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ABSTRACT

Speech enhancement systems, which denoise and dereverberate dis-
torted signals, are usually optimized based on signal reconstruction
objectives including the maximum likelihood and minimum mean
square error. However, emergent end-to-end neural methods enable
to optimize the speech enhancement system with more application-
oriented objectives. For example, we can jointly optimize speech
enhancement and automatic speech recognition (ASR) only with
ASR error minimization criteria. The major contribution of this pa-
per is to investigate how a system optimized based on the ASR ob-
jective improves the speech enhancement quality on various signal
level metrics in addition to the ASR word error rate (WER) met-
ric. We use a recently developed multichannel end-to-end (ME2E)
system, which integrates neural dereverberation, beamforming, and
attention-based speech recognition within a single neural network.
Additionally, we propose to extend the dereverberation sub network
of ME2E by dynamically varying the filter order in linear predic-
tion by using reinforcement learning, and extend the beamforming
subnetwork by incorporating the estimation of a speech distortion
factor. The experiments reveal how well different signal level met-
rics correlate with the WER metric, and verify that learning-based
speech enhancement can be realized by end-to-end ASR training
objectives without using parallel clean and noisy data.

Index Terms— speech enhancement, speech recognition, neu-
ral dereverberation, neural beamformer, training objectives

1. INTRODUCTION

The speech signal can be severely distorted by reverberations and
background noise [1,2]. Algorithms to enhance the speech signal by
denoising and dereverberation will benefit both speech processing
applications like automatic speech recognition (ASR) and human
perception applications like hearing aids. It has become common to
use more than one microphone to capture speech since multichannel
speech enhancement can take advantage of the correlation between
the different microphone signals [3].

Conventional statistical speech enhancement systems are op-
timized based on signal reconstruction objectives [3, 4]. Currently,
deep neural network (DNN) based methods for speech enhancement
have become popular [5–11]. These methods are also trained based
on signal level objectives including magnitude spectrum reconstruc-
tion with minimum mean squared error (MMSE) [5,10], short-time
objective intelligibility (STOI) [11] criteria, mask estimation with
binary cross entropy criteria (BCE) [8], where the targets come di-
rectly from the clean signal. Hence, these methods can be trained
only with parallel clean and simulated noisy data.

Alternatively, enhancement systems can also be trained based
on application oriented objectives like automatic speech recognition
(ASR) error minimization [12–17]. These systems were integrated
into the whole ASR framework targeting the ASR error minimiza-
tion objective and have the advantage that they do not need the par-
allel speech data for training. For instance, a minimum variance dis-
tortionless response (MVDR) beamformer component with speech
and noise masks as learnable parameters was trained only based on
a sequence-to-sequence (S2S) cross entropy objective [13].

This paper uses a multichannel end-to-end ASR (ME2E), which
was recently developed in [18] by extending the model in [13] with
an additional dereverberation sub-network based on weighted pre-
diction error (WPE) [19, 20] before the beamformer sub-network.
In the training phase, the desired dereverberated or denoised signal
is introduced as a hidden state vector inside the whole network in-
tegrating the above sub-networks and S2S ASR, and the network
is trained only based on the ASR objective without parallel clean
signal data. At the inference phase, speech enhancement can be
performed by recovering the speech signals using estimated hidden
state vectors.

The main goal of this paper is to investigate how well this end-
to-end system performs denoising and dereverberation by evalu-
ating the enhanced signal with various speech enhancement met-
rics. Although [21] performs the evaluation of ME2E with a few
speech enhancement metrics, this paper performs intensive investi-
gation by using five intrusive metrics (1) cepstral distance (CD), (2)
log-likelihood ratio (LLR), (3) frequency-weighted segmental SNR
(FWSegSNR), (4) PESQ and (5) STOI, and (6) an additional non-
intrusive metric based on the signal to reverberant modulation ratio
(SRMR) [22, 23]. We also further analyze which of these metrics
correlate well with the WER.

Another unique advantage of our proposed end-to-end system
is its ability to predict speech enhancement hyper-parameters inside
the network only with the ASR objective. We focus on a distortion
weight hyper-parameter in the parameterized multichannel Wiener
filter (PMWF), which is a more general form of MVDR [3]. It has
been shown that by carefully controlling this parameter we can ob-
tain significant gains in terms of both signal quality [24] and ASR
accuracy [25]. Another hyper-parameter is the linear prediction fil-
ter order, which is a crucial parameter in WPE that depends on the
reverberation time. We incorporate the prediction of such hyper-
parameters in our end-to-end system. For the filter order estimation,
we also propose to use a reinforcement-learning-based policy gradi-
ent method since it is a discrete value estimation problem and hence
conventional backpropagation cannot be used. We validate through
our experiments that we can obtain a proper estimate of the PMWF
distortion weight parameter and filter order by using our approach.
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2. END-TO-END NEURAL SPEECH ENHANCEMENT
AND RECOGNITION

2.1. Multi-channel end-to-end (ME2E) system

This section describes our end-to-end neural speech enhancement
and recognition architecture, which is designed to perform robust
ASR in a far-field condition. This network has an explicit role for
each sub-network, i.e., it starts by dereverberating the input multi-
channel signal, then denoises the dereverberated multichannel sig-
nal by beamforming, and finally, the beamformed signal is recog-
nized by attention-based ASR. The architecture is shown in Figure
1.

Dereverberation subnetwork

Let y(t, b) ∈ CM be the observed M -channel signal in the short-
time Fourier transform (STFT) domain at time frame t and fre-
quency bin b. The dereverberation subnetwork estimates the dere-
verberated M -channel signal d(t, b) based on WPE [2, 19, 20],
which cancels late reverberations using variance normalized de-
layed linear prediction as follows:

d(t, b) = y(t, b)−
(
R(b)−1P(b)

)H
ỹ(t−∆, b), (1)

where ∆ is the prediction delay and H denotes the conjugate trans-
pose. ỹ(t − ∆, b) ∈ CML is the stacked representation of the
delayed multichannel observations with the filter order L. R(b) ∈
CML×ML and P(b) ∈ CML×M are the auto-covariance and co-
variance matrices, respectively, which are obtained by the fol-
lowing update equations with mth-channel neural network output
d̄(t, b,m; θdry) with learnable parameter θdry as:

R(b) =
∑
t

ỹ(t−∆, b)ỹH(t−∆, b)∑
m

∣∣d̄(t, b,m; θdry)
∣∣2 /M , (2)

P(b) =
∑
t

ỹ(t−∆, b)yH(t, b)∑
m

∣∣d̄(t, b,m; θdry)
∣∣2 /M , (3)

Note that all of these functions are differentiable, and we define the
composite function of them with parameter θdry as follows:

D = Dry(Y; θdry), (4)

whereD andY denote the dereverberated and original STFT signals
for all frames, frequency bins, and channels, respectively.

Beamforming subnetwork

The beamforming subnetwork performs speech denoising from the
output of the dereverberated STFT signal d(t, b) in Eq. (1) to obtain
an enhanced STFT signal x(t, b) ∈ C as follows:

x(t, b) = fH(b)d(t, b). (5)

f(b) ∈ CM is a time-invariant beamforming filter at frequency bin
b obtained with the following PMWF estimation as follows:

f(b) =
ΦN(b)−1ΦS(b)

β(b) + Trace(ΦN(b)−1ΦS(b))
u (6)

where, u ∈ {0, 1}M is a one-hot vector to choose a reference mi-
crophone, and the beamformer estimates the speech image at the

reference microphone1, and β(b) ∈ R≥0 is the distortion weight
which is a frequency dependent trade-off factor between speech dis-
tortion and noise reduction [3, 24]. As β(b)→∞, maximum noise
reduction but maximum speech distortion is obtained. Note that
β(b) = 1 is the standard MWF, and β(b) = 0 is MVDR. Trace(·)
denotes the trace operation. ΦS(b) ∈ CM×M and ΦN(b) ∈ CM×M
denote the power spectral density (PSD) matrices of speech and
noise as follows:

Φv(b) =

T∑
t=1

wv(t, b; θfcs)d(t, b)dH(t, b) where v ∈ {S,N}. (7)

wS(t, b; θfcs) ∈ [0, 1] and wN(t, b; θfcs) ∈ [0, 1] denote the speech
and noise masks obtained from a neural network with learnable pa-
rameter θfcs, respectively.

The estimation of the distortion weight parameter vector β =
[β(b)]Bb=1 (B: the number of frequency bins) is also incorporated
inside the network as follows:

β = min(ReLU(Linear([|rS|T, |rN|T]T; θfcs)), 10), (8)

where Linear(·) is an affine transformation with learnable parame-
ters. We set the maximum value of β to 10 based on experiments
from [24]. Features rN and rS are obtained from the PSD matrices:

rv =
1

(M − 1)2

M∑
m=1

M∑
m′=1

[φv(b,m,m′)]Bb=1 where v ∈ {S,N}

(9)
where φv(b,m,m′) is m-m′ entry of the PSD matrix Φv(b).

Similarly to the dereverberation subnetwork, all the above func-
tions are differentiable, and we define the composite function of
them with parameter θfcs as follows:

X = Fcs(D; θfcs), (10)

where X denotes the beamformed STFT signal for all frames and
frequency bins.

Attention based ASR

Finally, we use the attention-based encoder decoder with learnable
parameter θtrn to obtain the posterior distribution of grapheme se-
quence C = (c1, c2, · · · ) by using the enhanced STFT X as fol-
lows:

p(C|Y) = Trn(X; θtrn). (11)

This Trn(·) function also includes a log Mel filter-bank transforma-
tion, which takes the power operation, Mel matrix transformation,
logarithm operation, and utterance-wise mean-variance normaliza-
tion for X .

The ME2E system is designed to perform far-field end-to-end
ASR by composing the differentiable dereverberation (Eq. (4)),
beamforming (Eq. (10)), and ASR (Eq. (11)) functions. Therefore,
we can perform the backpropagation for all parameters in this com-
posite network (θdft = {θdry, θfcs, θtrn}) by taking the derivative of
the ASR loss Ldft, i.e., the cross entropy loss function (CE(·, ·)) be-
tween the reference label Cref and the posterior distribution p(C|Y)
as follows:

∇θdftLdft = ∇θdft CE(Cref, p(C|Y)), (12)
= ∇θdft CE(Cref,Trn(Fcs(Dry(Y; θdry); θfcs); θtrn)). (13)

1Instead of the hard reference selection, we use an attention mechanism
to softly estimate the reference vector, i.e., u ∈ [0, 1]M and

∑
m um = 1.
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Figure 1: ME2E architecture with WPE filter order estimation.

Thanks to this composite topology, the ME2E system has the fol-
lowing interesting properties:

1. Speech enhancement sub-networks are optimized only with
the ASR training objective.

2. As intermediate outputs of the system, enhanced signals
(dereverberated STFT D and beamformed STFT X) can be
generated.

This paper investigates how the generated enhanced signal improves
the speech enhancement quality on various signal level metrics to
validate the effectiveness of the ME2E speech enhancement func-
tion.

2.2. Extension with filter order estimation

The filter order L introduced in Eq. (1) is an important parameter in
WPE. However, the filter order estimation is a hard decision process
and cannot be easily integrated with ME2E system due to its non-
differentiable operation. Instead, this paper proposes a novel filter
order estimation based on reinforcement learning.

We first consider the posterior distribution of possible filter
order candidates p(L|Y) given multichannel input Y e.g., we al-
low the filter order to be in some range as L ∈ {1, 2, ..., 10}.
p(L|Y) is obtained as a softmax function of a neural network output
cL(Y; θflt) with learnable parameter θflt and scaling hyperparameter
ε as follows:

p(L|Y) =
exp(cL(Y; θflt)/ε)∑
L′ exp(cL′(Y; θflt)/ε)

. (14)

During training, we 1) randomly sample L from p(L|Y), 2) use
L-filter-order dereverberation subnetwork to obtain the posterior
distribution pL(C|Y) as shown in Eqs. (4), (10), and (11), and 3)
perform back propagation using REINFORCE [26] based policy-
gradient algorithm for the filter-order-estimation lossLflt as follows:

L ∼ p(L|Y), (15)
pL(C|Y) = Trn(Fcs(DryL(Y))), (16)

∇θfltLflt =
∑
L

CE(Cref, pL(C|Y))∇θflt log p(L|Y). (17)

This backpropgation is jointly performed for both Lflt and Ldft in
Eq. (13). During decoding, the filter order is directly estimated as

defined in equation (18).

L̂ = argmax
L

p(L|Y). (18)

With this estimation, ME2E system can vary the filter order
utterance-by-utterance depending on the room condition. The
ME2E architecture with the proposed filter order estimation is given
in Figure 1.

3. EXPERIMENTS

3.1. Experimental setup

We used the 2-channel simulation training data from the REVERB
dataset for training [2], and the 8-channel test set from the REVERB
dataset and 6-channel living room array set from the DIRHA-WSJ
dataset [27] for evaluation. We used a standard setup for multi-
channel end-to-end ASR developed [18] in the ESPnet toolkit [28].
The baseline single-channel E2E ASR uses the 80-dimensional log
Mel filterbank coefficients as a feature. The encoder consists of two
blocks of convolution layers followed by three layers of bidirec-
tional long short-term memory (BLSTM) layers with 1024 units.
The location based attention mechanism was used. The decoder
consists of a single LSTM layer with 1024 units followed by a lin-
ear layer with a number of output units corresponding to the number
of distinct characters. The word based RNN language model pro-
posed in [29] was also used.

In our ME2E system, both dereverberation and beamforming
masking sub-networks introduced in Section 2.1 consist of two
BLSTM layers with 300 units followed by an additional feedfor-
ward layer. The dereverberation masking network predicts a two-
dimensional time-frequency mask using the clipped rectified linear
unit (ReLU) function with a max clamp at 1 as the activation and the
beamforming masking network predicts a one (time) dimensional
mask like speech activity detection (SAD) using the sigmoid func-
tion as an activation based on our preliminary analysis in [30]. For
filter order estimation introduced in Section 2.2, the scaling parame-
ter ε in Eq. (14) was fixed as 105, and the filter order L was allowed
to be in the range 1 to 10. In the other configurations, the filer order
L was fixed at 5.

As a conventional pipeline system, we used Nara-WPE [31] as
an original WPE and our own implementation of DNN-WPE2 for
dereverberation. The prediction delay ∆ in Eq. (1) was fixed at
3 and the number of iterations was fixed as 3 for WPE. We also
used a weighted delay and sum beamformer (BeamformIt [32]) for
multichannel denoising.

3.2. Results & discussion

Speech enhancement metrics

Six different speech enhancement metrics along with the WER
are shown in Figure 2 for conventional DNN-WPE, a combination
of DNN-WPE and BeamformIt (DNN-WPE-BF), and E2E ASR
based enhancement methods (E2E-WPE and E2E-WPE-MVDR).
The E2E-WPE (E2E ASR with only dereverberation subnetwork)
has a similar trend to DNN-WPE for all metrics for almost all the
evaluation conditions. Similarly, E2E ASR with both dereverbera-
tion and beamforming sub-networks (E2E-WPE-MVDR) has a sim-
ilar trend to the signal-level objective counterpart of DNN-WPE-
BF in terms of all metrics except LLR and SRMR for most of the

2https://github.com/sas91/jhu-neural-wpe
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Figure 2: Objective measures of various methods. (1) cepstral dis-
tance (CD), (2) log-likelihood ratio (LLR), (3) frequency-weighted
segmental SNR (FWSegSNR), (4) PESQ, (5) STOI, (6) WER and
(7) SRMR.

Table 1: Correlation coefficients between SE metrics and WAR

Correlation coefficients SRMR CD LLR FWSegSNR PESQ STOI

WAR (= 100 - WER) 0.48 −0.57 −0.57 0.71 0.78 0.77
MUSHRA: PAR [2] 0.59 −0.76 −0.42 0.74 0.84 -
MUSHRA: OQ [2] 0.06 −0.38 −0.39 0.49 0.67 -

test conditions. Although the performance of E2E-WPE-MVDR is
poor compared to that of DNN-WPE-BF in terms of LLR, E2E-
WPE-MVDR significantly improves the SRMR performance. This
proves that our E2E system trained with the ASR objective works as
well as conventional speech enhancement methods based on signal
reconstruction criteria in terms of both speech quality and speech
intelligibility.

Correlation between word accuracies and signal level metrics.

The next analysis computed the correlation coefficients between
the different metrics and word accuracy rate (WAR = 100 - WER)
across different reverberation configurations in Table 1. This result
shows that PESQ, FWSegSNR and STOI have high correlation with
WAR. We also added the correlation of the metrics with subjective
multiple stimuli with hidden reference and anchor (MUSHRA) tests
evaluated based on both perceived amount of reverberation (PAR)
and overall quality (OQ) from [2] to the table. Interestingly, the
correlations with WARs are very similar to those with MUSHRA:
PAR scores, which also validates the effectiveness of the end-to-end
ASR objectives for the speech enhancement purpose. Note that the
calculation of all the speech enhancement metrics but SRMR is in-
trusive and requires the parallel clean speech data. However, given
that the ASR word accuracy is correlating well with many of these

Table 2: WER (%) on REVERB Real and DIRHA-WSJ (LA ar-
ray) evaluation sets comparing the performance of pipeline & E2E
frontend techniques.

Frontend Type Index
Dereverberation Beamformer REVERB Real DIRHA

Filter Order Method Method Room 1 LA ArrayEstimation Near Far

- 1 - - - 23.9 26.8 55.3

Pipeline
2 N WPE - 17.7 18.4 42.3
3 N DNN-WPE - 16.4 18.5 41.3
4 N DNN-WPE BeamformIt 11.0 10.8 31.3

E2E

5 N WPE - 18.0 19.8 42.3
6 Y WPE - 15.1 16.9 36.9
7 N WPE MVDR 8.7 12.4 29.1
8 N WPE PMWF 9.7 11.8 27.9
9 Y WPE MVDR 11.9 14.6 31.0

Table 3: The mode of the predicted filter order L̂

Mode
REVERB Simulated REVERB Real DIRHA

Room 1 Room 2 Room 3 Room 1 LA ArrayNear Far Near Far Near Far Near Far

Order L 9 9 4 4 4 4 9 9 9

Percentage 87.1 82.6 44.4 50.7 93.1 92.5 71.0 70.4 70.4

metrics, we can use it as an alternative non-intrusive metric on the
real challenging conditions.

ASR performance of real recordings

The ASR performance of the different pipeline methods and E2E
methods are shown in Table 2. Although E2E-WPE (row 5) de-
grades the performance compared to DNN-WPE (row 3), E2E-
WPE-MVDR (row 7) outperforms DNN-WPE-BF (row 4) on the
most challenging DIRHA set and REVERB near condition. The
proposed E2E-WPE-PMWF (row 8) further improves the perfor-
mance from E2E-WPE-MVDR (row 7) for the DIRHA set and RE-
VERB far condition. This confirms the importance of the distortion
weight parameter β(b) in Eq. (6).

E2E-WPE with the filter order estimation (row 6) proposed in
Section 2.2 provides the significant performance gain compared to
the other dereverberation methods (rows 2, 3 and 5). However, this
method degrades the performance when combined with the beam-
forming subnetwork (row 9), probably due to its unstable optimiza-
tion in the policy gradient algorithm. Table 3 further analyzes the
filter order estimation method by taking the mode of the predicted
filter order L̂ in Eq. (18). The higher order “9” is more frequently
chosen on the challenging real conditions, while the order “4” is
frequently chosen for the simulated set as expected, except for the
least challenging simulated room 1 set. Also, for all the REVERB
sets, the frequency of the mode order is very similar for both near
and far cases, and our method seems to learn to pick the order based
on the room size and not the microphone position.

4. SUMMARY
This paper proposes to use the speech enhancement method trained
with end-to-end ASR objectives, and experimentally revealed their
effectiveness on most speech enhancement metrics. Additionally,
we found PESQ and STOI to be well correlated with ASR ob-
jectives. A novel filter order estimation method for E2E WPE
and PMWF-beamformer-based E2E ASR system were also pro-
posed and experimentally shown the effectiveness on the RE-
VERB/DIRHA tasks. Our future work will apply these methods to
more realistic and challenging environments including the CHiME-
5 challenge task [33].
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