
406 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

Libraries of Approximate Circuits: Automated
Design and Application in CNN Accelerators

Vojtech Mrazek , Member, IEEE, Lukas Sekanina , Senior Member, IEEE,

and Zdenek Vasicek , Member, IEEE

Abstract— Libraries of approximate circuits are composed of
fully characterized digital circuits that can be used as building
blocks of energy-efficient implementations of hardware accelera-
tors. They can be employed not only to speed up the accelerator
development but also to analyze how an accelerator responds
to introducing various approximate operations. In this paper,
we present a methodology that automatically builds comprehen-
sive libraries of approximate circuits with desired properties. Tar-
get approximate circuits are generated using Cartesian genetic
programming. In addition to extending the EvoApprox8b library
that contains common approximate arithmetic circuits, we show
how to generate more specific approximate circuits; in particular,
MxN-bit approximate multipliers that exhibit promising results
when deployed in convolutional neural networks. By means of
the evolved approximate multipliers, we perform a detailed error
resilience analysis of five different ResNet networks. We identify
the convolutional layers that are good candidates for adopting the
approximate multipliers and suggest particular approximate mul-
tipliers whose application can lead to the best trade-offs between
the classification accuracy and energy requirements. Experiments
are reported for CIFAR-10 and CIFAR-100 data sets.

Index Terms— Approximate circuit, genetic programming, con-
volutional neural network, hardware accelerator, optimization.

I. INTRODUCTION

THE proper application of approximate circuits enables
designers to obtain excellent trade-offs among power

consumption, performance, and quality of service in many
error resilient applications such as image recognition, video
processing, data mining, and deep learning [1]. However,
the design of approximate implementations of digital cir-
cuits is a time-demanding challenge even for experienced
circuit designers. Inspired in the common circuit design flow,
which is based on reusing pre-designed parts stored in a
component library, libraries of approximate circuits have
been introduced to accelerate the design process [2]–[4].
Approximate circuits intended for such libraries are typically
obtained by the so-called functional approximation, which

Manuscript received June 29, 2020; revised September 3, 2020 and
October 7, 2020; accepted October 7, 2020. Date of publication October 20,
2020; date of current version December 11, 2020. This work was supported
by the Czech Science Foundation under Grant 19-10137S. This article
was recommended by Guest Editor T. Serrano-Gotarredona. (Corresponding
author: Zdenek Vasicek.)

The authors are with the IT4Innovations Centre of Excellence, Faculty of
Information Technology, Brno University of Technology, 60190 Brno, Czechia
(e-mail: mrazek@fit.vutbr.cz; sekanina@fit.vutbr.cz; vasicek@fit.vutbr.cz).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2020.3032495

is a technology-independent simplification or modification of
the exact version of the circuit. Functional approximation
methods are being devised for either one type of circuits
(e.g., multipliers) or arbitrary circuits. In the latter case, these
methods algorithmically simplify, prune, or resynthesize the
original (exact) implementation of the circuit. The designer can
specify various objectives and constraints for target circuits.
The resulting library of approximate circuits then contains
many implementations showing different trade-offs among
power consumption, performance, quality of service, and other
criteria. The key benefit is that the user can quickly choose
the most suitable approximate implementation for a given
application, without repeating the design process.

An open problem remains how to systematically and
effectively build comprehensive libraries of approximate cir-
cuits that are useful in real-world applications. In particu-
lar, we will focus on the EvoApprox8b library which is a
collection of 8-bit approximate adders and multipliers that
was automatically generated using Cartesian genetic program-
ming (CGP) in 2017 [2]. EvoApprox8b contains hundreds
of fully synthesized and characterized approximate circuits
showing high-quality trade-offs, as documented in several
independent case studies [5]–[7].

The aim of this article is twofold. First, we present a
methodology that enables us to extend the original version
of the library in several directions and in such a way that
new types of arithmetic circuits utilizing various bit widths
(from 8 to 32 bits, in some cases to 128 bits) can be included.
Considering the fact that these circuits can be optimized for
many different error metrics (and their combinations), for
various target fabrication technologies and that hundreds of
unique trade-offs can be generated for every specification,
the resulting library of arithmetic circuits would contain tens
of thousands of circuits. One of the challenges is determining
the (exact) error for more complex approximate circuits. This
problem is addressed by means of formal error analysis meth-
ods based on satisfiability (SAT) problem solving or binary
decision diagram (BDD) construction and analysis [8]. In addi-
tion to standard arithmetic circuits having two n-bit operands,
the methodology is capable of generating non-standard circuits
with a different number of bits for each operand.

Second, the aim is to show how libraries of approximate
circuits can be utilized in cutting-edge applications. We chose
the most challenging one from those usually presented by the
approximate computing community—hardware acceleration of

2156-3357 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9399-9313
https://orcid.org/0000-0002-2693-9011
https://orcid.org/0000-0002-2279-5217

MRAZEK et al.: LIBRARIES OF APPROXIMATE CIRCUITS: AUTOMATED DESIGN AND APPLICATION IN CNN ACCELERATORS 407

complex convolutional neural networks (CNNs). In the case
of CNNs, approximate implementations have been proposed
at the level of CNN architecture, data representation, arith-
metic operations, memory access, and memory cells [9]–[11].
In our previous work, we focused on selecting the most
suitable 8-bit approximate multiplier for a particular ResNet
CNN [12]. In order to introduce suitable approximations to
CNNs, a resilience analysis is conducted before any implemen-
tation steps. The resilience analysis of CNNs is usually carried
out by removing some neurons, weights, memory accesses,
or inserting some noise to neurons [9], [13] and observing the
impact on the quality of service. In our case study, we show
how a large set of approximate multipliers can be used to per-
form the resilience analysis of a hardware accelerator of five
ResNet networks and to select the most suitable approximate
multiplier for a given CNN layer. Contrasted to our previous
work [12], [14], we also consider the non-standard approx-
imate multipliers (the first input has 8 bits and the second
has 7, 6, 5 or 4 bits) that we evolved for this purpose. These
non-standard multipliers can contribute not only in reducing
the overall energy of the multiplication operations conducted
in CNNs, but also in reducing the memory usage as fewer
bits are needed to store the weights. To summarize our key
contributions:

• We present a methodology capable of extending the
original EvoApprox8b library to contain more unique
circuits on different bit widths. We also report the basic
parameters of newly generated approximate circuits and
compare them with EvoApprox8b and other approximate
circuits.

• We evolve and characterize non-standard approximate
multipliers (8 bit vs 7 – 4 bit operands) to extend the
library and utilize them in a more detailed study on error
resilience of CNNs.

• We perform a detailed error resilience analysis of five
CNNs (ResNet-8, ResNet-14, ResNet-20, ResNet-26, and
ResNet-164 v2) using relevant multipliers taken from
the extended library of approximate circuits. Results are
reported for the CIFAR-10 and CIFAR-100 benchmark
problems [15].

The rest of the paper is organized as follows. Section II
surveys related research, particularly the principles of approx-
imate circuit design, error metrics and error analysis, existing
libraries of approximate circuits, and their use in CNN design.
Section III is devoted to CGP and its use for the design of
approximate circuits. In Section IV, we present the methodol-
ogy enabling us to systematically extend the library of approx-
imate circuits and the results obtained using the methodology.
Section V is devoted to the resilience analysis of ResNet CNNs
using evolved approximate multipliers. Conclusions are given
in Section VI.

II. RELATED WORK

Approximate computing exploits the gap between the level
of accuracy required by the applications/users and that pro-
vided by the computing system, for achieving diverse opti-
mizations [1]. It has been developed in different ways and
at various levels of the computing stack. Our state of the art

survey is focused on approximate implementations of combi-
national circuits, their design and use in hardware accelerators
of CNNs.

The approximations can be introduced to a circuit during
various steps of the common circuit design flow. In this
work, we primarily focus on the technology-independent logic
synthesis step in which functional approximations can be
applied. The advantage is that the approximate circuit can
be implemented in an arbitrary application-specific integrated
circuit (ASIC) or a field programmable gate array (FPGA)
because it is assumed that the technology-dependent imple-
mentation is performed by means of common open source or
commercial tools after the approximation is finished.

The methods performing the functional approximations can
be classified as single-purpose or general-purpose (automated).
The single-purpose (ad-hoc) methods have been developed for
specific circuit components such as adders, multipliers, and
dividers [16], [17]. On the other hand, the automated methods
use some general-purpose circuit simplification, resynthesis,
or approximation techniques and enable us to approximate
arbitrary circuits. These methods start with an original (exact)
circuit and, typically iteratively, modify its structure to reach
the desired trade-off between the error, power consumption,
and other objectives.

A. Error Analysis

Prior to any approximation is introduced, it is necessary to
define (i) the error metric(s) for guiding the approximation
process, (ii) the constraint(s) allowing to identify infeasible
solutions and (iii) the error analysis method capable of quickly
and reliably determining the error for all candidate approxi-
mate circuits.

1) Error Metrics and Constraints: The quality of approx-
imate combinational circuits is typically expressed using one
or several error metrics, where the most commonly used ones
are: the error rate (ER) and the arithmetic errors such as the
mean absolute error (MAE), the mean square error (MSE),
the mean relative error (MRE), the worst-case error (WCE),
and the worst-case relative error (WCRE). The equation for
determining WCE is shown in Eq. 1, in which the output of the
approximate circuit and original (exact) circuit is Oapprox and
Oorig, ni is the number of primary inputs and ∀x enumerates
all possible input vectors. The remaining definitions can be
found in [8].

WCE = max
∀x∈B

ni

��Oapprox(x) − Oorig(x)
�� (1)

An error metric can also serve as a constraint. For exam-
ple, if the objective is to minimize MAE and WCE must
be kept below a predefined threshold value, then WCE
effectively constrains and thus reduces the design space.
Apart from these standard metrics, we can employ additional
application-specific metrics. As shown in [18], for example,
the accurate multiplying by zero is an essential condition
for the successful integration of approximate multipliers into
neural networks. We can determine validity of this con-
straint by calculating WCE only for those input combinations

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

408 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

x ∈ B
ni that lead to the zero output (see Eq. 2). The accurate

multiplying by zero is guaranteed if WCEzr = 0.

WCEzr = max
∀x∈B

ni :Oorig(x)=0
Oapprox(x) (2)

In addition to an error metric used at the circuit level,
the error is also evaluated at the application level, e.g., for the
complete CNN image classifier. This application-level error is
then the primary quality indicator of the entire approximate
implementation. As we aim to develop a general-purpose
library of approximate circuits, we will consider all the listed
circuit-level error metrics.

2) Error Analysis Methods: Most error analysis methods
only estimate an approximate implementation error as deter-
mining the exact error is very time-consuming. The error
estimate is obtained by circuit simulation across a reasonably
inclusive subset of input vectors. For example, 10 million
out of 232 ≈ 4295 million vectors were employed for 16-bit
multipliers [16]. The exact error can be obtained by exhaustive
circuit simulation, but this approach is not scalable. For a
few particular implementations of approximate adders and
multipliers, a detailed probability analysis was performed, and
probability error models were derived, e.g., [19]. Knowledge
of these error models becomes very useful if such a circuit
is (re)used in a more complex application, and one needs
to perform reasoning about the application-level error based
on the probability models available at the component level.
An obvious disadvantage is that a lot of human effort is
required to construct reliable probabilistic models for particu-
lar circuits.

The general-purpose exact error analysis methods are based
on equivalence checking, i.e., checking whether a mathemat-
ical model of a circuit under design meets a given spec-
ification [8], [20], [21]. Two main approaches have been
developed in this direction—-techniques based on Reduced
Ordered Binary Decision Diagrams (ROBDD) and satisfiabil-
ity (SAT) solvers. In approximate computing, this concept is
extended to relaxed equivalence checking, by stressing that
the considered circuits are checked to be equal up to some
bound w.r.t. a suitably chosen distance (error) metric such as
WCE or MAE. As ROBDDs are inefficient in representing
classes of circuits for which the number of nodes in ROBDD
is growing exponentially with the number of input variables
(such as multipliers and dividers), their use in relaxed equiv-
alence checking is typically possible for adders and other
less structurally complex functions. For example, even 128-bit
adders can be quickly analyzed in terms of all relevant error
metrics [8]. Common SAT solvers are, in principle, applicable
to the worst-case analysis only. However, this approach is more
scalable than ROBDDs for the error analysis of multipliers [8].

In order to apply the formal techniques, we need to trans-
form the problem into a Boolean satisfiability problem. This
is achieved by constructing the so-called approximation miter,
a circuit computing the difference between the accurate and
approximate circuit. The approximation miter typically con-
sists of three components: the exact and approximate circuits
whose outputs are fed into an error computation block whose
structure depends on the chosen metric. For WCE or MAE,

e.g., the error computation block consists of the subtracter
followed by a circuit that computes the absolute value. As soon
as the miter is constructed, it can either be converted to a
conjunction normal form and submitted to a SAT solver or
represented as an ROBDD. The selection of a proper formal
apparatus depends, in general, on the chosen error metric. The
SAT solvers typically provide a binary output and can be thus
applied to prove whether some threshold is exceeded. This is
suitable, e.g., for calculating WCE or determining whether
WCE is bounded by some threshold. On the other hand,
the ROBDDs can be used not only to prove the satisfiability
but also to quickly calculate the number of input assignments
causing the erroneous output. This is necessary for calculating
MAE and other statistically oriented metrics.

B. Automated Design of Approximate Circuits

Automated functional approximation methods start with a
common (exact) circuit implementation and define one or
several design objectives and constraints. The initial circuit is
modified by an iterative approximation algorithm to produce
an approximate implementation satisfying all design objectives
and constraints. The basic algorithmic approximation tech-
niques are pruning (i.e., removing some parts of the circuit),
component replacement (i.e., complex subcircuits are replaced
with simpler subcircuits) and approximate re-synthesis. How-
ever, if the circuit is provided in a behavioral HDL represen-
tation, other more software-oriented techniques (such as loop
perforation and memorization) can be applied. The automated
approximation methods select either randomly or heuristically,
which parts of the circuit have to be removed, re-connected,
or replaced. Examples of such methods are SALSA [20],
SASIMI [22], ABACUS [23], ALFANS [24] and CGP-based
methods [25]–[27]. Section III is devoted to introducing CGP
for this purpose.

C. Libraries of Approximate Circuits

Benchmark suites and libraries have frequently been used to
compare approximation methods and their results, i.e. approx-
imate circuits and applications. Regarding the benchmarking
of approximation methods, AxBench,1 which contains bench-
mark problems for processors and GPUs as well as benchmark
circuits, is one of the most popular collections. However,
only circuit description and simulation scripts are given for
eight circuits, i.e., the website contains neither the quality
parameters nor the electrical parameters of the circuits.

In order to provide approximate circuits that can be rou-
tinely re-used, several libraries of approximate circuits have
been developed. They are primarily focused on approximate
arithmetic circuits because these circuits are typical building
blocks of complex digital systems. Furthermore, it makes
sense to provide their various approximate implementations
that differ in the bit width, error, power consumption, delay
and other parameters. A common approach to their design
is developing a parameterizable approximate circuit and pro-
viding its approximate implementations by various settings

1axbench.org

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

MRAZEK et al.: LIBRARIES OF APPROXIMATE CIRCUITS: AUTOMATED DESIGN AND APPLICATION IN CNN ACCELERATORS 409

of the parameter(s). In the case of approximate multipliers,
suitable circuits of this type are, e.g., broken array mul-
tipliers (BAM) [17], rounding-based approximate multipli-
ers (RoBA) [28], truncation- and rounding-based scalable
approximate multipliers (TOSAM) [29] and dynamic range
unbiased multipliers (DRUM) [30]. For approximate adders,
see, e.g. [31]. The following libraries are open and can be
obtained from the internet.

lpACLib2 library contains the VHDL description of accurate
and approximate versions of several manually constructed
arithmetic modules (like adders and multiplier of different
bit-widths) and the corresponding software implementations
developed in C and MATLAB. All circuits are configurable
and different configurations represent different approximate
circuits [3].

GeAr3 is a low-latency generic accuracy configurable adder
that provides a higher number of potential configurations com-
pared to state-of-the-art approximate adders. Circuit imple-
mentations are available in MATLAB and Verilog [32].

SMApproxLib4 is an open source library of approximate
multipliers with different bit-widths, output accuracies and
performance gains targeting FPGAs [4].

EvoApprox8b5 library was completely generated by CGP.
Its first version from 2017 contains 430 non-dominated 8-bit
approximate adders evolved from 13 conventional adders,
and 471 non-dominated 8-bit approximate multipliers evolved
from 6 conventional multipliers. All circuits are fully charac-
terized in terms of area, delay, power consumption, and seven
error metrics and they are available for download in C, Verilog,
and Matlab.

D. Approximate Implementations of CNNs

CNNs are deep neural networks containing, in addition to
other layers, the so-called convolutional layers. CNNs show
superior performance, especially in image and video process-
ing tasks such as image classification. As the state of the art
CNNs consists of hundreds of layers and millions of network
elements, they are demanding in terms of the execution time
and energy requirements. For example, the inference phase of
a trained CNN such as ResNet-50 (see Section V for details)
requires performing 3.9 ·109 multiply-and-accumulate (MAC)
operations to classify one single input image [10]. Training of
CNNs is significantly more time and resource demanding.

Arithmetic operations conducted during the inference of
a CNN are responsible for 10%-40% of energy, depend-
ing on a given CNN architecture and the CNN accelerator
employed [10]. Various fixed-point as well as floating-point
number representations were evaluated for CNNs to reduce
power consumption [10], [33]. A detailed analysis of
precision-scalable MAC architectures for CNNs was per-
formed in [34]. The Ristretto tool helped in determining the
optimum number of bits for arithmetic operations [13]. Further
savings in energy are obtained not only by bit width reduction

2sourceforge.net/projects/lpaclib/
3sourceforge.net/projects/approxadderlib
4cfaed.tu-dresden.de/pd-downloads
5fit.vutbr.cz/research/groups/ehw/approxlib/

of arithmetic operations but also by introducing approximate
operations, particularly to the multiplication circuits, which is
currently a fresh research topic [18], [35], [36].

Libraries of approximate circuits have systematically been
exploited in the CNN design in the following directions.
(i) Mrazek et al. introduced an optimization algorithm for
choosing a suitable approximate multiplier from a library of
approximate multipliers in such a way that one approximate
multiplier serves several layers, and the overall classification
error and energy consumption are minimized [12]. At the same
time it is ensured that no re-training is needed after introducing
the approximate multipliers into CNN. (ii) Using a library of
approximate multipliers, Ansari at al. identified the features
in an approximate multiplier that tend to make it superior to
others with respect to CNN accuracy [7]. A predictor was
then built to forecast how well a multiplier is likely to work
in a given CNN. This predictor was verified by classifying
114 approximate multipliers based on their performance in
LeNet-5 and AlexNet CNNs on the SVHN and ImageNet data
sets, respectively. (iii) A subset of the EvoApprox8b library
was used in the resilience analysis of several ResNet networks
as introduced in our preliminary conference report on this
topic [14].

III. CIRCUIT APPROXIMATION USING CGP

Cartesian genetic programming (CGP) is a branch of genetic
programming primarily developed for the design and opti-
mization of digital circuits [37]. CGP can also be used as a
general-purpose approximation method for combinational cir-
cuits [25], [27]. CGP represents candidate circuits as directed
acyclic graphs. These graphs are iteratively modified using
mutation operator(s) to meet the design objectives and ensure
that various constraints that can be imposed on the error, area,
delay, or any other circuit property are not violated.

A. Circuit Representation

In the most common version of CGP, a candidate circuit is
represented as a string of integers (the so-called chromosome)
which fully specifies a logic network containing up to N
nodes. These nodes are organized in a two-dimensional grid
of nc columns and nr rows (N ≤ nc · nr). The number of
primary inputs and outputs of the circuit is denoted ni and no.
Each node implements one of the functions specified in the
set of functions � and has up to na inputs and a single output.
For gate-level circuits, � usually contains a set of binary
logic functions (na = 2). Any node input can be connected
to any node in the previous 1 . . . L columns, where L is a
user-defined parameter. As Fig. 1 shows, all primary inputs
and node outputs are assigned with a specific index, which
enables us to specify the circuit encoding. Three integers are
reserved for defining every node (two input codes and one
function code). Finally, no integers specify where the primary
outputs are connected.

B. Search Algorithm

Every candidate circuit represents one design point in the
design space. In CGP, new designs are created by introducing

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

410 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

Fig. 1. A two-bit multiplier represented in CGP with parameters:
ni = no = 4, nc = nr = 3, na = 2, � = {0identit y , 1not ,
2and , 3or , 4xor , 5nand , 6nor , 7xnor , 8const0, 9const1}.

small random modifications to the chromosome. This opera-
tion is called the mutation and typically modifies h integers
of the chromosome. Note that all changes must lead to valid
circuits, i.e., only valid function codes and connections can be
created.

The search method is based on the (1 + λ) evolutionary
strategy in which λ offspring circuits are created from one
parent [37]. The search algorithm can start with either a
randomly generated initial population or existing designs. The
population size is 1+λ. After evaluating the initial population
(i.e., measuring the circuit functionality and cost in the fitness
function) the following steps are repeated until the termination
condition is not satisfied: (i) the best-scored circuit (called the
parent) is selected; (ii) λ offspring circuits are created from the
parent using mutation; (iii) all offspring circuits are evaluated.

C. Evolutionary Circuit Approximation

The approximation process typically starts with an accurate
circuit or several different versions of the accurate circuit.
Candidate approximate circuits are generated from the original
circuit in the course of a CGP run. As thousands of candidate
circuits can be generated, the error evaluation must be fast.
For small circuits, the exhaustive circuit simulation utilizing
all possible input vectors is the quickest option. The scalability
issues typical for more complex circuits are addressed by
means of formal methods introduced in Section II-A. The
electrical parameters (such as delay and area) of candidate
circuits are estimated in the fitness function. Their precise
evaluation is conducted by a professional design tool at the
end of evolution, but only for the best-evolved designs. This
strategy significantly reduces the design time [27].

If a single-objective CGP is applied, the target error range
(e.g., the MAE), determined by emin and emax , is specified
by the user. The goal is to minimize the number of gates (or
area or power consumption, depending on the specification)
while the error of the circuits is kept between the target values
emin and emax . If various trade-offs between the objectives are
requested, CGP is executed several times with different error
bounds as the control parameters.

The multi-objective CGP allows us to optimize the error
and other key circuit parameters (area, delay, and power
consumption) together in one run. We are primarily interested
in the approximate circuits belonging to the Pareto front that
contains the so-called non-dominated solutions. For example,

consider two circuits C1 and C2. Circuit C1 dominates circuit
C2 if: (1) C1 is no worse than C2 in all objectives, and
(2) C1 is strictly better than C2 in at least one objective.
The search algorithm of CGP is then modified to build Pareto
fronts in the course of evolution continuously. This approach
was adopted to generate the EvoApprox8b library [2].

IV. EXTENDING THE LIBRARY OF

APPROXIMATE CIRCUITS

To extend the EvoApprox8b library, we used a single
objective CGP. The goal was to design approximate versions of
various multipliers and adders that exhibit WCE no worse than
a given threshold. Compared to EvoApprox8b, we considered
not only unsigned but also signed adders and multipliers.
Twenty thresholds linearly sampled in the log space were used
for every circuit instance. The lowest threshold’s value equals
1 while the highest value equals 2w+1 − 1 for adders and
22w − 1 for multipliers, where w is the bit-width. Ten inde-
pendent runs of CGP were executed for every threshold. The
WCE error metric was not chosen arbitrarily. We employed
the fact that the other essential error metrics such as MAE
and MSE (and also ER in case of adders) highly correlate
with WCE [8]. In addition to that, the computation of WCE
violation is of modest complexity compared to evaluating other
error metrics, especially the statistical ones such as MAE
or ER. This property is important, especially for instances
with more than 12-bit operands where we cannot employ the
exhaustive simulation in the evolutionary loop to determine
WCE due to high runtime requirements. As shown in [26],
deciding whether a candidate circuit violates the fixed WCE
threshold can be done within few seconds even for tough
verification problems such as 32-bit multipliers where the
complete formal verification may represent a time-demanding
process requiring several minutes or hours.

At the end of the evolutionary runs, we gathered all the
logged results for a particular design problem, filtered out
redundant solutions using estimated circuit parameters and
available error parameters, and stored the netlists in a library.
The complete process is illustrated in Fig. 2. The extended
version of the library, called EvoApproxLib, is created as
follows. The netlists are converted to corresponding HW and
SW models. The HW models are synthesized by a common
design tool (we used Synopsys Design Compiler, 45 nm
process, Vdd=1V). The SW models allow determining all
relevant quality parameters. After synthesis, we calculate the
final Pareto front using real circuit parameters obtained by the
design tool. This usually gives us a large set (see Tab. II)
of non-dominated approximate circuits which nearly covers
the complete design space (see the gray points in Fig. 4).
The synthesis step can be repeated for different technology
libraries (see the technology-specific custom library in Fig. 2).
Moreover, we can also utilize a SW model provided by the
user and calculate application-specific error parameters that are
needed to create an application-specific library of approximate
components. For example, we can evaluate the approximate
multipliers in a CNN and use the classification accuracy as an
application-specific quality parameter.

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

MRAZEK et al.: LIBRARIES OF APPROXIMATE CIRCUITS: AUTOMATED DESIGN AND APPLICATION IN CNN ACCELERATORS 411

Fig. 2. The methodology of creating the library of approximate circuits.

As the number of instances in EvoApproxLib is high
(e.g., 51,882 pieces of 8-bit approximate multipliers),
the selection of the most suitable circuit for a given application
could be a challenging combinatorial problem. In order to sim-
plify this task and help the designers, we identified a subset of
circuits and composed the so-called EvoApproxLibLite library.
The selection follows the principles of Pareto optimality with
respect to several objectives in which power consumption
is compared against ER, MAE, WCE, MSE and MRE. For
each of the five subsets of components, ten circuit instances
evenly distributed along the power axis were included to
EvoApproxLibLite.

Section IV-A presents the CGP setup, evaluation of CGP
performance, and selected approximate circuits that we
obtained when extending the library of approximate circuits
with very specific components—approximate multipliers hav-
ing their operands on different bit widths. These multipliers are
especially useful in CNNs, as it will be shown in Section V.
Section IV-B deals with extending the EvoApproxLib to
support more complex approximate adders and multipliers.
Finally, all results are summarized in Section IV-C.

A. The NxM-Bit Approximate Multipliers

The objective is to design a set of approximate multipliers
with operands on wa and wb bits, where wa +wb = ni = no.
Considering their application in CNNs, we chose wa = 8 and
wb = 4, 5, 6, and 7.

1) Setup: For each configuration of bit-widths, we gener-
ated six different (but exact) multiplier architectures, including
ripple-carry array multiplier (RCAM), two carry-save array
multipliers (CSAM), and three Wallace tree architectures
(WTM). In total, 24 netlists of exact multipliers were gener-
ated and used to seed the CGP. For each seed, 20 target error
levels ε were considered. For every ε, 10 independent CGP

TABLE I

THE NUMBER OF GENERATED / NON-DOMINATED IMPLEMENTATIONS OF
APPROXIMATE 8XN MULTIPLIERS IN EVOAPPROXLIB

runs were executed with the following parameters: N = k,
where k is the number of gates of the original (exact) circuit
with ni = wa + wb primary inputs and no = ni primary
outputs, λ = 4, h = 1, � contains AND, OR, XOR gates,
their inverted versions and inverter. At most, 106 generations
were produced. All experiments were conducted on a server
equipped with 2.4 GHz Intel Xeon CPU. The average duration
of a single CGP run, considering this setup, ranges from 7.8 to
147.7 minutes depending on ε.

As the approximate multipliers are supposed to be used in
neural networks, we integrated the requirement for the accurate
multiplying by zero (as introduced in [18]) together with the
WCE constraint in the fitness function F as follows:

F(�M, ε) =

⎧⎪⎨
⎪⎩

cost (�M) if WC E(�M) ≤ ε ∧
WC Ezr (�M) = 0

∞ otherwise,

(3)

where cost (�M) is the cost of a candidate solution �M . The cost
is estimated as the sum of weighted areas of the gates used
in the circuit. The objective is to minimize F . The validity of
both conditions is checked using a single pass of exhaustive
simulation.

At the end of evolution, the best-scored circuit is syn-
thesized. Because the error parameters are evaluated using
the exhaustive simulation, one can calculate all relevant error
metrics in a reasonable time. Less than 2 ms are required,
for example, to obtain the response of the largest 8 × 7 bit
multiplier to all input combinations.

2) Results: The number of generated circuits for each
configuration of wa and wb is given in Tab. I. This table also
reports the number of non-dominated implementations that are
included in EvoApproxLib. For the possible power reduction,
please refer to Tab. IV. As evident from Tab. I, the usage
of different seeds is beneficial because more unique circuits
are obtained at the end; see the number of non-dominated
solutions in the row denoted ‘total‘ in comparison with the
remaining ones. For example, for 8×7 multiplier, the resulting
Pareto front contains 2,192 circuits, whereas 607 circuits are
obtained from RCAM. On the other hand, the Pareto front size
is much smaller than the sum of non-dominated solutions in
the individual rows. That means that similar design points can
be reached from different seeds.

Fig. 3 shows convergence curves of CGP for five error
levels when seeded with 8×7-bit ripple-carry array multipliers.

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

412 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

Fig. 3. The progress of the evolutionary design of 8 × 7 bit approximate
multipliers. The box plots are constructed from 10 runs carried out for each
of the five target error values ε.

Each of the five convergence curves (depicted using boxplot
charts) shows the evolutionary search’s progress aggregated
from 10 independent runs. The convergence rate depends on
the chosen ε. The fitness value decreases (i.e., the circuit
shrinks) gradually for lower error levels and increases steeply
for higher error levels. Only a small improvement in fitness
is achieved in the last decade (i.e., in the range from 104

to 105), which means that the search probably reached the
best-possible solution enabled by our experimental setup.

Fig. 3 also shows the development of MAE to illustrate the
behavior of the error parameter whose value is not directly
optimized or constrained. For the sake of better readability,
the mean value of MAE is reported instead of boxplots. The
MAE remains nearly constant for the lower values of ε.
On the other hand, MAE gradually increases if ε = 4095.
It seems that sub-optimal solutions are obtained at the end
of the evolution when an excessive number of generations is
used. However, a more detailed analysis revealed that MAE’s
upper bound depends on the value of WCE. Thus, it is
guaranteed that the MAE stays at a reasonable level even if we
use substantially more generations than necessary. Moreover,
we store the best chromosome at every improvement of the
fitness value. CGP thus provides a set of chromosomes in the
course of evolution. The low-quality circuits are filtered out at
the end of the evolution, and only the non-dominated solutions
are kept.

B. Increasing the Bit-Width

Evolutionary approximation of arithmetic circuits operating
on more than 12 bits requires applying a different approach to
the error evaluation. We present a CGP-based approach that
employs formal error analysis methods to provide approximate
adders with up to 128 bits and approximate multipliers with
up to 32 bits. More complex instances were not considered as
they are less relevant for practice.

1) Approximation: For higher bit widths, we used the same
CGP setup as described in Section IV-A. The only differences
are that more generations (106) were used, and a SAT solver
was employed to determine whether a candidate solution
violates a target WCE.

In addition to the CGP-based approach, a scalable divide-
and-conquer strategy was used for synthesizing 16-bit and
32-bit approximate multipliers [38]. The 2n-bit operands are

TABLE II

THE NUMBER OF GENERATED / NON-DOMINATED IMPLEMENTATIONS
OF ARITHMETIC CIRCUITS IN EVOAPPROXLIB

divided into four n-bit chunks (each operand has a lower
and higher part) that are independently processed using four
multipliers whose outputs are reduced using two adders with
one n-bit and one 2n-bit operand each. This method’s key
advantage is that if accurate adders are employed and some
of the n-bit multipliers are arbitrarily chosen approximate
multipliers with known WCE, the upper bound of WCE of
the 2n-bit approximate multiplier can be derived. If only
one type of approximate multipliers is used then WCE can
be calculated exactly. Moreover, this construction provides
high-quality trade-offs between the area and error compared
to many state-of-the-art approximate multipliers [38].

2) Error Parameters Calculation: The limit of exhaustive
simulation is 32 inputs, i.e. two 16-bit operands. In the case of
more complex approximate adders, all relevant error metrics
are evaluated using ROBDD-based error analysis algorithms
because the adders are structurally simple circuits, and all
ROBDD-based error analysis algorithms scale well. Corre-
sponding algorithms are summarized and assessed in [8]. For
example, determining MAE for an approximate 16-bit and
32-bit adder takes 3 ms and 198 ms on average. In the
case of more complex approximate multipliers, we used SAT
solving to determine WCE using the algorithm proposed in [8].
Other metrics are estimated using simulation with a randomly
generated subset of all possible input combinations.

C. The EvoApproxLib Library

Table II summarizes the number of approximate circuits that
were generated and the number of non-dominated instances
included in EvoApproxLib. Each of them represents a unique
trade-off when some subset of objectives and constraints is
considered. We can not remove any circuit without losing a
multiplier or adder exhibiting some unique combination of
properties. Please note that significantly different numbers of
circuits of different types (e.g. 8-bit unsigned multipliers vs.
8-bit signed multipliers) are caused by our needs of particular
circuits in different applications rather than non-existence of
suitable circuits.

In Fig. 4, the black points (corresponding with the
EvoApproxLibLite) are contrasted with the original circuits of
EvoApprox8b (red points), conventional broken array multipli-
ers (green points), truncated multipliers (blue points), lpAClib
multipliers [3], and other multipliers analyzed in [16] (approx-
imate multipliers (AM), error-tolerant multipliers (ETM), and
underdesigned multipliers (UDM)). The grey points in Fig. 4
show all 16,833 non-dominated implementations. To make

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

MRAZEK et al.: LIBRARIES OF APPROXIMATE CIRCUITS: AUTOMATED DESIGN AND APPLICATION IN CNN ACCELERATORS 413

Fig. 4. The 8-bit approximate multipliers (black points) that were selected
to EvoApproxLibLite from all the discovered approximate multipliers (grey
points) and compared to the former version of EvoApprox8b library (red
points), broken array multipliers (green points), truncated multipliers (blue
points) and other selected approximate multipliers from lpAClib [3] and [16].
Two objectives (MAE vs. power and WCE vs. power) are projected.

Fig. 4 readable, only two objectives (MAE vs. power and WCE
vs. power) are projected. Note that EvoApprox8b and results
of CGP were also compared with the state of art approximate
circuits in [2], [26], [27].

Selected approximate adders and multipliers (as well as
other circuits [39]) and their various parameters can be
obtained from https://ehw.fit.vutbr.cz/evoapproxlib. The library
provides circuit models in Verilog, Matlab, Python, and C.
This enables the user to integrate the approximate circuits to
hardware as well as software projects and design tools. All
approximate circuits can thus be simulated to obtain their other
parameters that are not listed on the web site (e.g., the errors
under different error metrics or power consumption for another
fabrication technology). Every circuit is assigned with a short
permanent alphanumeric identifier to identify it uniquely.

V. CNN RESILIENCE ANALYSIS WITH THE LIBRARY

OF APPROXIMATE MULTIPLIERS

The proposed library allows us to perform the resilience
analysis in CNNs in a more complex way than previous
methods. Regarding the use of approximate multipliers in
CNNs, previous papers studied the impact of the bit width
reduction [10], [13], [40] and considered a very limited set
of approximate multipliers [9], [36]. Our previous studies
utilizing the EvoApprox8b library only applied the approxi-
mate multipliers having both operands on the same number
of bits [7], [12], [14], [18]. As we generated many different
approximate multipliers in Section IV, we can immediately
analyze the impact of their utilization not only on the accuracy
of classification but also on the power consumption reduction.

In our case studies, we investigate how the approximate
multipliers that are introduced to convolutional layers of five
ResNet networks [41] can affect the classification accuracy and

Fig. 5. Architecture of ResNet convolutional neural network with 3 stages
and n residual blocks per stage.

TABLE III

PARAMETERS OF RESNET CNNS. THE ACCURACY IS GIVEN ON
CIFAR-10 (FOR RESNET-8/-14/-20/-26) AND

CIFAR-100 (FOR RESNET-164 V2)

power consumption. Please note that ResNet CNNs introduced
new modules (the so-called residual modules) containing an
identity connection such that some layers can effectively be
skipped. This technique enabled the update of the weights of
earlier layers in very deep CNNs that would normally suffer
from the vanishing gradient during training [10]. Fig. 5 shows
a typical architecture of ResNet CNN used in our experiments.

A. Experimental Setup

Table III summarizes basic parameters of ResNet net-
works and their classification accuracies after training with
the floating-point multiplication and after applying the 8-bit
exact multiplier (qint-8). The experiments are performed with
ResNet-8, ResNet-14, ResNet-20, and ResNet-26 trained on
CIFAR-10 and ResNet-164 v2 trained on CIFAR-100 using
TensorFlow [42]. A ResNet CNN utilizing the 8-bit exact
multiplier is considered as a golden solution, and all proposed
approximations are compared against it. Note that retraining
was performed after introducing neither the 8-bit exact multi-
plier nor approximate multipliers in this CNN error-resilience
study. Please note that retraining is, in principle, possible [43].

Hardware accelerators developed to speed up a CNN infer-
ence process primarily focus on the MAC operations that are
essential in convolutional and fully connected layers. The com-
putation is typically accelerated using a two-dimensional array
of processing elements (PE). A typical PE multiplies the input
with its weight and updates the sum maintained in each layer.
The PE array can be operated in several ways, see [10], [44].
In our study, we suppose that the CNN accelerator running
the ResNet is organized as a generic PE array. Since the
multipliers participate in the PE energy more than the adders
(approx. 6.5x considering 8-bit multipliers and 16-bit adders,
also depending on the selected fabrication technology), only
the multipliers will be approximated to achieve power savings.

Fig. 6 presents the approach developed to evaluate CNNs
utilizing approximate multipliers. The input architectures of
neural networks (ResNet-8, -14, etc.) are trained and quantized

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

414 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

Fig. 6. The methodology developed for error resilience analysis of CNNs
utilizing approximate multipliers.

to 8-bit operations using the TensorFlow framework. By means
of approximate multipliers taken for the library, the first
experiment reveals to what extent the individual convolutional
layers of ResNet are error-resilient (Section V-B). The second
experiment reports energy savings in the inference path of
ResNet by approximating all convolutional layers in the net-
work using the same multiplier (Section V-C and V-D). In both
cases, the accuracy of the CNN employing the approximate
convolutional layers is evaluated using the TFApprox tool,
which is a Tensorflow extension developed for fast emulation
of approximate CNNs on a GPU [45]. The reference energy
consumption of one multiplication is obtained by Synopsys
Design Compiler (45 nm fabrication technology).

B. Case Study 1: One ResNet Layer Under Approximation

In order to identify a reasonable and diverse subset of 8-bit
approximate multipliers, we started with the EvoApproxLibLite

library. After removing duplicate circuits we ended up with
35 approximate multipliers showing high-quality tradeoffs
between power and the five error metrics (Section IV-C).

All exact multiplications of a given layer of ResNet-8
were then replaced by one of the approximate multiplication
implementations. This process has been repeated for all the
layers and all the 35 approximate multipliers, but only one
layer was modified and one type of approximate multipliers
was used in each experiment. Fig. 7 shows that the most
interesting approximations are obtained if the convolutional
layer of the third stage is approximated (see S=3, R=1,
C=1 in Fig. 7). As this layer executes 28.2% of all the
multiplications, it should undergo the approximation with the
highest priority. Introducing the approximate multipliers to the
first layer (which performs only 2.09% multiplications) makes
a negligible contribution.

C. Case Study 2: All ResNet Layers Under Approximation

This case study deals with a situation in which all 8-bit
multiplications of all convolutional layers are replaced with
one particular approximate implementation of the multiplier.

Fig. 7. The classification accuracy drop on CIFAR-10 and the energy of
multiplications measured when approximate multipliers are used in one layer
of ResNet-8 (with the reference classification accuracy 82.85%). Different
layers are represented using different colors and characterized in terms of
the number of stages (S), residual blocks (R), convolutional layers (C) and
percentage of multiplications.

Fig. 8. The classification accuracy drop on CIFAR-10 and the energy of
multiplication measured when all multiplications in all convolutional layers
of ResNet-14 are performed with the same multiplier.

On the case of ResNet-14 CNN, Fig. 8 shows various
trade-offs that can be obtained using a common trunca-
tion (green points), BAM multipliers [17] (orange points),
8-bit approximate multipliers taken from our pre-selected
set of 35 approximate multipliers (red points) and accurate
8xN-bit multipliers (blue points), where N = {7, 6, 5, 4} bits
are devoted to the weights. Please note that the rounding to N
bits is performed offline before the N-bit weights are stored
to the weight memory. Unused bits are truncated.

As the 8xN-bit exact multipliers provide high-quality
results, it is also worth to analyze the impact of employing
the 8xN-bit approximate multipliers on the CNN accuracy
and energy requirements. For these purposes, we re-used the
approximate multipliers that were evolved in Section IV-A.
From all the results reported in Tab. I, 6,345 non-dominated
circuits were selected for each 8xN-bit approximate multiplier
and utilized in four versions of ResNet. Fig. 9 shows that it is
always better to pick a suitable 8xN-bit approximate multiplier
than an 8 × 8-bit approximate multiplier because more energy
can be saved for a given accuracy drop. Furthermore, the
8xN-bit approximate multipliers accept the weights on fewer
bits, and thus, memory requirements are significantly reduced.

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

MRAZEK et al.: LIBRARIES OF APPROXIMATE CIRCUITS: AUTOMATED DESIGN AND APPLICATION IN CNN ACCELERATORS 415

TABLE IV

PARAMETERS OF SELECTED APPROXIMATE MULTIPLIERS (EMPLOYED TO MULTIPLY TWO 8-BIT OPERANDS) EXPRESSED WITH RESPECT TO THE EXACT
8-BIT MULTIPLIER AND THE CLASSIFICATION ACCURACY (ON CIFAR-10) OF VARIOUS RESNET NETWORKS UTILIZING THESE CIRCUITS.

MUL8U AND MULT8X ARE EVOLVED MULTIPLIERS AND BAM MULTIPLIERS (h AND v ARE THE HORIZONTAL AND VERTICAL BREAK

LEVELS) ARE CONSTRUCTED ACCORDING TO [17]

Another critical question is if a better trade-off (between
the classification accuracy and the energy needed for all the
multiplications) is obtained if one introduces more aggressive
approximations to a larger ResNet or decent approximations
to a smaller ResNet. We analyzed these trade-offs in Fig. 10,
which plots the classification accuracy against the total energy
of multiplication in all convolutional layers. In this experiment,
we considered all multipliers situated on the Pareto fronts
visible in Fig. 9. In Fig. 10, one can observe a set of solutions
in which a careful approximation of a smaller network always
represents a better trade-off than a heavily approximated larger
network. Furthermore, a suitable approximate multiplier still
provides a better trade-off than an accurate multiplier operated
on a reduced bit width. These results are comparable with the
ALWANN method [12] (applied on ResNet-8, ResNet-14, and
ResNet-50 networks), which is a highly-specialized algorithm
for the selection of 8-bit approximate multipliers for each layer
of a particular CNN.

Table IV gives a detailed characterization of selected
approximate multipliers discussed in this paper and the classi-
fication accuracy if these multipliers are employed in all con-
volutional layers of various instances of ResNet CNNs which
are evaluated on the CIFAR-10 data set. Evolved approximate

multipliers are compared with common approximate multi-
pliers based on the truncation and BAM algorithm [17]. For
example, a 1.83% drop in the accuracy of ResNet-8 can be
exchanged for a 29.4% improvement in power consumption
if an 8-bit approximate multiplier mul8u_NGR is chosen. For
8 × 5-bit approximate multiplier mul8 × 5u_43Z, the power
improvement is 60.1% while we lose 3.95% accuracy. The
most interesting trade-off is provided by 8 × 6-bit approxi-
mate multiplier mul8 × 6u_4Z1 whose usage reduces power
consumption by 38.3% while the accuracy drop is only 0.33%.

D. Case Study 3: Complex CNNs

In the final experiment, we assess if the findings of the
previous section also hold for a more complex network and
a more complex problem. We chose a 164-layer ResNet of
Bottleneck architecture (denoted as ResNet-164 v2) proposed
in [46] for classification on a more challenging CIFAR-100
data set. This moderate-size CNN contains 163 convolu-
tional layers with more than 592.6 million multiplications
and achieves 74.46% classification accuracy on CIFAR-100.
Fig. 11 shows that ResNet-164 v2 evaluated on CIFAR-100 is
much less error resilient than the smaller ResNet networks

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

416 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

Fig. 9. The classification accuracy drop on CIFAR-10 and the energy of multiplication measured when all multiplications in all convolutional layers of
various ResNet CNNs are performed with the same approximate multiplier.

Fig. 10. The classification accuracy on CIFAR-10 and the total energy of mul-
tiplication in various approximate implementations of ResNet CNNs (points)
and accurate, but quantized ResNet CNNs (crosses) contrasted with the
ALWANN method [12].

Fig. 11. The classification accuracy drop on CIFAR-100 and the energy of
multiplication measured when all multiplications in all convolutional layers
of ResNet-164 v2 are performed with the same multiplier.

evaluated on CIFAR-10. A 10% reduction in the energy of
multiplication is associated with a non-negligible drop in
the accuracy. The 8xN-bit approximate multipliers (we tested

N = {7, 6, 5, 4}) that are beneficial for the smaller ResNet
networks are not suitable in this task. This result is, however,
somewhat expected and should be interpreted that one has to
introduce approximate multipliers to this kind of non-trivial
use cases, such as ResNet-164 v2 applied on CIFAR-100, very
carefully. Either only some layers should be approximated or
the most suitable approximate multiplier should be separately
identified for each layer.

VI. CONCLUSIONS

In this paper, we presented a large library of approxi-
mate adders and multipliers primarily intended to accelerate
the design process of energy-efficient hardware accelerators
for CNNs and other signal, image, and video processing
applications. In greater detail, we focused on the auto-
mated design of MxN-bit approximate multipliers. The
new version of the library contains 19,067 (including
5,633 non-dominated) approximate adders, 74,230 (includ-
ing 23,582 non-dominated) N-bit approximate multipliers
and 27,175 (including 12,019 non-dominated) 8x{7,6,5,4}-bit
approximate multipliers; i.e., in total 101,405 (including
35,601 non-dominated) approximate multipliers. It provides a
large collection of circuits (showing various trade-offs between
the error and other parameters) and thus implementation
options that can easily be exploited in various applications.
The user can choose, by means of the user interface available
via the library website, the most suitable approximate circuit
or a set of approximate circuits for a particular application.

We used the evolved approximate multipliers to analyze
how various ResNet versions are error-resilient if approximate
multiplication operations are introduced. We also identified the
most promising combination of a particular ResNet version
and an approximate multiplier for a given energy budget. The
MxN-bit approximate multipliers consistently provided better
trade-offs than N-bit approximate multiplies when deployed in

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

MRAZEK et al.: LIBRARIES OF APPROXIMATE CIRCUITS: AUTOMATED DESIGN AND APPLICATION IN CNN ACCELERATORS 417

the convolutional layers of smaller ResNet networks evaluated
on CIFAR-10. For the largest ResNet network (ResNet-164 v2)
that we evaluated on CIFAR-100, only 8-bit approximate
multipliers provided an acceptable solution. Nevertheless,
the utilization of the MxN-bit approximate multipliers allows
us to reduce the number of bits that have to be available in
some registers of the accelerator and also the memory space
needed to store the weights of ResNet.

This work was motivated by the fact that multiplication is
the key operation of CNN datapaths and, hence, many studies
dealing with approximate multipliers in CNNs are available
in the literature. In future work, we could apply the proposed
approach to analyze approximate adders’ usage or various
combinations of approximate components in CNNs. In par-
ticular, our future work will be focused on searching for the
best trade-off between the classification accuracy and energy
requirements of a CNN accelerator under the assumption that
various CNN architectures can be combined with suitable
approximate MxN-bit multipliers (and other approximate com-
ponents) and memory subsystem organizations. We believe
that the usage of suitable correctly-sized MxN-bit approximate
multipliers can reduce not only the memory consumption
but also the latency and power consumption of the memory
subsystem compared with the NxN-bit multipliers.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[2] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “EvoApprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 258–261.

[3] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel,
“Invited: Cross-layer approximate computing: From logic to architec-
tures,” in Proc. DAC, 2016, pp. 1–6.

[4] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxLib: Library of
FPGA-based approximate multipliers,” in Proc. 55th Annu. Design
Autom. Conf., New York, NY, USA, 2018, pp. 1–6.

[5] M. Traiola, A. Virazel, P. Girard, M. Barbareschi, and A. Bosio, “A test
pattern generation technique for approximate circuits based on an ILP-
formulated pattern selection procedure,” IEEE Trans. Nanotechnol.,
vol. 18, pp. 849–857, 2019.

[6] P. Detterer, C. Erdin, M. Nabi, J. P. de Gyvez, T. Basten, and H. Jiao,
“Trading digital accuracy for power in an RSSI computation of a sensor
network transceiver,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2019, pp. 102–107.

[7] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of
neural networks using approximate multipliers,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 28, no. 2, pp. 317–328,
Feb. 2020.

[8] Z. Vasicek, “Formal methods for exact analysis of approximate circuits,”
IEEE Access, vol. 7, no. 1, pp. 177309–177331, 2019.

[9] P. Panda et al., “Cross-layer approximations for neuromorphic comput-
ing: From devices to circuits and systems,” in Proc. 53nd Design Autom.
Conf., 2016, pp. 1–6.

[10] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[11] J. Castro-Godínez, D. Hernández-Araya, M. Shafique, and J. Henkel,
“Approximate acceleration for CNN-based applications on IoT edge
devices,” in Proc. IEEE 11th Latin Amer. Symp. Circuits Syst. (LASCAS),
Feb. 2020, pp. 1–4.

[12] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and M. Shafique,
“ALWANN: Automatic layer-wise approximation of deep neural network
accelerators without retraining,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), Nov. 2019, pp. 1–8.

[13] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto: A frame-
work for empirical study of resource-efficient inference in convolutional
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5784–5789, Nov. 2018.

[14] V. Mrazek, L. Sekanina, and Z. Vasicek, “Using libraries of approximate
circuits in design of hardware accelerators of deep neural networks,”
in Proc. 2nd IEEE Int. Conf. Artif. Intell. Circuits Syst. (AICAS),
Aug. 2020, pp. 243–247.

[15] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009. [Online]. Avail-
able: http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[16] H. Jiang, L. Liu, F. Lombardi, and J. Han, “Approximate arithmetic
circuits: Design and evaluation,” in Approximate Circuits, Methodolo-
gies and CAD, S. Reda and M. Shafique, Eds. Cham, Switzerland:
Springer, 2019, pp. 67–98. [Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-319-99322-5_4

[17] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of
soft-computing applications,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 4, pp. 850–862, Apr. 2010.

[18] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design of
power-efficient approximate multipliers for approximate artificial neural
networks,” in Proc. ICCAD, 2016, pp. 81:1–81:7.

[19] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel, “Proba-
bilistic error modeling for approximate adders,” IEEE Trans. Comput.,
vol. 66, no. 3, pp. 515–530, Mar. 2017.

[20] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and
A. Raghunathan, “SALSA: Systematic logic synthesis of approximate
circuits,” in Proc. DAC, 2012, pp. 796–801.

[21] M. Soeken, D. Grobe, A. Chandrasekharan, and R. Drechsler, “BDD
minimization for approximate computing,” in Proc. 21st Asia South
Pacific Design Autom. Conf. (ASP-DAC), Jan. 2016, pp. 1–6.

[22] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality config-
urable circuits,” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
2013, pp. 1367–1372.

[23] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda, “Auto-
mated high-level generation of low-power approximate computing cir-
cuits,” IEEE Trans. Emerg. Topics Comput., vol. 7, no. 1, pp. 18–30,
Jan. 2019.

[24] Y. Wu and W. Qian, “ALFANS: Multilevel approximate logic synthesis
framework by approximate node simplification,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 39, no. 7, pp. 1470–1483,
Jul. 2019.

[25] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3,
pp. 432–444, Jun. 2015.

[26] M. Ceska, J. Matyas, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar,
“Approximating complex arithmetic circuits with formal error guaran-
tees: 32-bit multipliers accomplished,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2017, pp. 416–423.

[27] L. Sekanina, Z. Vasicek, and V. Mrazek, “Automated search-based
functional approximation for digital circuits,” in Approximate Circuits,
Methodologies and CAD, S. Reda and M. Shafique, Eds. Springer, 2019,
pp. 175–203.

[28] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and
M. Pedram, “RoBA multiplier: A rounding-based approximate multi-
plier for high-speed yet energy-efficient digital signal processing,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 393–401,
Feb. 2017.

[29] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “TOSAM:
An energy-efficient truncation- and rounding-based scalable approximate
multiplier,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 5, pp. 1161–1173, May 2019.

[30] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic
range unbiased multiplier for approximate applications,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2015,
pp. 418–425.

[31] M. A. Hanif, R. Hafiz, O. Hasan, and M. Shafique, “Quad: Design
and analysis of quality-area optimal low-latency approximate adders,”
in Proc. 54th ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2017,
pp. 1–6.

[32] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic
accuracy configurable adder,” in Proc. DAC, 2015, pp. 86:1–86:6.

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

418 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 4, DECEMBER 2020

[33] M. Riaz et al., “CAxCNN: Towards the use of canonic sign digit based
approximation for hardware-friendly convolutional neural networks,”
IEEE Access, vol. 8, pp. 127014–127021, 2020.

[34] V. Camus, L. Mei, C. Enz, and M. Verhelst, “Review and benchmarking
of precision-scalable multiply-accumulate unit architectures for embed-
ded neural-network processing,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 9, no. 4, pp. 697–711, Dec. 2019.

[35] S. Shakib Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy,
“Multiplier-less artificial neurons exploiting error resiliency for energy-
efficient neural computing,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), 2016, pp. 145–150.

[36] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and
K. Roy, “Energy-efficient neural computing with approximate multipli-
ers,” J. Emerg. Technol. Comput. Syst., vol. 14, no. 2, p. 16:1–16:23,
2018.

[37] J. F. Miller, Cartesian Genetic Programming. Berlin, Germany: Springer,
2011.

[38] V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang, and J. Han, “Scalable
construction of approximate multipliers with formally guaranteed worst
case error,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26,
no. 11, pp. 2572–2576, Nov. 2018.

[39] M. Ceska, J. Matyas, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar,
“Adaptive verifiability-driven strategy for evolutionary approximation
of arithmetic circuits,” Appl. Soft Comput., vol. 95, Oct. 2020,
Art. no. 106466.

[40] S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda,
“Understanding the impact of precision quantization on the accuracy
and energy of neural networks,” in Proc. EDAA DATE, Mar. 2017,
pp. 1478–1483.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Las Vegas, NV, USA, Jun./Jul. 2016, pp. 770–778, doi:
10.1109/CVPR.2016.90.

[42] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: https://www.tensorflow.org/

[43] C. De la Parra, A. Guntoro, and A. Kumar, “Full approximation
of deep neural networks through efficient optimization,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5, doi:
10.1109/iscas45731.2020.9181236.

[44] M. A. Hanif, F. Khalid, and M. Shafique, “Cann: Curable approximations
for high-performance deep neural network accelerators,” in Proc. 56th
ACM/IEEE Design Autom. Conf. (DAC), Jun. 2019, pp. 1–6.

[45] F. Vaverka, V. Mrazek, Z. Vasicek, and L. Sekanina, “TFApprox:
Towards a fast emulation of DNN approximate hardware accelerators
on GPU,” in Proc. EDAA DATE, Mar. 2020, pp. 1–4.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks,” in Computer Vision—ECCV, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds. Cham, Switzerland: Springer, 2016,
pp. 630–645.

Vojtech Mrazek (Member, IEEE) received the
Ing. and Ph.D. degrees in information technology
from the Faculty of Information Technology, Brno
University of Technology, Brno, Czech Republic,
in 2014 and 2018, respectively. He is currently a
Researcher with the Evolvable Hardware Group,
Faculty of Information Technology, Brno University
of Technology. From 2018 to 2019, he was also a
Visiting Postdoctoral Researcher with the Depart-
ment of Informatics, Institute of Computer Engi-
neering, Technische Universität Wien (TU Wien),

Vienna, Austria. He has authored or coauthored over 30 conference/journal
papers focused on approximate computing and evolvable hardware. His
current research interests include approximate computing, genetic program-
ming, and machine learning. He received several awards for his research in
approximate computing, including the Joseph Fourier Award for research in
computer science and engineering in 2018.

Lukas Sekanina (Senior Member, IEEE) received
the Ing. and Ph.D. degrees from the Brno University
of Technology, Brno, Czech Republic, in 1999 and
2002, respectively. He was a Visiting Professor
with Pennsylvania State University, Erie, PA, USA,
in 2001. He received the Fulbright Scholarship to
work with the NASA Jet Propulsion Laboratory,
Caltech, in 2004. He is currently a Full Professor and
the Head of the Department of Computer Systems,
Faculty of Information Technology, Brno Univer-
sity of Technology. He has served as an Associate

Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
from 2011 to 2014, Genetic Programming and Evolvable Machines Jour-
nal, and International Journal of Innovative Computing and Applications.
He coauthored over 200 articles mainly on evolvable hardware, evolutionary
computation, and approximate computing, and one patent.

Zdenek Vasicek (Member, IEEE) received the M.S.
degree in computer science and engineering and the
Ph.D. degree from the Brno University of Technol-
ogy, Czech Republic, in 2006 and 2012, respectively.
He is currently an Associate professor with the
Brno University of Technology. His research inter-
ests include formal verification techniques and appli-
cation of evolutionary approaches in areas related
to the design and optimization of complex digital
circuits and systems. He is an active PC member
of several evolutionary conferences such as EuroGP,

GECCO, and ICES. He received the Silver and Gold medals at HUMIES,
in 2011 and 2015, respectively.

Authorized licensed use limited to: Brno University of Technology. Downloaded on December 30,2020 at 10:43:46 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/iscas45731.2020.9181236

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

