Supplementary Information

SoluProt: Prediction of Soluble Protein Expression in *Escherichia coli*

Jiri Hon^{1,2,3}, Martin Marusiak³, Tomas Martinek³, Antonin Kunka^{1,2}, Jaroslav Zendulka³, David Bednar^{1,2}, Jiri Damborsky^{1,2}

¹ Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno; ²International Clinical Research Center, St. Annes's University Hospital Brno, 656 91 Brno; ³IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno

Table S1. TargetTrack experiment states signifying soluble expression. The list was compiled by the authors of PROSO II (Smialowski *et al.*, 2012).

Experiment states

soluble, purified, crystallized, hsqc, structure, in pdb, native diffraction-data, NMR assigned, phasing diffraction-data, diffraction, in bmrb, nmr structure, crystal structure, diffraction-quality crystals

Table S2. Specific keywords signifying expression in *E. coli*.

Specific keywords

BL21, DE3, rosetta, xl10, DH10B, CodonPlus, RIPL, RIL, DB3.1, DB3, arctic, origami

Table S3. Protocols identified by generic *E. coli* phrases and manually checked to signify expression in *E.coli*.

Protocol ids

NYSGXRC-SGX_MOLBIO_TOPO_TRANSFORM JCSG-E_Ecoli_GNF_1 CSGID-NU_SelMet_expression CSGID-NU_native_expression MPP-LP.4341 MCSG-NU default expression NYSGXRC-SGX_FERM_ECOLI_LB MPP-LP.4813 SSGCID-33 NYSGXRC-SGX_FERM_ECOLI_M9 CSGID-NU_default_expression SSGCID-2 SSGCID-31 SSGCID-1 CESG-MAXWELL 16 EXPRESSION TESTING (R D) v.1.0.0 MPP-LP.4814 SSGCID-128 EFI-SeMET expression in HY Media-PSI2 SGX-SGX_FERM_ECOLI_LB_CFTR SGX-SGX_MOLBIO_EXPR_SOL_CFTR

Figure S1. Sequence length distribution of soluble and insoluble proteins in the SoluProt datasets. The xaxis is limited to the range of 0–1000 amino acids to improve readability. The longest sequences in the test and training sets have 790 and 2842 amino acids, respectively.

Table S4. Sequence physicochemical features. Most of the features were extracted using the Biopython package (Cock *et al.*, 2009).

Table S5. Sequence features and their importance in the final SoluProt model.

Table S6. Optimized hyperparameters of the Gradient Boosting classifier. In each stage, one or two parameters were optimized while the other parameters were left either at their final values from previous stages or at their default values if they had not been optimized previously. The parameters were first optimized using a large step size. Smaller steps were then used for refinement. The learning rate was lowered from the default value of 0.1 to 0.01 before optimizing the number of estimators. Parameters not mentioned here were left at their default values.

a The parameter was optimized again in the 7th stage, after which its final value was determined; ^b The learning rate was set to a fixed value; The final set of parameters was as follows: criterion='friedman_mse', init=None, learning_rate=0.01, loss='deviance', max_depth=6, max features=40, max leaf nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=6, min_samples_split=1250, min_weight_fraction_leaf=0.0, n_estimators=1500, n iter no change=None, presort='auto', random state=9, subsample=0.525, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=False.

Table S7. Class disagreements between available training sets and the SoluProt test set when applying different binarization thresholds.

FP – false positives, FN – false negatives, E – total number of errors (FP + FN). The numerical suffix denotes the binarization threshold used for the SoluProt test set. For example, a binarization threshold of 2 means that all sequences with solubility scores of 2 or above are considered soluble, and all others are considered insoluble.

References

- Bjellqvist,B. *et al.* (1994) Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. *Electrophoresis*, **15**, 529–539.
- Bjellqvist,B. *et al.* (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. *Electrophoresis*, **14**, 1023–1031.
- Cock,P.J.A. *et al.* (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics*, **25**, 1422–1423.
- Guruprasad,K. *et al.* (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. *Protein Eng Des Sel*, **4**, 155–161.
- Kyte,J. and Doolittle,R.F. (1982) A simple method for displaying the hydropathic character of a protein. *Journal of Molecular Biology*, **157**, 105–132.
- Smialowski,P. *et al.* (2012) PROSO II a new method for protein solubility prediction. *FEBS J.*, **279**, 2192–2200.
- Vihinen,M. *et al.* (1994) Accuracy of protein flexibility predictions. *Proteins: Structure, Function, and Bioinformatics*, **19**, 141–149.