
Hardening of Smart Electronic Lock Software
against Random and Deliberate Faults

Jakub Lojda, Richard Panek, Jakub Podivinsky, Ondrej Cekan, Martin Krcma, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations

Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ilojda, ipanek, ipodivinsky, icekan, ikrcma, kotasek}@fit.vutbr.cz

Abstract—In this research paper, analysis of smart electronic
lock behavior during presence of faults in its controller is
examined. A typical smart electronic lock is composed of a
controller unit, usually implemented in a processor, and the
mechanical part, which may be for example a stepper motor.
The goal of this research paper is to examine the consequences
of failing controller running a partly hardened program, which
we developed from the experiences we gained in our previous
research. We implement the controller processor in Field Pro-
grammable Gate Array (FPGA) in order to inject faults into our
components. This paper focuses on fault injection into occupied
parts of Instruction Memory (IMEM) and Data Memory (DMEM).
Moreover, permanent failures of the processor are simulated
by fault injection into occupied Look-up Tables (LUTs) of the
processor design on the FPGA. Our results show that the
application of certain SW-implemented fault tolerance methods
may, in opposite, degrade the hardness of the system. Our
experiments imply that the IMEM is the most sensitive to fault
injection, because there is no possibility for an eventual self
repair. In the case of DMEM, erroneous values may be possibly
repaired when the variable is rewritten back to the memory,
slightly lowering the DMEM sensitivity to fault injections. The
CPU itself is the least susceptible. Although faults are injected to
the utilized contents only, for the CPU LUTs, a certain part of
the logic may not be used to implement the required function.

Keywords—Electronic Lock, Stepper Motor, Fault Tolerance,
Fault Injection, FPGA, IMEM, DMEM, LUT.

I. INTRODUCTION

An electronic lock (also called smart lock) [1] belongs to
the family of the so-called smart devices. It is a cyber-physical
system that is used to secure access in a very similar way as
an ordinary door lock. The difference is in the authorization
of the user, for which the electronic lock uses other modern
approaches that are based for example on biometrics [2], the
smart lock can also be connected to a local network [3].
A failure of electronic lock can cause high losses, whether
it is unauthorized unlock or unauthorized lock, denial of
authorized unlock etc. Therefore it is important to research
reliability of such electronic locks whether it is their failure
or intentional tampering in order to attack the electronic lock.
Generally, reliability of electronic systems can be achieved by
two main approaches: 1) Fault Avoidance [4], in which faults
are avoided through the selection of reliable components; and
2) Fault Tolerance (FT) [5], in which faults are accepted as
a fact and the higher reliability is achieved through structural
modifications of the original system.

Various studies of smart lock reliability and security can be
found in the literature. For example authors of paper [6] present
a security analysis of a particular smart lock. According to
the author’s findings, the selected lock was prone to several
security vulnerabilities in the back-end services of the smart
lock. In the paper [7], security problems of the Internet of
Things (IoT) are discussed and presented on the example of a

smart lock. The research presented in [8] deals with security
analysis of another particular smart lock. Authors of [9] present
an extensive security evaluation of a smart home application
writing framework, thus focusing on the application and server
part of the system. The authors managed (among others) to
obtain existing lock codes and disable vacation mode.

From the previous paragraph it is obvious, that today’s
consumer electronic locks may, and usually do, contain many
security and safety problems. However, in this research paper,
we focus on the electronic part of the smart lock mainly.
Various reactions to faults injected into memories (i.e. IMEM
with program instructions and DMEM with data) and also
processor logic are observed and evaluated. For the realization,
SRAM-based FPGA chips are used, as these enable us to
rewrite the configuration SRAM memory in order to modify
the design during run time and intentionally introduce faults
into the HW.

This paper is organized as follows. The evaluation platform
we utilized for monitoring faults impacts in electro-mechanical
systems is presented in Section II. Experimental evaluation of
faults injected into SW controller program (stored in IMEM)
and run-time data (stored in DMEM), alongside with injection
into HW logic in LUTs, is presented in Section III. Section IV
concludes the paper and presents ideas for our future research.

II. THE EVALUATION PLATFORM

In our previous paper [10], we presented a platform for
faults effect on electro-mechanical system evaluation. The goal
of our platform is to monitor the behavior of both the electric
and the mechanical part of the system and evaluate whether an
injected fault had an effect on any of the parts or whether it
even caused a complete failure of the whole system. To achieve
this goal it was convenient to use functional verification [11]
as the base for the platform.

In our previous work we have developed a fault injector
which allows us to inject faults into a specified position in
a bitstream stored in the configuration memory. Using the
RapidSmith [12] we are able to determine which bits in the
bitstream are related to the particular parts of the implemented
design. We focus primarily on injection to Block Random
Access Memories (BRAMs) and LUTs.

A. Stepper Motor Control Using a Processor on the FPGA

We decided to use the NEO430 [13] soft-core processor
to implement the motor controller in the FPGA. The NEO430
processor uses separate memories to store a program (IMEM)
and data (DMEM). It is equipped with multiple peripheral
interfaces. We used the Custom Functional Unit (CFU) inter-
face to enter the number of the motor steps and the General-
purpose Inputs and Outputs (GPIOs) to read the output data.
The final version of the program uses the application image

680

2020 23rd Euromicro Conference on Digital System Design (DSD)

978-1-7281-9535-3/20/$31.00 ©2020 IEEE
DOI 10.1109/DSD51259.2020.00110

saved in boot Read-only Memory (ROM), therefore there is
no need to load up the program from an external source. The
program controls the stepper motor using the signals SIG A,
SIG B, SIG C and SIG D, the number of steps is defined by
the input signal STEPS. The whole controller schematics is
shown in Figure 1. The three red frames in the figure mark
units targeted by the fault injection: 1) IMEM; 2) DMEM; and
3) LUTs implementing the processor logic.

motor_controller_neo430.vhd

CFU
wrapper GPIO

wrapper

SIG_B

SIG_A

SIG_C

SIG_D

SIG_B

SIG_A

SIG_C

SIG_D

STEPS

UART

CLK

RST

IMEMDMEM

WDT

USART

Boot ROMCFU

PWM

Timer

Sys Config

CRC 16/32

GPIO

MUL/DIV

WB32

CLK_DIV

RST_GEN NEO 430
CPU

neo430_top.vhd

IMEMDMEM

WDT

USART

Boot ROMCFU

PWM

Timer

Sys Config

CRC 16/32

GPIO

MUL/DIV

WB32

CLK_DIV

RST_GEN NEO 430
CPU

neo430_top.vhd

Figure 1: The use of soft-core processor NEO430 as the main
part of stepper motor controller.

B. Electronics Controller Output Software Data Processing

The software part of our platform is executed independently
on a personal computer. The most important part of the
software is the stepper motor simulation which evaluates the
faults effects on the mechanics. We monitor the angle of the
motor rotation i.e. whether the required angle was achieved or
whether an anomaly occurred in the motor behavior. In our
experiments, we used the MATLAB and the Simulink [14]
software, specifically the Simscape [15] library to perform the
simulations. This library offers a customizable simulator of a
stepper motor. We utilized the adjustable parameters to define
a 4-phase stepper motor with a permanent rotor. The motor
is equipped with 1/64 transmission gearbox and single step
angle of 5.625/64. It is needed to perform 4,096 steps (64
steps without the gearbox) for the full rotation. The simulation
output describes the current rotation angle and the final angle.

III. EXPERIMENTS AND EXPERIMENTAL RESULTS

Three areas of the fault injection were identified:
1) IMEM – storage of the instruction memory; and
2) DMEM – storage of the run-time data, because memories
are most susceptible to a failure; moreover 3) LUTs occupied
by the processor HW on the FPGA which are used to approx-
imate appearance of permanent faults in the processor logic
itself. For the IMEM and processor LUT, two fault injection
strategies were selected: I) single fault injection, during which
only one single bit flip fault is injected into the given config-
uration memory contents before the design is activated; and
II) multiple fault injection, during which random faults are
injected periodically into the configuration memory contents.
For the DMEM memory, single fault injection is not justified,
because the DMEM contents is constructed during the run
time, thus rewriting any discrepancies made to the memory
contents before the design was started. For this reason, the
DMEM was tested to multiple faults injection only. The faults
were injected into utilized bits exclusively.

A. Controller Processor Programs

Three program versions for the processor were created and
tested using fault injection. The first program was ”original”,

the unhardened one. Based on our previous experiments from
our previous paper [16], two possibly weak points in the pro-
gram were identified. We hardened these parts of the program
by inserting certain redundant structures. These modified pro-
grams include: A) After output pin write, the algorithm waited
for next output configuration. In this modification, these values
on the output pins of the processor are constantly written
during the delay function execution. This should prevent a
long-term discrepancy on the output pins of the processor, if
the output part was hit by fault. B) The output pin signals,
which are prepared in the memory, may be altered by a
memory failure. For this reason, in the ”B” version of the
program, these values are stored in three copies in the memory
and bit-voted before each output step preparation. This version
also includes modifications from the version ”A” (i.e. the
values are constantly written during delay function execution).

B. Searching for Occupied Bytes of Data Memory

Waiting for failures to appear would take very long time
if we injected faults into the complete address space of the
DMEM, which is 2KiB in size. This is why we injected faults
into the used DMEM cells only. Also, from our results, average
occupation of DMEM space was 39B, which is 1.9%. The
used bits must be obtained during the run time of the system.
While some data in the DMEM stay at equivalent position
during the run or even between restarts of the system, other
data may be dynamically allocated during the run time and
there is no guarantee the data will remain at the same address.
This is the reason why we use this empirical method, which is,
nevertheless, supported by a considerable amount of analyzed
data. As the speed of DMEM readback is limited, it is not
possible to gain all the states of DMEM from one run. This is
the reason why we repeat this procedure with slight deviations
between periodic readbacks in order to cover the most states
of DMEM. Approximately 1,000 readbacks per program were
made. Each 1B of DMEM was marked as used if a non-zero
value was detected at any time during its readback.

C. Parameters of Tested Units

The designs were synthesized for the Xilinx Virtex 5 FPGA
on the ML506 board [17]. The Xilinx Integrated Synthesis
Environment (ISE) 14.7 [18] was used to synthesize the
bitstreams. The following Table I shows the FPGA resources
used by the processor, its program and data. It also illustrates
the number of bits of the bitstream, into which the faults were
injected intentionally.

TABLE I: The FPGA resources used by the processor (LUT),
its program (IMEM) and run time data (DMEM).

Controller Unit
Variant

IMEM Occu-
pied [b]

DMEM Occu-
pied [b]

LUTs
Used [b]

Original 14,336 232 58,496

Variant ”A” 14,848 232 58,496

Variant ”B” 22,784 464 58,496

D. Single Fault Injection Testing Strategy

In these experiments, single bit flip of one bit that was
selected uniformly-at-random from all the occupied bits was
performed before the processor was started. The processor is
configured to rotate the stepper motor for 80 s, in order to
extend the amount of data obtained for the analysis of its

681

behavior. This scenario has to imitate a fault occurrence before
the electronic lock has to be locked or unlocked. One test run
for the single fault injection strategy looks as follows: 1) the
processor repaired while a new bitstream is downloaded to
the FPGA; 2) a fault into one uniformly-at-random selected
bit is injected; 3) the processor is started and instructed to
perform 12.4 rotations; 4) logical values on the output pins of
the processor are observed and saved for later analysis; 5) the
run of one experiment finishes when the processor output pins
stop to change or when a timeout of 220 s occurs.

First, the failures of the electronic controller were classi-
fied. These results can be observed in Table II. The first column
of the table contains the percentage of failed runs from the total
amount of experiments hold with the specific configuration.
The next three columns classify electronic failures into one
of the three specific types (i.e. Stuck, Timeout and Mismatch),
which are also represented as a percentage. The right part of
Table II shows the cases, in which the mechanical part ended in
the correct position although the electronic failure was detected
in the results. The first column of this part of the table (i.e.
Mechanic OK – Total) represents the total percentage share of
such cases based on the number of runs in which electronic
failure was detected. Next three columns represent the percent-
age share of cases, in which the electronic failed and also the
mechanical part ended with Stuck, Timeout or Mismatch. As
can be observed, the number of runs with electronic failure
was higher for the IMEM. The higher sensitivity to failure of
the IMEM can be attributed to the injection into utilized bits
only. In the CPU variant, faults are also injected into utilized
LUT bits only. Not each of these bits, however, implements
the required function. Thus, fault injection into some LUT bits
may end up without any failure manifesting.

TABLE II: The results of single injection experiments with the
failures classification.

Electronic Failure Mechanic OK
(Out of Electronic Failed Runs)

Total
[%]

Stuck
[%]

Timeout
[%]

Mis-
match
[%]

Total
[%]

Stuck
[%]

Timeout
[%]

Mis-
match
[%]

CPU ”O” 5.3 4.5 0.4 0.4 7.3 3.2 0.0 4.4

CPU ”A” 5.9 5.1 0.5 0.3 8.4 3.9 0.7 3.9

CPU ”B” 6.2 5.5 0.5 0.2 10.4 5.1 0.3 2.4

IMEM ”O” 36.7 15.6 14.0 7.0 20.3 1.4 1.0 18.0

IMEM ”A” 35.2 15.5 14.4 5.4 21.2 4.8 3.7 12.6

IMEM ”B” 34.0 17.3 9.6 7.1 25.0 3.8 1.6 19.6

We can take these results into account with the particular
variants of the program – unhardened (i.e. Original) ”O”,
hardened ”A” and ”B” with the extended hardening. The
results imply that the actual level of hardening does not
have any significant impact since the differences are in the
magnitude of a few percent or even fractions of a percent. In
the case of IMEM injections we can observe a slightly better
results gained by the hardened programs. However, the results
of the injection into the processor show an opposite tendency.
According to the small differences we can infer they are a mere
statistical error and the hardening did not have any effect.

Figure 2 shows a statistical box plot that illustrates a
maximum number of rotations achieved during runs with the
failing electronics controller. As you can see, the processor
(CPU) injection usually caused the motor to stuck at zero, i.e.
it did not rotate at all. This does not stand for the IMEM
injection, after which the processor is able to run and it was
able to achieve usually zero to 12.4 rotations, therefore to

reach the desired number of rotations. This kind of faults may
prevent the door to lock or unlock.

0
10
20
30
40
50
60
70
80
90

CPU
"O"

CPU
"A"

CPU
"B"

IMEM
"O"

IMEM
"A"

IMEM
"B"

RO
TA

TI
O

N
S

[-
]

Figure 2: Box plot chart with rotation angle for single injection.

E. Multiple Fault Injection Testing Strategy

The multiple fault injection strategy examines the influ-
ences of several consequently following faults on the resulting
behavior of the system. The first fault is injected into the
system after the system was running for 10 s. From this time,
every 5 s, one fault is injected into the system. The processor
is programmed to rotate the motor for 80 s. The multiple fault
injection has this scenario: 1) the processor repaired while a
new bitstream is downloaded to the FPGA; 2) the processor is
started and instructed to perform 12.4 rotations, logical values
on the output pins of the processor are concurrently observed
and saved for later analysis; 3) the fault injector waits for
10 s; 4) system clock of the processor is stopped as well as
the simulation time; 5) one single fault is injected into the
system; 6) system clock of the processor and the simulation
time are started again; 7) the fault injector waits for 5 s; 8) if no
failure was observed on the output pins and the timeout was not
reached, go to (4); 9) the run of one experiment finishes when
the processor output pins stop to change or when a timeout of
220 s occurs.

The results for the multiple injection experiments are
shown in Table III. For these experiments, failed runs sig-
nificantly increased. This is because a fault is injected every
5 s until a failure is detected or a timeout of 220 s is reached.

TABLE III: The results of multiple injection experiments with
the failures classification.

Electronic Failure Mechanic OK
(Out of Electronic Failed Runs)

Total
[%]

Stuck
[%]

Time-
out
[%]

Mis-
match
[%]

Total
[%]

Stuck
[%]

Time-
out
[%]

Mis-
match
[%]

CPU ”O” 71.3 14.4 24.9 32.1 16.0 2.0 1.5 12.5

CPU ”A” 70.1 13.6 30.1 27.0 16.3 2.2 3.2 10.9

CPU ”B” 89.0 19.6 23.4 46.0 12.1 1.9 1.0 9.2

IMEM ”O” 99.1 41.1 27.1 30.9 19.7 1.8 0.2 17.7

IMEM ”A” 98.4 31.8 31.4 35.3 31.7 4.4 0.2 27.1

IMEM ”B” 99.7 40.1 22.5 37.1 27.3 3.9 0.2 23.3

DMEM ”O” 91.8 9.0 15.4 67.4 13.1 0.0 0.0 13.1

DMEM ”A” 92.8 11.6 15.6 65.6 13.8 0.0 0.0 13.8

DMEM ”B” 95.4 34.2 3.0 58.2 17.2 0.0 0.0 17.2

The DMEM injection led to a higher number of failures
than the CPU injection but still to a lower number than the
IMEM injection. The higher IMEM vulnerability to the faults
is due to its nature when the memory is only read from but
never written to. Therefore, there is no possibility to a fault
being repaired by rewriting the data. It is interesting however,
that the “B” hardening level, the highest one, led to the higher
number of failures. Therefore, although designed to do the

682

opposite, it actually made the system more vulnerable. We
believe that the reason is the added logic in the SW, which
makes the program more sensitive to fault injection.

The faults effects on the mechanics are shown in Figure 3,
which shows that the motor achieved the rotation angle close
to the required value or a bit lower, while sometimes it suffered
significant deviations. We can again conclude that this way of
injecting faults may prevent the door to lock or unlock.

0
10
20
30
40
50
60
70
80
90

100

CPU
"O"

CPU
"A"

CPU
"B"

IMEM
"O"

IMEM
"A"

IMEM
"B"

DMEM
"O"

DMEM
"A"

DMEM
"B"

RO
TA

TI
O

N
S

[-
]

Figure 3: Box plot with rotation angle for multiple injection.

Not only the fact that a failure occurred is important, but
also the number of faults that had to be injected in order
to manifest the failure provides valuable information. This
information is shown in the box plot chart in Figure 4. A
relatively high number of fault injections into the DMEM is
needed to manifest a failure, which confirms the hypothesis
that the DMEM content may be eventually rewritten and
thus corrected. In order to manifest a failure during the CPU
experiment, a smaller number of faults is needed. On the other
side, during the injection into the IMEM, the smallest number
of fault injections is needed to manifest a failure, which can
also be attributed to the static character of this memory type.

0
2
4
6
8

10
12
14
16
18

CPU
"O"

CPU
"A"

CPU
"B"

IMEM
"O"

IMEM
"A"

IMEM
"B"

DMEM
"O"

DMEM
"A"

DMEM
"B"

N
U

M
BE

R
O

F
IN

JE
CT

ED
 F

AU
LT

S
[-

]

Figure 4: Box plot with number of injected faults until failure.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we evaluated the reliability of an electronic
lock controlled by a processor. We monitored effects of faults
injected into the program memory (IMEM), data memory
(DMEM) and to the processor itself as well. The results imply
that if faults were injected into the controller with malicious
intent to open the lock without authorization, the probability of
success is very low and this attack vector is not very promising.
However, if the goal was to prevent the door to lock or unlock
in the first place, the chances are significantly higher and it
may lead to a successful attack.

A significant part of this work was an implementation of
software redundancy using ”A”: continuous propagation of the
output data to the output pin and ”B”: triplicating variables in
the data memory and following comparison using a software
voter in combination with the measure ”A”. However, our
experiments did not prove any significant improvement of the
system reliability when hardened using these measures. Our
results show that the application of certain SW-implemented

fault tolerance methods may, in opposite, degrade the hardness
of the system. Therefore, the future work will be to improve
these methods and find an optimal way of hardening the lock.

ACKNOWLEDGEMENTS

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II) project IT4Innovations excellence in science
– LQ1602, the Brno University of Technology under num-
ber FIT-S-20-6309 and the JU ECSEL Project SECREDAS
(Product Security for Cross Domain Reliable Dependable
Automated Systems), Grant agreement No. 783119.

REFERENCES

[1] Y. T. Park, P. Sthapit, and J.-Y. Pyun, “Smart digital door lock
for the home automation,” in TENCON 2009-2009 IEEE Region 10
Conference. IEEE, 2009, pp. 1–6.

[2] J. Baidya, T. Saha, R. Moyashir, and R. Palit, “Design and implementa-
tion of a fingerprint based lock system for shared access,” in 2017 IEEE
7th Annual Computing and Communication Workshop and Conference
(CCWC), 2017, pp. 1–6.

[3] A. Kassem, S. E. Murr, G. Jamous, E. Saad, and M. Geagea, “A smart
lock system using wi-fi security,” in 2016 3rd International Conference
on Advances in Computational Tools for Engineering Applications
(ACTEA), 2016, pp. 222–225.

[4] J.-C. Geffroy and G. Motet, Design of Dependable Computing Systems.
Kluwer Academic Publishers, 2002.

[5] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[6] E. Knight, S. Lord, and B. Arief, “Lock picking in the era of internet
of things,” in 2019 18th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/13th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), 2019, pp. 835–842.

[7] M. Pavelić, Z. Lončarić, M. Vuković, and M. Kušek, “Internet of
things cyber security: Smart door lock system,” in 2018 International
Conference on Smart Systems and Technologies (SST), 2018, pp. 227–
232.

[8] M. Ye, N. Jiang, H. Yang, and Q. Yan, “Security analysis of internet-of-
things: A case study of august smart lock,” in 2017 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2017,
pp. 499–504.

[9] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in 2016 IEEE Symposium on Security and
Privacy (SP), 2016, pp. 636–654.

[10] J. Podivinsky, O. Cekan, J. Lojda, M. Zachariasova, M. Krcma, and
Z. Kotasek, “Functional Verification based Platform for Evaluating Fault
Tolerance Properties,” Microprocessors and Microsystems, vol. 52, pp.
145 – 159, 2017.

[11] A. Meyer, Principles of Functional Verifica-
tion. Elsevier Science, 2003. [Online]. Available:
http://books.google.cz/books?id=qaIiX3hYWL4C

[12] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapid Prototyping Tools for FPGA Designs: RapidSmith,” in Field-
Programmable Technology (FPT), 2010 International Conference on,
Dec 2010, pp. 353–356.

[13] S. Nolting, “NEO430 Processor,” https://github.com/stnolting/neo430,
2018.

[14] MathWork R©, “MATLAB and Simulink,” https://www.mathworks.com/,
2018, accessed: 2019-03-20.

[15] MathWork R©, “Stepper motor,” https://www.mathworks.com/help
/physmod/sps/powersys/ref/steppermotor.html, 2019, accessed: 2019-
03-20.

[16] J. Podivı́nský, J. Lojda, R. Pánek, O. Čekan, M. Krčma, and Z. Kotásek,
“Evaluation platform for testing fault tolerance: Testing reliability of
smart electronic locks,” in 2020 IEEE 11th Latin American Symposium
on Circuits & Systems (LASCAS). IEEE Circuits and Systems Society,
2020, pp. 1–4.

[17] Xilinx Inc., “Ml506 Evaluation Platform User Guide,” UG347 (v3. 1.2),
2011.

[18] Xilinx Inc., “ISE Design Suite,” https://www.xilinx.com/products/design-
tools/ise-design-suite.html, 2017, accessed: 2017-07-07.

683

