
computers

Article

Addressing Bandwidth-Driven Flow Allocation
in RINA†

Michal Koutenský 1,* , Vladimír Veselý 1 and Vincenzo Maffione 2

1 Department of Information Systems, Brno University of Technology, 61200 Brno, Czech Republic;
koutenmi|veselyv@fit.vutbr.cz

2 Dipartimento di Ingegneria dell’Informazione, Università di Pisa, 56122 Pisa, Italy;
vincenzo.maffione@ing.unipi.it

* Correspondence: koutenmi@fit.vutbr.cz; Tel.: +420-541-14-1100
† This paper is an extended version of the conference paper: Koutenský, M.; Veselý, V., Maffione, V.

Bandwidth-driven Flow Allocation Policy for RINA. In Proceedings of the 2020 23rd Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 24–27 February 2020;
IEEE Communications Society: New York, NY, USA, 2020; s. 51–56. ISBN: 978-1-7281-5127-4.

Received: 31 May 2020; Accepted: 6 August 2020; Published: 10 August 2020

Abstract: Effective capacity allocation is essential for a network to operate properly, providing
predictable quality of service guarantees and avoiding bottlenecks. Achieving capacity allocation
fairness is a long-standing problem extensively researched in the frame of transport and network layer
protocols such as TCP/IP. The Recursive InterNetwork Architecture offers programmable policies that
enable more flexible control on the mechanics of network flow allocation. In this paper, we present
our version of one of these policies, which provides flow allocation according to the bandwidth
requirements of requesting applications. We implement the bandwidth-aware flow allocation policy
by extending rlite, an open source RINA implementation. Our evaluation shows how the policy
can prevent links from becoming oversaturated and use alternate paths to achieve high total link
data-rate use.

Keywords: RINA; TCP; congestion control; flow allocation; rlite

1. Introduction

Networks should be able to handle and accommodate different types of traffic, with diverse
needs and requirements. This is especially true for the Internet, being central to most of our social
interactions. With growing diversity of applications (e.g., desktop vs. mobile vs. IoT) and deployment
scenarios (e.g., LAN vs. WAN vs. data-center), providing proper Quality of Service (QoS) becomes an
essential goal.

Applications require different handling of traffic (e.g., reliability of delivery, packet dropping
eligibility, minimal bandwidth, allowed maximal delay and jitter) depending on their purpose.
Such handling poses often challenge for (non-)cooperating layers of the TCP/IP protocol suite,
which do not provide a comprehensive solution for supporting QoS. For instance, following things
need to be aligned across the TCP/IP stack to provide such QoS guarantees: (a) prioritization in
ingress/egress interface buffers on physical layer; (b) PDUs recognition and marking on data-link
and internet layers; (c) QoS signalization and traffic throttling on transport layer; and (d) APIs for
integration with programs on application layer. QoS support is something that was added to best-effort
IP/Ethernet and reliability-concerning TCP later (after they have been already standardized and
codified in RFCs). Although the first congestion collapse happened in 1986, it took nearly the whole
1990s decade to address this issue and introduce QoS support in lower layers of TCP/IP. The results
of this development are Integrated Services (IntServ) and Differentiated Services (DiffServ). IntServ

Computers 2020, 9, 63; doi:10.3390/computers9030063 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0001-6912-8713
https://orcid.org/0000-0002-6346-2152
https://orcid.org/0000-0003-0020-8664
http://dx.doi.org/10.3390/computers9030063
http://www.mdpi.com/journal/computers


Computers 2020, 9, 63 2 of 23

mandate precise control of every flow, which is subject to QoS. IntServ offer accurate capacity allocation
planning and predictive traffic behavior, but they have problems with scalability. DiffServ focus not on
flows, but traffic classes which group flows of similar QoS characteristics. On the one hand, DiffServ
scale nicely; on the other hand, DiffServ allow only stochastic capacity allocation.

The problem of network capacity allocation can be approached in two ways [1]. First, in a proactive
manner — such as conditional allocation — which attempts to avoid critical resource depletion and
congestion. Second, with a reactive approach, where congestion is dealt with when it occurs, is used
by many current transport layer protocols (e.g., TCP, SCTP). Nevertheless, these approaches are
not mutually exclusive. Although capacity allocation is long-term, dealing with the congestion is a
short-term task taking into account the flow lifecycle.

In this paper, we aim at investigating the possibilities of a proactive approach to flow allocation
within the Recursive InterNetwork Architecture (RINA) [2,3]. A RINA layer, called Distributed
Interprocess Facility (DIF), and the participating processes providing IPC (IPCPs), contain all the
necessary information to decide whether allocating resources for a pending flow request could congest
the network. Not only do we want to prevent congestion from occurring; we want to guarantee
available bandwidth to allocated flows during their whole lifetime. This is achieved using bandwidth
reservations — bandwidth that has been reserved cannot be used by another flow, even if it is not being
used at the moment.

There are several RINA implementations available: IRATI [4] and rlite [5], two full-stack
implementations targeting Linux-based operating systems; Ouroboros [6], a RINA-inspired
implementation; ProtoRINA [7], a Java-based academic prototype; and RINASim [8], a simulation
framework for OMNeT++. After designing our distributed Flow Allocator policy, we have decided to
implement and to evaluate it experimentally in the frame of the rlite stack.

This paper contributes the design of a proactive flow allocation scheme based on bandwidth
(or better would be “data-rate” in order to avoid misconception with terminology from physical layer)
reservation. The flow allocation scheme has been implemented in rlite as a policy for the Flow Allocator.
We show how this policy achieves the proposed goals of preventing congestion and guaranteeing
bandwidth for flows as a form of QoS.

The main point of comparison is the existing Flow Allocator policy in rlite (called local).
The local Flow Allocator does not support any QoS guarantees. All flow requests — assuming
they are accepted by the destination application — succeed. Unlike our policy, it does not take into
account the network state, does not employ admission control, and the accompanying routing policy
does not attempt to use alternative network paths to better use available resources.

Our flow allocation scheme contributes a more complex solution that aims to provide such
additional features. The goal is to experiment with an alternative approach to network resource
management in an attempt to demonstrate the benefits of RINA with regards to the service provided
by the network. By leveraging several of the features unique to RINA — such as being a unified,
comprehensive architecture and the clear separation of mechanisms and policies — we have been able
to design and implement a flow allocation scheme based on admission control providing bandwidth
reservation for flows.

Section 2 contains a summary of some of the congestion control and resource allocation theory.
Section 3 introduces basic RINA concepts for readers not familiar with the architecture. Section 4
provides an in-depth look at the design and implementation of our policy, with some background
information on rlite. Section 5 discusses the experiments done and the results thereof. Section 6 sets
the results in a broader context, while Section 7 maps out the directions for possible future work.
Section 8 contains information about the technical details regarding the experiments done and how to
reproduce them.



Computers 2020, 9, 63 3 of 23

2. Background

Congestion control is one of the core problems that needs to be tackled when ensuring Quality of
Service, as it has a negative impact on almost all aspects of network performance. Network congestion
decreases the throughput of an application, increases latency and the rate at which packets are dropped;
in the most severe cases, the service can become completely unusable.

Generally, mechanisms trying to avoid congestion can be categorized as either open-loop or
closed-loop, or proactive and reactive respectively [1,9]. Proactive mechanisms apply a priori knowledge
about the network to control the traffic; reactive mechanisms use feedback from the network to adjust
to the current state.

The dominant paradigm in TCP/IP is reactive congestion avoidance in its various forms.
The pioneering work of Van Jacobson regarding congestion control [10] has resulted in various
versions of the TCP congestion avoidance mechanism, such as TCP Tahoe [11], CUBIC [12], BIC [13]
and BBR [14]. These all work by interpreting some feedback from the network at the sender (usually
packet loss rate) as a sign on congestion, and adjusting the sending rate accordingly. Supplementary
mechanisms, such as Random Early Detection [15], use information available to gateways in the
network (e.g., queue size) and use either explicit (notifications) or implicit (dropping packets) methods
to signal congestion to the flow endpoints.

One issue with reactive congestion control mechanisms implemented as part of transport protocols
is their behavior with each other, referred to as fairness. Some transport protocols, such as UDP, do
not implement any form of congestion control. Even if two protocols, or two versions of the same
protocol, implement congestion avoidance algorithms, they interpret the implicit feedback from the
network in ways that might be incompatible, or react to the same feedback differently. This causes
issues of fairness, where different flows might claim proportionally unequal shares of the bandwidth,
which can even lead to starvation of one of the flows. Some algorithms are known to be unfair even
with other flows using the same algorithm, regarding e.g., RTT, such as TCP BBR [16].

Proactive approaches traditionally use reservations and admission control and have been
employed in telecommunication networks [17]; their usage in environments with heterogeneous
traffic classes, such as IP networks, is much more difficult [18]. This difficulty partly lies in estimating
the bandwidth requirements of applications, partly in lack of knowledge and control over the network,
and partly due to scalability issues.

Congestion control is only one of the tools available to provide Quality of Service to flows;
there are other factors that need to be considered, such as latency and jitter. In current IP-based
networks, there exist two major systems that attempt to provide a more comprehensive QoS solution
for applications. The main difference between them is that first one enforces QoS explicitly on every
flow, whereas the second one implicitly groups flows into coarser QoS classes.

Integrated services [19] leverages Resource Reservation Protocol (RSVP, [20]), which is a signaling
protocol controlling QoS in the network core (i.e., routers and switches). RSVP distinguishes traffic
direction and treats data flows as simplex communication channels. RSVP is receiver-oriented,
which means that the receiver is in charge of initiating and request a reservation. Among RSVP
subsystem modules there are: policy control, to authenticate and authorize reservation requests;
admission control, to account and administer available resources; packet classifier, to group flows into
queues; and packet scheduler, to enforces QoS by shaping the outgoing traffic according to classification.
For IntServ to operate, RSVP must be present on every device of the network infrastructure. Resource
reservation is originated from the receiver and it propagates to the sender with the help of RSVP.
On one hand, RSVP employs sophisticated strategies when merging reservations (e.g., two reservations
sharing resources on a single link). On the other hand, the merge of reservation can cause starvation
or denial of service. RSVP periodically (by default every 30 s) sends state refresh messages, for both
path and reservation. Moreover, RSVP poses a significant overhead on QoS-enabled communication
(e.g., delay in processing of many small reservations), which is a known scalability issue [21]. Due to



Computers 2020, 9, 63 4 of 23

these limitations, IntServ is deployed to support small and predictable QoS use-cases such as VoIP
telephony in a corporate network environment.

Differentiated services [22,23] uses neither dedicated signaling protocol nor coordinated QoS
treatment among active network devices. In DiffServ, the edge network device (i.e., switch, VoIP-phone)
classifies each flow into some traffic class, based on source/destination address/port or protocol, by
marking packets. Special Ethernet and IP header fields are used to hold the marks, and their values
may represent desired QoS properties (e.g., delay tolerance, delivery assurance under prescribed
conditions). Once flow packets are marked, processing network devices (such as routers or switches)
may honor the marks and apply policies such as rate-limiting and packet scheduling. The marks can
also be ignored, and traffic overridden or reclassified to meet different QoS goals. When compared to
IntServ, DiffServ is far more scalable since it does not leverage any signaling. Nevertheless, DiffServ
offers only coarse control for similar traffic, whereas IntServ can be fine-tuned to accommodate the
specific demands of each flow.

IntServ and DiffServ demonstrate different approaches to how QoS is being addressed in current
TCP/IP networks. Both have their advantages and disadvantages, and their operational experience
provides valuable insights. IntServ is closer to the topics of this paper because it handles resources
reservation per each flow, similarly to the functionality of the Flow Allocator in RINA.

Mechanisms employed to achieve QoS in computer communication includes packet classification
and marking, traffic policing and shaping, congestion management and avoidance. Each of these
mechanisms is coupled with resource or, more precisely, capacity allocation problem (i.e., where
“capacity” means measurable properties of network communication).

Classification identifies particular IP traffic as belonging to some specific class with the same
criteria for packet handling. Altering relevant QoS-related bits in data-link (e.g., 802.1p CoS [24],
MPLS EXP [25]), network (e.g., DSCP and IPP fields [22]), or transport layer headers is a way to
preserve marking (i.e., sharing the classification between network devices). Marking may encode
drop eligibility, class selectors, or assured/expedited forwarding in queues. Traffic is the subject of
conditioning by policers and shapers. Although policers drop or mark excessive traffic exceeding
agreed quota, shapers buffer and delay momentary peaks until bandwidth is available. Both policers
and shapers leverage the token bucket algorithm and its mission-specific variants (such as single rate
three-color policer [26]) to deal with violating traffic and keep it in conforming limits. Managing
congestion in TCP/IP-based networks involves queuing and scheduling. Queuing triggers when
the output interface of an active network device experiences congestion (i.e., when output interface
is overloaded with incoming packets that cannot be dispatched in due time and must be put into
the queue). Queuing is accompanied by scheduling, which decides how packets are reordered in
the queue(s) to impose QoS and reflect capacity allocation. Various queuing algorithms do exist
(e.g., first-in-first-out, round-robin, low latency queuing, class-based weighted fair queueing) that
impact how packets are being enqueued and handled. Congestion avoidance mechanisms (e.g., tail
dropping, or weighted RED [27]) periodically monitor queues and avoid potential congestion by
dropping some packets preemptively to protect remaining flows.

We have chosen RINA as our target architecture (and rlite as the implementation) as we aim to
leverage some of the features unique to RINA to implement a reactive flow allocation scheme based
on admission control. Compared to IntServ, we need no additional signalization protocol; most nodes
in the network need not store any additional state information, which, combined with RINA’s simple
DIF stacking model, greatly reduces scalability concerns; and we have a representation of the whole
DIF available, allowing us to make better informed decisions.

RINA places a great importance on separating mechanism from policy; this allows us to easily
reuse existing functionality to introduce new behavior. By rearranging and extending functionality that
is already in place, we can focus on the overall design and the goals we want to achieve. In addition,
the decomposition into cooperating components with clearly defined roles and responsibilities allow
us to clearly identify which parts of the networking stack need to be modified. In our case, this would



Computers 2020, 9, 63 5 of 23

be the Flow Allocator; during development, we have found that our design needs also support from
the Routing component to function properly. The policy framework available in rlite allows us to
specify this dependency relationship to enforce correct behavior. Likewise, it allows us to easily switch
between such policies at run-time to simplify testing and comparison.

The uniformity of the architecture is likewise of principal benefit. There is only one transport
protocol, one way to request flow allocation. Whether the application uses reliable or unreliable
flows is of no concern to us, as they use the same underlying mechanisms. All application-level
communication is done using the Common Distributed Application Protocol (CDAP), and as
InterProcess Communication Processes (IPCPs) are applications providing IPC facilities to other
applications, we can use this standard mechanism to exchange any additional information between
nodes as required. It is not necessary to implement an additional control/signalization protocol.
The Resource Information Base (RIB) of any RINA node stores information about the network that is
available at our disposal to use during the decision-making process of our policy. The DIF — as the
core building unit of RINA networks — gives us guarantees that the other nodes within will be using
the same policy and therefore act in a cooperative manner.

The closest point of comparison in TCP/IP would be IntServ; however, this commonality is mostly
surface-level. IntServ provides a general framework for managing QoS requirements by employing
an additional signaling protocol which reserves resources along a path in a decentralized manner.
It does not use any information about the global network state and depends on periodic signalization.
Requests travel along the routed path and need to be confirmed by each router on the path; as a result,
each router needs to store state information about the QoS reservation.

Our policy, in comparison, is solely focused on bandwidth (data-rate) guarantees. It works
in a logically centralized manner where a distinguished node employs information about the state
of the DIF to make decisions about received flow requests. Only after a decision is made are the
necessary nodes informed with a new route; they do not store any additional state information — only
the distinguished node keeps track of the reservations. Therefore, there is no additional periodic
signalization, as all the necessary information is propagated through standard network events, such as
the enrollment process and routing updates.

3. Recursive InterNetwork Architecture

We have designed and implemented our work in the context of the Recursive InterNetwork
Architecture. As RINA uses concepts that often differ vastly from what is being used in TCP/IP, this
section provides a brief introduction to the architecture.

The fundamental idea RINA derives the rest of architecture from is that networking is IPC
and only IPC [28]. An Application Process (AP) is an instantiation of a program containing one
or more tasks (Application Entities) and functions for managing allocated resources (processor, storage,
IPC). A Processing System (PS) consists of hardware and software executing an Application Process
capable of coordinating with a test-and-set instruction or its equivalent. A Computing System (CS)
is a collection of Processing Systems under the same management domain. What distinguishes IPC
within a Processing System from IPC within a Computing System is the IPC facility: the functions
remain the same, but the internal mechanisms differ.

A Distributed Application Facility (DAF) is a collection of APs which communicate using IPC and
maintain shared state. A Distributed IPC Facility (DIF) is a DAF that provides IPC, and is necessary
for IPC between several Processing Systems. A DIF is a network layer and is the basic building block
of RINA. The core distinction between traditional (OSI or TCP/IP) network layers and DIFs is that the
traditional layer is distinguished by function; DIFs are distinguished by the communication scope,
i.e., all DIFs (can) provide all the functions. A DIF may use the service provided by another DIF, thus
giving a recursive structure.

To illustrate how a network can be built using DIFs, let us consider three PSs: A, B, and C,
connected using physical links as shown in Figure 1.



Computers 2020, 9, 63 6 of 23

A B C

Figure 1. Three PSs A, B and C connected with physical links.

Every PS can instantiate an InterProcess Communication Process (IPCP — an AP providing IPC)
for each of its links; a pair of IPCPs sharing a link is able to establish a DIF, as displayed in Figure 2.
APs on PSs can use the IPC facilities provided by the new DIFs to communicate with APs on the
remote end of a link. However, no communication between APs on A and C is possible, as A and C do
not share a common DIF.

A B C

A-B B-C

Figure 2. Three PSs A, B, and C connected with physical links. A DIF is created over every link allowing
pairs of PSs to communicate.

Communication between all three PSs is made possible by creating another DIF, using the
provided IPC facilities of DIFs A-B and B-C, shown in Figure 3. The IPCP on B will relay messages
between A and C using the lower (link) DIFs.

A B C

A-B B-C

A-B-C

Figure 3. Three PSs A, B, and C connected with physical links. A DIF is created over every link allowing
pairs of PSs to communicate. An additional DIF is created over the link DIFs, joining all three PSs in a
shared communication domain.

This creates the recursive structure reflected in the architecture’s name. There is no limit imposed
on the recursion — DIFs can be stacked indefinitely [28].

A DIF (DAF) has the following functions, mirroring the functions used to manage local resources,
albeit distributed:

• Task Scheduling
The Task Scheduling function is responsible for coordinating processing load among the members
of a DAF. In the context of a DIF, this would be routing and resource allocation.

• Memory Management
The RIB contains the local view of the distributed application, i.e., is the storage. It provides access
to this information for other members of the DAF when requested. It may provide replication,
ACID properties, etc. as needed by a particular DAF. In the case of a DIF, the information stored
might be, e.g., the connected neighbors of an IPCP.

• IPC Management
This function manages the supporting IPC resources, such as multiplexing SDUs into flows or
protecting SDU integrity and confidentiality.

• DAF Management
DAF Management is concerned with the overall management of the DAF, e.g., enrollment into
the DAF (employing access control).

DIFs provide IPC service with functions using common mechanisms; however, the strategy of
how to use a mechanism will vary across environments. This is referred to as separation of mechanism
and policy. Different DIFs may provide IPC service in different manner best suited to the scope and
use-case using on the same set of operations.



Computers 2020, 9, 63 7 of 23

Application Entities (AEs) are tasks within an AP involved with exchanging information with
other APs. There are only six possible operations on remote objects: create/destroy, start/stop,
and read/write. The differences between “application protocols” are mainly in the set of exposed
objects. RINA therefore defines a single application protocol (The architecture does not require that
a single application protocol is used, although there are benefits in doing so.) called Common
Distributed Application Protocol (CDAP). As IPCPs are APs providing IPC, they communicate using
this protocol too.

4. Design and Implementation

We have designed and implemented a set of policies for rlite to build a bandwidth reservation
system for flows. The main goal of these policies is to guarantee a user-specified amount of bandwidth
for each flow over its lifetime. Unlike the best-effort approach to capacity allocation used by TCP/IP,
our system denies those flow allocation requests which are deemed not satisfiable. The possibility of
negative responses to allocation requests allows us to prevent critical exhaustion of resources — and
therefore congestion.

4.1. The Design of Rlite

Before describing how our policies have been implemented in rlite, we will first introduce rlite
itself. Rlite is a free and open source RINA implementation for GNU/Linux systems. It consists of a
set of kernel loadable modules (KLMs), and a set of user-space daemons (User-space IPCPs—UIPCPs)
and tools, as shown in Figure 4.

rlite-normal

rlite-shim-eth

rlite-shim-udp4

rlite-shim-tcp4

rlite-shim-loopback

/dev/rlite

/dev/rlite-io

UIPCP daemon

rlite-ctl
. . .

Kernel modules

I/O devices User-space processes

Figure 4. The rlite architecture

The tasks of kernel components is to provide: (i) a generic interface for user-space applications to
transmit and receive PDUs; (ii) a set of management functions that allow the user-space components to
manage the IPCP lifecycle, such as creation, configuration, inquiry and destruction; and (iii) functions
to perform flow allocation and deallocation. Different types of IPCP types are supported, such
as the normal IPCP, the shim IPCP over Ethernet, and the shim IPCP over UDP; each IPCP type
is implemented as a separate kernel module. Shim IPCPs act as a compatibility layer, allowing
deployments of RINA networks over existing Ethernet/IP infrastructure. The Data Transfer and
Data Transfer Control functions of an IPCP (i.e., the DTP and DTCP protocols that manage data flow
between DIF members) are implemented as a part of the normal IPCP module. Communication with
the kernel modules is achieved through two special character devices exposed by the kernel: one
serves as a packet I/O interface, the other provides management and control functionality.

The main part of the user-space toolkit, the UIPCP daemon, implements most of the management
functionality of the normal IPCP. Functions such as routing, flow allocation, application registration
and enrollment are the responsibility of distinct components within the daemon. The actual behavior
of these components is configurable via run-time replaceable policies. Policies provide the capability
to adjust and extend the operation of built-in components, and adapt the networking stack to the
environment where it is deployed. Each IPCP runs in a separate thread with its own instances of all
the components, and their policies can be changed at run-time.



Computers 2020, 9, 63 8 of 23

4.2. Design of the Bandwidth-Aware Flow Allocation

The goal of the policies we implemented is to guarantee that a requested amount of bandwidth
will be available to each flow, exclusively, for the whole lifetime of the flow. Currently, the policy can
be applied to normal DIFs stacked directly on top of Ethernet shim DIFs. Additional normal DIFs can
be created on top of the bandwidth-aware DIF, as long as they use the default flow allocation policy.
Upon flow allocation, the requestor specifies the bandwidth deemed necessary for proper operation
and functionality of its service. The Flow Allocator component determines whether the current state of
the network (i.e., DIF) allows this request to be accepted; if it concludes that such resource allocation
cannot be performed, the request is rejected and the requestor is informed via a negative response.
In the case of a positive response, the Flow Allocator reserves some network bandwidth for the newly
created flow. On flow deallocation, the bandwidth associated with the flow is freed to be reused by
other flows.

No flow can use more than its allocated share, even if the current state of the network would be
able to accommodate it. This constraint is enforced in a cooperative manner by means of rate-limiting
each flow, implemented in the normal IPCP kernel module. If a flow does not specify the amount of
bandwidth required for its operation, it is assigned a pre-defined, configurable amount. Alternatively,
it is possible to configure the policy to outright reject such flow requests.

In this manner, the Flow Allocator can track the current state of bandwidth use across the whole
DIF. A tightly coupled policy for the Routing component ensures that flows travel only through
network paths that have been assigned to them, preventing a change in the network topology from
rerouting a flow through a different link, possibly causing congestion to occur. By having full control
over the flow allocation process, and enforcing rate limitations in accordance with our desired policy,
it is possible to avoid link over-subscription in a proactive way.

The proposed flow allocation scheme can be decomposed into several sub-problems:

1. Querying the interface bandwidth
2. Propagating the interface bandwidth to IPCPs within a DIF
3. Determining whether a flow allocation request can be accepted
4. Making the flow allocation process distributed and ensuring fault-tolerance
5. Ensuring proper usage of network paths

We will discuss each of these problems in turn.

4.2.1. Querying the Interface Bandwidth

To properly manage a resource — in our case the network bandwidth — it is necessary to have
up-to-date information about the resource and its state. We have selected the physical link speed as
our ground truth; the assumption is that there are no rate-limiting mechanisms in place and every link
can operate at their reported speed.

We use the fact that shim over Ethernet DIFs are created over an Ethernet interface, and are usually
the lowest DIFs in a system. During DIF creation, we request the interface speed for the associated
interface from the kernel. As rlite targets Linux-based systems, this is achieved using the ioctl()
system call with the SIOCETHTOOL command. The reported interface speed is stored as a property of
the newly created IPCP, to be used by other components.

4.2.2. Propagating the Interface Bandwidth to IPCPs within a DIF

A shim IPCP over Ethernet therefore knows its own link speed; this information is propagated to
a N+1 IPCP during the enrollment process. To share bandwidth information with IPCPs within the
same DIF, we use the messages exchanged as part of the routing process.

Rlite implements a link-state routing mechanism, using a Lower-Flow DataBase (LFDB).
This shared database contains all the necessary information to provide a holistic view of the DIF



Computers 2020, 9, 63 9 of 23

topology to each IPCP, as required by link-state routing to facilitate proper operation. As such, it is
necessary that its state is kept up to date.

We can easily distribute bandwidth information about links to other IPCPs by extending the
LFDB. Routing update messages will ensure the information is propagated through neighbors to all
the IPCPs participating in the DIF.

4.2.3. Determining Whether a Flow Allocation Request Can Be Accepted

The flow allocation process begins with a flow allocation request and ends with one of two
outcomes: the request is either accepted or rejected. A flow allocator policy determines how this
decision is made.

For our purposes, we want this decision to be made based on the current network state with
regards to bandwidth usage. The LFDB can be used to build a graph of the DIF, as this is necessary
for the operation of link-state routing. We have already extended it with information about total
lower-flow bandwidth (link speeds); we can extend it further with information about lower bandwidth
flow usage. With the requested bandwidth being part of the flow request message, we now have all
the components to model this as a graph problem with edge capacities.

We are looking for a path from source to destination which satisfies the capacity requirement.
This will be the path for which we will reserve bandwidth for our flow. As an additional constraint,
we would like to find the shortest path (in number of hops). This is useful to minimize latency.

Such a path can be found using Algorithm 1, which is a modified Breadth-First Search (BFS) with
additional path capacity checks. By using BFS, we ensure that we select the shortest path among
several alternatives. The three lines at the beginning of the algorithm contain variable initialization
which consist of value assignments and therefore have a constant complexity of O(1). The first cycle in
the algorithm, labeled with the Find the shortest viable path caption, iterates over all the edges in the
graph in a breadth-first manner. In the worst case, where the correct path is the last one tried, and the
additional capacity condition does not cause any potential paths to be eliminated, this cycle iterates
over all the edges, giving it a complexity of O(E). The algorithm concludes with an additional cycle,
labeled Build the path, which iterates over the found path from the target to the source to reverse it,
which in the worst case of a linear graph also has a complexity of O(E). This gives the algorithm a
total complexity of O(2 ∗ E).

Algorithm 1 Algorithm for finding the shortest path of a given capacity. V is a set of vertices, E a set
of edges constituting the graph. cap is a function E → N describing edge capacities. s and t are the
flow source and destination vertices, with b being the flow size.

Input: a flow network G = (V, E, cap, s, t, b)
Output: a viable path P

Let f ound := False
Let q be a FIFO queue
Push s to q
Let pred be an array holding the preceding edge on the current path
while not f ound ∧ q is not empty do . Find the shortest viable path

Pop w from q
for all (u, v) ∈ E : u = w do

if pred[v] = null ∧ (v, u) 6= pred[u] ∧ cap(u, v) ≥ b then
pred[v] := (u, v)
Push v to q

if pred[t] 6= null then . Build the path
Let P := {t}
for all (u, v) ∈ pred starting from pred[t] do

Prepend u into P
Continue to pred[u]



Computers 2020, 9, 63 10 of 23

4.2.4. Making the Flow Allocation Process Distributed and Fault-Tolerant

The basic version of the flow allocation process only involves the two endpoints of the new
flow, and as such, many flow allocations can run independently. Our proposed allocator modifies
the global state (bandwidth reservations): we need an arbiter to avoid any inconsistencies. The delay
in propagating information among nodes might result in them making decisions based on stale data
that no longer reflects the current state of the network. As a result, some bandwidth could get reserved
multiple times and thus lead to possible congestion.

It is clear that the flow allocation process can no longer be fully independent and must be carried
out in a cooperative manner. However, delegating the responsibility to a single distinguished node
results in a centralized design that is not resilient to node failures.

To balance these disagreeing requirements, we have opted to implement the flow allocation as
a distributed process using the Raft [29,30] consensus algorithm. This allows us to reason about the
process as if it were centralized, yet providing benefits of being distributed, such as fault-tolerance.

Raft is a consensus algorithm similar to Paxos, which ensures that all participating nodes
eventually agree on the same value of some global variable. It operates by viewing the participating
nodes as replicated state machines. A distinguished node, called the leader, is elected from among
the cluster. The leader appends all state changes into a log which is distributed to the other nodes.
Only after most nodes have confirmed receiving the update are the changes actually committed to the
state machine. In the case of leader failure, the rest of the cluster can elect a new leader from the nodes
which have the most recent log, who takes over the leader’s responsibilities. The rest of the nodes act
as followers, passively synchronizing their state with the leader and checking the leader’s availability.

Our revised flow allocation process, using Raft, looks as follows:

1. An application requests a new flow from the local IPCP
2. The local IPCP sends the flow request to the Raft leader
3. The leader finds a viable path, reserves the bandwidth, and forwards the flow request to the

destination IPCP
4. The destination IPCP relays the request to the target application, which decides whether to accept

or reject
5. The reply is returned to the destination IPCP which forwards it back to the leader
6. The leader returns it to the source IPCP
7. The reply reaches the requesting application

In step 3., the leader does not forward the request further until it receives confirmation about the
reservation entries being replicated. When communicating with the leader, nodes do not address it
directly, instead they target the whole replica cluster; the replicas make sure only the leader processes
the message.

To identify the flow whose reservation is being modified, the leader constructs a unique flow-id
for each flow. This consists of the source an destination IPCP addresses together with the source port;
the destination port is not included as it is not known during step 3., which is where the flow-id is
first needed.

Requested bandwidth is considered to be in a pending state between steps 3. and 5. When
evaluating any new flow requests, it is treated as unavailable. However, if the flow allocation process
ends negatively, either due to rejection, timing out when waiting for a reply, or some other cause, the
associated bandwidth is reclaimed. In case of flow deallocation, the process follows a similar set of
steps as in the allocation case, with the difference that bandwidth is freed instead of being reserved.

4.2.5. Ensuring Proper Usage of Network Paths

For each flow, our distributed Flow Allocator picks a path through the network and reserves the
necessary bandwidth. However, this information is only stored within the LFDB; the actual path any
packet takes within the network is responsibility of the routing component.



Computers 2020, 9, 63 11 of 23

Therefore, our implementation contains a routing policy that cooperates with the Flow Allocator.
These policies are tightly coupled to prevent activating the flow allocator policy without the necessary
routing policy.

The new routing policy routes each packet based on the flow the packets belongs to, rather than
simply looking at the packet destination. Even flows sharing the same source and destination might
be using different paths. It is the responsibility of the Raft leader to distribute routes after a flow
allocation request has been accepted. Conversely, it cleans up the routes associated with a flow after the
latter has been deallocated. This ensures that flows are transported through the network as intended.

4.3. Policy Operation and Configuration

The proposed flow allocation scheme has been implemented within rlite as two cooperating
policies: bw-res for the Flow Allocator, and bw-res-link-state for the Routing component. The Routing
policy contains supporting functionality with regards to graph operations and LFDB updates, while
the main FA policy implements the distributed FA process itself. A diagram of the FA process is shown
in Figure 5 below.

FA LeaderIPCPApp IPCP App
FA request

FA LeaderIPCPApp IPCP App
FA request

FA LeaderIPCPApp IPCP App

Find path

FA LeaderIPCPApp IPCP App

Raft sync

FA LeaderIPCPApp IPCP App

Raft confirm

FA LeaderIPCPApp IPCP App
FA request

FA LeaderIPCPApp IPCP App
FA request

FA LeaderIPCPApp IPCP App
FA response

FA LeaderIPCPApp IPCP App
FA response

FA LeaderIPCPApp IPCP App

Routes

FA LeaderIPCPApp IPCP App
FA response

FA LeaderIPCPApp IPCP App
FA response

Figure 5. Overview of the flow allocation process. Horizontal arrows represent direct communication;
diagonal arrows are communications with other replicas within the Raft cluster or between the Raft
cluster and nodes along the reserved path; the yellow box is an action done within the IPCP.

The FA policy has a set of configurable parameters, shown in Table 1. The first two control the
behavior of the Raft cluster, whereas the others affect the handling of flow requests that do not specify
the required bandwidth. It is possible to either reject such requests, or to assign to them a pre-defined
bandwidth value. The choice between these two options is left to the network administrator, as different
deployment scenarios and environments might prefer one over the other.



Computers 2020, 9, 63 12 of 23

Table 1. Overview of the configurable parameters.

Name Description

replicas Names of the IPCPs acting as part of the Raft cluster
cli-timeout Timeout for the client request for the replicas
reject-inf-bw Whether to immediately reject flow requests that do not set the expected average bandwidth
default-bw The average bandwidth value used for flow requests that do not set it

The extra information about bandwidth in the LFDB has been exposed in the management
interface of rlite-ctl. Every entry now contains two more values, the Total available bandwidth and
the available Free bandwidth. In addition, printing the Resource Information Base (RIB) of an IPCP
participating in the Raft cluster shows a table of flow reservations, with their flow-ids, endpoints, route
and bandwidth values. An example can be seen in Figure 6 below.

Lower-Flow Database:
Local: n1.b.IPCP, Remote: n1.c.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.b.IPCP, Remote: n1.a.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.a.IPCP, Remote: n1.b.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.c.IPCP, Remote: n1.b.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.c.IPCP, Remote: n1.d.IPCP, Total: 100 Mbps, Free: 20 Mbps
Local: n1.d.IPCP, Remote: n1.c.IPCP, Total: 100 Mbps, Free: 20 Mbps

Supported flows (Src/Dst <Appl,IPCP,port>):
[R], Src=<rinaperf-data|client,n1.a.IPCP,2>

Dst=<rinaperf-data|server,n1.d.IPCP,2>
Connections: [<SrcCep=1, DstCep=1, QosId=0> ]

[R], Src=<rinaperf-data|client,n1.a.IPCP,1>
Dst=<rinaperf-data|server,n1.d.IPCP,1>
Connections: [<SrcCep=0, DstCep=0, QosId=0> ]

Flow reservation table:
n1.a.IPCPn1.d.IPCP2: n1.a.IPCP->n1.d.IPCP

(n1.a.IPCP,n1.b.IPCP,n1.c.IPCP,n1.d.IPCP,) : 40 Mbps
n1.a.IPCPn1.d.IPCP1: n1.a.IPCP->n1.d.IPCP

(n1.a.IPCP,n1.b.IPCP,n1.c.IPCP,n1.d.IPCP,) : 40 Mbps

Figure 6. The status of the RIB of a Raft replica while running a rinaperf test application, requesting
40 Mbps per flow, with two active flows. The flow reservation table lists two entries, and the available
bandwidth has decreased accordingly. The output is not complete, as some parts have been edited or
omitted for brevity.

5. Evaluation and Results

Testing has been done on the graph algorithm itself in isolation and the implemented policies as
a whole. The graph algorithm tests presented are part of rlite unit tests; their main goal is verifying
the expected functionality of the algorithm. We also implemented integration tests for our policies,
to prevent future changes from introducing regressions into the implementation. In addition to those,
several experiments have been carried out with the implemented policies to measure how they work
with regards to bandwidth use. Technical details about the experimental setup are described in
Section 8.

The graph algorithm tests consist of a pre-defined graph and a set of flow requests. Every test
starts from the same initial graph; there are no tests that simulate previous flows being allocated.

Figure 7 shows the simplest test scenario, consisting of four nodes connected as a square. In test
(a), a flow from N0 to N2 of size 5 is requested. There are two possible paths, and the algorithm
returns one of them as expected. Restarting from the initial situation where all the links are free, test (b)



Computers 2020, 9, 63 13 of 23

increases the flow to 10 and changes the destination to N3. Now, only one possible path exists — one
that is longer than the shortest path from N0 to N3. The algorithm correctly finds this longer path, as is
necessary due to the capacity condition.

10

10

10

5

N0N1

N2 N3

N1

N2

N0N0

(a) Flow of 5 from N0 to N2

10

10

10

5

N0N1

N2 N3

N1

N2

N0N0

(b) Flow of 10 from N0 to N3

Part of found path FALSE TRUE

Figure 7. A basic test for the graph algorithm to check that it respects the capacity condition. (a) The
result of searching for a path from N0 to N2 of size 5; (b) the result of searching for a path from N0 to
N3 of size 10.

Figure 8 displays a similar test, with a bigger graph and many more possible paths between any
two nodes. Again, the test has been intentionally designed to contain only one viable path that is much
longer than the direct, shortest path. The algorithm can find this path.

5

10
5

5

10

10

5
5

10

10

510

5

5

N0N1

N2N3

N4

N5

N6

N7
N8

N7

N4N4

N6

N1

N3

N5

N0N0

N2

Part of found path FALSE TRUE

Figure 8. Another unit test for the graph algorithm. It successfully finds the only possible path from
N3 to N7 of size 10.

The first policy test scenario, shown in Figure 9 consists of 6 nodes, representing two sites
connected with redundant paths. Nodes A and F act as end devices and flow endpoints. Flows between
these two sites can be routed through two possible paths: B-C-E or B-D-E. Links A-B and E-F have a
capacity of 20 Mbps, the rest are 10 Mbps links.



Computers 2020, 9, 63 14 of 23

A

B

C

D

E

F

A

B

C

D

E

F

(a) Per-destination routing (b) Per-flow routing

0

25

50

75

100
Link utilization [%]

Figure 9. Better bandwidth use as a result of per-flow routing. (a) shows complete saturation of the
inner links while an alternate path remains unused. In (b), there is almost double the traffic flowing
through the network, as it can use all available paths.

In the first case, two flows have been allocated using rinaperf, each requiring 5 Mbps. As
B routes both to E, it uses one of the available paths—in this case the one through C. This path becomes
completely saturated, while the other path remains unused.

In the second case, we have increased the bandwidth of each flow to 8 Mbps. This results in
a total of 16 Mbps, which would oversaturate and congest any of the inner links. The Flow Allocator is
aware of this and routes one of the flows through the alternate path, resulting in a more even link use
compared to the previous case as well as better overall network bandwidth use.

Two larger experiments have been carried out, differing in the network topology used and the
number of rinaperf concurrent instances. In both experiments, each link has an available bandwidth
of 10 Mbps. Each rinaperf instance uses two flows, and each flow requests 500 kbps of bandwidth
so that one instance will use 1 Mbps in total. Every node in the network is connected to at least two
other nodes. Single-homed nodes are not interesting in this scenario, since more available connections
are needed to properly use alternate paths in the network.

The first of these experiments has been done with a network of 10 nodes, and 64 rinaperf
instances have been used. Visualization of the experiment can be seen in Figure 10. Figure 11 displays
additional data regarding link use and the success rate of flow allocation requests.

From this data, we can see that one of the links becomes fully saturated around the 35th iteration.
This has no noticeable effect on the following flow allocation requests, as there are enough alternate
paths that can be used. It is shortly before the 60th iteration that all three links connecting one part
of the graph to another — seen as the three yellow edges going from the center node to the right
in Figure 10d — that the average link use reaches a plateau and flow allocations start to fail. This
is expected, as our network has effectively been segmented into two sub-networks and no flows
allocations between these two segments will succeed.



Computers 2020, 9, 63 15 of 23

(c) 48 instances started (d) 64 instances started

(a) 16 instances started (b) 32 instances started

0

25

50

75

100
Link utilization [%]

Figure 10. Scenario with 10 nodes: Visualization of link use after (a) 16, (b) 32, (c) 48, (d) 64 rinaperf
instances have been started on randomly selected nodes.

0

25

50

75

100

125

0 20 40 60
Started instances

(a
)A

ct
iv

e
flo

w
s

0

25

50

75

100

0 20 40 60
Started instances

(b
)L

in
k

U
ti

liz
at

io
n

max

mean

Figure 11. Scenario with 10 nodes: (a) Success of flow allocation requests over time; (b) link use over
time. The value max shows the use of the link with the most traffic flowing through it at that point in
time; mean is the average link use across the network.

The second experiment (Figures 12 and 13) has been carried out in a similar way, but with network
of 20 nodes and 100 rinaperf instances. We observe a behavior analogous to the previous experiment.
One of the interconnecting links — visible in orange-yellow in Figure 12a — becomes saturated shortly
after the 25th iteration, with no effect on the overall behavior. Once again, the network partitions itself,
this time around the 75th iteration. Use and flow count plateaus for some time, but since this network
is larger than the previous one, some flow allocations succeed within their own segments.



Computers 2020, 9, 63 16 of 23

(c) 75 instances started (d) 100 instances started

(a) 25 instances started (b) 50 instances started

0

25

50

75

100
Link utilization [%]

Figure 12. Scenario with 20 nodes: Visualization of link use after (a) 25, (b) 50, (c) 75, (d) 100 rinaperf
instances have been randomly started.

0

50

100

150

0 25 50 75 100
Started instances

(a
)A

ct
iv

e
flo

w
s

0

25

50

75

100

0 25 50 75 100
Started instances

(b
)L

in
k

U
ti

liz
at

io
n

max

mean

Figure 13. Scenario with 20 nodes: (a) Success of flow allocation requests over time; (b) link use over
time. The value max shows the use of the link with the most traffic flowing through it at that point in
time; mean is the average link use across the network.

Both experiments follow a similar pattern, where links in the center that interconnect the various
edges of the network are the first to get saturated. As time progresses, links around these core links
become more used, as they serve as alternate paths between the network parts. Link use is distributed
fairly evenly, depending on the distance from the core. This agrees with our intuitive expectation that
as more flows get allocated, the backbone of the network will get more strained.

As the policy can use alternate paths, it is able to deliver better a quality of service for some flows.
This, however, comes at a price: as the selected alternate path might be considerably longer, this leads
to increased latency and generally less predictable behavior.

Figures 14 and 15 display a comparison of maximum achievable flow between two ends of
a network. The source and target nodes have had the capacity of their edges increased to infinity to act
as “supersinks”. In both figures, the first graph is the result obtained from running the Ford-Fulkerson
maximum flow algorithm, which serves as the theoretical upper bound. The second graph contains
the maximum achieved flow using our policy before flow allocation requests started being rejected.
The maximum flow in both scenarios is 30 Mbps, which our policy successfully reaches, albeit using
different paths.



Computers 2020, 9, 63 17 of 23

N0

N1
N2

N3 N4

N5

N6

N7

N8

N9

(a) Ford-Fulkerson

N0

N1
N2

N3 N4

N5

N6

N7

N8

N9

(b) Our implementation

0 5 10 15 20
Edge flow [Mbps]

Figure 14. Comparison of maximum flow from N6 to N9 in the network from Figure 10. Both nodes
act as “supersinks” and have had the capacity of their edges increased to infinity. (a) shows the results
obtained using the Ford-Fulkerson maximum flow algorithm. (b) shows results obtained using our
implemented policy.

N0

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

N17
N18

N19

(a) Ford-Fulkerson

N0

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

N17
N18

N19

(b) Our implementation

0 10 20 30
Edge flow [Mbps]

Figure 15. Comparison of maximum flow from N18 to N2 in the network from Figure 12. Both nodes
act as “supersinks” and have had the capacity of their edges increased to infinity. (a) shows the results
obtained using the Ford-Fulkerson maximum flow algorithm. (b) shows results obtained using our
implemented policy.

Figure 16 shows the flow allocation delay for our bwres policy, as well as the default local policy
available in rlite, in the scenario from Figure 10. The delay has been measured as the time period
between the local IPCP receiving a FA request from an application (first row in Figure 5) and the same
IPCP receiving a response, whether positive or negative, from the remote party (one before last row
in Figure 5). The values measured for the local policy also serve as the lower bound of achievable FA
delay, as the FA process consists of only the minimal signaling communication required for successful
flow allocation.

The delay for local flow allocation (without delay introduced by the destination application
making a decision of whether to accept or reject the request) can be computed as

dlocal = RTT

where RTT is the round-trip time between the flow source and the flow destination.



Computers 2020, 9, 63 18 of 23

For our bwres policy, the FA delay can be computed as

dbwres = RTTs + RTTd + L

where RTTs is the round-trip time between the flow requester and the Raft leader, RTTd the round-trip
time between the Raft leader and the destination node, and L the processing overhead of the Raft
leader. L could be further computed as

L = G + C

where G is the cost of running the graph algorithm and C the overhead of replicating the Raft log.
In an ideal case, where L = 0, the relation between the two delays is

RTT ≤ RTTs + RTTd

depending on whether the Raft leader is on the shortest path between the flow source and flow
destination nodes. The local policy therefore also serves as the lower bound on FA delay in
this comparison.

As expected, the extra signaling overhead required for the policy’s operation results in a higher
median delay. The complexity of several parts of the flow allocation process (finding a path, distributing
routes, etc.) is dependent on the length of the path/distance between the source and destination nodes,
resulting in a greater variation in delay. However, for the test scenario, the third quartile of bwres
reaches the values of the first outliers of local and is still significantly lower than the last outliers,
suggesting that the policy’s operation is in itself not the biggest source of possible delay.

Figure 17 shows the same data, this time for the scenario from Figure 12. The data follows a similar
pattern as that from Figure 16. The larger network size has resulted in an increased allocation delay for
both policies. For bwres, the outliers below the median value are probably allocation requests that have
been rejected very fast, such as those whose source is the Raft leader; in such cases, the messages are
processed on the same IPCP, thus avoiding any delay introduced by round-trip times. As the network
has become larger, so has increased the delay variation for both policies. The difference between
the median delays for the same policy in the two scenarios is significantly larger than the difference
between the two policies within one scenario, again suggesting that the main source of delay is not the
policy itself. Even with the added complexity and additional signaling the latency is comparable to
that of the default, naive policy which provides no features at all.

local

bwres

10 20
Flow allocation delay [ms]

Po
lic

y

Figure 16. Comparison of flow allocation delay for the scenario from Figure 10. The box edges
correspond to the first and third quartiles, with a bolder line representing the median value. Outliers
are shown as dots.



Computers 2020, 9, 63 19 of 23

local

bwres

10 20 30 40
Flow allocation delay [ms]

Po
lic

y

Figure 17. Comparison of flow allocation delay for the scenario from Figure 12. The box edges
correspond to the first and third quartiles, with a bolder line representing the median value. Outliers
are shown as dots.

6. Discussion

Our implemented flow allocation scheme achieves the stated goal of preventing a link from
becoming oversaturated. It provides a reliable guarantee to flows regarding available resources.
This flow allocation scheme is suitable for scenarios where bandwidth requirements can be estimated
in advance, and its availability is of higher priority than predictable paths and latency between various
parts of the network.

The implementation assumes the actors participating in the DIF are not malicious, and expects
this to be enforced during DIF enrollment if necessary. There are no limits or checks to what an
application might do: requesting an interface’s worth of bandwidth for one flow is possible, but is
probably closer to a DoS attack than a legitimate use-case. It is expected that applications work in
a cooperative manner and do not request more bandwidth than is necessary. Such checks could be
added, to e.g., limit the maximum bandwidth for one allocation, or the share of total bandwidth that
one IPCP might have reserved at any point in time; it might in fact be necessary to do so to make the
implementation production-ready, if only to prevent buggy applications from taking up too much
bandwidth by accident. However, these restrictions would not change the design in any significant
way, and might in fact prove to be limiting when running experiments.

A necessary side effect of our design is that flow allocation may fail, due to bandwidth limitations.
Although this might seem as something undesirable at first, the extra information about the state of the
network, coupled with better QoS assurance, enables creation of adaptive applications which can use
these factors for their decision making and adjust their behavior. An application might select different
compression algorithms for data transfer, trading local processing speed for bandwidth requirements.
An alternative approach would be for the application to gracefully degrade the service it provides,
based on the available bandwidth. The application could periodically probe the network state, trying
to establish a better flow, and migrate its communication if successful.

7. Future Work

We have identified several areas where further work could be done to improve both performance
and usability.

The first major concern is scalability: as it stands now, the policy is not able to fully use the
features of the Recursive InterNetwork Architecture. In its current state, the implementation is a proof
of concept of an alternative approach to flow allocation. Although some of its functionality leverages
RINA’s unique features, it currently does not fully integrate with the recursive stacking. This has been
a conscious decision during implementation — not a result of any known design limitations — and
plans exist to extend the implementation to fully support normal DIFs over normal DIFs.

The second area for improvements is reacting better to changes in the network. With the
current design, the reserved path does change during the whole lifetime of a flow. This has negative
consequences on the robustness of the network as well as being a potential source of performance



Computers 2020, 9, 63 20 of 23

improvements. If a node along a reserved path goes down, the flow effectively dies as well, since
routing rules do not reflect this new information. Rerouting such flows on link-state changes through
alternate paths, if possible, would significantly improve the policy’s resilience.

This idea can be pursued further: the FA might continually try to reroute flows through more
optimal paths. Using a shorter path that has been previously unavailable would free up additional
bandwidth and allow more flows to exist simultaneously. Besides significantly increasing the
computational complexity of the FA process, rerouting flows too often and too fast could negatively
impact the overall stability of the network. Likewise, a malicious actor could use this to launch a DoS
attack by forcing the FA leader to constantly attempt to reroute all the flows.

We have, for the sake of simplicity, effectively avoided the issue of flows that do not specify
their bandwidth. They are either ignored (by immediately rejecting them) or assigned a pre-defined
bandwidth value and treated as any other flow. Depending on the configured value, the nature of the
flows, and their number, this might result in a lot of bandwidth being wasted or conversely, being
too restrictive.

One possible approach would be to dynamically divide the surplus bandwidth between all these
flows. This would require updating the flow rate limits on each flow allocation. With this method,
unlimited flows would be of lower priority than limited, as the bandwidth available to them would
continually shrink to the advantage of the latter group. One of the undesirable assumptions — shared
with the pre-defined bandwidth approach — is that every such flow could use the same amount of
bandwidth. Given the great diversity between applications and their requirements, this is not ideal;
however, this solution is simple to implement.

A more complex solution to this problem would be to limit each of these flows to the whole of the
surplus bandwidth and let a flow control mechanism divide the bandwidth between flows. Proactive
and reactive control mechanisms are not mutually exclusive [9]; they can be used in a complementary
manner. This hybrid approach provides potentially better bandwidth use, as each flow would take
up only as much bandwidth as needed. Besides the greater complexity, letting a reactive flow control
mechanism come into play might negatively affect the limited flows, as there might be periods of time
during which a link might be oversaturated.

Whether a flow allocation will succeed is dependent on the available bandwidth on each path
between the source and the destination. There might be situations where a single path does not have
enough bandwidth, but several of them combined do. Splitting the flow into sub-flows which will
all be routed through a different path would enable the network to squeeze out several more successful
flow allocations in a busy network. Once again, this approach significantly raises the complexity of the
whole process. At the same time, different paths might vary greatly in their characteristics, such as
latency and hop count. This might cause problems with the delivery, such as packet reordering and
head-of-line blocking, negatively impacting the performance.

The final area for improvements, orthogonal to all the previous ones, is the graph algorithm itself.
A more sophisticated algorithm might take into consideration additional properties of the available
paths. Given several shortest path candidates, the algorithm could e.g., prefer the one with the largest
bottleneck capacity:

cap(path) = min(∀edge : cap(edge))

result = max(∀path : cap(path))

This would prioritize paths with sparer bandwidth and delay the network becoming partitioned
due to an important interconnecting link becoming saturated. An example is shown in Figure 18 below.



Computers 2020, 9, 63 21 of 23

10
10

5

5
5

10

10

A

B C

D

E

F

G

A

BB

DD

C

F

(a) Found path using naive algorithm

10
10

5

5
5

10

10

A

B C

D

E

F

G

A

BB

D

C

F

(b) Found path using prioritizing algorithm

Part of found path FALSE TRUE

Figure 18. Improvements in bandwidth use effectiveness through algorithm modification. A network
with three sites (A, E and G) connected using two redundant paths. In both cases, a flow from A to G of
size 5 has been allocated. In (a), corresponding to the current algorithm, a path through D might be
selected, depending on the traversal order. This completely cuts off site E from the rest of the network,
even though there is enough bandwidth. Conversely, an algorithm with the proposed prioritizing
modification in (b) avoids this by selecting the alternate route first.

8. Materials and Methods

The source code for our implementation is available at https://github.com/autrimpo/rlite,
tagged with the computers20 tag. Instructions how to build rlite are in the included README.md file.

Unit tests for the graph algorithm are defined in the file user/uipcps/lfdb-bw-test.cpp and can
be ran using build/user/uipcps/lfdb-bw-test. Each test prints out information about the graph,
the requested flow, as well as the found path, if any.

The bandwidth use measurements were done on a virtual QEMU network created using the
included demonstrator tool. The demonstrator tool, located in demo/demo.py, takes a configuration
file describing the desired network. Configuration files used in this paper are available at http:
//www.stud.fit.vutbr.cz/~koutenmi/Computers20/multipath.conf for Figure 9, http://www.stud.fit.
vutbr.cz/~koutenmi/Computers20/stress-10.conf for Figure 10, and http://www.stud.fit.vutbr.cz/
~koutenmi/Computers20/stress-20.conf for Figure 12. The second and third configurations already
come with the bw-res policy set; in the case of the first one, manual adjustment of the running network
is required.

Before creating the network, it is necessary to build a custom buildroot image using https:
//github.com/rlite/buildroot. The process is documented in the update.sh script: it requires proper
configuration of the package/rlite/rlite.mk file to use the local rlite source code, setting the
matching output path in the update script and running the script itself.

The demonstrator has been run with the following parameters: ./demo.py -b udp -e
full-mesh -c <CONF_FILE>. This generates several shell scripts that can be used to start (up.sh),
stop (down.sh), and access (access.sh) the virtual machines. Server rinaperf instances have been
started with rinaperf -l -z <UNIQUE_NAME> and the clients used rinaperf -z <SERVER_NAME> -B
500000 -D 1000000. Each client running requires its own server instance. Data has been gathered by
dumping the RIB on a node participating in the Raft cluster with rlite-ctl dif-rib-show.

Author Contributions: Conceptualization, M.K. and V.M.; methodology, M.K.; software, M.K. and V.M.;
validation, M.K.; formal analysis, M.K.; investigation, M.K.; resources, M.K., V.V. and V.M.; data curation,
M.K.; writing–original draft preparation, M.K., V.V. and V.M.; writing–review and editing, M.K., V.V. and V.M.;
visualization, M.K.; supervision, V.V. and V.M.; project administration, V.V. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding, the article publication was subsidized by Department of
Information Systems by the Faculty of Information Technology of Brno University of Technology. The authors
would like to praise Dušan Kolář for his generosity and open-mindedness to support RINA-related research.

https://github.com/autrimpo/rlite
http://www.stud.fit.vutbr.cz/~koutenmi/Computers20/multipath.conf
http://www.stud.fit.vutbr.cz/~koutenmi/Computers20/multipath.conf
http://www.stud.fit.vutbr.cz/~koutenmi/Computers20/stress-10.conf
http://www.stud.fit.vutbr.cz/~koutenmi/Computers20/stress-10.conf
http://www.stud.fit.vutbr.cz/~koutenmi/Computers20/stress-20.conf
http://www.stud.fit.vutbr.cz/~koutenmi/Computers20/stress-20.conf
https://github.com/rlite/buildroot
https://github.com/rlite/buildroot


Computers 2020, 9, 63 22 of 23

Acknowledgments: This article has been supported by the Ministry of Education, Youth and Sports from the
National Programme of Sustainability (NPU II) project IT4Innovations excellence in science (no. LQ1602).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AE Application Entity
AP Application Process
BFS Breadth-First Search
CDAP Common Distributed Application Protocol
CS Computing System
DAF Distributed Application Facility
DIF Distributed Interprocess Facility
DiffServ Differentiated Services
DTCP Data Transfer Control Protocol
DTP Data Transfer Protocol
DoS Denial of Service
FA Flow Allocator
IntServ Integrated Services
IP Internet Protocol
IPCP InterProcess Communication Process
IoT Internet of Things
KLM Kernel Loadable Module
LAN Local Area Network
LFDB Lower-Flow DataBase
PS Processing System
PDU Protocol Data Unit
QoS Quality of Service
RIB Resource Information Base
RINA Recursive InterNetwork Architecture
SCTP Stream Control Transmission Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
UIPCP User-space InterProcess Communication Process
WAN Wide Area Network

References

1. Welzl, M. Network Congestion Control: Managing Internet Traffic; John Wiley & Sons Ltd.: Chichester, UK, 2005.
2. Pouzin Society. RINA Specifications. 2019. Available online: https://github.com/PouzinSociety/

RINASpecifications (accessed on 30 May 2020).
3. Day, J.D. Patterns In Network Architecture: A Return to Fundamentals; Prentice Hall: Upper Saddle River, NJ,

USA, 2008.
4. IRATI. Available online: https://irati.github.io/stack/ (accessed on 30 May 2020).
5. Rlite: A Light RINA Implementation. Available online: https://github.com/rlite/rlite (accessed on 30 May 2020).
6. Ouroboros. Available online: https://ouroboros.rocks/ (accessed on 30 May 2020).
7. ProtoRINA. Available online: https://csr.bu.edu/rina/protorina/2.0/ (accessed on 30 May 2020).
8. RINASim. Available online: https://rinasim.omnetpp.org/ (accessed on 30 May 2020).
9. Keshav, S. Congestion Control in Computer Networks. PhD Thesis, University of California at Berkeley,

Berkeley, CA, USA, 1991.
10. Jacobson, V. Congestion Avoidance and Control. In Proceedings of the SIGCOMM ’88, Symposium

Proceedings on Communications Architectures and Protocols, Stanford, CA, USA, 16–18 August 1988;
ACM: New York, NY, USA, 1988; pp. 314–329. doi:10.1145/52324.52356.

https://github.com/PouzinSociety/RINASpecifications
https://github.com/PouzinSociety/RINASpecifications
https://irati.github.io/stack/
https://github.com/rlite/rlite
https://ouroboros.rocks/
https://csr.bu.edu/rina/protorina/2.0/
https://rinasim.omnetpp.org/
https://doi.org/10.1145/52324.52356


Computers 2020, 9, 63 23 of 23

11. Braden, R. Requirements for Internet Hosts—Communication Layers. In RFC 1122; IETF: Fremont, CA,
USA, 1989.

12. Ha, S.; Rhee, I.; Xu, L. CUBIC: A New TCP-friendly High-speed TCP Variant. SIGOPS Oper. Syst. Rev.
2008, 42, 64–74. doi:10.1145/1400097.1400105.

13. Xu, L.; Harfoush, K.; Rhee, I. Binary increase congestion control (BIC) for fast long-distance networks.
In Proceedings of the IEEE INFOCOM 2004, Hong Kong, China, 7–11 March 2004; Volume 4, pp. 2514–2524.
doi:10.1109/INFCOM.2004.1354672.

14. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-Based Congestion Control.
Queue 2016, 14, 20–53. doi:10.1145/3012426.3022184.

15. Floyd, S.; Jacobson, V. Random Early Detection Gateways for Congestion Avoidance. IEEE/ACM Trans. Netw.
1993, 1, 397–413. doi:10.1109/90.251892.

16. Scholz, D.; Jäger, B.; Schwaighofer, L.; Raumer, D.; Geyer, F.; Carle, G. Towards a Deeper Understanding of
TCP BBR Congestion Control. In Proceedings of the 2018 IFIP Networking Conference (IFIP Networking)
and Workshops, Zurich, Switzerland, 14–16 May 2018.

17. Ramjee, R.; Nagarajan, R.; Towsley, D. On optimal call admission control in cellular networks. In Proceedings
of the IEEE INFOCOM ’96. Conference on Computer Communications, San Francisco, CA, USA, 24–28
March 1996; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1, pp. 43–50.

18. Kalmanek, C.R.; Kanakia, H.; Keshav, S. Rate Controlled Servers for Very High-Speed Networks.
In Proceedings of the GLOBECOM ’90: IEEE Global Telecommunications Conference and Exhibition,
San Diego, CA, USA, 2–5 December 1990; pp. 12–20.

19. Braden, B.; Clark, D.; Shenker, S. Integrated Services in the Internet Architecture: An Overview. In RFC
1633; IETF: Fremont, CA, USA, 1994.

20. Braden, B.; Zhang, L.; Berson, S.; Herzog, S.; Jamin, S. Resource ReSerVation Protocol (RSVP)—Version 1
Functional Specification. In RFC 2205; IETF: Fremont, CA, USA, 1997.

21. Mankin, A.; Baker, F.; Braden, B.; Bradner, S.; O’Dell, M.; Romanow, A.; Weinrib, A.; Zhang, L. Resource
ReSerVation Protocol (RSVP)—Version 1 Applicability Statement Some Guidelines on Deployment. In RFC
2208; IETF: Fremont, CA, USA, 1997.

22. Nichols, K.; Blake, S.; Baker, F.; Black, D.L. Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers. In RFC 2474; IETF: Fremont, CA, USA, 1998.

23. Blake, S.; Black, D.L.; Carlson, M.A.; Davies, E.; Wang, Z.; Weiss, W. An Architecture for Differentiated
Services. In RFC 2475; IETF: Fremont, CA, USA, 1998.

24. Group, I..W.; others. IEEE Standard for Local and Metropolitan Area Network–Bridges and Bridged Networks;
Technical Report; Technical Report Std 802.1 Q-2018; Revision; IEEE: New York, NY, USA, 2018; 1993p.

25. Faucheur, F.L.; Wu, L.; Davie, B.; Davari, S.; Vaananen, P.; Krishnan, R.; Cheval, P.; Heinanen, J. Multi-Protocol
Label Switching (MPLS) Support of Differentiated Services. In RFC 3270; IETF: Fremont, CA, USA, 2002.

26. Heinanen, J.; Guerin, R. A Single Rate Three Color Marker. In RFC 2697; IETF: Fremont, CA, USA, 1999.
27. Baker, F.; Fairhurst, G. IETF Recommendations Regarding Active Queue Management. In RFC 7567; IETF:

Fremont, CA, USA, 2015.
28. Day, J. The Interina Reference Model. 2014. Available online: https://github.com/PouzinSociety/

RINASpecifications (accessed on 30 May 2020).
29. Ongaro, D.; Ousterhout, J.K. In search of an understandable consensus algorithm. In Proceedings of the

USENIX Annual Technical Conference, Philadelphia, PA, USA, 19–20 June 2014; pp. 305–319.
30. Ongaro, D. Consensus: Bridging Theory and Practice. PhD Thesis, Stanford University, Stanford, CA, USA, 2014.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1109/INFCOM.2004.1354672
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1109/90.251892
https://github.com/PouzinSociety/RINASpecifications
https://github.com/PouzinSociety/RINASpecifications
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Recursive InterNetwork Architecture
	Design and Implementation
	The Design of Rlite
	Design of the Bandwidth-Aware Flow Allocation
	Querying the Interface Bandwidth
	Propagating the Interface Bandwidth to IPCPs within a DIF
	Determining Whether a Flow Allocation Request Can Be Accepted
	Making the Flow Allocation Process Distributed and Fault-Tolerant
	Ensuring Proper Usage of Network Paths

	Policy Operation and Configuration

	Evaluation and Results
	Discussion
	Future Work
	Materials and Methods
	References

