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Abstract. Computer vision is very progressive and modern part of computer science. From scientific point of

view, theoretical aspects of computer vision algorithms prevail in many papers and publications. The underlying

theory is really important, but on the other hand, the final implementation of an algorithm significantly affects

its performance and robustness. For this reason, this paper tries to compare real implementation of tracking

algorithms (one part of computer vision problem), which can be found in the very popular library OpenCV.

Moreover, the possibilities of optimizations are discussed.

1 Introduction

The problem of object tracking is an important area of

computer vision. Tracking algorithms can be used for

various applications like traffic control and analysis, face

and full-body person recognition, image matching etc. Al-

though methods of object tracking has been studied for

decades and many algorithms were developed, the cur-

rent state of the art is far from having a perfect, universal

solution for every use case. Because of enormous set of

variables, parameters and environments (background, illu-

mination, characteristics of the tracked objects, etc.), it is

nearly impossible to develop universal tracking algorithm.

[1, 12, 15]

Moreover, the selection of proper algorithm depends

not only on the algorithm principle, but also on its imple-

mentation. Programming language, compiler and manual

optimization can significantly affect the performance and

robustness of the algorithm. For this reason, we decided

to carry out an analysis of pre-implemented tracking algo-

rithms available in OpenCV library.

The OpenCV is a well known library, which integrates

necessary structures and tools for computer vision algo-

rithms; in addition, it integrates large set of different pre-

implemented algorithms solving different parts of object

tracking problem. Moreover, different optimization meth-

ods including parallel programming, GPU computing etc.

can be used for tuning the selected algorithm performance.

[17]

This paper tries to bring a comparison of tracking

algorithms implementations, which are included in the

OpenCV library. Moreover, basic principles of presented

algorithms and optimizations are discussed.

aCorresponding author: janku@fai.utb.cz

2 Algorithms description

While tracking is a very common computer-vision prob-

lem and OpenCV is a widely used C++ computer-vision

library, sadly, only few algorithms are available in the li-

brary. For our testing, we have used three feature detec-

tors, three pure trackers and one complex tracking frame-

work.

2.1 Feature detectors

Feature detectors are not really trackers, they only try to

detect a specified object in each frame individually. It

works like this: we have two images, one is an image of

the object we want to track and the other is the first frame

of a video or frame obtained from live stream. We can

obtain the first image from the second image by making

rectangular selection.

Feature detectors then try to detect some features in

the object image and try to find the best mapping of these

features in the current frame. This works very well if the

object image is large enough and the object itself has de-

tectable features such as edges and texture. The object can

be even freely rotated in the frame plane or slightly rotated

in other planes while facing approximately the same direc-

tion. In OpenCV, we use functions findHomography() to

find the transform between matched keypoints and func-

tion perspectiveTransform() to map the points. We have

used a slightly improved code from OpenCV documen-

tation example [6] to test feature detectors in the role of

tracker.

The reason why we cannot say feature detectors are re-

ally trackers is their inconsistency between frames. Track-

ers follow trajectory, detectors only detect the best match

for two images which leads to them being very unstable,
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especially when mistaking the tracked object for some-

thing at the moment more similar to the originally defined

object.

The other problem with mere detectors could occur

when tracked object is the same as one or more objects

in the picture or is a part of repeating structure (e.g. win-

dows, fences, etc.). This can become a problem with track-

ing in general but it can be helped by focusing on object’s

location. A this is were the trackers come in.

In OpenCV, there are currently three useful feature de-

tectors: SURF [4], SIFT [2] and ORB [7]. The first two

use floating point numbers but are patented. The third one

uses integers and is therefore less precise but is faster and

has more friendly licence. The basic concepts of SIFT

and SURF algorithms and their usage with OpenCV im-

plementation can be found in [5] and [3].

2.2 Pure trackers

For better distinction between this and the following sub-

section, we will use the term pure trackers for trackers

which only do tracking and nothing else. Trackers are de-

signed to track the object by following its trajectory and

predicting its future locations. This includes correcting an

error in the process.

The major problem with pure trackers is that they run

into difficulties when the camera moves too fast or the ob-

ject suddenly changes speed or direction. In that case, they

may try to detect the object in more predictable location

and find something similar instead.

In OpenCV, there are currently three useful pure track-

ers: MIL [8], Boosting [10] and MedianFlow [9].

2.3 Tracking frameworks

Tracking frameworks are algorithms which attempt to pro-

vide the most complex solution for the tracking task at

hand. They can be considered as ready-to-use products.

They are designed to overcome major tracking problems

by constantly adapting to new conditions and correcting

all crucial errors. Their disadvantage is bigger memory

and processing power consumption, but this is the price to

pay for all their advantages.

In OpenCV, there is currently one useful tracking

framework: TLD. This algorithm is divided into three

mostly independent parts - Tracking - Learning - Detect-

ing. The tracker tries to track a blob of pixels from one

frame to another. The detector tries to find similar ob-

served object and correct tracker if necessary, and the

learning estimates the detectors errors and updates it in

order to avoid errors in future. Thanks to this, TLD can

provide stable tracking in long term. Additionally, it is

able to adapt to tracked blob changes. [11, 16]

Three basic parts of TLD can run simultaneously, each

on separate processor and/or as a separate task. Moreover,

each part can be optimized (parallelized) separately due to

its character. [11, 16]

Table 1. List of Problems

Abbr. Name Description

IV Illumination

Variation

The illumination in the target re-

gion is significantly changed.

SV Scale Vari-

ation

The ratio of the bounding boxes

of the first frame and the current

frame is out of the range.

OCC Occlusion The target is partially or fully oc-

cluded.

DEF Deformation Non-rigid object deformation.

MB Motion

Blur

The target region is blurred due to

the motion of target or camera.

FM Fast Mo-

tion

The motion of the ground truth is

larger than limit.

IPR In-Plane

Rotation

The target rotates in the image

plane.

OPR Out-of-

Plane

Rotation

The target rotates out of the image

plane.

OV Out-of-

View

Some portion of the target leaves

the view.

BC Background

Clutters

The background near the target has

the similar color or texture as the

target.

LR Low Reso-

lution

The number of pixels inside the

ground-truth bounding box is be-

low limit.

3 Measurement methods

As it was already stated before in similar papers (e.g. [12],

[13]), doing a complex comparison of tracking algorithms

can be rather tricky. The main reason for that is that track-

ing itself can be used for many different purposes (track-

ing faces, people, vehicles etc.) in many different envi-

ronments and situations (airport, inside a building, roads,

nature, fog, day / night, etc.) while the cameras can be of

low / high quality, near / far, colour / grey-scale, moving /

stabilized and so on. What’s more, tracking itself consists

of overcoming different types of problems such as rota-

tion or partial occlusion of tracked object, changing light

conditions, blurred frame due to a fast camera movement,

etc. The above stated means that a very large dataset is

needed. Fortunately, Yi Wu et al. already managed to col-

lect most commonly used testing videos and offer it freely

with annotations [14]. In [12], they use this dataset to test

tracking algorithms which are available with source code.

Each video in the dataset has been described by listing ma-

jor problems which has to be dealt with when implement-

ing a good tracking algorithm. We include their problem

definitions in Table 1 [12].

3.1 Success evaluation

In each video we had used the following formula for each

frame: Csuc( f ) =
|rt∩rg|
|rt∪rg| where Csuc( f ) is a success crite-

rion function for frame f ; rt is bounding rectangle returned

from tracker and rg is the bounding rectangle provided by

ground truth. We basically take the area of the intercep-

tion and divide it by the area of the union of above defined
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rectangles. This will give as the overlapping ratio which is

be considered a success when larger than 0.5. [12]

3.2 Precision evaluation

As a measure of algorithm precision, we decided to use

the scale of rectangle obtained from the tracker consider-

ing the ground truth while the best precision is equal to 1

if we use this formula: Cprec( f ) = |rt ||rg| where Cprec( f ) is

the precision criterion function for the currently processed

frame f .

3.3 Time demands evaluation

To objectively measure time demands of each algorithm,

we propose to simply measure time for each frame:

Ctim( f ) = t where Ctim( f ) is the algorithm time demands

criterion function; t is the time it took to process the cur-

rent frame f .

3.4 Performance evaluation

How did algorithms performed while facing each of the

problems defined in Table 1 was evaluated in the same

way as with the Csuc( f ) (see above) but only with relevant

videos.

3.5 Difficulties

A few issues had to be resolved before collecting and pro-

cessing data. The initial idea was to compare how much

do the bounding rectangle provided by the tracker and the

ground truth bounding rectangle overlap while also mea-

suring the processing time. The first problem was that

sometimes the tracker rejects the object from the ground

truth when being initialized or completely looses the ob-

ject during tracking. Since each frame produces data,

even when tracking unsuccessfully, it can then imply the

tracker was not able to deal with all tracking problems in

the currently processed video. Typically, during bench-

marking this is fixed by triggering reinitialization after a

few failed frames. We decided to set retrigger threshold

at 30 failed frames. This may mean that some trackers

will appear more effective (the ground truth should not be

available) but, as we supposed, 30 frames were enough to

substantially penalize them. Other problems were discov-

ered when trackers on very rare occasions behaved unpre-

dictably and the output data were out of expected bound-

aries. Sometimes, it took several seconds to process a rel-

atively small frame or the object turned out to supposedly

cover almost whole frame while the ground truth bounding

rectangle was much smaller. Such output was reclassified

as failure and the data were constricted so they could both

serve as score penalty and reasonable statistical record.

4 Results

In this section, we are going to discuss all of the bench-

marking results. With great advantage, we used box-and-

whisker type of charts to compare algorithms with each

other, because this type of chart allows us to nicely com-

pare the acquired data. The box represents the range of

50% of results. Inside each box, the horizontal line de-

picts the middle value, and the bottom-most and top-most

lines are minimum and maximum values.

4.1 Success

In each video, we had counted number of frames which

had results within the defined limits (Csuc( f ) ≥ 0.5 ∧
Cscale( f ) < 2.0 ∧ t( f ) < 1) and divided this number by

the total number of frames. Surprisingly, TLD did not turn

out to be the best algorithm (see Figure 1) despite being so

complex.

There may be two reasons for this. The first one may

be, that algorithms MIL and Boosting, categorized by us

as pure trackers, were more successful due to reinitializa-

tion from the ground truth. The second reason could be,

that TLD is so heavily correcting itself, that the bounding

rectangle in each frame shifts a lot and therefore does not

follow the ground truth bounding rectangle so nicely (the

intersection is often less then 50%). It doesn’t mean that

TLD looses the object, the opposite is true, but it fails to

center the object in its bounding rectangle.

SURF SIFT ORB MIL BOOST MF TLD

0.0

0.2

0.4

0.6

0.8

1.0

algorithm

su
cc
es
s

Total Success

Figure 1. Total success chart

4.2 Precision

To measure precision of each algorithm, we decided to

use the scale ratio. If the object is located precisely, the

bounding rectangle dimensions should be more similar to

the ground truth than if it is not. For this criterion, we had

eliminated all the unsuccessful data, which means that the

maximal acceptable scale ratio was 2. As you can see at

Figure 2, all algorithms had their extreme values bellow

this upper limit and above the lower limit, which was, off

course, 0. To tell which algorithm did well according to

this criterion, we need to look how close is their middle

value to 1.0 and how small is the range between their min-

imal and maximal values.
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Figure 2. Scale chart

4.3 Time demands

For this criterion, we had measured the time each algo-

rithm needs for processing a single frame. It was necessary

to eliminate very short but also very long times because the

box-and-whisker chart would be too stretched towards the

extremes. You can see at Figure 3 that SIFT and SURF are

very slow. That’s because they work with floating point

values and their inner calculations take more time. The

rest of the algorithms are faster, while the slowest one is

TLD. Slowness of the TLD algorithm is caused by its rel-

ative robustness and lack of optimizations of its OpenCV

implementation.

SURF SIFT ORB MIL BOOST MF TLD

0.00

0.05

0.10

0.15

0.20

0.25

algorithm

tim
e
�s
�

Time for frame

Figure 3. Time demands chart

4.4 Performance

In this section, we present results for each algorithm’s per-

formance when dealing with major tracking problems. As

shown at Figure 4, the algorithms’ success was not so dif-

ferent from their total success. To have a better overview,

the Table 2 also shows the average success for each algo-

rithm and problem.

Table 2. Problems’ success table

SURF SIFT ORB MIL BOOST MF TLD

IV 0.057 0.065 0.000 0.644 0.596 0.138 0.372

SV 0.076 0.089 0.001 0.549 0.559 0.218 0.409

OCC 0.051 0.068 0.000 0.572 0.586 0.185 0.400

DEF 0.023 0.044 0.000 0.616 0.596 0.146 0.388

MB 0.099 0.075 0.001 0.521 0.560 0.114 0.425

FM 0.083 0.086 0.001 0.506 0.521 0.165 0.394

IPR 0.064 0.079 0.001 0.500 0.567 0.206 0.366

OPR 0.053 0.060 0.001 0.562 0.585 0.231 0.372

OV 0.158 0.094 0.002 0.468 0.486 0.124 0.293

BC 0.066 0.076 0.001 0.692 0.661 0.153 0.374

LR 0.100 0.081 0.002 0.488 0.545 0.312 0.373

5 Algorithm optimizations
Because this paper deals with specific implementations of

algorithms included in OpenCV, it has to be mentioned,

that the final speed of algorithms depend not only on its

principle, but also on the style of implementation and/or

on used optimizations.

The OpenCV library contains one important method

for parallelization of operations in computer vision algo-

rithms. It is a set of virtual functions and classes, by which

the performed operation, usually programmed using for
loop, is defined as parallelisable operation. Thanks to this,

when the OpenCV library is compiled with some paral-

lelization framework, the marked section of algorithm is

automatically distributed into parallel execution.

5.1 Available optimizations in OpenCV

The set of available optimization frameworks, which can

be used as OpenCV background slightly depends on the

platform. All optimizations can be divided into two basic

categories. The first category of optimizations works with

CPU. Inside this category are the multimedia instructions

(SSE, NEON) together with multi-core parallelism meth-

ods (OpenMP, TTB). By using multimedia instruction, the

one simple mathematical operation can be performed on

multiple data concatenated into one processor word. For

example if we have a processor with 64 bit wide regis-

ters, we can calculate a sum either in one instruction with

eight numbers 1 byte wide or with numbers 2 byte wide

or 2 numbers 4 byte wide. On the other hand, the multi-

core parallelism methods are suitable when we have a CPU

with multiple cores. In that way, the algorithm is divided

into proper number of independent execution queues.

The second category of optimization uses GPUs as

a computing devices. In OpenCV, the support for

CUDA (NVidia graphics cards) and OpenCL(Intel and

ATI graphic cards) is implemented. Moreover, the Vul-

can (universal graphical card computing framework) will

be available soon. The principle of this optimization lies in

moving the graphical calculation on the GPU cores placed

on the graphic card, where the amount of cores is signifi-

cantly higher than in CPU.

6 Conclusion
The real aspects of implementation of tracking algorithms

were discussed in this paper. Selected algorithms were
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Figure 4. Problems chart

tested and compared in different conditions and from dif-

ferent points of view.

Already the first criterion - success brings unexpected

results. The TLD algorithm, which can be considered as

the best one from the previous research base, was not as

good as expected. It was partly caused by its complexity

(it was not able to aim the target blob correctly because of

adaptations), and partly by its insufficient implementation

in OpenCV.

The second criterion - precision, brings constant re-

sults from the mean value point of view. At the other hand

significant differences can be found on minimum and max-

imum levels of this measurement. These results can be

marked as predictable on the previous research base.

As was described in previous sections, the time com-

parison of defined algorithms shows that the slowest al-

gorithm was SIRF, directly followed by SURF algorithm.

Surprisingly, the TLD algorithm was nearly as slow as the

previous two. After deep analysis, it was recognized that

the speed of TLD algorithm is limited by its complexity

and/or its imperfect implementation, which does not use

parallel loops available in OpenCV for speed optimization.

Because of the uncovered imperfections and limita-

tions in algorithm implementation, the more detailed anal-

ysis will be created. The future work on this research will
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be focused of detailed analysis of implementation of these

algorithms, including used programming techniques and

memory and computing efficiency.
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