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Abstract—Suitable image quality is a prerequisite to ensure
accurate diagnosis or person recognition by color retinal images.
Many factors during image acquisition, transferring and storing
can result in poor quality retinal images. Poor quality images not
only increase the possibility of wrong diagnosis, false acceptance,
or incorrect identification but also increase diagnosis or recogni-
tion time. Therefore, retinal image quality assessment has become
an important research topic. In general, only one color channel
(most of the time either green or grayscale) is used to assess the
quality of retinal images ignoring the quality of other channels.
However, all image channels carry complementary information.
In this paper, we propose a quality assessment approach for a
colored retinal image to assist a fundus camera operator to judge
the image quality. In our approach, we analyze the histogram of
pixel intensity and uniformity of illumination, as well as check
the presence of two main anatomical structures, optic disc, and
central retinal blood vessels, in all color channels (i.e., red, green
and blue) as well as in grayscale format. We show the effectiveness
of our approach by grading 3090 color retinal images of five
publicly available retinal databases.

Index Terms—color retinal image, quality assessment, convo-
lutional neural network

I. INTRODUCTION

The retina is a thin, semi-transparent, multi-layered, neural

tissue that covers the two-thirds of the interior of each eye. It is

anatomically and physiologically considered as an extension of

our brain. It is mainly responsible for converting an incoming

electromagnetic signal from the world outside of our eye into

a neural signal and then handing over the neural signal to the

optic nerve. The neural signal, relaying through optic nerves,

forms images into the visual cortex of our brain, and therefore,

we can have a sense of vision [3], [20]. Any kind of distur-

bance in the retina can have a negative effect on our vision.

Severe pathology in the retina can even cause irreversible

partial or complete vision loss. Besides vision, retina is also

used for identifying individuals in order to control the access

to highly confidential and secured environments. One reason

is that central retinal blood vessels which are responsible for

supplying oxygen and nutrients to the retina have a unique and

almost lifetime permanent pattern. Therefore, retinal images

are highly demanding by ophthalmologists, Computer-Aided

Diagnostic systems (CADs), retinopathy researchers as well

as by biometric researchers.

The color retinal images are widely used for detecting and

monitoring the development of different kinds of pathology

(such as diabetic retinopathy, age-related macular degenera-

tion, glaucoma, retinitis pigmentosa, Stargardt disease, etc.,)

in the retina, as well as for identifying individuals. Suitable

image quality is prerequisite to ensure accurate diagnosis

and individual identification by color retinal images. Many

factors during image acquisition, transferring, and storing can

result in poor quality retinal images. Factors can be the low

experience level of the operator, operator’s finger movement or

shaking, low standard fundus cameras, subject’s eye movement

or blinking, curved structure of the retina, inadequate illumi-

nation, variation of pupil dilation, poor focus, compression-

decompression techniques applied on images, transmission

channels and so on. Poor quality retinal images not only

increase the possibility of wrong diagnosis or recognition

but also increase the diagnosing or recognition time. For

example, blurred retinal images can hide retinopathy lesions

so that a diseased retina could look like a normal retina [10].

Therefore ophthalmologists need to spend a long time to

take any decision on a blurred image. Automatic CADs

needs sophisticated algorithms considering different factors to

improve image quality before taking automatic decision.

Our further observation is that poor quality images also

force researchers to work on the green channel or grayscale

format for their robustness, even though the other two channels

carry complementary information. Many previous works on

Retinal Image Quality Assessment (RIQA) (e.g., [4], [7], [10],

[11], [17]–[19], [22], [25]) used only one color channel (either

green or grayscale) to assess the quality of retinal images

ignoring the quality of blue and red channels accepting as a

fact that these channels could be noisy. Even though some

researchers (e.g. [12], [21], [26], [30]) worked on three color

channels, they used the three channels mainly for histogram-

based features and not for all features they used to determine

the quality of retinal images. An exception is the work done by

Abdel-Hamid et al., [1]. Convolutional Neural Network (CNN)

based RIQA approaches (e.g., [6], [28], [31]) used RGB retinal

images as a whole without analysing the quality of each color

channel separately.

As shown in Fig. 1, we can see the almost circular, colored

foreground of a retina on a dark background in a color

retinal image taken by a fundus camera. The foreground

of the retina is covered by tree-structured Central Retinal

Arteries (CRAs) and Central Retinal Veins (CRVs). The CRAs
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Fig. 1. Visibility of main anatomical structures in a color fundus photograph
of a healthy right retina. Note that, the boundaries of the macula, fovea, OD,
OC, NR are not accurately drawn.

and CRVs together form the Central Retinal Blood Vessels

(CRBVs). Other anatomical structures such as the macula,

fovea, Optic Disc (OD), Optic Cup (OC), Neuroretinal Rim

(NR), are also visible in a color retinal image. Our assumption

is that a good quality colored retinal image should have a

foreground which is uniformly illuminated as well as clearly

show at least the main anatomical structures (i.e., OD, macula,

CRBVs, etc.,) of a retina, no matter whether it is displayed

in a specific color channel (i.e., in the red, green or blue

channel) or in the combination of three color channels (i.e., in

grayscale format). However, during taking images, it is hard

for the fundus camera operators to realize the quality of all

anatomical structures in each channel in bare eyes. Therefore,

we implement an approach that is a hybrid of generic and

content based quality assessment approaches. We estimate

the quality of a retinal image by analyzing its histogram of

pixel intensity as well as checking the presence of its two

main anatomical structures, OD and CRBVs in each color

channel as well as in the grayscale format. In this paper, we

limit ourselves to the two most dominant structures (i.e., OD

and CRBVs) because of the lack of annotated data for other

structures. In future work, we will consider more anatomical

structures.

We believe our approach will help operators (no matter

whether they are experienced ophthalmologists, ophthalmic

nurses, or people having short training period to capture retinal

images either for medical or research purposes) to decide

whether they need to retake pictures so that subjects do not

need to come back again. Our observation is that asking

subjects to come back for retaking retinal images most of the

time is not well accepted (especially when images are taken

from the volunteers for research purposes).

II. EXPERIMENTAL SETUP

We do all implementations using TensorFlow’s Keras API

2.1.6-tf, OpenCV library, and Python. We use a standard PC

with Intel(R) Core(TM) i9-9900K having 8 Cores and 32 GB

memory, and with two NVIDIA GeForce GTX 1080 GPUs

having 8 GB memory per GPU.

TABLE I
DATA SETS USED IN OUR EXPERIMENTS.

Data Set Resolution # Imgs. Purpose

DRIVE [29]
TestSet 584× 768 20 ∗ Training set for UNet BVs
TrainingSet 584× 768 20 ∗ Validation set for UNet BVs
HRF DR [5] 3264× 4928 45 ∗ Training set for UNet BVs
STARE [14] 605× 700 20 ∗ Training set for UNet BVs
UoA-DR [2] 2056× 2124 200 ∗ Training set for UNet BVs

∗ Training, validation &
test set for UNet ODs

CHASE DB1 [24] 960× 999 28 ∗ Test set for UNet BVs
∗ Quality assessment

FIRE [13] 2912× 2912 268

∗ Quality assessment

HRF RIQA [17]
2592× 3888 26
3456× 5184 10

Kaggle [8]
SetA 3264× 4928 1558
Messidor [9]

960× 1440 588
1488× 2240 400
1536× 2304 212

In our experiments, we use in total nine publicly available

data sets for different purposes (see Table I for details).

Among the five data sets we use for quality assessment,

only HRF RIQA is mainly designed for retinal image quality

assessment. The CHASE DB1 is generally used for assessing

blood vessel segmentation algorithms, whereas the FIRE data

set is designed for studies on retinal image registration, the

Messidor and Kaggle data sets are for the studies of diabetic

retinopathy detection. There are in total 42, 111 pairs of left

and right retinal images (i.e., 84, 222 images) having 27
types of resolutions in the Kaggle data set. We choose 1558
images with resolution 3264 × 4928 because the foreground

of this resolution has complete circular shape. We name it as

Kaggle SetA data set.

Since the dark pixels of the background do not provide

any necessary information, we crop the background so that

the foreground can touch the boundary without losing any

important pixels of the foreground. Because of different

resolutions of different data sets, we re-size all images to

256 × 256 by bicubic interpolation. Except that, no other

pre-processing is applied to any images. We get grayscale

images using the default setting of the OpenCV library (i.e.,

0.299 × red channel + 0.587 × green channel + 0.144 ×
blue channel).

In order to get masks for the OD and to segment CRBVs,

we train a U shaped CNN (i.e., U-Net [27]) for each color

channel (i.e., red, green and blue channel) as well as for

the grayscale format. Therefore, in total, we train eight U-

Nets. The U-Net is well-known (especially for medical image

segmentation) for its requirement of very few images in the

training phase. For example, in [27], only 30 images were

used to train a U-Net which outperformed a sliding window

CNN for the ISBI neuronal structures in EM stacks challenge

2012. All of our U-Nets have the same architecture as shown in

Fig. 2. We set mean-squared-error (MSE) as the loss function;
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RMSProp as the optimizer and mini batch size = 16. For

all convolutional layers and transposed convolutional layers,

we set kernel size = 3 and kernel size = 2, respectively.

However, for both kinds of layers, we set padding = same
and kernel initializer = he normal. We set these param-

eters based on previous experience with the same architecture

on a variety of tasks. We use 20 images of the DRIVE as the

validation set when training the U-Nets targeting to segment

CRBVs (i.e., UNet BVs), and 20 images of the UoA DR as

the validation set when training the U-Nets targeting to seg-

ment OD (i.e., UNet ODs). Using the validation set, we decide

the epoch no and control the optimizer learning rate. For

all other settings, we use the default values of TensorFlow’s

Keras API 2.1.6-tf. During training, it takes on average 2.8
seconds and 1.8 seconds to complete one epoch of UNet BVs

and UNet ODs, respectively, in our GPU based machine.

On average, after completing 512 epochs and 86 epochs, we

achieve the optimum UNet BV and UNet OD, respectively,

per color channel (i.e., the lowest MSE for the validation set

by our U-Nets). We use 28 images of the CHASE DB1 and

28 images of UoA DR as the test sets for UNet BVs and

UNet ODs, respectively. For UNet BVs, we achieve 0.0545,

0.0313, 0.0153, and 0.0300 as MSE for the grayscale, red,

green and blue color channel of the test set, respectively. On

the other hand, for UNet ODs, we achieve 0.0220, 0.0033,

0.0058, and 0.0054 as MSE for the grayscale, red, green and

blue color channels of the test set, respectively.

III. STEPS FOR QUALITY ASSESSMENT

Fig. 3 shows the flow diagram of our approach to estimate

the quality of an RGB colored retinal image (say, Iretina). We

describe each step briefly in the next five subsections.

A. Generating Foreground Mask

An almost circular shaped Itarget has some dark back-

ground area no matter how much background we crop out.

In order to avoid the effect of the background pixels in our

further estimation, the first and foremost task is to generate

a foreground mask (FGM). Since the grayscale format is less

affected by noise, overexposure or underexposure than the red,

green or blue channels, generating FGM using the grayscale

format is less error-prone than using other color channels.

Therefore, we choose the grayscale format to generate the

FGM. Otsu’s segmentation algorithm [23] can be used to

generate the FGM. However, for non-uniformly illuminated

or noisy retinal images, generated FGM will be distorted.

Therefore, instead of this algorithm, we follow a simple ap-

proach. At first, we detect edges using Canny’s edge detection
algorithm [15]. After that we find the contour points belonging

to each edge. Then for each contour, we estimate the radius

of the circle that minimally encloses that contour. Among

the obtained circles, the largest one is selected as the border

between foreground and background. We fill the area between

the selected circle (e.g., the red-colored circle in Fig. 4 (d))

with white pixels and generate the FGM (e.g., Fig. 4 (e)). The

generated FGM is slightly bigger than the actual foreground

if there is the side indicator (Case-2 of Fig. 4 (f)). Fixing this

erroneous part is our future task. We use the functions of the

OpenCV library for this part.

B. Skewness Based Score Generation

A simple histogram of intensity values of any channel

reveals whether that channel is overexposed or underexposed

or whether any specific intensity is dominating or not. If a

histogram is leaned to the right side, it means that the channel

is overexposed, whereas if it is leaned to the left side, it means

that the channel is underexposed (see Fig. 5). The histogram

of a good-quality channel will not be leaned to any specific

side. The skewness of a histogram helps us measure leaning

tendency. The lower the skewness value, the less biased a

histogram. We assign | (skewness) |−1 as skewness based

score to a channel. Summing up all skewness based scores

for all channels, we decide the skewness based score (say,

SkewQS) for Itarget. The value of SkewQS remains in the range

0− 4 for Itarget.

C. Uniformity Based Score Generation

Otsu’s algorithm [23] is a widely used thresholding based

segmentation algorithm. This method selects an optimal

threshold value automatically from a gray level histogram

and uses to segment different parts of an image. In the

simplest case, it is used to segment the foreground of an image

from its background. However, this widely used segmentation

algorithm fails to produce accurate segmentation results for

non-uniform illuminated images [16]. Our assumption is that

a good-quality channel of Itarget should be uniformly illumi-

nated. So, using Otsu’s algorithm if we get a partial foreground

for a channel, then that is a sign of a low-quality channel.

Therefore, We can assign a quality score to each channel

depending on how much area of the foreground we can get

by Otsu’s algorithm comparing to the FGM. Summing up all

channels’ scores we estimate a uniformity based score (say,

Uniformity) for Itarget. When there is a side indicator in a

channel, then maybe we would get slightly smaller value than

1, even though we can segment the complete foreground.

D. Density of CRBVs Based Score Generation

At first, we binarize the manually segmented CRBVs and

FGMs of the 40 images of the DRIVE data set and the

45 images of HRF DR data set using Otsu’s segmentation

algorithm. Then we estimate the average blood vessel density

(say, αdev) in the area covered by the FGMs. After that, we

predict segmented CRBVs for each channel of Itarget by using

channel-specific UNet BV. Using the same process as we do

for estimating αdev , we estimate the blood vessel density (say,

αtarget) for each channel of Itarget. Dividing αtarget by αdev

we estimate score for that channel (see Fig. 6). Summing up

all the scores of four channels, we estimate scores for Itarget.
The blood vessel based score for a specific channel can be in

the range 0 − β, where β is any positive number. Therefore,

blood vessel density based score for Itarget can be more than

4. We notice that β remains below 2 in the experiments.
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Fig. 2. The architecture of U-Net used to segment OD and CRBVs.

Fig. 3. A flow diagram of our approach to assess the quality of a retinal
image.

E. Optic Disc Based Score Generation

At first, using the UoA DR data set, we estimate the

minimum radius and maximum radius (say, θmin and θmax)

of the enclosing circle of a possible OD. Then we predict

an OD mask for each channel of a retinal image by using

channel-specific UNet OD. Then we binarize the OD mask

using Otsu’s segmentation algorithm. After that, using θmin

and θmax as thresholds, we count the number of possible ODs

in the OD mask. If no OD is counted, that channel scores 0,

whereas it scores 1 when only one OD is counted. If multiple

ODs are counted, it is possible that the channel is noisy or has

some pathology such as hard exudates. We do not deal with

distinguishing optic disc from noisy parts or hard exudates.

Instead we assign 0.5 to a channel having multiple ODs. It is

possible that the OD can be detected at different positions at

different channels for a retinal image. Reasons also could be

the effect of noise or pathology. We keep this issue to be solved

for future. The OD based score for a retinal image can be in

the range 0 − 4. Unlike other score estimation steps, we do

not use the FGM in this step. The size of OD, to some extent

depends on ethnicity. Therefore, if the ethnic group in the test

set is different from the ethnic group of our development set

(i.e., UoA DR), then our approach might fail to detect OD

Fig. 4. Steps for generating FGM and the effect of FGM on the histogram.

Fig. 5. Histograms of overexposed and underexposed channels.
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Fig. 6. Steps for the density of CRBVs based score estimation.

and give mistakenly lower quality score to a retinal image.

IV. RESULTS & ANALYSIS

In this paper, the evaluation of our approach is limited to

inspection and analysis of a subset of the graded images. A

quantitative evaluation will be performed in future. In total we

estimate quality scores of 3090 images. We categorize images

into three categories (i.e., poor, fair and good) by drawing two

lines between the highest score (i.e., 15.32) and the lowest

score (i.e., 6.032). Fig. 7 shows some sample images of these

three categories. Both the highest and lowest scores are from

the Kaggle SetA data set. Fig. 8 and Fig. 9, show how the

worst scorer and the best scorer get scores. Among 3090
images, 1854 images (i.e., 60%) fall into the good category,

whereas 1158 images (i.e., 37.5%) into the fair category and

27 images (i.e., 2.5%) into the poor category. As shown in

Fig. 10, there is no image of the CHASE DB1 data set in the

poor category.

Fig. 7. Three sample images from the good, fair and poor categories. 1st row:
poor category, 2nd row: fair category, 3rd row: good category. On the caption
of each image database name, image file name, and quality score estimated
by our approach are shown.

Fig. 8. Score analysis of the image (i.e., Kaggle SetA/40220 left) having
the worst score.

Fig. 9. Score analysis of the image (i.e., Kaggle SetA/23856 right) having
the best score.

To load and resize a retinal image, generate scores by

analyzing 4 features for each channel and save the result, it

takes on average 3.2 seconds on our GPU based system. On

the other hand, in an Intel(R) Core(TM) i5-7500 CPU based

machine these tasks take on average 6.91 seconds.
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Fig. 10. Category wise pie charts.

There are some limitations of our current approach. Our ap-

proach is not a pure non-reference based approach. Therefore,

it would suffer from the mismatch of the development set and

the test set. The effect of the camera lens flare problem has

not been dealt with.

V. CONCLUSION

Since poor quality retinal images not only increase the

possibility of wrong diagnosis or incorrect person recognition

but also increase the diagnosing or recognition time, Retinal

Image Quality Assessment (RIQA) has become an important

research topic. In this paper, we propose a RIQA approach

by combining generic and content-based quality assessment

approaches. We estimate quality of a retinal image by ana-

lyzing its histogram of pixel intensity, whether it is uniformly

illuminated, as well as checking the presence of its two main

anatomical structures, optic disc and central retinal blood

vessels, in all color channels. By generating quality scores for

five publicly available data sets, we show how our approach

can help the fundus camera operators to assess quality.
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