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Josef Šlapal[0000−0001−8843−6842]

IT4Innovations Centre of Excellence, Brno University of Technology,
Brno, Czech Republic
slapal@fme.vutbr.cz

Abstract. In a simple undirected graph, we introduce a special connect-
edness induced by a set of paths of length 2. We focus on the 8-adjacency
graph (with the vertex set Z2) and study the connectedness induced by
a certain set of paths of length 2 in the graph. For this connectedness, we
prove a digital Jordan curve theorem by determining the Jordan curves,
i.e., the circles in the graph that separate Z2 into exactly two connected
components. These Jordan curves are shown to have an advantage over
those given by the Khalimsky topology on Z2.
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1 Introduction

In our increasingly digital world, digital images become an integral part
of our everyday life. They play an extremely important role in scientific
data visualization and this is the main reason for studying them in this
paper.
In digital geometry for two-dimensional (2D for short) computer imagery,
we usually replace pixels of a computer screen by their center points so
that the screen is then represented by a finite section of the digital plane
Z2. But, instead of such a section, we work with the whole digital plane
Z2. A 2D black and white digital image is then a finite subset of Z2 and
its elements are called black points. The remaining elements of Z2, called
white points, form the background of the image. One of the basic prob-
lems of 2D digital image analysis and processing is to find a convenient
connectedness structure for the digital plane Z2. Since digital images are
simply digital approximations of the real ones, a connectedness being
convenient means that the digital plane provided with such a structure
behaves in much the same way as the Euclidean plane. In particular, it
is required that such a structure allows for a digital analogue of the Jor-
dan curve theorem (recall that the classical Jordan curve theorem states
that a Jordan, i.e., simple closed, curve in the Euclidean plane separates
this plane into exactly two connected components). In digital images,
digital Jordan curves represent borders of objects imaged and, therefore,
play an important role in solving numerous problems such as pattern
recognition, memory usage compression, image reconstruction, etc.
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The classical, graph-theoretic approach to solving the problem of provid-
ing the digital plane with a convenient connectedness structure is based
on using the well-known 4- and 8-adjacency graphs (see e.g. [7, 8, 12–14,
17]). A disadvantage of this approach is that neither of the two graphs
itself allows for a digital Jordan curve theorem so that a combination of
them has to be used. Therefore, in [3], a new, topological approach to
the problem was proposed based on employing a single structure, the so-
called called Khalimsky topology, to obtain a convenient connectedness
in the digital plane Z2. The topological approach was then developed by
many authors - see, e.g., [4–6, 9–11, 15, 16].
The Khalimsky topology has the property that its connectedness coin-
cides with the connectedness in a simple undirected graph with the vertex
set Z2, namely the connectedness graph of the topology. Thus, to equip
the digital plane with a convenient connectedness structure, this graph,
rather than the Khalimsky topology itself, may be used. A drawback
of this approach is that Jordan curves in the (connectedness graph of
the) Khalimsky topology may never turn at the acute angle π

4
. It would,

therefore, be useful to find some new, more convenient structures on Z2

that would allow Jordan curves to turn, at some points, at the acute
angle π

4
. In the present note, to obtain such a convenient structure, we

employ the 8-adjacency graph with connectedness given by a certain set
of paths of length 2 in the graph. For this connectedness, we prove a dig-
ital Jordan curve theorem to show that the graph with the set of paths
provides a convenient structure on the digital plane for the study and
processing of digital images.

2 Preliminaries

For the graph-theoretic concepts used see, for instance, [1]. By a graph
we always mean an undirected simple graph without loops, hence and
ordred pair (V,E) of sets where E ⊆ {{a, b}; a, b ∈ V, a ̸= b}. The
elements of V are called vertices and those of E are called edges of the
graph. If {a, b} ∈ E, then the vertices a and b are said to be adjacent
and the edge {a, b} is said to join the vertices a and b. For an arbitrary
vertex a ∈ V , we denote by E(a) the set of all vertices adjacent to a, i.e.,
E(a) = {b ∈ V ; {a, b} ∈ E}. Clearly, {a, b} ∈ E if and only if b ∈ E(a)
or, equivalently, a ∈ E(b). Thus, the set E of edges of a graph may be
given by determining the set E(a) for every a ∈ V .
As usual, we graphically represent graphs by thinking of vertices as points
and edges as line segments whose end points are just the vertices they
join.
A graph (U,F ) is called a subgraph of a graph (V,E) if U ⊆ V and
F ⊆ E. If, moreover, F = E ∩ {{a, b}; a, b ∈ U}, then (U,F ) is said to
be an induced subgraph of (V,E) being denoted briefly by U . A subgraph
(U,F ) of (V,E) is called a factor of (V,E) if U = V .
Recall that a walk in a graph (V,E) is a finite sequence (ai| i ≤ n) =
(a0, a1, ..., an), n a non-negative integer, of vertices such that {ai−1, ai} ∈
E whenever i ∈ {1, 2, ...n}. If all vertices ai, i ∈ {0, 1, ..., n}, are pairwise
different, then the walk (ai| i ≤ n) is said to be a path and the number
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n is called the length of the path. Thus, also a single vertex is considered
to be a path (of length 0). A circle in (V,E) is any walk (ai| i ≤ n) with
n > 2 such that (ai| i < n) is a path and a0 = an. A subset X ⊆ V is said
to be connected if, for every pair a, b ∈ X, there is a path (ai| i ≤ n) such
that a0 = a, an = b and ai ∈ X for all i ∈ {0, 1, ..., n}. A maximal (with
respect to set inclusion) connected subset of V is called a component of
the graph (V,E).

A nonempty, finite and connected subset C of V is said to be a simple
closed curve in (V,E) if the set E(a) ∩ C has two elements for every
a ∈ C. Clearly, every simple closed curve is a circle. A simple closed
curve in (V,E) is called a Jordan curve in (V,E) if it separates the set
V into exactly two components, i.e., if the induced subgraph V − C of
(V,E) has exactly two components.

For every point (x, y) ∈ Z2, we put A4(x, y) = {(x + i, y + j); i, j ∈
{−1, 0, 1}, ij = 0, i+j ̸= 0} and A8(x, y) = A4(x, y)∪{(x+i, y+j); i, j ∈
{−1, 1}}. The points of A4(x, y) and A8(x, y) are said to be 4-adjacent
and 8-adjacent to (x, y), respectively. The graphs (Z2, A4) and (Z2, A8)
are called the 4-adjacency graph and 8-adjacency graph, respectively, and
are demonstrated in Figure 1.
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Fig. 1. Portions of the 4- and 8-adjacency graphs.

In digital image processing, the 4-adjacency and 8-adjacency graphs are
the most frequently used structures on the digital plane. But, since the
late 1980’s, another structure on Z2 has been used too, namely the Khal-
imsky topology [3]. It is the product of two copies of the topology on Z
given by the subbase {{2k−1, 2k, 2k+1}; k ∈ Z} (for the basic concepts
of general topology see [2]). Recall that, given a topology T on a set X,
the connectedness graph of T is the graph with the vertex set X such
that a pair of different points x, y ∈ X is adjacent if and only if {x, y} is
a connected subset of the space (X,T ). Since the Khalimsky topology is
an Alexandroff topology (which means that the closure operator in the
topology is completely additive), the connectedness in the Khalimsky
topological space coincide with the connectedness in the connectedness
graph of the Khalimsky topology. We will call the connectedness graph
of the Khalimsky topology briefly the Khalimsky graph. The Khalimsky
graph is the graph (Z2,K) such that, for any (x, y) ∈ Z2,
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K(x, y) =

{
A8(x, y) if x and y have the same parity,
A4(x, y) if x and y have different parities.

A portion of the Khalimsky graph is demonstrated in Figure 2. It is
obvious that the graph is a factor of the 8-adjacency graph.
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Fig. 2. A portion of the Khalimsky graph.

The famous Jordan curve theorem proved for the Khalimsky topology in
[3] may be formulated as follows:

Theorem 1. In the Khalimsky graph, every simple closed curve with at
least four points is a Jordan curve.

We denote by (Z2, L) the factor of the Khalimsky graph (Z2,K) given
by L = K −

∪
{{(x, y), (z, t)}; (x, y) ∈ Z2, x and y are odd and (z, t) ∈

A4(x, y)}. A portion of the graph (Z2, L) demonstrated in Figure 3.
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Fig. 3. A portion of the graph (Z2, L).

The below corollary immediately follows from Theorem 1:
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Corollary 1. Every circle in the graph (Z2, L) which does not turn, at
any of its points, at the acute angle π

4
is a Jordan curve in the connect-

edness graph of the Khalimsky topology.

It is readily verified that a simple closed curve (and thus also a Jordan
curve) in the Khalimsky graph may never turn at the acute angle π

4
. It

could therefore be useful to replace the Khalimsky topology (Khalimsky
graph) with some more convenient structure on Z2, another factor of the
8-adjacency graph, that would allow Jordan curves to turn at the acute
angle π

4
at some points. And this is what we will do in the next section.

3 8-adjacency graph with a set of paths of
length 2

In the 8-adjacency graph (Z2, A8), the set A8(x, y) provides the digital
plane Z2 with a natural concept of neighborhood of any point (x, y) ∈ Z2.
Therefore, it would be desirable to use the graph for structuring the
digital plane. But the usual concept of connectedness in the 8-adjacency
graph does not alow for a digital Jordan curve theorem. To solve this
problem, we employ another concept of connectedness.

Definition 1. Let (V,E) be a graph, B a set of paths of length 2 in
the graph, and n a nonnegative integer. A sequence C = (ci| i ≤ n) of
elements of V is called a B-walk if one of the the following three conditions
is satisfied for every i ∈ {0, 1, ....n− 1}:
(i) There exists (a0, a1, a2) ∈ B such that {ci, ci+1} = {a0, a1},
(ii) i > 0 and there exists (a0, a1, a2) ∈ B such that ci−1 = a0, ci = a1,

and ci+1 = a2,
(iii) i < n− 1 and there exists (a0, a1, a2) ∈ B such that ci = a2, ci+1 =

a1, and ci+2 = a0.
A B-walk (ci| i ≤ n) with the property that n ≥ 2 and ci = cj ⇔ {i, j} =
{0, n} is said to be a B-circle.

Observe that, if (x0, x1, ..., xn) is a B-walk, then (xn, xn−1, ..., x0) is a B-
walk, too (so that B-walks are closed under reversion) and, if (xi| i ≤ m)
and (yi| i ≤ p) are B-walks with xm = y0, then, putting zi = xi for all
i ≤ m and zi = yi−m for all i with m ≤ i ≤ m + p, we get a B-walk
(zi| i ≤ m+ p) (so that B-walks are closed under composition).
Given a set B of paths of length 2 in a graph (V,E), a subset A ⊆ V
is said to be B-connected if, for every pair a, b ∈ A, there is a B-walk
(ci| i ≤ n) such that c0 = a, cn = b and ci ∈ A for all i ∈ {0, 1, ..., n}. A
maximal (with respect to set inclusion) B-connected subset of V is called
a B-component of (V,E).

Definition 2. Let B be a set of paths of length 2 in a graph (V,E). A
nonempty, finite and B-connected subset J of V is said to be a B-simple
closed curve if every element (a0, a1, a2) ∈ B with {a0, a1} ⊆ J satisfies
a2 ∈ J and every c ∈ J fulfills one of the following two conditions:

(1) There are exactly two elements (a0, a1, a2) ∈ B satisfying both
{a0, a1, a2} ⊆ J and c ∈ {a0, a2} and there is no element (b0, b1, b2) ∈
B satisfying both {b0, b1, b2} ⊆ J and c = b1.



6 J. Šlapal

(2) There is exactly one element (b0, b1, b2) ∈ B satisfying both
{b0, b1, b2} ⊆ J and c = b1 and there is no element (a0, a1, a2) ∈ B
satisfying both {a0, a1, a2} ⊆ J and c ∈ {a0, a2}.

Clearly, every B-simple closed curve is a B-circle.

Definition 3. Let B be a set of paths of length 2 in a graph (V,E). A B-
simple closed curve J is called a B-Jordan curve if the subset V −J ⊆ V
consists (i.e., is the union) of exactly two B-components.

From now on, B will denote the set of paths of length 2 in the 8-adjacency
graph given as follows: For every ((xi, yi)| i ≤ 2) such that (xi, yi) ∈ Z2

for every i ≤ 2, ((xi, yi)| i ≤ 2) ∈ B if and only if one of the following
eight conditions is satisfied:

(1) x0 = x1 = x2 and there is k ∈ Z such that yi = 4k + i for all i ≤ 2,

(2) x0 = x1 = x2 and there is k ∈ Z such that yi = 4k − i for all i ≤ 2,

(3) y0 = y1 = y2 and there is k ∈ Z such that xi = 4k + i for all i ≤ 2,

(4) y0 = y1 = y2 and there is k ∈ Z such that xi = 4k − i for all i ≤ 2,

(5) there is k ∈ Z such that xi = 4k + i for all i ≤ 2 and there is l ∈ Z
such that yi = 4l + i for all i ≤ 2,

(6) there is k ∈ Z such that xi = 4k + i for all i ≤ 2 and there is l ∈ Z
such that yi = 4l − i for all i ≤ 2,

(7) there is k ∈ Z such that xi = 4k − i for all i ≤ 2 and there is l ∈ Z
such that yi = 4l + i for all i ≤ 2,

(8) there is k ∈ Z such that xi = 4k − i for all i ≤ 2 and there is l ∈ Z
such that yi = 4l − i for all i ≤ 2.

A portion of B is shown in Figure 4. The paths of length 2, i.e., the
ordered triples, belonging to B are represented by line segments oriented
from first to last terms.
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Fig. 4. A portion of the set B.
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Further, we denote by (Z2, A) the factor of the 8-adjacency graph given
as follows:

A(x, y) =



A8(x, y) if (x, y) = (4k, 4l), k, l ∈ Z,
A8(x, y)−A4(x, y) if (x, y) = (4k + 2, 4l + 2), k, l ∈ Z,
{(x− 1, y), (x+ 1, y)} if (x, y) = (4k + i, 4l), k, l ∈ Z,

i ∈ {1, 2, 3},
{(x, y − 1), (x, y + 1)} if (x, y) = (4k, 4l + i), k, l ∈ Z,

i ∈ {1, 2, 3},
{(x− 1, y − 1), (x+ 1, y + 1)} if (x, y) = (4k + i, 4l + i),

k, l ∈ Z, i ∈ {−1, 1},
{(x− 1, y + 1), (x+ 1, y − 1)} if (x, y) = (4k + i, 4l − i),

k, l ∈ Z, i ∈ {−1, 1},
∅ otherwise.

A portion of the graph (Z2, A) is demonstrated by Figure 5.
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Fig. 5. A portion of the graph (Z2, A).

Theorem 2. Every circle in the graph (Z2, A) that does not turn at any
point (4k + 2, 4l + 2), k, l ∈ Z (i.e, any point denoted by a bold dot in
Figure 5) is a B-Jordan curve.

Proof. Clearly, every circle in the graph (Z2, A) is a B-simple closed
curve. Let z = (x, y) ∈ Z2 be a point such that x = 4k+p and y = 4l+ q
for some k, l, p, q ∈ Z with pq = ±1. Then, we define the fundamental
triangle T(z) to be the fifteen-point subset of Z2 given as follows:
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T (z) =



{(r, s) ∈ Z2; 4k ≤ r ≤ 4k + 4, 4l ≤ s ≤ 4l + 4k + 4− r}
if x = 4k + 1 and y = 4l + 1 for some k, l ∈ Z,

{(r, s) ∈ Z2; 4k ≤ r ≤ 4k + 4, 4l ≤ s ≤ 4l + r − 4k}
if x = 4k + 3 and y = 4l + 1 for some k, l ∈ Z,

{(r, s) ∈ Z2; 4k ≤ r ≤ 4l + 4, 4l + 4k + 4− r ≤ s ≤ 4l + 4}
if x = 4k + 3 and y = 4l + 3 for some k, l ∈ Z,

{(r, s) ∈ Z2; 4k ≤ r ≤ 4k + 4, 4l + r − 4k ≤ s ≤ 4l + 4}
if x = 4k + 1 and y = 4l + 3 for some k, l ∈ Z.

Graphically, every fundamental triangle T (z) consists of fifteen
points and forms a right triangle obtained from a 4 × 4-square by
dividing it by a diagonal. More precisely, each of the two diago-
nals divides the square into just two fundamental triangles having
a common hypotenuse coinciding with the diagonal. In every fun-
damental triangle T (z), the point z is one of the three internal
points of the triangle. The (four types of) fundamental triangles
are demonstrated by the below figure:
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Given a fundamental triangle, we speak about its sides - it is clear
from the above picture which sets are understood to be the sides
(note that each side consists of five points and that two different
fundamental triangles may have at most one side in common).
Now, one can easily see that

(1) every fundamental triangle is B-connected and so is every sub-
set of Z2 obtained by subtracting, from a fundamental triangle,
some of its sides.

Consequently,

(2) if S1, S2 are fundamental triangles having a common side D,
then the set (S1 ∪ S2) −M is B-connected whenever M is the
union of some sides of S1 or S2 different from D.

It is also evident that,

(3) whenever S1, S2 are different fundamental triangles with a com-
mon side D and X ⊆ S1 ∪ S2 is a B-connected subset with
X ∩ S1 ̸= ∅ ̸= X ∩ S2, we have X ∩D ̸= ∅.
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We will show that, for every circle C in the graph (Z2, A) which does
not turn at any point (4k + 2, 4l+ 2), k, l ∈ Z, there are sequences
SF ,SI of fundamental triangles, SF finite and SI infinite, such that,
whenever S ∈ {SF ,SI}, the following two conditions are satisfied:
(a) Each member of S, excluding the first one, has a common side

with at least one of its predecessors.
(b) C is the union of those sides of fundamental triangles in S that

are not shared by two different fundamental triangles of S.
To this end, put C1 = C and let S1

1 be an arbitrary fundamental
triangle with S1

1 ∩ C1 ̸= ∅. For every k ∈ Z, 1 ≤ k, if S1
1 , S

1
2 , ..., S

1
k

are defined, let S1
k+1 be a fundamental triangle with the following

properties: S1
k+1 ∩ C1 ̸= ∅, S1

k+1 has a side in common with S1
k

which is not a subset of C1 and S1
k+1 ̸= S1

i for all i, 1 ≤ i ≤ k.
Clearly, there will always be a (smallest) number k ≥ 1 for which no
such fundamental triangle S1

k+1 exists. Denoting by k1 this number,
we have defined a sequence (S1

1 , S
1
2 , ..., S

1
k1
) of fundamental trian-

gles. Let C2 be the union of those sides of fundamental triangles in
(S1

1 , S
1
2 , ..., S

1
k1
) that are disjoint from C1 and not shared by two dif-

ferent fundamental triangles in (S1
1 , S

1
2 , ..., S

1
k1
). If C2 ̸= ∅, we con-

struct a sequence (S2
1 , S

2
2 , ..., S

2
k2
) of fundamental triangles in a way

similar to the one used for constructing of (S1
1 , S

1
2 , ..., S

1
k1
) by taking

C2 instead of C1 (and obtaining k2 in much the same way as we did
k1). Repeating this construction, we get sequences (S3

1 , S
3
2 , ..., S

3
k3
),

(S4
1 , S

4
2 , ..., S

1
k4
), etc. We put S = (S1

1 , S
1
2 , ..., S

1
k1
, S2

1 , S
2
2 , ..., S

2
k2
, S3

1 ,
S3
2 , ..., S

3
k3
, ...) if Ci ̸= ∅ for all i ≥ 1 and S = (S1

1 , S
1
2 , ..., S

1
k1
, S2

1 , S
2
2 ,

..., S2
k2
, ..., Sl

1, S
l
2, ..., S

l
kl
) if Ci ̸= ∅ for all i with 1 ≤ i ≤ l and Ci = ∅

for i = l + 1.
Further, let S′

1 = T (z) be a fundamental triangle such that z /∈
S whenever S is a member of S. Having defined S′

1, let S ′ =
(S′

1, S
′
2, ...) be a sequence of fundamental triangles defined analo-

gously to S (by taking S′
1 instead of S1

1). Then, one of the sequences
S, S ′ is finite and the other is infinite. Indeed, S is finite (infinite)
if and only if its first member equals such a fundamental triangle
T (z) for which z = (k, l) ∈ Z2 has the property that the cardinality
of the set {(x, l) ∈ Z2; x > k} ∩ C is odd (even). The same is true
for S ′. If we put {SF ,SI} = {S,S ′} where SF is finite and SI is
infinite, then the conditions (a) and (b) are clearly satisfied.
Given a circle C in the graph (Z2, A) which does not turn at any
point (4k + 2, 4l + 2), k, l ∈ Z, let SF and SI denote the union of
all members of SF and SI , respectively. Then, SF ∪ SI = Z2 and
SF ∩SI = C. Let S∗

F and S∗
I be the sequences obtained from SF and

SI by subtracting C from each member of SF and SI , respectively.
Let S∗

F and S∗
I denote the union of all members of S∗

F and S∗
I ,

respectively. Then, S∗
F and S∗

I are connected by (1) and (2) and
it is clear that S∗

F = SF − C and S∗
I = SI − C. So, S∗

F and S∗
I

are B-components of Z2 − C by (3) (SF − C is called the inside
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component and SI − C is called the outside component). We have
proved that every cycle in the graph shown in Figure 5 that does
not turn at any point (4k+2, 4l+2), k, l ∈ Z, is a B-Jordan curve.

Example 1. Consider the set of points of Z2 demonstrated by Fig-
ure 6, which represents the (border of) letter K. This set is a cir-
cle in the graph (Z2, A) that turns only at some of the vertices
(2k(n − 1), 2l(n − 1)), k, l ∈ Z, so that it is a B-Jordan curve by
Theorem 2. But, since the circle turns, at each of the four bold
points, at the acute angle π

4 , it is not a digital Jordan curve in the
Khalimsky graph. For the circle to be a Jordan curve in the Khalim-
sky graph, it is necessary to remove, along with the four bold points,
the four encircled points (because, otherwise, the circle would not
even be a simple closed curve in the Khalimsky graph). But this
would lead to a noticeable deformation of the image (note that the
points represent centers of pixels) if the resolution of the computer
screen used is not sufficiently high. This may be the case of some
industrial monitors or displays.
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Fig. 6. A Jordan curve in (Z2, u2
3).

Remark 1. If we do not insist on structuring the digital plane by
the 8-adjacency graph but admit structuring it by a factor of the
graph, we may find a graph G with the vertex set Z2 having the
property that every circle in the graph (Z2,A), not only a cycle that
does not turn at any point (4k+2, 4l+2), k, l ∈ Z, is a Jordan curve
in G (with respect to the natural connectedness in the graph G).
Let us call graphs G with this property sd-graphs. The sd-graphs



A convenient graph connectedness 11

are studied in [18] where it is shown that the graph demonstrated
in Figure 7 is a minimal (with respect to the set of edges) sd-graph.
Note that this graph is even a factor of the Khalimsky graph.

r r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r rr r r r r r r r r
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Fig. 7. A portion of a minimal sd-graph.

4 Conclusions

We have found a structure on the digital plane Z2, the graph
(Z2, A8) together with the set B of paths of length 2, which provides
the plane with a connectedness allowing for a digital analogue of
the Jordan curve theorem (Theorem 2). This means that the graph
(Z2, A8) together with the set B may be used as a background
structure on the digital plane for the study and processing of digital
images. An advantage of the B-Jordan curves in the graph (Z2, A)
over the Jordan curves in then Khalimsky plane is that they may
turn, at some points, under the acute angle π

4 . Hence, the graph
(Z2, A8) endowed with the set B provides a variety of Jordan curves
richer than the one provided by the Khalimsky topology. Thus, the
graph offers a convenient alternative to the topology. Since Jordan
curves represent borders of objects in digital images, the structure
on Z2 given by the graph (Z2, A8) with the set B may be used in
digital image processing for solving problems related to boundaries
such as pattern recognition, boundary detection, contour filling,
data compression, etc.
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