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Abstract—In our research, we focus on Fault-Tolerant system
design and testing. Recently, we also studied Fault Tolerance
against random and deliberate faults of electronic smart locks.
In our last research, we tested Software-Implemented Fault
Tolerance in the controller of a smart electronic lock. We found
out that the most sensitive part is the Instruction Memory, but
also that our hardening proved to have only negligible effects
on the resulting fault tolerance. In this paper, we extend our
experiments and provide further analysis of potential pitfalls
when hardening using SIFT. We found out that added hardness
may improve resilience to faults. But also, the resilience may
be instantly worsened by other factors, such as increased bus
traffic. In our research we found out, that our hardening did not
improve the resiliency to faults most likely due to the increased
bus traffic. This means that it is always important to consider
the complete system and also the parts of the system that are
easily overlooked.

Keywords—Electronic Lock, Stepper Motor, Fault Tolerance
Analysis, Fault Injection, FPGA, IMEM, DMEM, LUT.

I. INTRODUCTION

Recently, the so-called Smart Devices [1] gained their pop-
ularity. These include the so-called Smart Electronic Lock [2].
It acts as an ordinary door lock, except it can be unlocked by
unordinary means, such as by a gesture on a smartphone [3].
It is obvious that a smart lock is a critical device which must
satisfy certain reliability standards.

Reliability in electronic devices can be achieved in two
different ways: 1) Fault Avoidance (FA) [4], which selects
from reliable components to build the system. 2) Fault Tol-
erance (FT) [5], on the contrary, changes the structure of the
system, so a component failure is not observable on the system
behavior. From the FT, the so-called Software-Implemented
Fault Tolerance (SIFT) [6] is derived, which changes SW code
structure to increase its reliability.

Our research focuses on FT design and evaluation. It is
important to intensively test FT systems to ensure their quality.
For this purpose, the so-called Fault Injection can be used,
which intentionally introduces faults into the system. During
this, the system is observed and its behavior is evaluated. We
hardened and evaluated an electronic lock controller in our
previous paper [7]. For the purpose of evaluation, its processor
was implemented in Field Programmable Gate Array (FPGA),
which offered us the possibility to inject faults at run time.

Fault injections into the Instruction Memory (IMEM), Data
Memory (DMEM) and the CPU logic itself were evaluated.
The results indicated, that the most sensitive is the IMEM.
Our tests were held on three different programs, out of which
two contained SIFT. The data showed, however, that our SIFT
methods did not prove to be beneficial. In opposite, our SIFT
made the systems more vulnerable. And this paper focuses
on the analysis and explanation of such behavior, as we
believe that identifying and avoiding such anomaly is useful
in the following research. In this paper, we add a new set
of experiments and analyze three additional aspects that are
related to the mentioned anomaly. These include: 1) compiler
program code optimization; 2) accuracy of DMEM occupied
bytes detection; and 3) increase of CPU internal bus transfer
rate, which could possibly explain the anomaly.

Security and safety of smart electronic locks are studied
in the literature. For example authors of [8] present survey
on various identification systems that are usually used in
smart locks. Another paper [9] presents a detailed analysis
of the security of a specific commercially available smart
lock. New SIFT methods can also be found in the literature.
Authors of [10] introduce and evaluate a method utilizing
unused resources to implement SIFT on the Itanium 2 CPU,
which is the Explicitly Parallel Instruction Computing (EPIC)
processor. Another paper [11] presents an analytic method to
evaluate reliability of multi-computer SIFT systems.

This paper is organized as follows. Electronic locks struc-
ture with discussion about their reliability is presented in
Section II. Evaluation platform for monitoring faults impacts in
electro-mechanical systems is presented in Section III. Experi-
mental evaluation of faults injected into SW controller program
(stored in IMEM) and run-time data (stored in DMEM),
alongside with injection into HW logic in LUTs, is presented
in Section IV. Section V presents the analysis of our results
and concludes the paper.

II. ELECTRONIC LOCKS

Smart electronic lock is a relatively complex device that
uses the latest technologies of nowadays. It typically consists
of three parts (modules) [12]: 1) Control Module; 2) Motor
Module; and 3) I/O Module. The management of the entire
lock is provided by the Control Module which performs a
number of computational extensive operations, therefore, it is
typically realized by a processor. The mechanical part of the
lock consists of the Motor Module, which can be realized by978-1-7281-9899-6/20/$31.00 c©2020 IEEE
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various drives that manipulate the lock. In our research, we
focus on a stepper motor, which is very often used in smart
locks as the motor [13]. The stepper motor has its rotation
divided into several equal steps, allowing precise control of
the position of the rotation by means of input pulses. The I/O
Module is used for a communication and performs mainly the
communication with interfaces such as Wi-Fi or Bluetooth.

In our research, we focus on the change of the processor
data. This can be a program change – another instruction
sequence is executed, or a data change – other values are
used. The injection of faults into the processor may result
in unexpected and unwanted behavior of the smart lock and
consequently property damage. The fault can be induced natu-
rally from environment via charged particle or through attacker
which intends to change the data in memory by electromag-
netic interference or by specific material that secretes these
particles. The fault can also occur when attacker mechanically
damages the smart lock, its circuit board or another component.

When data are corrupted, the lock can be unlocked if
incorrect authentication is performed or can stay in the lock
state when unlocking with the correct credentials. It may also
happen that the lock is not really locked when the lock is
requested. Anyone will have access to a permanently unlocked
door. However, there may also be a failure that occurs only in
a certain situation, i.e. only in a certain state of the lock. Such
a fault is very difficult to be detected and it is not entirely clear
when and what behavior will occur in the fault. Therefore, in
this research, we focus on the impact of these faults in the
smart lock on the processor.

III. EVALUATION PLATFORM

In our previous work we introduced a platform for fault
tolerance evaluation [14]. This platform is based on functional
verification principles combined with faults injection into an
FPGA. Functional verification is based on the simulation of
a verified system and monitoring its outputs and comparing
it to a reference data after feeding predefined inputs to the
system. We used this principle for our purposes, however we
implement the verified system into an FPGA which allows us
to easily inject faults to the system and evaluate their effects.

The platform capabilities were demonstrated on an example
of a robot searching for its way through a maze. It was an
FPGA controlled simulated system aimed to experimentally
evaluate the platform, however the platform was designed to
be scalable and able to evaluate any system controlled by an
FPGA. It offers a convenient way to evaluate faults effect on
the controller and the stepper motor of an electronic lock. The
experimental results of this work are based on our platform.

To successfully use the platform, we have been forced to
modify application specific components of the platform. It is
necessary for the controller to be implemented in an FPGA. It
is vital to establish a proper communication line between the
control unit operating in the FPGA and the software simulating
the stepper motor running on the different computing platform.
For these purposes we use MATLAB and the Simulink [15]
software, specifically the Simscape [16] library. In this case,
the communication is realized via Ethernet. During the evalu-
ation, the platform monitors the faults effect not only on the
controller but also on the mechanical part of the system - the

stepper motor. To be able to do this, the platform utilizes a
simulation with autonomous analysis of the motor behavior. It
is also vital to choose a proper injection strategy as it has a
significant impact on results quality.

IV. EXPERIMENTS AND RESULTS

To test faults in the CPU and its memories during their
operation, we use implementation of the MSP430 CPU for the
FPGA, called the NEO430 [17]. The three original programs
from our previous research [7] were extended with one new
program, to isolate the effects of our SIFT methods. Further,
we changed the naming of our previous programs, as these
might be confusing in the context of our new analysis. Actual
SIFT modifications made to the original code are shown in the
Activity Diagram in Figure 1.
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Figure 1: UML Activity diagram of the program with two
modifications: ”I”) writes signals to output pins during the
delay; ”II”) triples stored data and adds voting.

The program variants include: 1) Original Variant (i.e.
Variant O) – the unmodified control program; 2) Variant I
– it propagates signals to the output pins during the delay
function execution; 3) newly added Variant II – the motor
excitation data are stored in three copies in the IMEM and
are voted before their usage; 4) Variant I+II – combines
both the modifications I and II. For the implementation, we
use the Xilinx Virtex 5 FPGA and synthesize the logic using
the Integrated Synthesis Environment (ISE) 14.7. Again, we
examined two injection strategies: 1) the single; and 2) the
multiple fault injection.

A. Single Fault Injection Experiments

During the single fault experiment, one bit flip fault is
injected before the CPU clock signal is enabled. For single
experiments, injections into utilized bytes of IMEM and the
CPU were examined independently. CPU injection is approxi-
mated through a bit flip in the occupied Look-up Tables (LUTs)
of the CPU FPGA implementation. The faults were selected
uniformly-at-random and 6,000 runs were performed for the
CPU, while 2,000 runs for the IMEM. The results are shown
in Table I. The first part of Table I classifies failures into Stuck
– the motor stopped too early; Timeout – the motor did not
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stop during the predefined interval of 220 s; and Mismatch –
wrong data were observed on the output pins. The right part
of Table I classifies the cases that achieved the correct angle
although the electronic showed errors on its outputs. Although
injection into the IMEM shows only slightly better results for
the hardened programs I, II and I+II, the CPU injection shows
the opposite trend. As can be observed, the hardening was
apparently worsened by an unpredicted phenomenon.

TABLE I: The results of single injection experiments with
failures classification; ”O”, ”I” and ”I+II” published in [7],
extended with ”II”.

Electronic Failure Mechanic OK
(Out of Electronic Failed Runs)

Total
[%]

Stuck
[%]

Timeout
[%]

Mis-
match
[%]

Total
[%]

Stuck
[%]

Timeout
[%]

Mis-
match
[%]

CPU ”O” 5.3 4.5 0.4 0.4 7.3 3.2 0.0 4.4
IMEM ”O” 36.7 15.6 14.0 7.0 20.3 1.4 1.0 18.0

CPU ”I” 5.9 5.1 0.5 0.3 8.4 3.9 0.7 3.9
IMEM ”I” 35.2 15.5 14.4 5.4 21.2 4.8 3.7 12.6

CPU ”II” 6.1 5.6 0.4 0.2 8.4 6.5 0.3 1.6
IMEM ”II” 34.6 16.0 11.9 6.7 24.2 3.0 2.6 18.5

CPU ”I+II” 6.2 5.5 0.5 0.2 10.4 5.1 0.3 2.4
IMEM ”I+II” 34.0 17.3 9.6 7.1 25.0 3.8 1.6 19.6

It is important to evaluate the mechanics behavior, too. In
Figure 2, the final number of motor rotations for experiment
runs in which the electronic failed is shown in a box plot chart.
The desired 12.4 rotations is highlighted by the blue line.
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Figure 2: Box plot chart with final rotation for single injection;
”O”, ”I” and ”I+II” published in [7], extended with ”II”.

As can be observed, in most cases, the CPU injection
caused that the motor did not start to rotate at all. For the
IMEM injection, the hardened programs have the maximum
angle slightly closer to the required value of 12.4 rotations.

B. Multiple Fault Injection Experiments

We made equivalent experiment with the multiple injection
strategy. At the beginning of each run, the processor was
started. After first 10 s, one bit flip was injected every 5 s. A run
was active until the motor stopped on the required angle (usual
duration of 80 s) or a timeout of 220 s was achieved. The faults
were selected uniformly-at-random and 6,000 runs were held
for the CPU target; 2,000 runs for the IMEM and 500 runs for
the DMEM. These experiments also include injection into the
DMEM, which is not meaningful for single injection strategy,
as the DMEM contents is built during run time. The occupied

DMEM was detected based on circa 1,000 DMEM read backs,
before the injection experiments were started. Through the
analysis of the read backs, we obtained the memory utilization
map. Data are presented in Table II. The meaning of the
columns is equivalent to the single experiments.

TABLE II: The results of multiple injection experiments with
failures classification; ”O”, ”I” and ”I+II” published in [7],
extended with ”II”

Electronic Failure Mechanic OK
(Out of Electronic Failed Runs)

Total
[%]

Stuck
[%]

Time-
out
[%]

Mis-
match
[%]

Total
[%]

Stuck
[%]

Time-
out
[%]

Mis-
match
[%]

CPU ”O” 71.3 14.4 24.9 32.1 16.0 2.0 1.5 12.5
IMEM ”O” 99.1 41.1 27.1 30.9 19.7 1.8 0.2 17.7
DMEM ”O” 91.8 9.0 15.4 67.4 13.1 0.0 0.0 13.1

CPU ”I” 70.1 13.6 30.1 27.0 16.3 2.2 3.2 10.9
IMEM ”I” 98.4 31.8 31.4 35.3 31.7 4.4 0.2 27.1
DMEM ”I” 92.8 11.6 15.6 65.6 13.8 0.0 0.0 13.8

CPU ”II” 68.7 16.0 40.3 12.4 14.8 3.4 3.9 7.6
IMEM ”II” 99.0 53.9 16.4 28.8 43.4 3.4 0.0 18.3
DMEM ”II” 99.2 60.6 2.6 36.0 6.9 0.0 0.0 6.9

CPU ”I+II” 89.0 19.6 23.4 46.0 12.1 1.9 1.0 9.2
IMEM ”I+II” 99.7 40.1 22.5 37.1 27.3 3.9 0.2 23.3
DMEM ”I+II” 95.4 34.2 3.0 58.2 17.2 0.0 0.0 17.2

As can be seen, generally the highest sensitivity has the
IMEM. This is because it is often read, a change in its content
alters the program behavior and the IMEM is never written
to. This is why a fault in the IMEM has no possibility to
eventually rewrite (i.e. repair) during the program run time.
Also, as can be observed, we believe the higher DMEM
occupancy worsens the results of the experiments with DMEM.
We also believe that the higher utilization of the internal CPU
bus for the ”I+II” program causes the deviation of the CPU
”I+II”, which has significantly worse results.

We also monitored mechanic part for the multiple injec-
tions. The final number of rotations for runs in which the
electronic failed can be seen in box plot chart in Figure 3.
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Figure 3: Box plot chart with final rotation for multiple
injection; ”O”, ”I”, ”I+II” published in [7], extended with ”II”.

As can be observed, the rotation for ”I” compared to ”O” is
very similar for the CPU and DMEM targets; for the IMEM,
the ”I” is better. The ”II” is worse for all injection targets.
However, the ”I+II” has the median closer to the expected
rotation for the CPU and DMEM (i.e. better than the ”O”);
for the IMEM, the rotation is very similar to the ”O”.
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V. ANALYSIS AND CONCLUSIONS

Although the experimental results are interesting for as-
sessment of faults impact on particular injection targets, the
hardening itself did not bring significant improvements. From
our point of view, it is very interesting to analyze this anomaly
and publish the design error which caused this anomaly. In the
following text, three hypothetical reasons are examined.

A. Compile-time Code Optimization

At first, we ensured our SIFT modifications remained in
place after the code was compiled, although the lowest possible
optimization level was selected. By using the Ghidra tool [18],
we decompiled our binary programs for the NEO430. Code
snippets of modifications ”I” and ”II” can be seen in Figure 4.
As can be seen, the hardening remains in the binary program.

void cpu_delay_pin(...) {
  ...
  while (soft--) gpio_port_set(new_port);
  while (hard--) {
    for (i=0; i<0xFFFF; i++)
      gpio_port_set(new_port);
  }
}

void cpu_delay_pin(...) {
  ...
  while (sStack8 = param_2, sStack6 != 0) {
    gpio_port_set(param_3);
    sStack6 = sStack6 + -1;
  }
  while (sVar2 = sStack8 + -1, sStack8 != 0){
    sVar1 = 0;
    while (sStack8 = sVar2, sVar1 != -1) {
      gpio_port_set(param_3);
      sVar1 = sVar1 + 1;
    }
  }
  ...
}

void step1(){
  ...
  cpu_delay_pin(0xc00b, CPU_DELAY,
    (step1a() & step1b()) | (step1b() &
    step1c()) | (step1a() & step1c()));
  ...
}

void step1(){
  ...
  uVar1 = step1a();
  uVar2 = step1b();
  uVar3 = step1b();
  uVar4 = step1c();
  uVar5 = step1a();
  uVar6 = step1c();
  cpu_delay_pin(0x9e79, 1, uVar4 &
    uVar3 | uVar1 & uVar2 | uVar6 &
    uVar5);
  ...
}

Compiler Decompiler Compiler Decompiler

Code Modification I (Data are
Continually Propagated during

the Dealy Operation)

Code Modification II (Data are
Stored Three Times in the IMEM)

Figure 4: Original vs. decompiled program code snippets for
both of the modifications.

B. Accuracy of our DMEM Occupancy Detection

For our research, we developed the detector of DMEM
address occupancy. This significantly accelerates the evalu-
ation, as the average DMEM occupancy for our programs
is 1.9%. However, if a dynamic memory allocation is in
place, the occupied addresses may be fragmented all over the
address space. And for such cases, our detection method is
not suitable. To evaluate the suitability of this method, we
created heat maps of memory bytes occupancy. It is obvious
that a high temperature on a small number of cells indicates a
better suitability. On the contrary, a low temperature on a high
number of memory addresses indicates the occupied cells are
scattered. The heat maps can be seen in Figure 5.

It is obvious that the method is suitable for our programs,
as the heat maps indicate occupancy of a few cells with a high
probability of them being occupied.

C. CPU Internal Bus Traffic

The NEO430 is a 16-bit processor. It uses the internal
host bus to communicate with its numerous components.
Considerable amount of space is occupied by bus controllers

Figure 5: Heat maps of DMEM occupancy for each of the four
programs.

of the components. It is, therefore, hypothetically possible
that the added SIFT increased the transmission rate on the
internal bus. This potentially enlarges the space for fault
manifestation. For each program, we measured the number
of read and write transactions. As the NEO430 distinguishes
between both the bytes in a 16-bit write transaction, these were
monitored independently (i.e. as the Byte 0 and Byte 1). We
also monitored the amount of data transferred. The results are
shown in Table III.

TABLE III: Bus traffic for each of the four program versions

Program Original Version I Version II Version I+II

Tr
an

sa
ct

io
ns Read 1556.6 × 106 1892.4 × 106 1529.5 × 106 1894.7 × 106

Write
Byte 0

29 143 287.1 × 106 29 768 287.1 × 106

Write
Byte 1

29 143 287.1 × 106 31 876 287.1 × 106

D
at

a Read 2968.9MiB 3609.5MiB 2917.3MiB 3613.9MiB
Written 0.055MiB 547.6MiB 0.058MiB 547.6MiB

As can be observed, the high number of read transactions
is caused by reading program instructions from the IMEM.
Furthermore, the repeated propagation of results to the output
pins (i.e. the modification ”I”) significantly increased the write
transactions number for corresponding programs. These results
indicate that, at least for the CPU experiments, the added
hardness was partially cancelled by making the program more
vulnerable due to increased bus traffic.

To conclude this paper, we found out that added hardness
may improve resilience to faults. But also, the resilience may
be instantly worsened by other factors, such as increased bus
traffic. In our research we found out, that our hardening did
not improve the resiliency to faults due to the increased bus
traffic. This means that it is always important to consider also
the parts of the system that are easily overlooked. And it is
necessary to search for other critical points for the FT.
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