for that the global method provided very competitive
results. In addition there are three cases (‘aes_core‘, ‘pci_spoci_ctrl‘, ‘tv80‘)
where the global method produced results that are very close to the best one
obtained by the proposed methods. The common feature of these five cases is a
very steep convergence curve (see Fig. 6 which contains the convergence curve
for ‘spi‘ controller). We tried to identify the exact reason for that but it looks
that such a behaviour is a result of the combination of several factors. It can be
concluded, in general, that the global method works well especially for small
instances that are compact (do not contain many independent sub-circuits) and
that have a reasonable depth (10 to 25 levels). On the other hand, the optimization
of circuits having a large depth, many gates or many independent sub-parts per-
forms unsatisfactory when the global method is applied.

All the evolutionary approaches were able to improve the original circuit sub-
stantially. A significant improvement was recorded for the arithmetic circuits. The
number of gates was reduced by 27.4% using GS2 (15.3% for GS1) on average.
The highest improvement, 59.9%, was recorded for the ‘hamming‘ benchmark.
The detailed analysis revealed that this was possible due to better handling of
XORs/XNORs compared to the conventional synthesis. The relative number of
AND/OR/NAND/NOR gates remained nearly the same (around 74%) but the
absolute number of XORs/XNORs increased from 10% to 15% for GS1 and 18%
for GS2.

A more detailed analysis is provided in Table 5 showing the computational effort
required to reduce the benchmark circuits by 1%, 5% and 10%. The computation
effort is expressed as the average number of generations that have to be evaluated
to obtain a circuit whose number of gates is reduced by a given level. The number
of evaluations corresponds with the real number of evaluated candidate solutions. It
means that we reflected the fact that the CGP may be prematurely terminated due to

Author's personal copy

307

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

Ta
bl

e
4

 C
om

pa
ris

on
 o

f t
he

 e
vo

lu
tio

na
ry

 m
et

ho
ds

 (g
lo

ba
l a

nd
 b

ot
h

pr
op

os
ed

) a
ga

in
st

A
B

C

A
B

C
A

ve
ra

ge
 im

pr
ov

em
en

t
B

es
t i

m
pr

ov
em

en
t

B
en

ch
m

ar
k

PI
s

PO
s

G
at

es
D

el
ay

G
lo

ba
l

G
S1

G
S2

G
lo

ba
l

G
S1

G
S2

ac
97

_c
trl

22
55

21
36

11
43

3
10

1.
2%

2.
7%

3.
1%

1.
8%

2.
9%

4.
0%

ae
s_

co
re

78
9

53
2

21
12

8
20

0.
1%

2.
9%

5.
3%

5.
6%

2.
9%

5.
5%

de
s_

ar
ea

36
8

70
51

99
25

2.
0%

5.
5%

4.
8%

2.
6%

6.
0%

5.
2%

de
s_

pe
rf

90
42

16
54

78
97

2
16

0.
0%

1.
8%

4.
2%

0.
1%

1.
8%

5.
8%

ds
p

42
23

37
92

43
49

1
45

0.
0%

3.
4%

1.
8%

0.
0%

3.
6%

3.
5%

et
he

rn
et

10
67

2
10

45
2

60
41

3
23

0.
0%

0.
4%

1.
5%

0.
0%

0.
6%

1.
7%

i2
c

14
7

12
7

11
61

12
10

.3
%

8.
3%

17
.9

%
10

.7
%

9.
1%

18
.3

%
m

em
_c

trl
11

98
95

9
10

45
9

24
25

.4
%

6.
9%

10
.0

%
26

.1
%

7.
0%

12
.2

%
pc

i_
br

id
ge

32
35

19
31

36
19

02
0

21
0.

6%
3.

4%
3.

6%
1.

3%
3.

5%
4.

6%
pc

i_
sp

oc
i_

ct
rl

85
60

11
36

15
36

.9
%

17
.0

%
37

.1
%

38
.0

%
18

.3
%

39
.1

%
sa

sc
13

3
12

3
74

6
8

2.
5%

5.
8%

6.
8%

2.
8%

6.
4%

7.
2%

si
m

pl
e_

sp
i

14
8

13
2

82
2

11
3.

9%
4.

7%
6.

6%
4.

4%
5.

2%
7.

2%
sp

i
27

4
23

7
38

25
26

13
.9

%
5.

5%
8.

7%
25

.1
%

6.
7%

9.
6%

ss
_p

cm
10

6
90

43
7

7
2.

1%
5.

0%
4.

8%
2.

3%
5.

5%
5.

3%
sy

ste
m

ca
es

93
0

67
1

11
35

2
27

0.
0%

11
.0

%
10

.6
%

0.
0%

11
.9

%
14

.7
%

sy
ste

m
cd

es
31

4
12

6
26

01
25

10
.6

%
4.

4%
15

.5
%

11
.6

%
4.

7%
16

.3
%

tv
80

37
3

36
0

87
36

39
10

.3
%

6.
0%

14
.2

%
14

.7
%

6.
5%

14
.3

%
us

b_
fu

nc
t

18
60

16
92

15
40

5
23

2.
6%

5.
6%

9.
6%

4.
8%

5.
8%

11
.3

%
us

b_
ph

y
11

3
73

45
2

9
11

.9
%

13
.4

%
16

.8
%

12
.2

%
13

.7
%

17
.7

%
Av

er
ag

e
(c

on
tro

lle
rs

 &
 lo

gi
c)

15
62

0.
4

20
.3

7.
5%

5.
7%

8.
9%

8.
6%

6.
4%

10
.7

%
di

ffe
q1

35
4

19
3

20
71

9
21

8
0.

0%
11

.3
%

26
.5

%
0.

0%
11

.5
%

28
.6

%
di

v1
6

32
32

58
47

15
2

0.
0%

15
.2

%
27

.4
%

0.
0%

16
.0

%
64

.2
%

ha
m

m
in

g
20

0
7

27
24

80
11

.8
%

28
.3

%
58

.6
%

14
.6

%
32

.9
%

59
.9

%
m

ac
32

96
65

77
93

55
0.

0%
7.

8%
10

.1
%

0.
0%

9.
9%

10
.6

%

Author's personal copy

308 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

Th
e

co
lu

m
ns

 ‘i
m

pr
ov

em
en

t‘
re

po
rt

th
e

re
la

tiv
e

im
pr

ov
em

en
t i

n
th

e
nu

m
be

r o
f g

at
es

 c
om

pa
re

d
to

 th
e

op
tim

iz
ed

 c
irc

ui
ts

 o
bt

ai
ne

d
us

in
g

A
B

C
 w

ho
se

 p
ar

am
et

er
s

ar
e

sh
ow

n
in

 c
ol

um
n

‘A
B

C
‘.

Fo
r e

ac
h

m
et

ho
d,

 w
e

re
po

rt
th

e
av

er
ag

e
as

 w
el

l a
s b

es
t o

bt
ai

ne
d

im
pr

ov
em

en
t.

Th
e

st
at

ist
ic

s i
s b

as
ed

 o
n

al
l fi

ve
 in

de
pe

nd
en

t r
un

s.
Th

e
m

ed
ia

n
is

 u
se

d
to

de

te
rm

in
e

th
e

av
er

ag
e

im
pr

ov
em

en
t

Ta
bl

e
4

 (c
on

tin
ue

d)

A
B

C
A

ve
ra

ge
 im

pr
ov

em
en

t
B

es
t i

m
pr

ov
em

en
t

B
en

ch
m

ar
k

PI
s

PO
s

G
at

es
D

el
ay

G
lo

ba
l

G
S1

G
S2

G
lo

ba
l

G
S1

G
S2

m
ax

51
2

13
0

37
19

11
7

0.
6%

7.
2%

5.
1%

0.
9%

7.
4%

5.
2%

m
ul

32
64

64
82

25
42

0.
0%

16
.2

%
20

.9
%

0.
0%

16
.5

%
21

.4
%

m
ul

t6
4

12
8

12
8

21
99

2
19

0
0.

0%
5.

5%
6.

3%
0.

0%
5.

9%
8.

4%
re

vx
20

25
81

30
17

1
0.

0%
13

.9
%

22
.8

%
0.

1%
14

.5
%

27
.1

%
sq

rt3
2

32
16

14
62

30
7

3.
0%

21
.7

%
16

.3
%

5.
1%

22
.8

%
20

.9
%

Av
er

ag
e

(a
ri

th
m

et
ic

 c
irc

ui
ts

)
89

56
.8

14
8.

0
1.

8%
12

.6
%

21
.4

%
2.

3%
15

.3
%

27
.4

%

Author's personal copy

309

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

the time limit. The empty cells in the table mean that none of the evolutionary runs
produced a circuit satisfying the required condition. This can happen either because

Fig. 6 The exemplary convergence curves representing the typical progress of the fitness score observed
during the evolutionary optimization of digital circuits. Records from three independent evolutionary
runs are shown in each figure. The lower number of gates, the better result. The data are downsampled to
improve the readability. Each curve consists of up to 50 points

Author's personal copy

310 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

Ta
bl

e
5

 T
he

 av
er

ag
e

nu
m

be
r o

f g
en

er
at

ed
 a

nd
 e

va
lu

at
ed

 c
an

di
da

te
 so

lu
tio

ns
 n

ee
de

d
to

 a
ch

ie
ve

 1
%

, 5
%

, a
nd

 1
0%

 re
du

ct
io

n

1%
 im

pr
ov

em
en

t
5%

 im
pr

ov
em

en
t

10
%

 im
pr

ov
em

en
t

B
en

ch
m

ar
k

G
lo

ba
l

G
S1

G
S2

G
lo

ba
l

G
S1

G
S2

gl
ob

al
G

S1
G

S2

ac
97

_c
trl

4
.8
×
1
0
8

9
.6
×
1
0
8

�
.�
×
�
�
�

–
–

–
–

–
–

ae
s_

co
re

�
.�
×
�
�
�

2
.1
×
1
0
9

6
.8
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

8
.8
×
1
0
9

–
–

–

de
s_

ar
ea

�
.�
×
�
�
�

9
.7
×
1
0
8

3
.9
×
1
0
8

>
1
0
1
0

�
×
�
�
�

8
.6
×
1
0
9

–
–

–

de
s_

pe
rf

>
1
0
1
0

3
.4
×
1
0
9

�
×
�
�
�

>
1
0
1
0

>
1
0
1
0

�
.�
×
�
�
�

–
–

–

ds
p

>
1
0
1
0

8
×
1
0
8

�
.�
×
�
�
�

–
–

–
–

–
–

et
he

rn
et

>
1
0
1
0

>
1
0
1
0

�
.�
×
�
�
�

–
–

–
–

–
–

i2
c

�
×
�
�
�

6
.7
×
1
0
7

2
.5
×
1
0
6

�
.�
×
�
�
�

6
.8
×
1
0
8

2
.9
×
1
0
7

2
.9
×
1
0
9

>
1
0
1
0

�
.�
×
�
�
�

m
em

_c
trl

�
.�
×
�
�
�

2
.6
×
1
0
8

1
.5
×
1
0
8

�
.�
×
�
�
�

4
.5
×
1
0
9

1
.6
×
1
0
9

�
.�
×
�
�
�

>
1
0
1
0

6
.4
×
1
0
9

pc
i_

br
id

ge
32

1
.4
×
1
0
9

3
.1
×
1
0
8

�
.�
×
�
�
�

–
–

–
–

–
–

pc
i_

sp
oc

i_
ct

rl
�
.�
×
�
�
�

3
×
1
0
7

2
.5
×
1
0
6

�
.�
×
�
�
�

2
.3
×
1
0
8

1
.7
×
1
0
7

�
.�
×
�
�
�

6
.4
×
1
0
8

4
.9
×
1
0
7

sa
sc

2
.2
×
1
0
7

2
.7
×
1
0
7

�
.�
×
�
�
�

>
1
0
1
0

�
.�
×
�
�
�

1
.7
×
1
0
9

–
–

–

si
m

pl
e_

sp
i

�
.�
×
�
�
�

3
.9
×
1
0
7

1
.1
×
1
0
7

>
1
0
1
0

2
.8
×
1
0
9

�
.�
×
�
�
�

–
–

–

sp
i

�
.�
×
�
�
�

1
×
1
0
8

5
×
1
0
7

�
.�
×
�
�
�

3
.9
×
1
0
9

9
.4
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

>
1
0
1
0

ss
_p

cm
�
.�
×
�
�
�

1
.1
×
1
0
8

2
.2
×
1
0
7

>
1
0
1
0

�
.�
×
�
�
�

6
.6
×
1
0
9

–
–

–

sy
ste

m
ca

es
>
1
0
1
0

2
.1
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

1
.7
×
1
0
9

�
.�
×
�
�
�

>
1
0
1
0

6
.5
×
1
0
9

�
.�
×
�
�
�

sy
ste

m
cd

es
�
.�
×
�
�
�

2
.4
×
1
0
8

4
.2
×
1
0
7

�
.�
×
�
�
�

>
1
0
1
0

4
.5
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

1
.8
×
1
0
9

tv
80

�
.�
×
�
�
�

2
.3
×
1
0
8

8
.9
×
1
0
7

�
.�
×
�
�
�

4
.8
×
1
0
9

6
.4
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

2
.8
×
1
0
9

us
b_

fu
nc

t
9
.7
×
1
0
7

3
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

6
.6
×
1
0
9

�
.�
×
�
�
�

>
1
0
1
0

>
1
0
1
0

�
.�
×
�
�
�

us
b_

ph
y

�
.�
×
�
�
�

4
.3
×
1
0
6

1
.5
×
1
0
6

�
.�
×
�
�
�

5
.6
×
1
0
7

4
×
1
0
6

6
.3
×
1
0
8

3
.8
×
1
0
8

�
.�
×
�
�
�

av
er

ag
e

�
.�
×
�
�
�

2
.2
×
1
0
8

8
.7
×
1
0
7

�
.�
×
�
�
�

1
.7
×
1
0
9

7
.4
×
1
0
8

�
.�
×
�
�
�

6
.3
×
1
0
8

1
.6
×
1
0
9

su
cc

es
s r

at
e

78
%

94
%

1
0
0
%

53
%

80
%

1
0
0
%

77
%

33
%

8
8
%

di
ffe

q1
>
1
0
1
0

2
.2
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

1
.7
×
1
0
9

�
.�
×
�
�
�

>
1
0
1
0

6
.8
×
1
0
9

�
.�
×
�
�
�

Author's personal copy

311

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

Th
e

m
ed

ia
n

is
 u

se
d

to
 d

et
er

m
in

e
th

e
av

er
ag

e
nu

m
be

r o
f e

va
lu

at
io

ns
 a

s w
el

l a
s t

he
 a

ve
ra

ge
 in

 th
e

su
m

m
ar

y
ro

w
s p

ro
vi

de
d

fo
r e

ac
h

cl
as

s o
f c

irc
ui

ts
. T

he
 a

ve
ra

ge
 v

al
ue

 in
 th

e
su

m
m

ar
y

is
 d

et
er

m
in

ed
 o

nl
y

fro
m

 th
e

su
cc

es
sf

ul
 ru

ns
, i

.e
. t

ho
se

 th
at

 le
ad

ed
 to

 th
e

re
qu

ire
d

re
du

ct
io

n

Ta
bl

e
5

 (c
on

tin
ue

d) 1%
 im

pr
ov

em
en

t
5%

 im
pr

ov
em

en
t

10
%

 im
pr

ov
em

en
t

B
en

ch
m

ar
k

G
lo

ba
l

G
S1

G
S2

G
lo

ba
l

G
S1

G
S2

gl
ob

al
G

S1
G

S2

di
v1

6
>
1
0
1
0

8
.5
×
1
0
7

�
.�
×
�
�
�

>
1
0
1
0

6
.3
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

2
.6
×
1
0
9

�
.�
×
�
�
�

ha
m

m
in

g
�
.�
×
�
�
�

1
.9
×
1
0
7

5
×
1
0
6

�
×
�
�
�

1
.8
×
1
0
8

2
.5
×
1
0
7

�
.�
×
�
�
�

6
.1
×
1
0
8

4
.8
×
1
0
7

m
ac

32
>
1
0
1
0

�
.�
×
�
�
�

7
.2
×
1
0
7

>
1
0
1
0

�
×
�
�
�

8
.5
×
1
0
8

>
1
0
1
0

>
1
0
1
0

�
.�
×
�
�
�

m
ax

>
1
0
1
0

1
.1
×
1
0
8

�
×
�
�
�

>
1
0
1
0

�
.�
×
�
�
�

6
.2
×
1
0
9

–
–

–

m
ul

32
>
1
0
1
0

7
.7
×
1
0
7

�
.�
×
�
�
�

>
1
0
1
0

4
.9
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

1
.6
×
1
0
9

�
.�
×
�
�
�

m
ul

t6
4

>
1
0
1
0

3
.7
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

6
.8
×
1
0
9

�
.�
×
�
�
�

–
–

–

re
vx

>
1
0
1
0

1
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

8
.6
×
1
0
8

�
.�
×
�
�
�

>
1
0
1
0

3
.3
×
1
0
9

�
.�
×
�
�
�

sq
rt3

2
�
.�
×
�
�
�

2
.5
×
1
0
7

5
×
1
0
6

�
.�
×
�
�
�

1
.4
×
1
0
8

3
×
1
0
7

>
1
0
1
0

4
.8
×
1
0
8

�
.�
×
�
�
�

av
er

ag
e

�
.�
×
�
�
�

8
.4
×
1
0
7

2
.5
×
1
0
7

�
.�
×
�
�
�

6
.9
×
1
0
8

1
.4
×
1
0
8

�
.�
×
�
�
�

1
.7
×
1
0
9

3
.8
×
1
0
8

su
cc

es
s r

at
e

22
%

1
0
0
%

1
0
0
%

22
%

1
0
0
%

1
0
0
%

14
%

85
%

1
0
0
%

Author's personal copy

312 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

it is in principle impossible to obtain such a circuit (we are already at the optimum
or close to the optimum) or because of the insufficient number of evaluations (nevals)
or iterations (niters). The cells containing the value > 1010 indicate that it was impos-
sible to reduce the number of gates to the required level within the allowed number
of evaluations but it may happen that the required reduction can be achieved when
more than 1010 evaluations are used.

If we compare the computation effort required for reduction by 1% shown in
the first section of Table 5, we can easily identify that the global method converges
faster compared to GS1 and GS2. On the other hand, the globally applied CGP has
a tendency to get stuck at a local optima especially when complex benchmarks are
optimized. The global method applied to the controllers and logic benchmarks was
successful in 78% cases. In the remaining cases, no result was obtained within the
allowed number of evaluations. A complete different situation can be observed for
the arithmetic circuits. Nearly no improvement was achieved in this category of cir-
cuits. The benchmark circuits ‘hamming’ and ‘sqrt32’ represent the only exception
where the evolution ended successfully. The proposed GS1 and GS2 exhibit a slow
convergence but the iterative principle makes them more robust and less likely to
converge prematurely to local optima. If we compare the success rate, it is evident
that the EA-based resynthesis exhibits better overall performance. Method GS2
achieved the required reduction in all cases. Method GS1 performs similarly. The
only failure is in the case of ‘ethernet‘ benchmark circuit. Considering the com-
putation effort, the proposed GS2 typically requires lower number of generations
than GS1. The superiority of GS2 over GS1 is more evident in the last section of
Table 5 showing the computation effort required for reduction by 10%. GS1 signifi-
cantly outperforms the other methods on logic as well as arithmetic circuits.

The performance of the evolutionary methods can also be investigated by com-
paring the corresponding convergence curves. Figure 6 shows the exemplary con-
vergence curves. The first row illustrates the situation typical for the majority of
the benchmarks. It corresponds with the situation when the proposed method GS2
clearly outperforms the remaining two methods; it converges faster and achieves
better reduction. The global method exhibits a quick convergence but the search
mostly ends at a local optima. This is the case of ‘usb_phy’. For arithmetic circuits,
no improvement was achieved due to the complex circuit structure. The second row
illustrates what usually happened for instances where GS1 provided better results
than GS2. We identified two different causes. Optimization based on Algoritm GS1
performs better because it profits from the usage of smaller sub-circuits. The smaller
sub-circuits require less computational effort to be optimized compared to the larger
ones. Such a behavior was observed for ‘max‘, ‘des_area‘, ‘dsp‘, ‘ss_pcm‘ and
‘max‘ benchmark. A different situation happened in case of ‘sqrt32‘ benchmark. We
suppose that GS2 modified the original circuit in such a way that it was hard to
further improve it. Considering the space of all valid circuit structures, the method
probably reached a local optima that is hard to overcome. The last row in Fig. 6
shows two examples where the global method achieved better results than at least
single proposed method. The left part shows the typical progress observed in the
case of the ‘spi‘, ‘aes_core‘, ‘mem_ctrl‘, and ‘tv80‘. The common feature is the
steep convergence of the global method. The chosen ‘spi‘ benchmark is however,

Author's personal copy

313

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

a bit exceptional, because we can observe how the global method can get stuck at a
local optima. As evident also from Table 4, there is a huge difference between the
best and the average result. This is caused by the fact that only one run ended in the
global optima (less than 2900 gates). We assume that the remaining four runs fol-
lowed a bad direction in the search space and got stuck at a local optima (see the
divergence around 3400 gates). The right part of the last row shows the convergence
curves that were observed for the following benchmarks: i2c, pci_spoci_ctrl, sys-
temcdes. In this case the global method provided results that are better than those
obtained by GS1 but worse than those obtained by GS2.

As we already mentioned in the previous part, the evolutionary resynthesis con-
verges sometimes slowly compared to the CGP working at the global level. We
assume that the slow convergence is caused by the fact that each sub-circuit pro-
duced by the proposed windowing algorithm is optimized for a fixed number of
generations independently on its parameters such as the size or the number of PIs.
This simplifies the problem but it may lead to a potential inefficiency. Many genera-
tions can be wasted to optimize small circuits. In order to elaborate on this prob-
lem, we logged all created sub-circuits (W in Algorithm 1) and analyzed their size
and other parameters. The parameters of the sub-circuits produced by the proposed
sub-circuit extraction algorithms are given in Table 6. The table contains the aver-
age number of inputs and outputs, and the average as well as the maximum size
of the sub-circuits produced by the proposed windowing algorithms. Note that the
leave nodes are not considered in the size. These numbers are provided separately
for the case when |W ′| < |W| (CGP reduced the sub-circuit) and for the case when
|W �| = |W| (CGP kept the sub-circuit unchanged considering the number of gates).
Method GS2 mostly produces windows having their size equal to wmax . Depend-
ing on the circuits structure, however, it may be impossible to create such a large
working window because there may be independent parts that consist of the smaller
number of gates. This was observed massively during the optimization of the fol-
lowing three benchmark circuits: ‘sasc‘, ‘ss_pcm‘, ‘usb_phy‘. According to Table 6,
windows having less than 100 nodes were generated in more than half of the total
number of iterations for those cases (please refer to the column ‘avg |W|‘). This does
not mean, however, that this situation did not occur for the remaining benchmarks.
Figure 7 shows boxplots of |W| for four selected evolutionary runs. The smaller win-
dows, represented by the outliers in the boxplots, were generated in many cases also
for ‘usb_funct‘.

Surprisingly, even GS1 produces sub-circuits of a reasonable volume despite of
the usage of the cut-based method with a simple root node selection strategy. On
average, the size of the windows is much smaller than the chosen limit cmax . We can
also observe that many windows consisting of less than 10 gates were generated.
This is valid for ‘ac97_ctrl‘, ‘sasc‘, ‘ss_pcm‘ and ‘usb_phy‘. Much larger windows
are generated for the arithmetic circuits than for the controllers and logic, on aver-
age. On the other hand, we can also see that the cut-based method is able to extract
sub-circuits having significantly more than 100 gates but we never hit cmax . The
number of inputs and outputs positively correlates with the size of W. The larger the
number of gates in the window, the higher number of inputs and outputs. This obser-
vation is valid for both methods.

Author's personal copy

314 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

Ta
bl

e
6

 T
he

 av
er

ag
e

nu
m

be
r o

f i
np

ut
s,

ou
tp

ut
s a

nd
 si

ze
 o

f t
he

 su
b-

ci
rc

ui
ts

 p
ro

du
ce

d
by

 th
e

im
pl

em
en

te
d

w
in

do
w

in
g

al
go

rit
hm

s

Im
pr

ov
ed

 su
b-

ci
rc

ui
ts

U
nc

ha
ng

ed
 su

b-
ci

rc
ui

ts

av
g

PI
s

av
g

PO
s

av
g

|W
|

m
ax

 |W
|

av
g

PI
s

av
g

PO
s

av
g

|W
|

m
ax

 |W
|

B
en

ch
m

ar
k

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

ac
97

_c
trl

6
48

6
60

11
10

0
63

10
0

5
54

7
67

9
10

0
62

10
0

ae
s_

co
re

6
53

8
98

12
10

0
18

5
10

0
6

55
12

97
14

10
0

27
1

10
0

de
s_

ar
ea

13
80

16
99

27
10

0
28

2
10

0
14

89
15

10
4

29
10

0
35

1
10

0
de

s_
pe

rf
10

39
11

84
19

10
0

90
10

0
13

40
14

85
22

10
0

88
10

0
ds

p
17

74
16

87
32

10
0

28
2

10
0

18
74

17
90

29
10

0
49

6
10

0
et

he
rn

et
20

60
24

89
29

10
0

11
4

10
0

19
63

23
95

27
10

0
42

9
10

0
i2

c
9

40
9

69
14

10
0

61
10

0
7

40
8

58
10

10
0

58
10

0
m

em
_c

trl
20

83
17

97
35

10
0

28
0

10
0

15
83

15
90

24
10

0
36

6
10

0
pc

i_
br

id
ge

32
11

61
11

82
19

10
0

27
4

10
0

11
63

12
80

18
10

0
28

7
10

0
pc

i_
sp

oc
i_

ct
rl

19
58

19
88

31
10

0
92

10
0

18
58

16
89

24
10

0
10

0
10

0
sa

sc
4

26
5

30
8

90
27

10
0

5
30

6
32

7
10

0
27

10
0

si
m

pl
e_

sp
i

7
47

7
61

12
10

0
41

10
0

6
52

6
59

7
10

0
57

10
0

sp
i

14
68

15
87

27
10

0
16

1
10

0
10

70
11

85
19

10
0

17
5

10
0

ss
_p

cm
5

17
4

17
7

41
24

10
0

6
22

5
23

7
52

26
10

0
sy

ste
m

ca
es

11
76

11
78

18
10

0
15

4
10

0
9

67
10

78
15

10
0

15
6

10
0

sy
ste

m
cd

es
20

66
20

96
38

10
0

12
2

10
0

17
66

18
92

31
10

0
13

9
10

0
tv

80
15

73
21

98
33

10
0

24
4

10
0

15
79

18
96

26
10

0
23

9
10

0
us

b_
fu

nc
t

9
52

9
77

14
10

0
15

6
10

0
9

64
9

75
15

10
0

20
6

10
0

us
b_

ph
y

7
17

6
28

11
63

33
10

0
6

25
6

44
8

89
32

10
0

di
ffe

q1
26

64
25

98
51

10
0

26
8

10
0

26
67

24
99

47
10

0
30

2
10

0
di

v1
6

25
51

23
10

0
42

10
0

18
1

10
0

26
69

23
10

0
40

10
0

20
7

10
0

ha
m

m
in

g
24

60
22

95
40

10
0

21
6

10
0

26
60

22
93

39
10

0
25

5
10

0
m

ac
32

14
64

16
10

2
29

10
0

48
7

10
0

15
70

18
10

9
31

10
0

67
9

10
0

Author's personal copy

315

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

Th
e

nu
m

be
rs

 a
re

 re
po

rte
d

se
pa

ra
te

ly
 fo

r s
ub

-c
irc

ui
ts

 th
at

 w
er

e
su

cc
es

sf
ul

ly
 o

pt
im

iz
ed

 (c
ol

um
n

‘im
pr

ov
ed

 s
ub

-c
irc

ui
ts

‘)
 a

nd
 th

e
re

m
ai

ni
ng

 o
ne

s
w

he
re

 th
e

C
G

P
w

as
 n

ot

su
cc

es
sf

ul
 (c

ol
um

n
‘u

nc
ha

ng
es

 su
b-

ci
rc

ui
ts

‘)
. T

he
 m

ed
ia

n
is

 re
po

rte
d

fo
r a

ll
co

lu
m

ns
 e

nt
itl

ed
 ‘a

vg
’ p

re
fix

Ta
bl

e
6

 (c
on

tin
ue

d) Im
pr

ov
ed

 su
b-

ci
rc

ui
ts

U
nc

ha
ng

ed
 su

b-
ci

rc
ui

ts

av
g

PI
s

av
g

PO
s

av
g

|W
|

m
ax

 |W
|

av
g

PI
s

av
g

PO
s

av
g

|W
|

m
ax

 |W
|

B
en

ch
m

ar
k

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

G
S1

G
S2

m
ax

13
71

8
72

20
10

0
20

8
10

0
16

74
8

72
23

10
0

20
9

10
0

m
ul

32
17

63
16

91
36

10
0

43
5

10
0

17
63

15
91

31
10

0
42

2
10

0
m

ul
t6

4
31

71
23

94
52

10
0

26
4

10
0

14
74

18
93

33
10

0
40

2
10

0
re

vx
33

73
29

10
9

55
10

0
22

7
10

0
33

77
29

11
2

52
10

0
25

7
10

0
sq

rt3
2

23
70

19
96

41
10

0
13

6
10

0
26

66
22

99
45

10
0

16
7

10
0

Author's personal copy

316 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

The number of inputs of the sub-circuits optimized by the evolution is substantially
higher compared to the numbers used by the rewriting algorithm which is applied in the
conventional synthesis. Compared to the rewriting and other techniques mentioned in
Sect. 2.2, a relatively complex portions of the original circuits are chosen for subsequent
optimization. This could explain the reason, why the proposed EA-based method is able
to achieve such reduction compared to the conventional state-of-the-art synthesis.

6 Conclusion

Compared to the conventional logic synthesis, state-of-the-art EA-based optimiza-
tion is able to produce substantially better results but at the cost of a higher run time.
Unfortunately, the run time increases with the increasing complexity of the Boolean

Fig. 7 Size of the sub-circuits extracted from the benchmark circuits in course of the optimization. Data
from a single evolutionary run are plotted for each benchmark circuits. The boxes visualize distribution
of |W| for sub-circuits generated in 2000 consecutive iterations. Outliers are plotted as individual points
(+ for successfully optimized sub-circuits, × for the sub-circuits that left unchanged). Note that the boxes
are reduced to a single line and outliers in case of GS2

Author's personal copy

317

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

networks. This work addressed this problem by combining the EA-based optimi-
zation with the principle of the so called Boolean network scoping. Our method
extracts smaller sub-circuits from a complex circuit that are optimized locally and
implanted back to the original circuit. This concept can be understood as the evolu-
tionary resynthesis. This approach helps to improve the scalability because the evo-
lution is applied on smaller portions of the original Boolean network.

We implemented and evaluated two different techniques to the sub-circuit extrac-
tion. One method is based on the computation of the so called reconvergence-driven
cuts. This approach is used in the state-of-the-art logic synthesis algorithms but in a
different scenario. Despite of many advantageous properties, the cut-based method
has some limitations regarding our application. To avoid this, we proposed an alter-
native approach loosely inspired by a conventional windowing technique.

Even though we used a simple setting which may degrade the capabilities of the
resynthesis (e.g. the fixed number of evaluations of EA or random root node selec-
tion), the proposed approach was able to outperform the EA-based optimization
applied to the whole Boolean networks. The proposed sub-circuit extraction inspired
by windowing was significantly better than the cut-based alternative. On average,
the evolutionary resynthesis achieved 8.9% circuit size improvement on controllers
and 21.4% improvement on arithmetic circuits. The globally applied evolution was
able to improve the circuits belonging to the mentioned groups by 7.5% and 1.8%,
respectively. Even though only the area was targeted in this study, the depth of the
optimized circuits is comparable with the original circuits.

The capability of exploration of the evolutionary resynthesis is higher but at the
cost of slower convergence. There are few instances where the EA-based optimi-
zation applied to the whole circuit produced better results. In our future work, we
would like to implement an adaptive strategy that modifies the maximum number
of evaluations according to the size of the optimized logic circuit. We suppose that
this mechanism helps us to improve the convergence. In addition to that, we would
like to focus on improvement of root node selection strategy. The question here is
whether the result would be better if the cut is built from a node near to the previ-
ously chosen one.

References

 1. R. Brayton, A. Mishchenko, ABC: An academic industrial-strength verification tool, in Computer
Aided Verification, (Springer, Berlin, 2010), pp. 24–40

 2. C.C.A. Coello, A.D. Christiansen, A.H. Aguirre, Automated design of combinational logic cir-
cuits by genetic algorithms. In: Artificial Neural Nets and Genetic Algorithms: Proceedings of the
International Conference in Norwich, U.K., 1997Springer, Vienna, 1998), pp. 333–336. https ://doi.
org/10.1007/978-3-7091-6492-1_73

 3. P. Fiser, J. Schmidt, Small but nasty logic synthesis examples, in Proceedings of 8th International
Workshop on Boolean Problems, pp. 183–190 (2008)

 4. P. Fiser, J. Schmidt, Z. Vasicek, L. Sekanina, On logic synthesis of conventionally hard to synthe-
size circuits using genetic programming, in 13th IEEE Symposium on Design and Diagnostics of
Electronic Circuits and Systems, pp. 346–351 (2010)

Author's personal copy

https://doi.org/10.1007/978-3-7091-6492-1_73
https://doi.org/10.1007/978-3-7091-6492-1_73

318 Genetic Programming and Evolvable Machines (2020) 21:287–319

1 3

 5. B. Goldman, W. Punch, Reducing wasted evaluations in cartesian genetic programming. Lecture
Notes in Computer Science 7831 LNCS, 61–72 (2013). https ://doi.org/10.1007/978-3-642-37207
-0_6

 6. B.W. Goldman, W.F. Punch, Analysis of cartesian genetic programmings evolutionary mechanisms.
IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)

 7. T.G.W. Gordon, P.J. Bentley, On evolvable hardware, in Soft Computing in Industrial Electronics,
(Physica-Verlag, London, 2002), pp. 279–323.

 8. P.C. Haddow, A. Tyrrell, Challenges of evolvable hardware: past, present and the path to a promis-
ing future. Genet. Program Evolvable Mach. 12, 183–215 (2011)

 9. T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, T. Furuya, Evolving hardware with genetic
learning: a first step towards building a darwin machine, in Proceedings of the 2nd International
Conference on Simulated Adaptive Behaviour. (MIT Press, 1993), pp. 417–424

 10. J. Kocnova, Z. Vasicek, Towards a scalable ea-based optimization of digital circuits, in Genetic Pro-
gramming 22nd European Conference, EuroGP 2019 (Springer International Publishing, 2019), pp.
81–97. https ://doi.org/10.1007/978-3-030-16670 -0_6

 11. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion (MIT Press, Cambridge, MA, 1992)

 12. N. Li, E. Dubrova, AIG rewriting using 5-input cuts, in Proceedings of the 29th International Con-
ference on Computer Design, pp. 429–430. IEEE CS (2011)

 13. J. Miller, P. Thomson, Cartesian genetic programming, in Proceedings of the 3rd European Confer-
ence on Genetic Programming EuroGP2000, LNCS, vol. 1802, pp. 121–132. Springer (2000)

 14. J.F. Miller, Digital filter design at gate-level using evolutionary algorithms, in Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 1999 (Morgan Kaufmann, 1999), pp.
1127–1134

 15. J.F. Miller, Cartesian Genetic Programming (Springer, 2011)
 16. J.F. Miller, Cartesian genetic programming: its status and future. Genet. Program Evolvable Mach.

(2019). https ://doi.org/10.1007/s1071 0-019-09360 -6
 17. J.F. Miller, P. Thomson, T. Fogarty, Designing electronic circuits using evolutionary algorithms.

arithmetic circuits: A case study, in Genetic Algorithms and Evolution Strategies in Engineering
and Computer Science. (Wiley, 1997), pp. 105–131

 18. A. Mishchenko, R. Brayton, Scalable logic synthesis using a simple circuit structure, in Interna-
tional Workshop on Logic and Synthesis, pp. 15–22 (2006)

 19. A. Mishchenko, S. Chatterjee, R. Brayton, DAG-aware AIG rewriting: a fresh look at combinational
logic synthesis, in 2006 43rd ACM/IEEE Design Automation Conference, pp. 532–535 (2006). https
://doi.org/10.1145/11469 09.11470 48

 20. L. Sekanina, Evolvable Components: From Theory to Hardware Implementations, Natural Comput-
ing Series (Springer, New York, 2004)

 21. L. Sekanina, O. Ptak, Z. Vasicek, Cartesian genetic programming as local optimizer of logic net-
works, in 2014 IEEE Congress on Evolutionary Computation. (IEEE CIS, 2014), pp. 2901–2908

 22. A.P. Shanthi, R. Parthasarathi, Practical and scalable evolution of digital circuits. Appl. Soft Com-
put. 9(2), 618–624 (2009)

 23. E. Stomeo, T. Kalganova, C. Lambert, Generalized disjunction decomposition for evolvable hard-
ware. IEEE Trans. Syst. Man Cybern. B 36(5), 1024–1043 (2006)

 24. E. Stomeo, T. Kalganova, C. Lambert, Generalized disjunction decomposition for the evolution of
programmable logic array structures, in First NASA/ESA Conference on Adaptive Hardware and
Systems (AHS’06), pp. 179–185 (2006)

 25. Y. Tao, L. Zhang, Y. Zhang, A projection-based decomposition for the scalability of evolvable hard-
ware. Soft. Comput. 20(6), 2205–2218 (2016). https ://doi.org/10.1007/s0050 0-015-1636-2

 26. A. Thompson, Silicon evolution, in Proceedings of the First Annual Conference on Genetic Pro-
gramming, GECCO ’96 (MIT Press, Cambridge, 1996), pp. 444–452

 27. Z. Vasicek, Cartesian GP in optimization of combinational circuits with hundreds of inputs and
thousands of gates, in Proceedings of the 18th European Conference on Genetic Programming–
EuroGP, LCNS 9025 (Springer International Publishing, 2015), pp. 139–150

 28. Z. Vasicek, L. Sekanina, Formal verification of candidate solutions for post-synthesis evolutionary
optimization in evolvable hardware. Genet. Program Evolvable Mach. 12(3), 305–327 (2011)

 29. V. Vassilev, D. Job, J.F. Miller, Towards the Automatic Design of More Efficient Digital Circuits.
In: J. Lohn, A. Stoica, D. Keymeulen, S. Colombano (eds.) Proc. of the 2nd NASA/DoD Workshop
on Evolvable Hardware, pp. 151–160. IEEE Computer Society, Los Alamitos, CA, USA (2000)

Author's personal copy

https://doi.org/10.1007/978-3-642-37207-0_6
https://doi.org/10.1007/978-3-642-37207-0_6
https://doi.org/10.1007/978-3-030-16670-0_6
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.1145/1146909.1147048
https://doi.org/10.1007/s00500-015-1636-2

319

1 3

Genetic Programming and Evolvable Machines (2020) 21:287–319

 30. C. Wolf, J. Glaser, J. Kepler, Yosys-a free verilog synthesis suite, in Proceedings of the 21st Aus-
trian Workshop on Microelectronics (Austrochip) (2013)

 31. S. Zhao, L. Jiao, Multi-objective evolutionary design and knowledge discovery of logic circuits
based on an adaptive genetic algorithm. Genet. Program Evolvable Mach. 7(3), 195–210 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Jitka Kocnova1 · Zdenek Vasicek1

 Jitka Kocnova
 ikocnova@fit.vutbr.cz

1 Faculty of Information Technology, Brno University of Technology, IT4Innovations Centre of
Excellence, Brno, Czech Republic

Author's personal copy

http://orcid.org/0000-0002-2279-5217

	EA-based resynthesis: an efficient tool for optimization of digital circuits
	Abstract
	1 Introduction
	1.1 Goals and contributions
	1.2 Organization

	2 Background and related work
	2.1 Boolean networks
	2.2 Limiting the scope of boolean networks
	2.3 Evolutionary synthesis of logic circuits
	2.4 Cartesian genetic programming

	3 The proposed approach
	3.1 Working area extraction
	3.2 Evolutionary optimization

	4 Experimental setup
	4.1 Parameter setting

	5 Results
	6 Conclusion
	References

