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Table S1. TargetTrack experiment states signifying soluble expression. The list was compiled by the 
authors of PROSO II (Smialowski et al., 2012).

Experiment states

soluble, purified, crystallized, hsqc, structure, in pdb, native diffraction-data, NMR assigned, phasing 
diffraction-data, diffraction, in bmrb, nmr structure, crystal structure, diffraction-quality crystals

Table S2. Specific keywords signifying expression in E. coli.

Specific keywords

BL21, DE3, rosetta, xl10, DH10B, CodonPlus, RIPL, RIL, DB3.1, DB3, arctic, origami

Table S3. Protocols identified by generic E. coli phrases and manually checked to signify expression in 
E.coli.

Protocol ids

NYSGXRC-SGX_MOLBIO_TOPO_TRANSFORM
JCSG-E_Ecoli_GNF_1
CSGID-NU_SelMet_expression
CSGID-NU_native_expression
MPP-LP.4341
MCSG-NU_default_expression
NYSGXRC-SGX_FERM_ECOLI_LB
MPP-LP.4813
SSGCID-33
NYSGXRC-SGX_FERM_ECOLI_M9
CSGID-NU_default_expression
SSGCID-2
SSGCID-31
SSGCID-1
CESG-MAXWELL 16 EXPRESSION TESTING (R D) v.1.0.0
MPP-LP.4814
SSGCID-128
EFI-SeMET expression in HY Media-PSI2
SGX-SGX_FERM_ECOLI_LB_CFTR
SGX-SGX_MOLBIO_EXPR_SOL_CFTR
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Figure S1. Sequence length distribution of soluble and insoluble proteins in the SoluProt datasets. The x-
axis is limited to the range of 0–1000 amino acids to improve readability. The longest sequences in the
test and training sets have 790 and 2842 amino acids, respectively. 

Table S4. Sequence physicochemical features. Most of the features were extracted using the Biopython
package (Cock et al., 2009).

Name Description

physico_chemical_fracnumcharge Fraction of charged amino acids (R, K, D, E). 

physico_chemical_kr_ratio Ratio of K and R content.

physico_chemical_aa_helix Fraction of helix amino acids (V, I, Y, F, W, L).

physico_chemical_aa_sheet Fraction of sheet amino acids (E, M, A, L).

physico_chemical_aa_turn Fraction of turn amino acids (N, P, G, S).

physico_chemical_molecular_weight Molecular weight.

physico_chemical_avg_molecular_weight Molecular weight normalized by the sequence length.

physico_chemical_aromaticity Fraction of aromatic amino acids (Y, W, F)

physico_chemical_flexibility Flexibility according to (Vihinen et al., 1994)

physico_chemical_gravy Grand average of hydropathy according to (Kyte and 
Doolittle, 1982)

physico_chemical_isoelectric_point Isoelectric point using methods of Bjellqvist (Bjellqvist et 
al., 1993, 1994)

physico_chemical_instability_index Instability index according to (Guruprasad et al., 1990)
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Table S5. Sequence features and their importance in the final SoluProt model.

# Feature Importance # Feature Importance

1 ecoli_usearch_identity_identity 14.11% 26 dimers_comb_EE 0.95%

2 physico_chemical_isoelectric_point 6.20% 27 dimers_comb_LT 0.93%

3 monomers_K 3.87% 28 dimers_comb_EM 0.90%

4 tmhmm_first_60 3.43% 29 dimers_comb_LL 0.89%

5 monomers_Q 3.31% 30 dimers_comb_MV 0.89%

6 monomers_E 2.02% 31 monomers_F 0.87%

7 monomers_M 1.94% 32 dimers_comb_AQ 0.86%

8 physico_chemical_aa_helix 1.87% 33 dimers_comb_IL 0.85%

9 dimers_comb_DK 1.77% 34 dimers_comb_LQ 0.85%

10 physico_chemical_molecular_weight 1.56% 35 dimers_comb_GN 0.84%

11 dimers_comb_EN 1.53% 36 dimers_comb_FP 0.82%

12 dimers_comb_AA 1.49% 37 dimers_comb_KQ 0.82%

13 monomers_Y 1.39% 38 dimers_comb_QT 0.80%

14 monomers_C 1.37% 39 dimers_comb_GL 0.79%

15 dimers_comb_EK 1.25% 40 dimers_comb_FT 0.78%

16 dimers_comb_AI 1.14% 41 dimers_comb_AM 0.78%

17 dimers_comb_DT 1.11% 42 dimers_comb_TY 0.77%

18 dimers_comb_DR 1.09% 43 dimers_comb_EV 0.76%

19 dimers_comb_RR 1.09% 44 dimers_comb_EL 0.75%

20 monomers_W 1.07% 45 dimers_comb_EP 0.75%

21 dimers_comb_IS 1.05% 46 dimers_comb_VY 0.75%

22 dimers_comb_PQ 1.02% 47 dimers_comb_QV 0.72%

23 dimers_comb_GK 1.02% 48 dimers_comb_LN 0.71%

24 dimers_comb_EI 1.01% 26 dimers_comb_EE 0.95%

25 dimers_comb_DI 0.95% 27 dimers_comb_LT 0.93%
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# Feature Importance # Feature Importance

49 dimers_comb_DE 0.71% 74 dimers_comb_CG 0.49%

50 dimers_comb_SV 0.69% 75 dimers_comb_KM 0.48%

51 dimers_comb_GG 0.68% 76 dimers_comb_RW 0.48%

52 dimers_comb_DM 0.67% 77 dimers_comb_AN 0.47%

53 monomers_H 0.67% 78 dimers_comb_HT 0.47%

54 physico_chemical_fracnumcharge 0.66% 79 dimers_comb_EH 0.46%

55 dimers_comb_IT 0.65% 80 dimers_comb_GM 0.46%

56 dimers_comb_FI 0.65% 81 dimers_comb_CY 0.46%

57 dimers_comb_AC 0.65% 82 dimers_comb_DW 0.44%

58 dimers_comb_KV 0.63% 83 dimers_comb_HL 0.43%

59 dimers_comb_AV 0.63% 84 dimers_comb_IY 0.42%

60 dimers_comb_CP 0.63% 85 dimers_comb_PW 0.41%

61 dimers_comb_MN 0.62% 86 dimers_comb_CS 0.39%

62 dimers_comb_FL 0.62% 87 dimers_comb_KR 0.37%

63 dimers_comb_RS 0.61% 88 dimers_comb_FM 0.37%

64 dimers_comb_GH 0.57% 89 dimers_comb_FH 0.32%

65 dimers_comb_EF 0.55% 90 dimers_comb_GT 0.30%

66 dimers_comb_AK 0.55% 91 dimers_comb_MY 0.29%

67 dimers_comb_MW 0.54% 92 dimers_comb_CC 0.27%

68 dimers_comb_AG 0.54% 93 dimers_comb_HW 0.25%

69 dimers_comb_NY 0.52% 94 dimers_comb_MM 0.24%

70 dimers_comb_CI 0.52% 95 dimers_comb_WW 0.12%

71 dimers_comb_HK 0.51% 96 tmhmm_pred_hel 0.01%

5



Table S6. Optimized hyperparameters of the Gradient Boosting classifier.  In each stage, one or two
parameters were optimized while the other parameters were left either at their final values from previous
stages or at their default values if they had not been optimized previously. The parameters were first
optimized using a large step size. Smaller steps were then used for refinement. The learning rate was
lowered from the default value of 0.1 to 0.01 before optimizing the number of estimators. Parameters not
mentioned here were left at their default values. 

Stage Parameter Range Step Final value

1 n_estimators 20-100 10 -a

2 max_depth 3-17 2, 1 6

min_samples_split 100-1400 100, 50 1250

3 min_samples_leaf 1-160 10, 5 6

4 max_features 5-96 5 40

5 subsample 0.5-1 1/40 0.525

6 learning_rate -b -b 0.01

7 n_estimators 200-1800 200, 50 1500

a The parameter was optimized again in the 7th stage, after which its final value was determined; b The 
learning rate was set to a fixed value; The final set of parameters was as follows: 
criterion='friedman_mse', init=None, learning_rate=0.01, loss='deviance', max_depth=6, 
max_features=40, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, 
min_samples_leaf=6, min_samples_split=1250, min_weight_fraction_leaf=0.0, n_estimators=1500, 
n_iter_no_change=None, presort='auto', random_state=9, subsample=0.525, tol=0.0001, 
validation_fraction=0.1, verbose=0, warm_start=False.

Table S7. Class disagreements between available training sets and the SoluProt test set when applying
different binarization thresholds.

Dataset FP1 FP2 FP3 FP4 FP5 FN1 FN2 FN3 FN4 FN5 E1 E2 E3 E4 E5

PROSO II
initial

49 55 188 384 509 508 377 309 204 149 557 432 497 588 658

DeepSol/
SKADE

66 76 183 324 426 356 252 205 129 99 422 328 388 453 525

SWI 43 94 163 256 339 16 11 7 5 2 59 105 170 261 341

SOLpro 39 40 46 83 106 156 132 87 52 35 195 172 133 135 141

SoluProt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FP – false positives, FN – false negatives, E – total number of errors (FP + FN). The numerical suffix
denotes the binarization threshold used for the SoluProt test set. For example, a binarization threshold of
2 means that all sequences with solubility scores of 2 or above are considered soluble, and all others are
considered insoluble.
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