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Abstract
This paper proposes a novel ghost-free High Dynamic Range (HDR) multi-exposure video acquisition suitable for real-time 
implementation in embedded systems. While the method is limited to stationary cameras, it achieves, with low requirements 
on resources, results comparable to state-of-the-art de-ghosting methods that are often very computationally expensive 
and almost impossible to implement in smart cameras and embedded systems. The paper describes the method itself and 
includes an evaluation of the performance on selected embedded platforms and a comparison of the results to the state of 
the art using HDR datasets.
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1  Introduction to HDR imaging

High Dynamic Range video acquisition is a very popular 
topic in photography and the film industry. Contemporar-
ily, HDR is also becoming increasingly more established 
in surveillance, traffic monitoring, quality control in the 
industry, etc. in environments, where lighting conditions 
are challenging.

HDR videos are typically acquired through multi-expo-
sure by sensors with a limited (standard) dynamic range [2, 
14, 18], since this is both technologically and economically 
feasible as compared to other possible alternatives. Unfor-
tunately, such videos typically suffer from “ghosts” caused 

by individual exposures of the motion objects taken at dif-
ferent times (and thus also capturing the objects in different 
positions) or by camera motion. Alternatives include theo-
retically ghost-free approaches, such as systems using beam-
splitters with several CCD/CMOS sensors [25] or expensive 
and technologically demanding specific HDR sensors [19, 
31].

In this paper, we propose a novel ghost-free HDR acqui-
sition method for stationary cameras that is powerful yet 
well implementable even in embedded systems in real-time 
with low resource requirements. While de-ghosting has been 
researched for a long time, the state-of-the-art methods with 
good performance are computationally very demanding and 
so they are impossible to implement in smart cameras and/
or embedded systems attached to cameras. The novel HDR 
de-ghosting method proposed in this paper was designed 
with respect to real-time processing in embedded hardware.

2  Related work

In this paper, we focused on embedded systems and real-
time processing; therefore, we reviewed only simple, compu-
tationally unpretentious methods. We excluded optical flow 
and patch based algorithms due to their high computational 
demands. We concentrated on the methods categorised by 
Tursun [26], Srikantha [23] and other authors as “moving 
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object selection” methods, and similar approaches. The pro-
posed algorithm does not address global image registration 
and works with images from stationary cameras.

Debevec and Malik [2] proposed an algorithm serving 
as a baseline for HDR acquisition; however, this approach 
only addresses static scenes, without either camera or object 
motion. The algorithm fuses multiple images into a HDR 
radiance map, whose pixel values are proportional to the true 
radiance values in the scene. HDR image H is calculated as 
a weighted average of the exposures L:

where N is the number of exposures, ti exposure times and 
function w the triangle weight function.

The algorithm devised by Gallo et al. [3] assumes a linear 
dependency between couples of pixels when they ”see” the 
same radiance levels, based on knowledge of exposure times. 
Any image spot violating this linear relation is considered 
as containing a motion. Patches with large numbers of not 
corresponding pixels are omitted from merging, causing vis-
ible artifacts that occur at their boundaries. Raman et al. 
[17] extended the work of Gallo et al. [3] so that it does not 
require knowledge of exposure times or the CRF (Camera 
Response Function [2, 14, 18]), the response function of the 
camera sensor to the incident light.

Grosch [4] proposed a simple method based on pixel 
value estimation from the known exposure time and the 
CRF estimated by the histogram-based method proposed 
by Grossberg and Nayar [5]. The algorithm put forth by Wu 
et al. [29] estimates the CRF from regions where the RGB 
vectors remain fixed with respect to the exposure changes. 
The algorithm refines motion detection by combination of 
pixel order relation [21] and pixel value estimation [4]. The 
algorithm devised by Wang et al. [28] normalizes all images 
Li according to the reference image Lref  . A ghost mask is 
obtained by adaptive thresholding of absolute differences 
of pixel intensities from each input image Li ; however, the 
threshold is expected to be tuned manually. Ghost mask is 
further refined by morphological operations.

The algorithm of Jacobs et al. [7] calculates pixel vari-
ance over exposures to detect motion. The variance is com-
pared to a fixed threshold which results in a variance image 
(a ghostmap). The variance image is supplied by an uncer-
tainty image, which is calculated using the local variance 
obtained from a histogram of a small window.

Min et al. [12] improved the method of Pece et al. [16] 
and introduced a multi-level threshold map, where thresh-
olds are selected to divide the image into multiple regions 
according to the pixel ntensity, each region having the same 
number of pixels. Any difference between the threshold 

(1)H =

∑N

i=1
w(Li) ⋅ Li ⋅

Li

ti
∑N

i=1
w(Li)

maps of input images and the reference image, presented 
typically by the mid-exposure, is marked as a motion-region. 
The algorithm depends on the scene composition and image 
histogram layout. Min et al. [13] further improved the algo-
rithm by employing a noise reduction phase incorporating 
an additional set of rules for spatially neighbouring pixels. 
Due to using a large spatio-temporal filter, the algorithm is 
memory and performance demanding. The methods 12, 13, 
16] are using coarse morphological operators, such as ero-
sion and dilatation, to suppress false detection occuring on 
edges or by noise.

Bouderbane et al. [1] implemented a simple ghost remov-
ing algorithm on an FPGA based platform. They were 
inspired by the work of Sidibe et al. [21]. The algorithm is 
based on modification of the weighting functions used for 
the HDR merging.

3  Novel ghost‑free HDR merging

In this paper, we propose a novel HDR merging method 
that produces ghost-free results. Our approach is based on 
pixel value matching, the idea being similar to the solutions 
proposed by Grosch [4], Wu [29], and Wang [28] but with 
quite different and improved processing. The exposure time 
of each image is known; therefore, it is possible to estimate 
and match pixel values in the adjacent images, except for the 
over or under-exposed patches where the pixel values will 
obviously not match. Such estimation is not very precise, 
the captured image data is affected by factors such as noise, 
sensor quantization errors, CRF, etc. The reviewed methods 
generally use fixed or user-guided thresholds which must 
be employed to introduce user-defined tolerance to these 
factors. These fixed or user-defined thresholds often cause 
adverse effects in the final HDR images, such as visible tran-
sitions between static and motion areas etc. We propose a 
method to overcome such problems.

3.1  Obtaining a certainty map

In our approach, every image Li is assigned a Certainty 
map Ci related to the reference image Lref  , which is gener-
ally considered to be the middle (exposure) image in the 
sequence. The Certainty map C contains values representing 
the estimated level of certainty that the individual pixels 
contain the same patch of the scene as the reference pixel, 
but obtained under a different exposure. Unlike ghostmaps, 
Certainty maps hold not only the patches containing motion, 
but rather all patches inappropriate for merging—such as 
under and over-exposed pixels (Fig. 1).

The probability distribution of low level value pixels is 
Poisson [10] due to the discrete nature of the incoming pho-
tons. With higher intensities, the distribution transforms into 
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Normal (Gaussian). Therefore, we use the Gaussian function 
to derive the certainty (estimated probability) that the two 
luminance levels, estimated and measured, match. The Cer-
tainty map Ci (see Fig. 2) replaces the binary ghostmap with 
soft assigned values, obtained using the information from the 
reference image Lref  , the estimated image Li , the exposure 
times ti and tref  , as well as the CRF. Note, please, that in this 
paper the inverse CRF was implicitly applied to all images Li . 
Image Li is estimated by the following equation:

Consequently, the estimated value for image i is processed 
along with the actual value of Li to get the probability based 
Certainty map Ci as:

(2)Li = Lref ⋅

(

ti

tref

)

where � reflects the standard deviation of the pixel measure-
ment (affecting the “softness” weight). The lower � is, the 
sharper or more strict the Certainty maps are, which results 
mainly in the dynamic range reduction. On the other hand, 
a high � causes “softer” Certainty maps, which may start to 
be ghosted. Ghost detection generally, and indeed inherently, 
cannot work well for the over and under-exposed spots of an 
image; thus the Certainty map algorithm contains a bound-
ary condition: If the estimated value lies beyond the point 
of saturation, the Certainty is assigned at maximum value.

3.2  Multi‑exposure merging algorithm

Our modification of Debevec’s [2] merging algorithm 
incorporates the weights from the Certainty map, obtained 
through Eq.  3. The HDR image H is calculated as the 
weighted sum of pixels from n images using the following 
equation:

The Ci for reference image certainty is considered to be 1. 
The w(Lref ) is considered to be 1, as the reference image is 
a “pattern” with the desired object layout; it is not desirable 
to weight out the pixels, even if poorly exposed. A scheme 
illustrating the Eq. 3 is shown in Fig. 3.

4  Implementation

The proposed algorithm was designed with respect to real-
time processing using embedded hardware—we are con-
sidering mainly FPGA based platforms and SoC equipped 
with GPU (e.g. NVIDIA Tegra). The standard desktop CPU 
implementation is included mainly for comparison.

The ghost-free merging unit consists of two compo-
nents, Certainty map creation (Sect. 3.1) and HDR merging 
(Sect. 3.2). The Certainty map is obtained by predicting and 
matching the luminance levels, it is thus necessary to pro-
vide luminance images. The RAW data from sensors, e.g. in 
embedded devices/cameras, should, therefore, be converted 
to luminance because if the individual RGB channels are 
processed separately, their saturation, which is independent 
for each channel, may lead to certainty results different for 
individual colour channels and thus to adverse colour shifts 
during HDR merging.

The value of � should be adjusted based on the image sen-
sor noise, including the quantisation noise, and the Exposure 
Value (EV) step (exposure time ratio) between the individual 

(3)Ci = e
−
(Li−Li)

2

2�2

(4)H =

Ci ⋅ w(Li) ⋅ Li ⋅
ti

tmin
∑n

i=1
(Ci ⋅ w(Li))

Fig. 1  Example of ghost artefacts and result of the proposed ghost 
free merging. Top left—stripes of original images with a significant 
car motion. Top middle and top right - Images representing coeffi-
cients used for the HDR merging (certainty maps, see Sect. 3). Bot-
tom left—ghosted HDR image. Bottom right—HDR image merged 
using the proposed method

Fig. 2  Two Certainty maps (bottom) obtained from the sequence on 
the top. The Certainty map on the left was obtained from top left and 
top middle (reference) image, the Certainty map on the right was 
obtained from top middle (reference) and top right image
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images in the HDR sequence. In our reference implementa-
tion, we achieved the best results with � = 5 for the exposure 
step of 1EV and � = 11 for 2EV.

The proposed merging algorithm (Sect. 3.2) is applicable 
on grayscale, RGB and also RAW image data. The RAW 
data can be merged in the original form before debayering 
and debayered afterwards, as proposed by Tamburrino et al. 
[24]; thus, this implementation can save approximately 2/3 
of the operations comparing to merging in RGB space.

The proposed ghost-free merging is applicable to an 
arbitrary number of images in the sequence of exposures. 
However, the following implementation and performance 
comparisons are related to merging of three images, unless 
stated otherwise.

4.1  Computing optimisations

The proposed algorithm performs per-pixel processing and 
requires a relatively small number of per-pixel operations. 
Some of its functionality is computationally demanding (e.g. 
division and Gauss function calculation), however, it can be 
optimised and/or tabulated. Inverse CRF and triangle weight 

functions can be tabulated thanks to the limited number of 
possible LDR (Low Dynamic Range) pixel values. The 
ratio between exposures ti and tref  in Eq. 2 can be calculated 
once for each setting of LDR exposure times. The Gaussian 
function (Eq. 3) can be convenient because the pixel values 
are discrete and only a finite combination of pixel values is 
possible, especially when considering only the differences 
between the captured and predicted values. The number of 
the Gaussian function results with relevant certainty, e.g. 
> 1% is limited, especially for a higher � . The evaluation in 
Sect. 5 is performed with � = 11.0 , which leads only to 35 
various results.

The functions represented in the tables are pre-calculated 
using the processors present in the embedded acceleration 
platforms. If needed, they can be updated while the accelera-
tor executes the main algorithm.

4.2  Precision evaluation

The CPU and GPU reference implementations are writ-
ten in C++ and CUDA, using standard 32-bit floating 
point data type. The whole FPGA design is implemented 
using only fixed point data representation and arithmetic, 
which is natural and also efficient for FPGA hardware. The 
ranges of numerical values in the individual pipeline stages 
are known; therefore, it is feasible to adapt the bit width 
of the individual parts of the pipeline to achieve a suffi-
cient range (and precision) without using the floating point 
representation, whose resource requirements are generally 
much higher. The FPGA implementation is fixed for merg-
ing three LDR images with up to 10 bit depth. The input of 
the ghost detection block consists in three corresponding 
pixels in 10.8 fixed point representation (10 bits for integer 
and 8 bits for decimal part). The fractional part can be used 
for the data after the linearization process (application of 
CRF—Camera Response Function [2, 14, 18]). The resulting 
Certainty maps are in the 1.10 format and all further math-
ematical operations during the HDR merging are performed 
using 10.12 precision. The accuracy of fixed point arithmetic 
comparing to the software float implementation is evaluated 
using PSNR and MSSIM metrics. The ghost detection and 
merging achieved PSNR of 51.1 and 58, MSSIM is over 
99% for both algorithms, using the above mentioned 12bit 
fractional bits.

4.3  Performance evaluation

The performance of the algorithm on the relevant platforms 
is summarised in Table 1. We measured only the core algo-
rithms, without any data preprocessing—we assume that at 

Fig. 3  A scheme illustrating the proposed ghost-free merging of 
according to Eq. 4 on a sequence of three images
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least in the FPGA and GPU implementations, the images are 
transferred into the memory using DMA in the background, 
without any performance losses. With the proposed optimi-
sations, the algorithm is single-pass only. Table 1 compares 
the performance of the proposed Ghost-free merging of 
three LDR images on FPGA, SoC GPU and CPU platforms. 
In case of FPGA, the design achieves target frequency of 
200MHz and is fully pipelined; therefore, it allows produc-
tion of result pixels every clock cycle. Unlike in the sequen-
tial CPU and GPU processing, increasing the amount of 
work that the FPGA pipeline performs leads to consumption 
of more resources and prolonging the processing pipeline, 
which has a negative influence on latency; however, the data 
throughput remains the same (see Table 1).

The Table 2 presents an FPGA resource consumption of 
proposed design. The abbreviations in the table describes 
the FPGA primitives: LUT—Look-up Table; FF—registers; 
BRAM – Block RAM (36kbit block of distributed memory); 
DSP—Digital Signal Processing block (used as a multi-
plier); LUTRAM—LUT-based small distributed memory.

A line ”Total (HLS)” indicates the amount of resources 
estimated by Xilinx High Level Synthesis (HLS) design 
tool1. Such resources are quite often overrated and the Place 
and Route process optimises out an unnecessary logic (see 
line ”Total (Routing)”) for the target FPGA. The Table 2 
shows e.g. most of BRAM resources were conveniently con-
verted into LUTRAM, probably due to only a few Gauss 
coefficients needed to store, as explained in Sect. 4.1.

We implemented the proposed algorithm into FPGA 
based HDR video acquisition pipeline proposed by Nosko 
et al. [15]. The proposed algorithm was designed to replace 
the original and very simple ”Deghosting & merging” block 
(please refer to Nosko et al. [15]). The Table 3 compares 
the resources consumed by such pipeline with pipeline from 
Bouderbane et al. [1]; unfortunately, they do not provide 
more detailed statistics. For detailed description regard-
ing pipeline, please refer to the article by Nosko et al. [15]. 
Please note that proposed design is built on Xilinx Zynq and 
Bouderbane camera on Virtex-6 and also that in Nosko’s 
pipeline, more than 1/3 of LUT and Register resources and 
most of BRAM and DSPs are occupied by local tone-map-
ping operator [15].

The implementation of proposed ghost-free merging 
algorithm increases the power consumption of the com-
plete HDR pipeline about 12 mW @ 96.4FPS; we consider 
relevant only the difference to ”standard” HDR merging 
as it has to be present in the pipeline anyway. The overall 
HDR camera power consumption [15] is approx. 8 W, out of 
which the FPGA pipeline consumes only 0.94 W (estimated 
by Xilinx Vivado); therefore, the measurement of 12 mW 

difference would be under the level of measurement error, 
so we kept Vivado estimation.

Comparing to a reference CPU implementation, which 
consumes 25W @ 25.25FPS (see Table 2), the FPGA power 
consumption is marginal. The CPU requires 990mJ per 
frame, out of which the ghost-free part consumes 500 mJ, 
while the FPGA requires 0.2 mJ per frame, out of which the 
ghost-free part consumes 0.12 mJ.

5  Results

We performed evaluation and comparison of the proposed 
method to various state-of-the-art method on several HDR 
datasets [9, 26, 27] and image sets from many de-ghosting 
related articles [3, 8, 20]. We also performed additional 
evaluation on our data. In general, the visual results are 
comparable to the state-of-the-art; however, the proposed 
algorithm is capable of running in real-time, while he state-
of-the-art algorithms require long offline processing in terms 
of seconds or even minutes per image.

The results of the proposed ghost-free merging are pre-
sented in Figs. [1, 4, 6, 7, 8, 9, 10 and 11] . Our method is 
suitable for almost any application with stationary cameras. 
Besides the evaluation of various generic datasets, the ghost 
removing capability was evaluated on a traffic monitoring 
task, where the main goal was to preserve the greatest pos-
sible level of detail so that the images can serve as evidence, 
with the readability of the licence plates of the vehicles in 
motion playing the most important part. Figure 1 contains a 
car approaching the camera at approximately 50km/h. Still, 
six exposures ( ∼ 66 ms at 90FPS) were intentionally omit-
ted between the images to show the capability of the ghost 
removing for e.g. faster moving objects. According to our 
experiments and/or based on the authors’ claims, most of 
the de-ghosting methods related to our approach are very 
dependent on scene composition, luminance distribution, or 
other assumptions (see Fig. 5). Our approach does not have 
such limitations, it is more robust, and does not require user-
guided tuning of parameters, unlike algorithms with similar 
complexity.

In general, the existing methods are more or less using 
fixed or user-adjusted thresholds and binary ghost maps, 
which either includes the pixel into the merging process 
or omits it completely. Such approach negatively affects 
the merging process and appearance of the resulting HDR 
image, causes higher noise on the affected patches around 
the moving objects, and also on wrongly detected patches.

5.1  Dataset evaluation and comparison

We performed the evaluation on datasets [9, 26, 27], con-
taining sequences of images of various scenes and different 1 http://www.xilin x.com.

http://www.xilinx.com
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types of motion. The results provide a comparison of the 
proposed method with generally more precise and compu-
tationally demanding methods, commonly based on optical 
flow, which were not even included into the related work 
due to their complexity and high computational demands.

One of the datasets [9] contains multiple scenes with arti-
ficial objects movements. Its advantage consists in the exist-
ence of the ground truth image, which allows a comparison 
to the results as well as to many results of various published 
methods [6, 20, 22]. Figures 6 and 7 show the capabilities of 
the proposed method, showing that it provides results visu-
ally comparable to optical flow based methods.

Tursun et al. [26, 27] published two datasets and pro-
posed metrics for evaluation of HDR de-ghosting quality. 
The evaluated samples from the datasets are shown in Fig. 4 
and the HDR quality metric [26] is evaluated in Table 4. 
The metric evaluates the dynamic range achieved inside 
the motion regions, considering also the correctness of the 

de-ghosting. The image sets, in which we got worse results 
than other algorithms, were successfully de-ghosted anyway; 
however, the worse results were probably caused by losses 
in the dynamic range. Evaluation of the proposed method 
on these datasets also proves that the proposed method is 
generally usable for sequences larger than two/three images, 
commonly used in cameras. In all the referenced datasets [9, 
26, 27], the proposed algorithms achieved results visually 
comparable or even better than more complex algorithms 
(see Fig. 9). However, the proposed method and also many 
HDR de-ghosting methods may yield artifacts in regions 
where the moving objects in the reference image are poorly-
exposed, as Tursun et al. concluded [26].

Another metric we found useful is HDR-VDP2 by Man-
tiuk et. al. [11]. The metric evaluates the visibility and qual-
ity differences in image pairs and represents a probability 
that an average observer will notice a difference in the 
images in the pair (see Fig. 10). The essential problem for 
the metric evaluation is the absence of ground truth images. 
Applying this metric on image sets without ground truth ref-
erence seems useless, as even the state-of-the-art algorithms 
may fail in ghost detection and/or changes in the image qual-
ity e.g. by bluring of motion regions (see top of Fig. 9). As a 
result, the metric output obtained on such data does not have 
any meaningful value.

Karaduzovic’s [9] dataset contains ground truth images, 
because it contains scenes with artificial object motion. 
We evaluated the metric on “complex” scenes and used the 
HDR merged from the ground truth sequence as a refer-
ence. The ground truth sequence is processed also by our 
algorithm (with de-ghosting disabled) to eliminate the effect 

Fig. 4  Ghosted HDRs (top line) and HDRs merged using proposed ghost-free method (bottom line) on sequences “Fast cars” [26] (left), “105” 
[27] (middle) and “117” [27] (right). Datasets contains 9 LDR (Low Dynamic Range) images

Fig. 5  Sample outputs of related deghosting algorithms [16] (left) 
and [12] (right) on the scene from Fig.  1. Our experiments showed 
that the algorithms listed should be successful only on images with 
convenient histogram distribution
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of unrelated image enhancements. Table 5 contains an over-
all “quality” metric of the produced ghost-free HDR out-
put according to HDR-VDP2 [11] metric. Figure 10 shows 
“scene 1” with highlighted differences between ground truth 
HDR and ghost-free HDR.

All of the datasets were evaluated with either � = 11 or 
� = 5 based on the EV step in the data. The source codes 
and evaluated datasets are available online2.

Fig. 6  Output of proposed ghost-free merging method on the 
sequence of Gallo [3] (top). Previews of the various algorithm results 
are shown at the bottom: Gallo et al. [3] (a), Jacobs et al. [7] (b), Pece 

et al. [16] (c), Zhang et al. [30] (d) and proposed algorithm (e). The 
previews A to D are published online at http://www.vsisl ab.com/proje 
cts/IPM/HDR/proje ct.html

Table 1  The table compares the performance of the proposed 
ghost-free merging of 3 LDR images (Fig.   2) with a resolution of 
1920 × 1080 on following platforms: FPGA Xilinx Zynq, embedded 
CPU and GPU Nvidia Tegra TX2 and CPU Intel Core i7-3770 (single 
core)

FPGA TX2 GPU TX2 CPU CPU

Certainty map [ms] 10.3 1.59 45.9 16.6
Merging [ms] 10.3 4.58 112.3 23.0
Total [ms] 10.3 6.17 158.2 39.6
Overall FPS 96.45 162.07 6.32 25.25

Table 2  FPGA Resource utilisation for merging 3 LDR images of 
1920 × 1080 pixels. Design is routed for Xilinx Zynq Z-7020

The total resource consumption for this FPGA is marked as bold

LUT LUTRAM FF BRAM DSP

Certainty maps 3532 – 3339 4 4
HDR merging 893 – 2570 10 16
Total (HLS) 4425 – 5909 14 20
Total (Routing) 1057 252 2052 2 16
available 53200 17400 106400 280 220
utilisation [%] 1.99 1.45 1.93 0.72 7.27

Table 3  Resource utilization of complete camera solution of Nosko 
et al. [15] enhanced by the proposed ghost-free merging block, com-
paring to Bouderbane [1]

LUT LUTRAM FF BRAM DSP

Prop. pipeline 39145 3137 53592 51 58
Bouderbane [1] 49193 – 50399 35 20

2 https ://githu b.com/ghost freeh dr/HDR.

http://www.vsislab.com/projects/IPM/HDR/project.html
http://www.vsislab.com/projects/IPM/HDR/project.html
https://github.com/ghostfreehdr/HDR
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6  Conclusion

In this paper, we proposed a novel ghost-free HDR merg-
ing algorithm suitable for real-time implementation in 
embedded devices. The algorithm produces results com-
parable to the state-of-the-art, as shown in the evaluation. 
While the algorithm is constrained to optically aligned 
images, it has a very low computational complexity as 
compared to the state of the art. Furthermore, it is suit-
able for implementation in embedded systems, as well as 
in programmable hardware (FPGA) or GPU, as experi-
mentally demonstrated, or even custom chips. Thanks to 

Fig. 7  Output of the proposed HDR ghost-free merging method for 
Complex Scene 1 of dataset [9] (left). Ghosted HDR image is shown 
on the right. Previews of various algorithm results are shown at the 

bottom. No de-ghosting (a), Silk et  al. [22]  (b), Sen et  al. [20]  (c), 
Photoshop (d), Photomatix  (e) and proposed algorithm (f). The pre-
views A to E are published as a part of a Karaduzovic dataset [9]

Table 4  Results of the “Dynamic Region Dynamic Range” metric 
proposed by Tursun [26] and evaluated on their dataset

The metric evaluates the resulting dynamic range within regions con-
taining movement; the higher the value, the better. The best achieved 
values are in bold

Metric ”DR” [4] [20] [22] None This work

Cafe 2.63 2.61 2.60 2.47 2.42
FastCars 1.12 1.18 1.10 1.10 1.38
Flag 1.40 1.50 1.49 1.45 1.59
Gallery1 1.59 1.59 1.56 1.55 1.70
Gallery2 2.41 2.56 2.14 2.29 2.05
LibrarySide 1.78 1.93 1.60 1.76 3.20
Shop1 2.20 2.39 2.00 2.10 2.42
Shop2 2.68 2.72 2.89 2.55 2.42
WalkingP. 1.94 2.07 1.83 2.05 1.58

Fig. 8  The source sequence (top left) is merged with (bottom) and 
without (top right) the proposed ghost-free merging algorithm. 
Images retrieved from Sing Bing Kang [8]
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the unique features of algorithm, the systems exploiting 
our solution can produce high quality HDR and/or tone-
mapped video while maintaining low cost and achieving 
low power consumption and the small footprint suitable 
e.g. for smart cameras. The source codes of the proposed 
algorithm and evaluated datasets are available  online2.
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