
Advances in the Evolution
of Complex Cellular Automata

Michal Bidlo

Brno University of Technology
Faculty of Information Technology

IT4Innovations Centre of Excellence
Božetěchova 2, 61266 Brno, Czech Republic

E-mail: bidlom@fit.vutbr.cz

http://www.fit.vutbr.cz/~bidlom

Abstract. In this study we present some advanced experiments dealing
with the evolutionary design of multi-state uniform cellular automata.
The generic square calculation problem in one-dimensional automata
will be treated as one of the case studies. An analysis of the evolution-
ary experiments will be proposed and properties of the resulting cellular
automata will be discussed. It will be demonstrated that various ap-
proaches to the square calculations in cellular automata exist, some of
which substantially overcome the known solution. The second case study
deals with a non-trivial pattern development problem in two-dimensional
automata. Some of the results will be presented which indicate that an
exact behaviour can be automatically designed even for cellular automata
working with more than ten cell states. A discussion for both case studies
is included and potential areas of further research are highlighted.

Keywords: evolutionary algorithm, cellular automaton, transition func-
tion, conditional rule, square calculation, pattern development

1 Introduction

The concept of cellular automata was introduced by von Neumann in [15]. One of
the aspects widely studied in his work was the problem of (universal) computa-
tional machines and the question about their ability to make copies of themselves
(i.e. to self-reproduce). Von Neumann proposed a model with 29 cell states to
perform this task. Later Codd proposed another approach and showed that the
problem of computation and construction can be performed by means of a sim-
plified model working with 8 states only [7].

Several other researchers studied cellular automata usually by means of vari-
ous rigorous techniques. For instance, Sipper studied computational properties of
binary cellular automata (i.e. those working with 2 cell states only) and proposed
a concept of universal computing platform using a two-dimensional (2D) CA with
non-uniform transition function (i.e. each cell can, in general, be controlled by a
different set of transition rules) [21]. Sipper showed that, by introducing the non-
uniform concept to the binary CAs, universal computation can be realised, which

2

was not possible using the Codd’s model. In fact, Sipper’s work significantly re-
duced the complexity of the CA in comparison with the models published earlier.
Nevertheless even the binary uniform 2D CAs can be computationally universal
if 9-cell neighbourhood is considered. Such CA was implemented using the fa-
mous rules of the Game of Life [2] (original proof of the concept was published
in 1982 and several times revisited – e.g. see [8][11][17][18]).

Although binary CAs may be advantageous due to simple elementary rules
and hardware implementations in particular, many operations and real-world
problems can effectively be solved by multi-state cellular automata (i.e. those
working with more than 2 cell states) rather than those using just two states.
For example, a technique for the construction of computing systems in a 2D CA
was demonstrated in [23] using rules of a simple game called Scintillae working
with 6 cell states. Computational universality was also studied with respect to
one-dimensional (1D) CA, e.g. in [13][27].

However, in some cases application specific operations (algorithms) may be
more suitable than programming a universal system, allowing to better optimize
various aspects of the design (e.g. resources, efficiency, data encoding etc.). For
example, Tempesti [25] and Perrier et al. [12] showed that specific arrangements
of cell states can encode sequences of instructions (programs) to perform a given
operation. Wolfram presented various transition functions for CAs in order to
compute elementary as well as advanced functions (e.g. parity, square, or prime
number generation) [26]. Further problems were investigated in recent years
[16][19].

In addition to the computational tasks, various other (more geneal) bench-
mark problems have been investigated using cellular automata, e.g. including
principles of self-organization, replication or pattern formation. For example,
Basanta et al. used a genetic algorithm to evolve the rules of effector automata
(a generalised variant of CA) to create microstructural patterns that are sim-
ilar to crystal structures known from some materials [1]. An important aspect
of this work was to investigate new materials with specific properties and their
simulation using computers. Suzudo proposed an approach to the evolutionary
design of 2D asynchronous CA for a specific formation of patterns in groups in
order to better understand of the pattern-forming processes known from nature
[24]. Elmenreich et al. proposed an original technique for growing self-organising
structures in CA whose development is controlled by neural networks according
to the internal cell states [9].

The proposed work represents an extended version of our recent study pub-
lished in [4], the aim of which is to present a part of our wider research in the
area of cellular automata, where representation techniques and automatic (evo-
lutionary) methods for the design of complex multi-state cellular automata are
investigated. The goal of this work is to design transition functions for cellu-
lar automata using evolutionary algorithms, which satisfy the given behaviour
with respect to some specific initial and target conditions. In particular, it will
be shown that the evolutionary algorithm can design various transition func-
tions for uniform 1D CAs (that have never been seen before) to perform generic

3

square calculations in the cellular space using just local interactions of cells. An
additional analysis of the results demonstrates that various generic CA-based so-
lutions of the squaring problem can be discovered, which substantially overcome
the known solution regarding both the complexity of the transition functions
and the number of steps (speed) of calculation. In order to show the abilities of
the proposed method for designing CA using the concept of conditionally match-
ing rules, some further experiments are presented regarding the evolution of 2D
multi-state cellular automata in which the formation of some non-trivial patterns
is treated as a case study. As cellular automata represent a platform potentially
important for future technologies (see their utilisation in various emerging fields,
e.g. [14], [22] or [20]), it is worth studying their design and behaviour on the el-
ementary level as well (i.e. using various benchmark problems).

2 Cellular Automata for Square Calculations

For the purposes of developing algorithms for squaring natural numbers, 1D
uniform cellular automata are treated with the following specification (target
behaviour). The number of cell states is investigated for values 4, 6, 8 and 10
(this was chosen on the basis of the existing solution [26] that uses 8 states;
moreover it is worth of determining whether less states will enable to design
generic solutions and whether the EA will be able to find solutions in a huge
search space induced by 10 cell states). The new state of a given cell depends on
the states of its west neighbour (cW), the cell itself (central cell, cC) and its east
neighbour (cE), i.e. it is a case of 3-cell neighbourhood. A step of the CA will
be considered as a synchronous update of state values of all its cells according
to a given transition function. For the practical implementation purposes, cyclic
boundary conditions are considered. However, it is important to note that CAs
with sufficient sizes are used in order to avoid affecting the development by the
finite number of cells.

The value of x is encoded in the initial CA state as a continuous sequence
of cells in state 1, whose length (i.e. the number of cells in state 1) corresponds
to x, the other cells possess state 0. For example, the state of a 12-cell CA,
which encodes x = 3, can appear as 0000011100000. The result y = x2, that
will emerge from the initial state in a finite number of steps, is assumed as
a stable state in which a continuous sequence of cells in non-zero states can be
detected, the length of which equals the value of y, the other cells are required in
state 0. For the aforementioned example, the result can appear as 002222222220
or even 023231323200 (there is a sequence of non-zero cells of length 32 = 9).
The concept of representing the input value x and the result y is graphically
illustrated in Figure 1. This is a generalised interpretation based on the idea
presented in [26], page 639. The goal is to discover transition functions for the
CA, that are able to calculate the square of arbitrary number x > 1.

4

Fig. 1. Illustration of encoding integer values in a 1D cellular automaton. In this ex-
ample x = 3, y = 9. Extracted from [4].

2.1 Conditionally Matching Rules

In order to represent the transition functions for CAs, the concept of Condition-
ally Matching Rules (CMR), originally introduced in [6], will be applied. This
technique showed as very promising for designing complex cellular automata
[3][5]. For the 1D CA working with 3-cell neighbourhood, a CMR is defined as
(condW sW)(condC sC)(condE sE)→ sCnew, where condF denotes a condition
function and sF denotes a state value. Each part (condF sF) on the left of the
arrow is evaluated with respect to the state of a specific cell in the neighbour-
hood (in this case cW , cC and cE respectively). For the experiments presented in
this work the relation operators =, 6=, ≥ and ≤ are considered as the condition
functions. A finite sequence of CMRs represents a transition function. In order
to determine the new state of a cell, the CMRs are evaluated sequentially. If
a rule is found in which all conditions are true (with respect to the states in
the cell neighbourhood), sCnew from this rule is the new state of the central
cell. Otherwise the cell state does not change. For example, consider a transition
function that contains a CMR (6= 1)(6= 2)(≤ 1) → 1. Let cW , cC , cE be states
of cells in a neighbourhood with values 2, 3, 0 respectively, and a new state of
the central cell ought to be calculated. According to the aforementioned rule,
cW 6= sW is true as 2 6= 1, similarly cC 6= sC is true (3 6= 2) and cE ≤ sE
(0 ≤ 1). Therefore, this CMR is said to match, i.e. sCnew = 1 on its right side
will update the state of the central cell. Note that the same concept can also
be applied to CA working with a wider cellular neighborhood. For example, a
CMR for a 2D CA with 5-cell neighborhood would consist of 5 items for the
conditional functions instead for 3 items.

The evolved CMRs can be transformed to the conventional table rules [5]
without loss of functionality or violating the basic CA principles. In this work
the transformation is performed as follows: (1) For every possible combination of
states cW cC cE in cellular neighborhood a new state sCnew is calculated using
the CMR-based transition function. (2) If cC 6= sCnew (i.e. the cell state ought

5

to be modified), then a table rule of the form cW cC cE → sCnew is generated.
Note that the combinations of states not included amongst the table rules do
not change the state of the central cell, which is treated implicitly during the
CA simulation. The number of such generated rules will represent a metrics
indicating the complexity of the transition function.

In order to determine the complexity of the transition function with respect
to a specific square calculation in CA, a set of used rules is created using the
aforementioned principle whereas the combinations of states cW cC cE are con-
sidered just occurring during the given square calculation in the CA. There
metrics (together with the number of states and CA steps) will allow us to com-
pare the solutions obtained by the evolution and to identify the best results with
respect to their complexity and efficiency.

An evolutionary algorithm will be applied to search for suitable CMR-based
transition functions as described in the following section.

3 Setup of the Evolutionary System

A custom evolutionary algorithm (EA) was utilised, which is a result of our
long-term experimentation in this area. Note, however, that neither tuning of
the EA nor in-depth analysis of the evolutionary process is a subject of this
work. The EA is based on a simple genetic algorithm [10] with a tournament
selection of base 4 and a custom mutation operator. Crossover is not used as it
has not shown any improvement in success rate or efficiency of our experiments.

The EA utilises the following fixed-length representation of the conditionally
matching rules in the genomes. For the purpose of encoding the condition func-
tions =, 6=, ≥ and ≤, integer values 0, 1, 2 and 3 will be used respectively. Each
part (condF sF) of the CMR is encoded as a single integer PF in the range from
0 to M where M = 4 ∗ S − 1 (4 is the fixed number of condition functions con-
sidered and S is the number of cell states) and the part → sCnew is represented
by an integer in the range from 0 to S − 1. In order to decode a specific con-
dition and state value, the following operations are performed: condF = PF/S,
sF = PF mod S (note that / is the integer division and mod is the modulo-
division). This means that a CMR (condW sW)(condC sC)(condE sE)→ sCnew

can be represented by 4 integers; if 20 CMRs ought to be encoded in the genome,
then 4 ∗ 20 = 80 integers are needed. For example, consider S = 3 for which
M = 4 ∗ 3− 1 = 11. If a 4-tuple of integers (2 9 11 2) representing a CMR in the
genome ought to be decoded, then the integers are processed respectively as:

– condW = 2/3 = 0 which corresponds to the operator =, sW = 2 mod 3 = 2,
– condC = 9/3 = 3 which corresponds to the operator ≤, sC = 9 mod 3 = 0,
– condE = 11/3 = 3 which corresponds to the operator ≤, sE = 11 mod 3 = 2,
– sCnew = 2 is directly represented by the 4th integer.

Therefore, a CMR of the form (= 2)(≤ 0)(≤ 2)→ 2 has been decoded.
The following variants of the fitness functions are treated (note that the input

x is set to the middle of the cellular array):

6

1. RESULT ANYWHERE (RA-fitness): The fitness is calculated with respect
to any valid arrangement (position) of the result sequence in the CA. For ex-
ample, y = 4 in an 8-cell CA may be rrrr0000, 0rrrr000, 00rrrr00, 000rrrr0
or 0000rrrr, where r 6= 0 represent the result states that may be generally
different within the result sequence. A partial fitness value is calculated for
every possible arrangement of the result sequence as the sum of the number
of cells in the expected state for the given values of x. The final fitness is the
highest of the partial fitness values.

2. SYMMETRIC RESULT (SR-fitness): The result is expected symmetrically
with respect to the input. For example, if 0000011100000 corresponds to
initial CA state for x = 3, then the result y = 32 is expected as a specific
CA state 00rrrrrrrrr00 (each r may be represented by any non-zero state).
The fitness is the number of cells in the expected state.

The fitness evaluation of each genome is performed by simulating the CA for
initial states with the values of x from 2 to 6. The result of the x2 calculation is
inspected after the 99th and 100th step of the CA, which allows to involve the
state stability check into the evaluation. This approach was chosen on the basis
of the maximal x evaluated during the fitness calculation and on the basis of
the number of steps needed for the square calculation using the existing solution
[26]. In particular, the fitness of a fully working solution evaluated for x from 2
to 6 in a 100-cell CA is given by Fmax = 5 ∗ 2 ∗ 100 = 1000 (there are 5 different
values of x for which the result x2 is investigated in 2 successive CA states, each
consisting of 100 cells). The evolved transition functions, satisfying the maximal
fitness for the given range of x, are checked for the ability to work in larger CAs
for up to x = 25 The solutions which pass this check are considered as generic.

The EA works with a population of 8 genomes initialised randomly at the be-
ginning of evolution. After evaluating the genomes, four candidates are selected
randomly, the candidate with the highest fitness becomes a parent. An offspring
is created by mutating 2 randomly selected integers in the parent. The selection
and mutation continue until a new population of the same size is created and
the evolutionary process is repeated until 2 million generations are performed.
If a solution with the maximal fitness is found, then the evolutionary run is
considered as successful. If no such solution is found within the given generation
limit, then the evolutionary run is terminated and regarded as unsuccessful.

4 Results of Square Calculations in 1D CA

The evolutionary design of CAs for the generic square calculation has been in-
vestigated for the following settings: the number of states 4, 6, 8 and 10, the
transition functions consisting of 20, 30, 40 and 50 CMRs and two ways of the
fitness calculation described in Section 3. For each setup, 100 independent evo-
lutionary runs have been executed. The success rate and average number of
generations needed to find a working solution were observed with respect to the
evolutionary process. As regards the parameters of the CA, the minimal number
of rules and steps needed to calculate the square of x were determined.

7

Table 1. Statistics of the evolutionary experiments conducted using the RA-fitness
(the upper part of the table) and the parameters of the generic solutions (in the lower
part of the table). The parameters of the best results obtained are marked bold. Note
that # denotes “the number of”, the meaning of “generated rules”, “used rules” and
”steps” of the CA is defined in Section 2. Extracted from [4].

the number of states

4 6 8 10

the num. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.

of CMRs rate gen. steps rules rate gen. steps rules rate gen. steps rules rate gen. steps rules

20 3 844364 54 35 30 769440 45 120 45 570939 39 232 35 328210 47 569

30 3 620998 52 36 24 749837 40 120 38 595467 42 340 33 363360 45 663

40 2 1344286 77 46 19 629122 37 136 30 701612 41 365 29 244566 46 662

50 2 959689 73 43 20 813803 41 134 35 582342 39 348 38 373490 40 762

the number of generic solutions (#generic) obtained for the given number of states

and parameters of the generic solutions: #generated rules/#used rules/#steps for 62)

#generic, 1 5 6 3

176/52/46, 164/33/87, 435/49/68, 403/51/79, 934/64/56, 835/61/79,

parameters 36/26/74 152/49/78, 185/66/70, 422/39/65, 392/62/76, 916/35/76

175/52/69 423/41/68, 429/94/76

For the purposes of comparison of the results proposed in Section 4.3, the
CA will be denominated by unique identifiers of the form CA–XX–YY, where
XX and YY are integers distinguishing the sets of evolutionary experiments and
the CA obtained.

4.1 Results for the RA-Fitness

For the RA-fitness, the statistical results are summarised in Table 1. The ta-
ble also contains the total numbers of generic solutions discovered for the given
state setups and parameters determined for these solutions. For every number
of states considered, at least one generic solution was identified. For example, a
transition function was discovered for the 4-state CA, which consists of 36 table
rules (transformed from the CMR representation evolved). This solution can be
optimised to 26 rules (by eliminating the rules not used during the square calcu-
lation) which represents the simplest CA for generic square calculations known
so far (note that Wolfram’s CA works with 8 states and 51 rules [26]). Moreover,
for example, our solution needs 74 steps to calculate 62 whilst Wolfram’s CA
needs 112 steps, which also represents a substantial innovation discovered by the
EA. The CA development corresponding to this solution is shown in Figure 2.

Another result obtained using the RA-fitness is illustrated by the CA devel-
opment in Figure 3. In this case the CA works with 6 states and its transition
function consists of 52 effective rules. The number of steps needed, for exam-
ple, to calculate 62, is 46 (and compared to 112 steps of Wolframs CA, it is
an improvement of the CA efficiency by more than 50%) which represents the
best CA known so far for this operation and the best result obtained from our
experiment.

8

Fig. 2. Example of a 4-state squaring CA development for x = 3, 4 and 5 using our
most compact transition function. This solution is denominated as CA–30–00 and its
rules are: 0 0 1→ 3, 0 1 1→ 2, 0 3 0→ 2, 1 0 0→ 3, 1 0 2→ 2, 1 0 3→ 2, 1 1 0→ 0,
1 1 2→ 2, 1 1 3→ 2, 1 2 1→ 1, 1 3 0→ 1, 1 3 1→ 1, 1 3 2→ 2, 1 3 3→ 0, 2 1 2→ 3,
2 1 3→ 3, 2 2 0→ 1, 2 2 1→ 1, 2 3 1→ 1, 2 3 2→ 2, 3 0 2→ 3, 3 1 0→ 3, 3 1 1→ 3,
3 1 3→ 3, 3 2 0→ 3, 3 2 3→ 3. Extracted from [4].

9

Fig. 3. Example of a 6-state CA development for x = 4, 5 and 6. This is the fastest CA-
based (3-neighbourhood) solution known so far and the best result obtained from our
experiments. This solution is denominated as CA–50–12 and its rules are: 0 0 4 → 2,
0 0 5→ 2, 0 1 1→ 0, 0 2 3→ 0, 0 2 4→ 4, 0 2 5→ 3, 0 3 2→ 2, 0 3 3→ 0, 0 4 0→ 2,
0 4 2→ 2, 0 5 3→ 0, 0 5 5→ 4, 1 0 0→ 3, 1 1 0→ 3, 1 1 1→ 5, 1 1 4→ 5, 1 4 4→ 5,
2 0 4→ 3, 2 1 0→ 2, 2 2 5→ 5, 2 3 0→ 2, 2 3 4→ 2, 2 4 0→ 2, 2 4 1→ 2, 2 4 2→ 2,
2 4 3→ 2, 2 4 4→ 2, 2 4 5→ 5, 2 5 2→ 2, 2 5 4→ 2, 3 3 0→ 4, 3 4 4→ 2, 4 0 0→ 1,
4 1 0→ 4, 4 1 1→ 4, 4 1 4→ 4, 4 2 0→ 4, 4 2 1→ 4, 4 2 3→ 4, 4 2 4→ 4, 4 3 0→ 4,
4 4 5→ 1, 4 5 1→ 4, 4 5 4→ 4, 4 5 5→ 1, 5 1 1→ 4, 5 1 4→ 4, 5 2 4→ 4, 5 3 3→ 4,
5 5 3→ 4, 5 5 4→ 4, 5 5 5→ 1. Extracted from [4].

One more example of evolved CA is shown in Figure 4. This generic solution
was obtained in the setup with 8-state CA, however, the transition function
works with 6 different states only. There are 49 transition rules, the CA needs
68 steps to calculate 62. This means that the EA discovered a simpler solution
(regarding the the number of states and table rules) which is a part of the solution
space of the 8-state CA. Again, this result exhibits generally better parameters
compared to the known solution from [26]. The CA development, that was not
observed in any other solution, is also interesting visually - as Fig. 4 shows, the
CA generates a pattern with some “dead areas” (cells in state 0) within the cells
that subsequently form the result sequence. The size of these areas is gradually
reduced, which finally lead to derive the number of steps after which a stable
state containing the correct result for the given x has emerged (illustrated by
the right part of Figure 4 for x = 8 whereas the CA needs 122 steps to produce
the result).

4.2 Results for the SR-Fitness

Table 2 shows the statistics for the SR-fitness together with the total numbers of
generic solutions discovered for the given state setups and parameters determined
for these solutions. As evident, the success rates are generally lower compared
to the RA-fitness which is expectable because the SR-fitness allows a single
arrangement only of the result sequence in the CA. Moreover, just two generic

10

Fig. 4. Example of a 6-state squaring CA development (originally designed using 8-
state setup) for x = 4, 6 and 8. This solution is denominated as CA–40–01. Its develop-
ment shows a specific pattern evolved to derive the result of x2, which was not observed
in any other solution. The part on the right shows a complete global behaviour of this
CA for x = 8 with some “dead areas” (marked by black spots) which lead to the correct
stable result by progressively reducing the size of these areas (in this case the result of
82 is achieved after 122 steps). Extracted from [4].

11

CAs have been identified out of all the runs executed for this setup. However, the
goal of this experiment was rather to determine whether solutions of this type
ever exist for cellular automata and evaluate the ability of the EA to find them.
As regards both generic solutions, their numbers of used rules and CA steps
are significantly better in comparison with Wolfram’s solution [26]. Specifically,
Wolfram’s solution uses are 51 rules and the calculation of 62 takes 112 steps,
whilst the proposed results use 33, respective 36 rules and calculate 62 in 71,
respective 78 steps. Moreover, one of them was discovered using a 4-state CA
(Wolfram used 8 states), which belongs to the most compact solutions obtained
herein and known so far.

Table 2. Statistics of the evolutionary experiments conducted using the SR-fitness
(the upper part of the table) and the parameters of the generic solutions (in the lower
part of the table). The parameters of the best result obtained are marked bold. Note
that # denotes “the number of”, the meaning of “generated rules”, “used rules” and
”steps” of the CAs is defined in Section 2. Extracted from [4].

the number of states

4 6 8 10

the num. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min. succ. avg. min. min.

of CMRs rate gen. steps rules rate gen. steps rules rate gen. steps rules rate gen. steps rules

20 2 634948 71 38 4 734200 38 126 11 982446 34 234 18 855791 53 542

30 0 - - - 5 905278 48 150 17 934123 51 327 15 910269 35 742

40 1 1546681 79 45 4 928170 33 147 11 1033059 53 317 15 898314 52 748

50 0 - - - 3 989039 44 138 12 811686 32 380 17 861850 52 796

the number of generic solutions (#generic) obtained for the given number of states

and parameters of the generic solutions: #generated rules/#used rules/#steps for 62)

#generic, 1 0 1 0

parameters 38/33/71 234/36/78

Figure 5 shows examples of a CA (identified as generic) evolved using the
SR-fitness. The transition function, originally obtained in 8-state CA setup, is
represented by 36 used rules and works with 7 states only. Although this result
cannot be considered as very efficient (for 62 the CA needs 78 steps), it exhibits
one of the most complex emergent process obtained for the square calculation,
the result of which is represented by a non-homogeneous state. The sample on
the right of Fig. 5 shows a cutout of development for x = 11 in which the global
behaviour can be observed. This result demonstrates that the EA can produce
generic solutions to a non-trivial problem even for a single specific position of
the result sequence required by the SR-fitness evaluation.

4.3 Analysis and Comparison of the Results

In this section an overall analysis and comparison of the results obtained for
the generic square calculations is provided and some of further interesting CA
are shown. Note that the data related to the CA behavior and visual samples

12

Fig. 5. Example of a 7-state CA controlled by a transition function evolved using the
SR-fitness. This solution is denominated as CA–20–07. A complete development is
shown for x = 4 and 5 (the left and middle sample respectively), the part on the right
demonstrates a cutout of global behaviour of the CA for x = 11. Extracted from [4].

13

of selected calculations were obtained using our experimental software (i.e. the
evolutionary system and a dedicated CA simulator developed specifically for this
purpose). There are in total 17 different CA obtained from our experiments and
included in this evaluation.

In order to provide a direct comparison of computational efficiency of the CA,
the number of steps needed to calculate the square was evaluated for the values
of the input integer x from 2 to 16. We used the WolframAlpha computational
knowledge engine1 to generate expressions which allow us to determine the num-
ber of steps of a given CA for x > 16. Tables 3 and 4 summarize the analysis.
The resulting CA are sorted from the best to worst regarding the number of
steps for x = 16 as the sorting criterion.

For some CA the equations derived by WolframAlpha are specified for an
independent integer variable n > 0 by means of which the number of steps can
be determined for a given input value of x. For example, the number of steps
an of the CA–50–27 from Table 3 can be determined as an = n(2n + 3) for all
x ≥ 1, i.e. in order to calculate the number of steps for x = 7, for example,
then n = x − 1 = 6 and the substitution of this value to the equation gives
an = 6 ∗ (2 ∗ 6 + 3) = 90 steps which corresponds to the value from Table 3
for x = 7 (observed for this CA using our CA simulator). The reason for taking
n = x− 1 follows from the fact that the cellular automata work for x ≥ 2.

For some CA WolframAlpha derived an iterative expression determining the
number of steps an+1 from the previous value an. For example, the CA–50–12
(the best one in this work) allows determining the number of steps for a given x
as an+1 = n(3n+ 7)− an for n ≥ 2. Therefore, in order to calculate the number
of steps e.g. for x = 8, it is needed to take n = x− 2 = 8− 2 = 6, the value for
the previous x = 7 must be known, i.e. an = 64 from Table 3, and substituting
to the equation an+1 = 6 ∗ (3 ∗ 6 + 7)− 64 = 86 which is the number of CA steps
needed to calculate the result of 82 (as corresponds to the value from Table 3
for this CA for x = 8 observed in our CA simulator).

The aforementioned example also shows that it is not possible in some cases
to express the number of CA steps for arbitrary n ≥ 1 which means that the
development of some CA for low values of x exhibit some anomaly in comparison
with the development for larger input values. The reason for this behavior still
remains in general an open question but our observations indicate that this is
probably the case of CA exhibiting a complex (and mostly visually very attrac-
tive) pattern generated by the development. For a low input value (e.g. x < 5 in
case of the CA–40–14 from Table 3) the development does not need to involve all
possible state transitions before reaching the result state, which would otherwise
emerge for larger x. Therefore, the development for x < 5 is specific, leading to
the numbers of steps that is not possible to express together with the numbers
of steps for larger input values.

The overall comparison of some selected CA is shown in Figure 6. As evident
from this figure (and from the equations in Table 3 and 4), the computational
efficiency of the CA (i.e. the number of steps needed for given x) in all cases

1 https://www.wolframalpha.com/

14

Table 3. The number of steps of resulting CA needed to calculate the square for
x = 2, ..., 16 together with expressions allowing to calculate the number of steps for
given n = x− 1. (Part 1 of the CA comparison.)

the input value of x

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

the equation derived for the num. of steps of a given CA and

the num. of CA steps needed to finish the calculation of x2

CA–50–12: an+1 = n(3n + 7) − an for n ≥ 2

5 11 18 30 46 64 86 110 138 168 202 238 278 320 366

CA–30–08: an = 2n2 + n + 1, n ≥ 1

4 11 22 37 56 79 106 137 172 211 254 301 352 407 466

CA–50–27: an = n(2n + 3), n ≥ 1

5 14 27 44 65 90 119 152 189 230 275 324 377 434 495

CA–40–01: an = 2n2 + 3n + 3, n ≥ 1

8 17 30 47 68 93 122 155 192 233 278 327 380 437 498

CA–40–14: an+1 =
an(n−3)

n−5
− 2(11n+13)

n−5
, n ≥ 5

8 16 29 46 68 94 124 158 196 238 284 334 388 446 508

CA–30–11: an+1 = −an + 4n2 + 13n + 11 for n ≥ 2

3 17 35 51 76 100 133 165 206 246 295 343 400 456 521

CA–30–00: an+1 =
an(n−1)

n−3
+ −15n−19

n−3
, n ≥ 3

4 17 32 51 74 101 132 167 206 249 296 347 402 461 524

CA–50–22: an+1 = 2(2n2 + 7n + 7) − an for n ≥ 1

14 24 34 58 76 108 134 174 208 256 298 354 404 468 526

CA–20–07: an = 1
4
(8n2 + 22n − 5(−1)n − 3), n ≥ 1

8 17 35 52 78 103 137 170 212 253 303 352 410 467 533

15

Table 4. The number of steps of resulting CA needed to calculate the square for
x = 2, ..., 16 together with expressions allowing to calculate the number of steps for
given n = x− 1. (Part 2 of the CA comparison.)

the input value of x

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

the equation derived for the num. of steps of a given CA and

the num. of CA steps needed to finish the calculation of x2

CA–40–34: an = 1
4
(8n2 + 22n − 3(−1)n + 3), n ≥ 1

9 19 36 54 79 105 138 172 213 255 304 354 411 469 534

CA–50–07: an = 1
2
(5n2 + 3n − 2), n ≥ 1

3 12 26 45 69 98 132 171 215 264 318 377 441 510 584

CA–20–00: an+1 = −an + 5n2 + 9n + 2 for n ≥ 1

5 13 27 47 71 101 135 175 219 269 323 383 447 517 591

CA–30–31: an+1 =
an(n2−8n−2)

n2−10n+7
+ −27n2+13n+9

n2−10n+7
, n ≥ 9

2 16 33 54 79 108 141 178 219 271 331 397 469 547 631

CA–50–17: an = 3n2 + 1, n ≥ 1

4 13 28 49 76 109 148 193 244 301 364 433 508 589 676

CA–20–27: an+1 =
an(n−1)

n−3
− 15(n+1)

n−3
, n ≥ 3

7 15 30 51 78 111 150 195 246 303 366 435 510 591 678

CA–50–15: an = 3n2 + 2n + 2, n ≥ 1

7 18 35 58 87 122 163 210 263 322 387 458 535 618 707

Wolfram’s CA: an = 3n2 + 7n + 2, n ≥ 1

12 28 50 78 112 152 198 250 308 372 442 518 600 688 782

16

exhibit a quadratic form. However, the CA efficiency differ substantially between
various solutions. Whilst Wolfram’s CA exhibits the highest numbers of steps out
of all CA that were available for the square calculations herein, our experiments
showed that (1) this approach can be improved substantially and (2) various
other solutions with a moderate efficiency exist for this task. Some of them are
presented as visualisation of the appropriate CA development in Figure 7 and 8.
Specifically, the CA–30–08 from Figure 7a represents an example of the second
best result discovered from our evolutionary experiments. Its simple pattern
exhibit a high degree of regularity which is probably the cause of very simple
equation expressing the number of steps for given x (Table 3). More complex,
less computationally efficient and visually interesting patterns are generated by
CA–50–22 (Figure 7b, Table 3) and CA–40–34 (Figure 7c, Table 4). On the other
hand, the CA–30–31 from Figure 8a produces results of calculating x2 that is
composed of various (stable) state values and this CA also exhibit the most
complex equation needed to express its number of steps for given x (see Table
4). Together with CA from Figure 8b,c it belongs to the least computationally
efficient (i.e. requires many steps to produce the result – see the comparison in
Figure 6) but also can be viewed as solutions that demonstrate the variety of
different styles of how the result of x2 in CA can be achieved.

4.4 Discussion

In most cases of the experimental settings the EA was able to produce at least
one generic solution for the CA-based square calculation. Despite the 2 million
generation limit, the results from Table 1 and 2 show that the average number
of generations is mostly below 1 million, which indicates a potential of the EA
to efficiently explore the search space. In comparison with the initial study of
this problem proposed in [5], where 200,000 generations were performed, the sig-
nificant increase of this parameter herein is important with respect to achieving
a reasonable success rate and producing generic solutions (note that an initial
comparison of various ranges for x evaluated in the fitness was proposed in [5],
the result of which was considered in this work).

As regards the RA-fitness, which can be considered as the main technique
proposed herein for the evolution of cellular automata, a more detailed analysis
was performed with various multi-state CA. As the results in Table 1 show that
the number of generic solutions increases for the number of states from 4 to 8,
then for 10-state CAs a significant reduction can be observed. This is probably
caused by the exponential increase of the search space depending on the number
of states. The results indicate that the 8-state setup represents a very feasible
value that may be considered as sufficient for this kind of problem (note that 6
generic solutions were obtained for this setup).

In both sets of experiments with the RA-fitness and SR-fitness, a phenomenon
of a reduction of the number of states was observed. This is possible due to the
identification of just the rules that are needed for the CA development to cal-
culate the square out of all the rules generated from the evolved CMR-based

17

0 5 10 15 20
x

0

200

400

600

800

1000

1200

1400

st
ep

s

the number of CA steps needed to calculate x2 for x=2,...,20

CA--30--08
CA--30--31
CA--40--34
CA--50--12
CA--50--15
CA--50--17
CA--50--22
Wolfram

Fig. 6. Evaluation of the computational efficiency (i.e. the number of steps needed
to achieve the result of x2) of some selected CA whose development is also presented
visually in various figures in this paper. A comparison with the existing Wolfram’s CA
[26] (the top-most curve) is included.

18

(a) (b) (c)

Fig. 7. Visualisation of the development of some selected squaring cellular automata
obtained from our experiment: (a) CA–30–08, x = 8, (b) CA–50–22, x = 7, (c) CA–
40–34, x = 7.

transition function for every valid combination of states in the cellular neigh-
bourhood. It was determined that the CAs in some cases do not need all the
available cell states to perform the given operation.

5 Evolution of Complex 2D Cellular Automata

In order to provide a wider overview of what CA the proposed method can
handle, some experiments dealing with the evolution of uniform multi-state 2D
automata were conducted. The pattern development problem was chosen as a
case study. In particular, some non-trivial and asymmetric patterns were chosen
as shown in Figure 9.

In order to evaluate a candidate CA, up to 40 development steps were per-
formed and the steps 16-40 was assigned a partial fitness calculated as the num-
ber of cells in correct states with respect to the given pattern. The final fitness of
the candidate CA was the maximum of the partial fitness values. The reason for
this setup is to reduce the time needed for the evaluation because the patterns
probably cannot be finished in less than 16 steps (this values was determined
empirically). Therefore, no inspection of cell states is performed in steps 1-15.
Moreover, no exact number of steps is known in which a pattern can be finished
so that the aforementioned range of steps provides the evolution with a wider

19

(a) (b) (c)

Fig. 8. Visualisation of the development of some selected squaring cellular automata
obtained from our experiment: (a) CA–30–31, x = 7, (b) CA–50–17, x = 7, (c) CA–
50–15, x = 7.

(a) (b)

Fig. 9. Samples of selected patterns treated in the experiments for the pattern devel-
opment problem in 2D CA: (a) the BUT logo (note that the T-like structure, composed
of cells in state 1, is the subject of the CA development on the red background – cells
in state 0), (b) a label containing the author’s surname (composed of cells in state 1,
the other cells are in state 0).

20

space to discover a solution. This setup does not eliminate a possibility of de-
stroying the pattern that emerged at a certain step during the subsequent CA
development. However, the development of a stable pattern was not a primary
goal of these experiments.

It is difficult to provide statistical data from these experiments since only very
few successful results have been obtained so far and there has been a research
in progress regarding the optimization of evolutionary techniques used for the
design of complex cellular automata. Therefore, only some selected results are
presented in this section.

The first experiment — the development of the BUT logo — dealt with the
CA working with 10 cell states. There are 105 various combinations in the 5-cell
neighborhood which implies 10100000 possible transition functions. A single state-
1 cell (a seed) was used as an initial state of the CA. The evolution managed to
find a transition function (in the form of a sequence of CMRs that was converted
to the table-based representation for the presentation purposes) that successfully
develops the initial seed into the given pattern as shown in Figure 9a. Although
the pattern stability was not required, the pattern no longer changes by further
CA development. A sample of the complete sequence of states leading to the
emergence of this pattern (the BUT logo) is shown in Figure 10 together with
the appropriate transition function. The CA uses 90 transition rules and needs
20 steps to finish the pattern.

The second experiment — the development of the author’s surname — delat
with the CA working with 12 cell states. There are 125 various combinations
in the 5-cell neighborhood which implies 10248832 possible transition functions.
In fact, this pattern requires to develop several (separate) structures (letters) of
non-zero cells which form the complete label. A sample of the CA development
together with the transition function is shown in Figure 11. This is the only
result obtained so far which is able to fully develop this pattern (from a triples
of separate cells in states 1, 2 and 3 as an initial CA state – see the top-left
corner of Fig. 11a). Similarly to the previous experiment, this pattern is also
stable during further CA development which is especially interesting due to its
increased complexity. The CA needs 32 steps to develop the target label from
the initial state and the transition function consists of 161 rules (see Figure 11b).

5.1 Discussion

Although the evolution of multi-state 2D CA is much more difficult than the 1D
CA, the experiments provided some successful results with various target pat-
terns. The results presented in this section probably represent the first case when
complex 2D CA with at least 10 cell states were automatically designed using
an evolutionary algorithm in a task of the non-trivial exact pattern develop-
ment. In addition to the CA shown in Fig. 10 and 11, the evolution succeeded in
searching other patterns as well (e.g. French flag, Czech flag, moving labels, repli-
cating objects or multi-state gliders). This indicates that the proposed design
method may be applicable in a wider area of cellular automata. A limitation
for a higher success rate of the evolutionary experiments probably lies in the

21

(a) (b)

Fig. 10. Example of an evolved CA for the development of the BUT logo. The initial
state consists of a single cell state 1, the other cells possess state 0. (a) The sequence of
CA states producing the final pattern (ordered from left to right and top to bottom).
(b) The appropriate transition rules for this CA.

22

(a) (b)

Fig. 11. Example of an evolved CA for the development of the author’s surname. The
initial state consists of three vertically alligned cells in states 1, 2 and 3 respectively
with a single state-0 cells between them. (a) The sequence of CA states producing
the final ”BIDLO” pattern (ordered from left to right and top to bottom). (b) The
appropriate transition rules for this CA.

23

requirement of an exact pattern development. Our initial experiments suggest
that promising areas for the CA applications may be those where approximate
results are acceptable or the CA states allow us to tolerate some variations dur-
ing the development. For example, the image processing, traffic prediction or
design of approximative algorithms represent possible topics. Therefore, the fu-
ture research will include modeling, simulation and optimization of such kinds
of systems in cellular automata.

Even though the representation of the transition functions by means of condi-
tional rules has proven a good applicability on various tasks, the optimization of
the evolutionary algorithm used to search for the rules is probably still possible.
This could not only improve the success rate of the evolutionary experiments
but also reduce the computational effort and allow applying the concept of uni-
form computing platforms in real-world applications (e.g. with acceleration of
the computations using modern reconfigurable technology).

6 Conclusions

In this study we have presented some advanced topics related to the evolution of
complex multi-state cellular automata. In particular, an analysis of CA for the
generic square calculations has been proposed in the first case study. The results
showed that some various algorithms to perform this task exist in CA, which
differ both in the complexity of resulting transition functions and the efficiency
of the computation (i.e. the number of steps of the CA needed to produce the
result). Moreover, our best results presented herein have overcome the known
solution (Wolfram’s squaring CA), providing a reduction of the number of steps
by approximately 50%.

The second case study has dealt with the non-trivial pattern development
problem in two-dimensional CA. Several results have been presented that provide
an exact and stable pattern developed from a simple initial CA state. Cellular
automata working with 10 and 12 cell states have been treated, which induce
search spaces of enormous sizes. Despite low success rates of the evolution, the
results obtained have shown that the automatic design of such CA is possible
even though our ongoing experiments indicate that the evolutionary algorithm
still provides a space for further optimization.

In general, the proposed results probably represent the first case of the auto-
matic design of exact behaviour in CA with more than 10 cell states. We believe
that these pieces of knowledge will allow us to further improve our design method
and to apply cellular automata for modeling, simulation and optimization of
real-world problems.

24

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports of
the Czech Republic from the National Programme of Sustainability (NPU II),
project IT4Innovations excellence in science – LQ1602, and from the Large In-
frastructures for Research, Experimental Development and Innovations project
“IT4Innovations National Supercomputing Center – LM2015070”.

References

1. Basanta, D., Bentley, P., Miodownik, M., Holm, E.: Evolving cellular automata
to grow microstructures. In: Genetic Programming, Lecture Notes in Computer
Science, vol. 2610, pp. 1–10. Springer Berlin Heidelberg (2003)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, 2nd Ed., Volume 4. A K Peters/CRC Press (2004)

3. Bidlo, M.: Investigation of replicating tiles in cellular automata designed by evo-
lution using conditionally matching rules. In: 2015 IEEE International Conference
on Evolvable Systems (ICES). pp. 1506–1513. Proceedings of the 2015 IEEE Sym-
posium Series on Computational Intelligence (SSCI), IEEE Computational Intel-
ligence Society (2015)

4. Bidlo, M.: Evolution of generic square calculations in cellular automata. In: Pro-
ceedings of the 8th International Joint Conference on Computational Intelligence
- Volume 3: ECTA. pp. 94–102. SciTePress - Science and Technology Publications
(2016)

5. Bidlo, M.: On routine evolution of complex cellular automata. IEEE Transactions
on Evolutionary Computation 20(5), 742–754 (2016)

6. Bidlo, M., Vasicek, Z.: Evolution of cellular automata with conditionally matching
rules. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013). pp.
1178–1185. IEEE Computer Society (2013)

7. Codd, E.F.: Cellular Automata. Academic Press, New York (1968)
8. Durand, B., Rka, Z.: The game of life: Universality revisited. In: Mathematics and

Its Applications, Volume 460 Cellular Automata. pp. 51–74. Springer Netherlands
(1999)

9. Elmenreich, W., Fehérvári, I.: Evolving self-organizing cellular automata based on
neural network genotypes. In: Proceedings of the 5th International Conference on
Self-organizing Systems. pp. 16–25. Springer (2011)

10. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor (1975)

11. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific (2001)
12. Jean-Yves Perrier, Moshe Sipper, J.Z.: Toward a viable, self-reproducing universal

computer. Physica D 97(4), 335–352 (1996)
13. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional

cellular automata. Complex Systems 4(3), 299–318 (1990)
14. Mardiris, V., Sirakoulis, G., Karafyllidis, I.: Automated design architecture for 1-d

cellular automata using quantum cellular automata. Computers, IEEE Transac-
tions on 64(9), 2476–2489 (2015)

15. von Neumann, J.: The Theory of Self-Reproducing Automata. A. W. Burks (ed.),
University of Illinois Press (1966)

25

16. Ninagawa, S.: Solving the parity problem with rule 60 in array size of the power
of two. Journal of Cellular Automata 8(3–4), 189–203 (2013)

17. Rendell, P.: A universal turing machine in conway’s game of life. In: 2011 Interna-
tional Conference on High Performance Computing and Simulation (HPCS). pp.
764–772 (2011)

18. Rendell, P.: A fully universal turing machine in Conway’s game of life. Journal of
Cellular Automata 9(1–2), 19–358 (2013)

19. Sahoo, S., Choudhury, P.P., Pal, A., Nayak, B.K.: Solutions on 1-d and 2-d density
classification problem using programmable cellular automata. Journal of Cellular
Automata 9(1), 59–88 (2014)

20. Sahu, S., Oono, H., Ghosh, S., Bandyopadhyay, A., Fujita, D., Peper, F., Isokawa,
T., Pati, R.: Molecular implementations of cellular automata. In: Cellular Au-
tomata for Research and Industry. pp. 650–659. Lecture Notes in Computer Sci-
ence, Vol. 6350, Springer (2010)

21. Sipper, M.: Quasi-uniform computation-universal cellular cutomata. In: Advances
in Artificial Life, ECAL 1995, Lecture Notes in Computer Science, Vol. 929. pp.
544–554. Springer Berlin Heidelberg (1995)

22. Sridharan, K., Pudi, V.: Design of Arithmetic Circuits in Quantum Dot Cellular
Automata Nanotechnology. Springer International Publishing Switzerland (2015)

23. Stefano, G.D., Navarra, A.: Scintillae: How to approach computing systems by
means of cellular automata. In: Cellular Automata for Research and Industry. pp.
534–543. Lecture Notes in Computer Science, Vol. 7495, Springer (2012)

24. Suzudo, T.: Searching for pattern-forming asynchronous cellular automata – an
evolutionary approach. In: Cellular Automata, Lecture Notes in Computer Science,
vol. 3305, pp. 151–160. Springer Berlin Heidelberg (2004)

25. Tempesti, G.: A new self-reproducing cellular automaton capable of construction
and computation. In: Advances in Artificial Life, Proc. 3rd European Conference
on Artificial Life. pp. 555–563. Lecture Notes in Artificial Intelligence, Vol. 929,
Springer (1995)

26. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign IL (2002)
27. Yuns, J.B.: Achieving universal computations on one-dimensional cellular au-

tomata. In: Cellular Automata for Research and Industry. pp. 660–669. Lecture
Notes in Computer Science Volume 6350, Springer (2010)

