
Available online at www.sciencedirect.com

w
T
d
t
i
i
⃝

r

K

o
a
s

w
O
c

h
0
r

ScienceDirect

Mathematics and Computers in Simulation xxx (xxxx) xxx
www.elsevier.com/locate/matcom

Original articles

Dual strategies for solving the Stokes problem with stick–slip
boundary conditions in 3D

Jaroslav Haslingera, Radek Kučeraa,b,∗, Taoufik Sassic, Václav Šátekd,b

a Faculty of Mechanical Engineering, VŠB-TUO, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
b IT4Innovations, VŠB-TUO, 17. listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic

c Laboratory of Mathematics Nicolas Oresme, CNRS UMR 6139, University of Caen - Normandy, 14032 Caen Cedex, France
d Faculty of Information Technology, Brno University of Technology, Božetěchova 1/2, 612 66 Brno, Czech Republic

Received 3 March 2020; received in revised form 7 December 2020; accepted 15 December 2020
Available online xxxx

Abstract

The paper deals with the numerical realization of the 3D Stokes flow subject to threshold slip boundary conditions. The
eak velocity–pressure formulation leads to an inequality type problem that is approximated by a mixed finite element method.
he resulting algebraic system is non-smooth. Besides the pressure, three additional Lagrange multipliers are introduced: the
iscrete normal stress releasing the impermeability condition and two discrete shear stresses regularizing the non-smooth slip
erm. Eliminating the discrete velocity component we obtain the minimization problem for the smooth functional, expressed
n terms of the pressure, the normal, and the shear stresses. This problem is solved either by a path following variant of the
nterior point method or by the semi-smooth Newton method. Numerical scalability is illustrated by computational experiments.
c 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Stokes problem; Stick–slip boundary conditions; Interior-point method; Semi-smooth Newton method

1. Introduction

The no-slip condition is the standard boundary condition in fluid flow models. It characterizes the stick of a fluid
n a solid wall, i.e., the tangential velocity on the boundary of a computational domain vanishes. However, a slip of
fluid is observed along a wall in many real situations (e.g. water flow along hydrophobic surfaces). The simplest

tick–slip condition is the Navier one [17]:

σ t = −κut , (1)

here σ t is the shear stress, ut is the tangential component of the velocity u, and κ ≥ 0 is an adhesive coefficient.
ne can see from (1) that a slip appears whenever σ t ̸= 0. The stick–slip conditions introduced by Fujita [6]

onsider their threshold character using the slip bound function g ≥ 0. They read as follows:

∥σ t∥ ≤ g,

∥σ t∥ < g ⇒ ut = 0,

∥σ t∥ = g ⇒ ∃c ≥ 0 : ut = −cσ t .

⎫⎪⎬⎪⎭ (2)

∗ Corresponding author at: IT4Innovations, VŠB-TUO, 17. listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic.
Please cite this article as: J. Haslinger, R. Kučera, T. Sassi et al., Dual strategies for solving the Stokes problem with stick–slip boundary conditions in 3D, Mathematics and Computers
in Simulation (2021), https://doi.org/10.1016/j.matcom.2020.12.015.

E-mail address: radek.kucera@vsb.cz (R. Kučera).

ttps://doi.org/10.1016/j.matcom.2020.12.015
378-4754/ c⃝ 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2020.12.015
http://www.elsevier.com/locate/matcom
mailto:radek.kucera@vsb.cz
https://doi.org/10.1016/j.matcom.2020.12.015

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

t
l

t
d
s
a
a
t
f
w
o
T
m
s
t

b

a
v
F
s

Hence, the slip may occur only if the bound g is attained and the tangential velocity and the shear stress have
he opposite direction. This condition is well-known in contact problems of solid mechanics as the Tresca friction
aw [7].

In this paper we combine (1) and (2) in one boundary condition formulated for the Stokes flow model. For
he mathematical analysis of this problem we refer to [8,19]. Computational experiments based on an alternating
irection method can be found in [4]. Another way of solving non-smooth problems using the primal–dual set
trategy which is associated to a limit case of the semi-smooth Newton (SSN) method has been introduced and
nalysed in [9]. Our aim is to develop efficient algorithms for solving large-scale algebraic systems arising from an
ppropriate finite element discretization of 3D problems that were successful in 2D cases. In particular, we extend
he path-following (PF) variant of the interior point method [13] and the SSN method [16]. Note that the extensions
rom 2D to 3D are not straightforward, since the norm appearing in (2) is represented by the absolute value in 2D
hile by the Euclidean norm in R2 for 3D problems. This fact changes the structure of the resulting (saddle-point
r dual) algebraic problems since the simple bounds in 2D are replaced by the separable spherical constraints in 3D.
he PF algorithm is an appropriate modification of that one proposed in [14], while the implementation of the SSN
ethod is based on similar ideas as in [15]. Note that original versions of these algorithms were developed and

uccessfully tested in context of 3D contact problems of solid mechanics. In contrast to [15], it is not necessary
o symmetrize the (generalized) Jacobian matrices in the SSN algorithm if the adhesive coefficient κ is positive.

A considerable difference between problems of solid and flow mechanics is the presence of the incompressibility
and impermeability conditions in the latter. Consequently, the dual algebraic formulations involve a relatively small
number of constrained unknowns which excludes the efficient use of some types of algorithms. For this reason we
do not use the active-set minimization algorithms [12]. It has been observed that for our type of 2D problems [13]
they are less efficient, especially for large-scale computations. This property is much more significant in 3D.

The rest of the paper is organized as follows. In Section 2 we introduce different formulations of our problem.
Section 3 deals with the finite element approximation based on the P1-bubble/P1 finite element pair. The respective
algebraic problem is expressed in the saddle-point and the dual form. In Section 4 the algorithms are presented.
The PF algorithm is assembled as the solver of the dual problem with the separable spherical constraints. The
SSN algorithm solves the projective form of the saddle-point problem in which the constraints are expressed by
the projections on circles in R2. Section 5 summarizes results of numerical experiments. Finally, Section 6 gives
several concluding remarks.

2. Formulation

Let Ω ⊂ R3 be a bounded domain with a sufficiently smooth boundary ∂Ω that is split into three disjoint parts:
∂Ω = γ D ∪γ N ∪γ S , γD ̸= ∅, γS ̸= ∅. We consider the viscous flow of an incompressible Newtonian fluid modelled

y the Stokes system in Ω with the Dirichlet and Neumann boundary conditions on γD and γN , respectively, and
with the impermeability and the stick–slip boundary conditions on γS:

−2ν div D(u) + ∇ p = f in Ω ,

div u = 0 in Ω ,

u = 0 on γD,

σ = σ N on γN ,

un = 0 on γS,

∥σ t + κut∥ ≤ g on γS,

σ t · ut + g∥ut∥ + κ(ut · ut) = 0 on γS.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3)

The unknowns u, p represent the velocity and the pressure field in Ω , respectively, f is a force acting on the
fluid, ν > 0 is the kinematic viscosity, and σ N is a prescribed stress on γN . Further σ = 2νD(u)n − pn is the
stress on ∂Ω and D(u) = 1/2(∇u + (∇u)T) is the symmetric part of the gradient of u. The unit outer normal and
tangential vectors at x ∈ ∂Ω will be denoted by n := n(x) and t1 := t1(x), t2 := t2(x), respectively, and we will
ssume that the triplet {n, t1, t2} is an orthonormal basis at all x ∈ ∂Ω . The normal, tangential components of the
elocity u along ∂Ω are denoted by un = u ·n, and ut = (u · t1, u · t2), respectively, and analogously for the stress σ .
inally, g ≥ 0, κ ≥ 0 is the slip bound, and the adhesive function, respectively, on γS . The symbol ∥ · ∥ in (3)
tands for the Euclidean norm in R2.
2

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

l

o

T
f

a

w

T

T
t
o

R
s
i

T

o

The stick–slip boundary conditions (3)6,7 become the Navier slip law if g = 0, κ > 0, and the Tresca stick–slip
aw if g > 0, κ = 0. Introducing the new variable σ̃ t = σ t + κut , (3)6,7 can be written as follows:

∥σ̃ t∥ ≤ g

σ̃ t · ut + g∥ut∥ = 0

}
onγS,

r, equivalently,

∥σ̃ t (x)∥ ≤ g(x),
ut (x) ̸= 0 ⇒ ∥σ̃ t (x)∥ = g(x) & ∃c := c(x) ≥ 0 : σ̃ t (x) = −cut (x),

}
x ∈ γS. (4)

hus, (3)6,7 is formally expressed as the Tresca stick–slip law also for κ > 0. Consequently, algorithms developed
or this type of the stick–slip law can be used, as well.

To give the weak velocity–pressure formulation of (3) we introduce the following spaces and forms:

V (Ω) = {v ∈
(
H 1(Ω)

)3
: v = 0 onγD, vn = 0 onγS},

V0(Ω) = {v ∈ V (Ω) : ∇ · v = 0 inΩ}

nd

a(w, v) = ν

∫
Ω

D(w) : D(v) dx, jg,κ (w, v) =

∫
γS

(g∥vt∥ + κwt · vt) ds,

b(v, q) = −

∫
Ω

q(∇ · v) dx, l(v) =

∫
Ω

f · v dx +

∫
γN

σ N · v ds,

here w, v ∈ (H 1(Ω))3, q ∈ L2(Ω), and D(w) : D(v) =
∑3

i=1
∑3

j=1 Di j (w)Di j (v), D(v) = (Di j (v))3
i, j=1.

The weak velocity–pressure formulation of (3) is defined by:

Find (u, p) ∈ V (Ω) × L2(Ω) such that ∀(v, q) ∈ V (Ω) × L2(Ω)
a(u, v − u) + b(v − u, p) + jg,κ (u, v) − jg,κ (u, u) ≥ l(v − u),
b(u, q) = 0.

⎫⎪⎬⎪⎭ (5)

he existence and uniqueness of a weak solution follow from the next theorem.

heorem 1 ([3,5]). Let f ∈ (L2(Ω))3, σ N ∈ (L2(γN))3, and g, κ ∈ L∞(γS), g ≥ 0, κ ≥ 0. Then the solution (u, p)
o (5) exists and the velocity component u is unique. If γN ̸= ∅, then the pressure component p is unique as well,
therwise it is defined up to an additive constant.

emark 1. To guarantee uniqueness of p in the case when γN = ∅ it is sufficient to replace the space L2(Ω) by its
ubspace L2

0(Ω) of functions whose integral mean value in Ω is equal to zero. Computational aspects are discussed
n more detail in Section 5, Example 3.

We will also use (5) with the modified bilinear form a. We set:

aκ (w, v) = a(w, v) +

∫
γS

κwt · vt ds, jg(v) =

∫
γS

g∥vt∥ ds.

hen the weak velocity–pressure formulation (5) can be written in the following equivalent form:

Find (u, p) ∈ V (Ω) × L2(Ω) such that ∀(v, q) ∈ V (Ω) × L2(Ω)
aκ (u, v − u) + b(v − u, p) + jg(v) − jg(u) ≥ l(v − u),
b(u, q) = 0.

⎫⎪⎬⎪⎭ (6)

It is easy to see that the first component u solves the following velocity formulation of (3):

u ∈ V0(Ω) : a(u, v − u) + jg,κ (u, v) − jg,κ (u, u) ≥ l(v − u) ∀v ∈ V0(Ω), (7)

r, equivalently,

u = argmin{J (v) :=
1
ν

∫
D(v) : D(v) dx + jg,κ (v, v) − l(v), v ∈ V0(Ω)}. (8)
2 Ω

3

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

a

T

w

T

S
λ

(

c
a

For numerical realization of (3) we use the so-called four-field formulation, which is based on a dualization of
the impermeability condition vn = 0 on γS and a regularization of the non-smooth slip term jg . To this end we
shall need the function space Xn on γS defined by

Xn = {ϕ ∈ L2(γS) : ∃v ∈ W (Ω) such that ϕ = vn on γS}

nd its dual X ′
n , where

W (Ω) = {v ∈ (H 1(Ω))3
: v = 0 on γD}.

he duality pairing between Xn and X ′
n will be denoted by ⟨·, ·⟩. The slip term jg will be regularized using that

jg(v) =

∫
γS

g∥vt∥ ds = sup
µt ∈K (g)

∫
γS

µt · vt ds,

here

K (g) = {µt ∈ (L∞(∂Ω))2
: ∥µt∥ ≤ g a.e. on γS}.

he four-field formulation of (3) reads as follows:

Find (u, p, λn, λt) ∈ W (Ω) × L2(Ω) × X ′
n × K (g) such that

aκ (u, v) + b(v, p) + ⟨λn, vn⟩ +

∫
γS

λt · vt ds = l(v) ∀v ∈ W (Ω),

b(u, q) = 0 ∀q ∈ L2(Ω),
⟨µn, un⟩ = 0 ∀µn ∈ X ′

n,∫
γS

(µt − λt) · ut ds ≤ 0 ∀µt ∈ K (g).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)

uch formulation has been studied in [8]. It was proven that (9) has a solution, the couple (u, p) solves (5) and
n = −σn , λt = −σ̃ t on γS . It is readily seen that (9) represents the necessary and sufficient conditions for
u, p, λn, λt) to be a saddle-point of the Lagrangian L on W (Ω) × L2(Ω) × X ′

n × K (g), where

L(v, q, µn, µt) =
1
2

aκ (v, v) + b(v, q) + ⟨µn, vn⟩ +

∫
γS

µt · vt ds − l(v).

3. Finite element approximation and algebraic problems

Here and in what follows we shall suppose that γN ̸= ∅ so that p is unique. To discretize (5) we use the mixed
finite element method. Let Vh ⊂ Wh , Qh be finite element approximations of V (Ω), W (Ω), and L2(Ω), respectively,
hosen in such a way that the bilinear form b : Wh × Qh → R satisfies the following inf-sup condition: there exists
constant β > 0 which does not depend on the discretization parameter h such that

sup
vh∈Wh

b(vh, qh)
∥vh∥1,Ω

≥ β∥qh∥0,Ω

holds for every qh ∈ Qh .
The discretization of (5) reads as follows:

Find (uh, ph) ∈ Vh × Qh such that ∀(vh, qh) ∈ Vh × Qh

a(uh, vh − uh) + b(vh − uh, ph) + jg,κ (uh, vh) − jg,κ (uh, uh) ≥ l(vh − uh),
b(uh, qh) = 0.

⎫⎪⎬⎪⎭ (10)

Replacing a and jg,κ in (10) by aκ and jg , respectively, we get the discretization of (6).
For the discretization and in computations we use the P1-bubble/P1 finite element pair on a regular tetrahedral

partition Th of Ω . On Th we define the finite element spaces:

Vh = {vh ∈ V (Ω) : vh|T ∈ (P1(T))3
⊕ (B(T))3

∀T ∈ Th},

Q = {q ∈ C(Ω) : q ∈ P (T) ∀T ∈ T },
h h h|T 1 h

4

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

r

w

t
m
w

t

w

S

w

w

a

P

where P1(T), B(T) are the spaces of polynomials of degree one and of bubble functions of degree four on T ∈ Th ,
espectively.

The algebraic counterpart of (10) reads as follows:

Find (u, p) ∈ V × Rn p such that f or all v ∈ V

uT A(v − u) + (v − u)T BT p + jh
g,κ (u, v) − jh

g,κ (u, u) ≥ bT (v − u),

Bu = 0,

⎫⎪⎬⎪⎭ (11)

here

V = {v ∈ R3(nu+nq)
: Nv = 0},

jh
g,κ (w, v) =

∑
i∈N

(gi∥vt,i∥ + κi wT
t,i vt,i).

Here, n p, nu stand for the number of the finite element nodes of Th in Ω , and Ω \γ D , respectively, while nq denotes
he number of the tetrahedras in Th . Further, A ∈ R3(nu+nq)×3(nu+nq) is a symmetric, positive definite diffusion

atrix, B ∈ Rn p×3(nu+nq) is a full row-rank divergence matrix, N, T1, T2 ∈ Rns×3(nu+nq) are full row-rank matrices
hose rows are defined by the normal n and the tangential vectors t1, t2, respectively, at the nodes belonging to

γ S \ γ D , ns is the number of the nodes of Th on γ S \ γ D , and b ∈ R3(nu+nq) is a vector of nodal forces. Finally,
vt,i = ((T1v)i , (T2v)i)T

∈ R2, i ∈ N := {1, . . . , ns}.
The algebraic version jh

g,κ of jg,κ introduced above is obtained by using the following quadrature formula on a
riangle τ ∈ Th|γ S :∫

τ

g∥vt∥ ds ≈ |τ |g(xτ)
1
3

(∥vt,i∥ + ∥vt, j∥ + ∥vt,k∥) (12)

assuming that g ∈ C(γ S), where |τ | = meas τ , xτ is the centre of gravity of τ and vt,i , vt, j , vt,k are the values of
vt at the vertices xi , x j , xk of τ . Summing up (12) over all τ ∈ Th|γ S we see that∫

γS

g∥vt∥ ds ≈

∑
i∈N

gi∥vt,i∥ with gi :=

ni∑
j=1

|τ i
j |

3
g(xτ i

j
), i ∈ N ,

here ni is the number of the triangles τ i
j ∈ Th|γ S sharing xi ∈ γ S \ γ D as the common vertex. In the same way

we obtain:∫
γS

κwt · vt ds ≈

∑
i∈N

κi wT
t,i vt,i with κi :=

ni∑
j=1

|τ i
j |

3
κ(xτ i

j
), i ∈ N . (13)

ince

jh
g,κ (w, v) =

∑
i∈N

gi∥vt,i∥ + wT (TT
1 DκT1 + TT

2 DκT2)v

ith Dκ = diag{κ1, . . . , κns }, one can write (11) in the following equivalent form:

Find (u, p) ∈ V × Rn p such that f or all v ∈ V

uT Aκ (v − u) + (v − u)T BT p + jh
g (v) − jh

g (u) ≥ bT (v − u),

Bu = 0,

⎫⎪⎬⎪⎭ (14)

here

Aκ = A + TT
1 DκT1 + TT

2 DκT2 (15)

nd

jh
g (v) =

∑
i∈N

gi∥vt,i∥.

roblem (14) is the algebraic counterpart of (6).
5

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

a

T

w
b

e
s
t

T
v
A
p
s
v

It is easy to show that (14) is equivalent to the discrete velocity formulation:

Find u ∈ VB such that

J (u) ≤ J (v) ∀v ∈ VB,

}
(16)

where

VB = {v ∈ R3(nu+nq)
: Nv = 0, Bv = 0},

J (v) =
1
2

vT Aκv − vT b + jh
g (v).

Formulation (16) is not suitable for direct computations, as the constraints in VB can be hardly handled for large-
scale problems. Moreover, the function J is non-differentiable due to the term jh

g . To overcome these difficulties,
we will use the dual formulation of (16) and derive the discrete counterpart of (9).

We introduce four Lagrange multipliers: µt1 , µt2 ∈ Rns to regularize jh
g and µn ∈ Rns , q ∈ Rn p to release

the discrete impermeability and incompressibility conditions, respectively. The set of the Lagrange multipliers
µ = (µT

t1
, µT

t2
, µT

n , qT)T is defined by:

X = Xt × Rns+n p ,

Xt = {(µT
t1
, µT

t2
)T

∈ R2ns : ∥µt,i∥ ≤ gi , i ∈ N },

where µt,i = (µt1,i , µt2,i)T
∈ R2 and µtk ,i is the i th component of µtk ∈ Rns , k = 1, 2. The term jh

g can be written
s follows:

jh
g (v) =

∑
i∈N

max
µt,i ∈R2

∥µt,i ∥≤gi

µT
t,i vt,i = max

µ∈Xt

∑
i∈N

µT
t,i vt,i .

hus

min
v∈VB

J (v) = min
v∈R3(nu+nq)

max
µ∈X

L#(v, µ),

here the Lagrangian L#
: R3(nu+nq)

×X → R associated with the problem (16) is defined for (v, µ) ∈ R3(nu+nq)
×X

y:

L#(v, µ) =
1
2

vT Aκv − vT b + µT
t1

T1v + µT
t2

T2v + µT
n Nv + qT Bv.

Until now, the velocity vectors v ∈ R3(nu+nq) incorporate 3nq bubble components. These components are usually
liminated before the computational process. This elimination is easy in linear problems, when it is done in a linear
addle-point system [11]. In our case, we perform this elimination in a saddle-point formulation for L#, which leads
o the reduced Lagrangian L : R3nu × X → R defined by:

L(v, µ) =
1
2

vT Aκv − vT b + µT
t1

T1v + µT
t2

T2v + µT
n Nv + qT Bv

−
1
2

qT Eq − cT q, (v, µ) ∈ R3nu × X.

o simplify notation here and in what follows, we use the same symbols for the corresponding matrices and
ectors before and after the elimination of the bubble components. The dimensions of the reduced matrices are:
κ ∈ R3nu×3nu , T1, T2, N ∈ Rns×3nu , B ∈ Rn p×3nu and b ∈ R3nu . Note that these matrices exhibit the same
roperties as before the elimination, especially, the expression (15) remains valid with A ∈ R3nu×3nu being
ymmetric, positive definite. The presence of the symmetric, positive semidefinite matrix E ∈ Rn p×n p and of the
ector c ∈ Rn p are due to this elimination.

The saddle-point formulation of (16) reads as follows:

Find (u, λ) ∈ R3nu × X such that

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) ∀(v, µ) ∈ R3nu × X,

}
(17)
6

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

w

A

w

d

o
w
T

4

f

4

w

w
a

s
R

or, equivalently,

Find (u, λ) ∈ R3nu × X such that

Aκu + TT
1 λt1 + TT

2 λt2 + NT λn + BT p − b = 0,

Bu − Ep − c = 0,

Nu = 0,

∥λt,i∥ ≤ gi ,

ut,i ̸= 0 ⇒ ∥λt,i∥ = gi & ∃ci ≥ 0 : λt,i = ci ut,i ,

}
i ∈ N ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)

here λ = (λT
t1
, λT

t2
, λT

n , pT)T and (λt1 , λt2), λn , p are the discrete counterparts of −σ̃ t , −σn , and p, respectively.
Now we eliminate the unknown u. Denoting C = (TT

1 , TT
2 , NT , BT)T , the first equality in (18) yields u =

−1
κ (b − CT λ). Inserting u into the first inequality in (17), we arrive at the dual formulation of (16):

Find λ ∈ X such that

S(λ) ≤ S(µ) ∀µ ∈ X,

}
(19)

here

S(µ) =
1
2
µT Fκµ − µT d

with Fκ = CA−1
κ CT

+ diag(0, 0, 0, E) being symmetric, positive definite and d = CA−1
κ b − (0T , 0T , 0T , cT)T .

It should be noted that (19) is more convenient for numerical solution unlike (16) as the function S is
ifferentiable (quadratic) and the feasible set X is defined by the separable spherical constraints.

A path-following variant of the interior point method developed for such type of problems in contact mechanics
f solids will be shortly presented in the next section. Another way how to solve our problem originates from (18)
ith the algebraic stick–slip boundary conditions expressed by means of projections on appropriate convex sets.
hen a Newton-type method can be used, for which an implementation based on the dual formulation is efficient.

. Algorithms

In this section, we present main ideas of the above mentioned algorithms that turned out to be highly efficient
or solving 3D contact problems of solid mechanics [14,15].

.1. Path-following method

Let L : R3ns+n p × Rns
+ → R be the Lagrangian to (19):

L(µ, ν) = S(µ) +

∑
i∈N

νi (µ2
t1,i + µ2

t2,i − g2
i), (20)

here ν ∈ Rns , ν ≥ 0, is the vector of Lagrange multipliers releasing the spherical constraints appearing in X. Let
z := −∇ν L(µ, ν) be the new variable and define the function H : R5ns+n p → R5ns+n p ,

H(ω) := (∇µL(µ, ν)T , (∇ν L(µ, ν) + z)T , eT MZ)T ,

here ω = (µT , νT , zT)T
∈ R5ns+n p , M = diag(ν), Z = diag(z), and e ∈ Rns is the vector whose all components

re equal to 1. The solution λ to (19) is the first component of the vector ω̄ = (λT , ν̄T , z̄T)T , which satisfies

H(ω̄) = 0, ν̄ ≥ 0, z̄ ≥ 0, (21)

ince (21) is equivalent to the Karush–Kuhn–Tucker conditions for (λ, ν̄) to be a saddle-point of (20) on R3ns+n p ×
ns
+ .
To derive the path-following algorithm, we replace (21) by the following perturbed problem:

Find ωτ
= ((λτ)T , (ντ)T , (zτ)T)T

∈ R5ns+n p such that

H(ωτ) = (0T , 0T , τeT)T , ντ > 0, zτ > 0,

}
(22)
7

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

ω

a
b

w
o
c
m

a

(

(

(

d
c

w
d

I

T
i

w

where τ ∈ R+. Solutions ωτ to (22) define a curve C(τ) in R5ns+n p called the central path. This curve approaches
¯ when τ tends to zero. We combine the damped Newton method used for solving the equation in (22) with an
ppropriate change of τ which guarantees that the iterations belong to a neighbourhood N (c1, c2) of C(τ) defined
y

N (c1, c2) = {ω = (µT , νT , zT)T
∈ R5ns+n p : νi zi ≥ c1ϑ, i = 1, . . . , ns,

ν ≥ 0, z ≥ 0, ∥∇µL(µ, ν)∥ ≤ c2ϑ, ∥∇ν L(µ, ν) + z∥ ≤ c2ϑ},

here c1 ∈ (0, 1], c2 ≥ 1, and ϑ := ϑ(ω) = νT z/ns . In the kth iteration, we replace τ := τ (k) by the product
f ϑ (k)

:= ϑ(ω(k)) with the centring parameter c(k) chosen as in [18]. The algorithm uses also the Armijo-type
ondition (24) ensuring that the sequence {ϑ (k)

} is monotonically decreasing. By J(ω) in (23), we denote the Jacobian
atrix of H at ω.

ALGORITHM PF: Given c1 ∈ (0, 1], c2 ≥ 1, 0 < cmin ≤ cmax ≤ 1/2, c3 ∈ (0, 1), and ε ≥ 0. Let ω(0)
∈ N (c1, c2)

nd set k := 0.

i) Choose c(k)
∈ [cmin, cmax].

ii) Solve

J(ω(k))∆ω(k+1)
= −H(ω(k)) + (0T , 0T , c(k)ϑ (k)eT)T . (23)

iii) Set ω(k+1)
= ω(k)

+ α(k)∆ω(k+1) with the largest α(k)
∈ (0, 1] such that ω(k+1)

∈ N (c1, c2) and

ϑ (k+1)
≤ c3(1 − α(k)(1 − c(k)))ϑ (k). (24)

(iv) Return ω̄ = ω(k+1), if err (k)
:= ∥ω(k+1)

− ω(k)
∥/∥ω(k+1)

∥ ≤ ε, else set k := k + 1 and go to step (i).

The bounds imposed on the parameters mentioned in the initialization section follow from the convergence
analysis presented in [14].

The computational efficiency depends on the way how the inner linear systems (23) are solved. The Jacobian
matrix is non-symmetric and indefinite with the following block structure:

J(ω(k)) =

⎛⎜⎝ Fκ + DM J12 0
JT

12 0 I
0 Z M

⎞⎟⎠ , J12 =

⎛⎜⎝ 2X1 0
2X2 0

0 0

⎞⎟⎠ ,

where DM = diag(2M, 2M, 0) and Xk = diag(µtk), k = 1, 2. Eliminating the 2nd and 3rd components of ∆ω(k+1),
we get the reduced linear system for ∆µ(k+1) with the Schur complement

JSC = Fκ + DM + J12MZ−1JT
12,

where Z = diag(Z1, Z2) and M = diag(M1, M2). As µ(k) > 0, z(k) > 0, the matrix JSC is symmetric, positive
efinite and the reduced linear system can be solved by the conjugate gradient method. In order to guarantee its
onvergence, we use the preconditioner:

PSC = DFκ + DM + J12MZ−1JT
12,

here DFκ = diag(Fκ). The eigenvalues of the preconditioned matrix P−1
SC JSC belong to an interval which does not

epend on the iteration and the spectral condition number cond is bounded by (see [14]):

cond (P−1
SC JSC) ≤ cond (DFκ)cond (Fκ). (25)

n computations, we approximate DFκ replacing A−1
κ in Fκ by diag (Aκ)−1.

The conjugate gradient method used in the kth step of ALGORITHM PF is initialized and terminated adaptively.
he initial iteration is taken as the computed result in the previous iteration and the (inner) iterations are terminated,

f the relative residuum is less than the stopping tolerance given by

tol(k)
= min{rtol × err (k−1), cfact × tol(k−1)

},

here 0 < r < 1, 0 < c < 1, err (−1)
= 1, and tol(−1)

= r /c .
tol fact tol fact

8

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

C

W

I

w
I

w

a
c

w
a

L

4.2. Semi-smooth Newton method

Let C(r) = {x ∈ R2
: ∥x∥ ≤ r} be the circle of radius r ≥ 0 and Pr : R2

→ C(r) be the projection on C(r).
learly

Pr (x) =

⎧⎨⎩ x for∥x∥ ≤ r,
r

∥x∥
x for ∥x∥ > r.

(26)

e will use the generalized Jacobian matrix JPr : R2
→ R2×2 of Pr defined by:

JPr (x) =

⎧⎨⎩
I for∥x∥ ≤ r,

r
∥x∥

(
I −

1
∥x∥2 xxT

)
for ∥x∥ > r.

(27)

t is readily seen that the matrix JPr (x) is positive semidefinite for all x.
The last two lines in (18) representing the stick–slip law can be equivalently written as

λt,i = Pgi (λt,i + ρi ut,i), i ∈ N , (28)

here ρi > 0, i ∈ N are arbitrary but fixed parameters. Let the adhesive function κ > 0 be positive on γS .
ntroducing the new variables st1 , st2 ∈ Rns and st,i = (st1,i , st2,i)T

∈ R2 such that1

st,i = κi ut,i + λt,i , i ∈ N

and setting ρi = κi for all i ∈ N , we get

ut,i − κ−1
i (st,i − Pgi (st,i)) = 0, i ∈ N . (29)

This form of (28) leads to the symmetric generalized Jacobian matrix of the whole system (18). Note that the vectors
st,i approximate −σ t (xi) at the nodes xi ∈ γ S \ γ D , i ∈ N .

From (15) and (29) we see that (18) can be written as the system of non-smooth equations:

G(y) = 0 (30)

ith G : R3nu+3ns+n p → R3nu+3ns+n p defined at y = (uT , sT
t1
, sT

t2
, λn

T , pT)T by

G(y) :=

⎛⎜⎜⎜⎜⎜⎜⎝
Au + TT

1 st1 + TT
2 st2 + NT λn + BT p − b

T1u − D−1
κ (st1 − Π 1(st1 , st2))

T2u − D−1
κ (st2 − Π 2(st1 , st2))

Nu
Bu − Ep − c

⎞⎟⎟⎟⎟⎟⎟⎠
nd Dκ = diag (κ1, . . . , κns), Π j (st1 , st2) = (Pg1, j (st,1), . . . , Pgns , j (st,ns))T , where Pgi , j , i ∈ N stands for the j th
omponent of Pgi , j = 1, 2.

Eq. (30) will be solved by the Newton-type iterations:

JG(y(k))y(k+1)
= JG(y(k))y(k)

− G(y(k)), k = 0, 1, . . . , (31)

here JG(y) is an arbitrary generalized Jacobian matrix of G at y and y(0) is an initial approximation. We use the
ctive/inactive set terminology. Let A, I ⊆ N be the active, and inactive set at y, respectively:

A := A(y) = {i ∈ N : ∥st,i∥ ≤ gi }, I := I(y) = N \ A.

et DA, DI ∈ Rns×ns be the indicator matrices defined by:

DA = diag (d1, . . . , dns), di = 1 if i ∈ A, di = 0 if i ̸∈ A,

DI = I − DA.

1 Recall that s is the i th component od the vector s , j = 1, 2 and similarly for other vectors.
t j ,i t j

9

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

w
y

w

w

T
a
c

(

(

(

H
i
w

It follows from (26) that

G(y) =

⎛⎜⎜⎜⎜⎜⎜⎝
Au + TT

1 st1 + TT
2 st2 + NT λn + BT p − b

T1u − D−1
κ DI(I − Dg/∥st ∥)st1

T2u − D−1
κ DI(I − Dg/∥st ∥)st2

Nu
Bu − Ep − c

⎞⎟⎟⎟⎟⎟⎟⎠ ,

here Dg/∥st ∥ = diag (d1, . . . , dns), di = gi/∥st,i∥ if i ∈ I, di = 0 if i ̸∈ I. Standard differentiation rules and (27)
ield:

JG(y) =

⎛⎜⎜⎜⎜⎝
A TT

1 TT
2 NT BT

T1 −D11 −D12 0 0
T2 −D12 −D22 0 0
N 0 0 0 0
B 0 0 0 −E

⎞⎟⎟⎟⎟⎠ , (32)

here

D j j = D−1
κ DI(I − Dg/∥st ∥(I − D1/∥st ∥2Ds2

t j
)), j = 1, 2,

D12 = D−1
κ DIDg/∥st ∥D1/∥st ∥2Dst1

Dst2
,

D1/∥st ∥2 = diag (d1, . . . , dns), di = 1/∥st,i∥
2 if i ∈ I, di = 0 if i ̸∈ I,

Ds2
t j

= diag (s2
t j ,1, . . . , s2

t j ,ns
), j = 1, 2,

Dst j
= diag (st j), j = 1, 2.

To solve the linear systems (31), we use the Schur complement S to A-block in (32) defined by:

S = F + D, (33)

here F = CA−1CT with the same C as in (19) and

D =

⎛⎜⎜⎜⎝
D11 D12 0 0
D12 D22 0 0
0 0 0 0
0 0 0 E

⎞⎟⎟⎟⎠ .

he right hand-sides of the Schur complement linear systems are given by d = CA−1b − (0T , 0T , 0T , cT)T . We
rrive at the implementation of (31), in which the iterations are performed only with last four components of y
ollected in the vector λ̂ = (sT

t1
, sT

t2
, λn

T , pT)T .

ALGORITHM SSN: Let λ̂
(0)

∈ R3ns+n p , ε ≥ 0 and set k := 0.

i) Assembly the active/inactive sets A and I at λ̂
(k)

and the respective matrix D to build S in (33).

ii) Solve the linear system:

Sλ̂
(k+1)

= d. (34)

iii) Return λ̄ = λ̂
(k+1)

and ū = A−1(b − CT λ̄), if err (k)
:= ∥λ̂

(k+1)
− λ̂

(k)
∥/∥λ̂

(k+1)
∥ ≤ ε, else set k := k + 1 and

go to step (i).

From the definition of the matrix D we see that it is positive semidefinite and consequently S is positive definite.
ence, the linear systems (34) can be solved by the conjugate gradient method. It is well-known that this method

s inefficient, if the spectral condition number of the system matrix is large. In our case cond (S) tends to infinity,
hen the finite element mesh norm approaches zero. This follows from the presence of D−1 in D and the fact that
κ

10

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

w

s

a

5

c
p
v
t

t
ε

t
n
t
t
fi
t

E
γ

γ

u

I
N
c
o
r

m
s
a

κi , i ∈ N depend on the area of the respective finite element triangles (see (13)). In order to improve conditioning
of the solved linear systems, we use the following preconditioner:

PS = DF +

⎛⎜⎜⎜⎝
D11 D12 0 0
D12 D22 0 0
0 0 0 0
0 0 0 diag (E)

⎞⎟⎟⎟⎠ ,

here DF = diag F. Let us note that the result analogous to (25) can be established, i.e.,

cond (P−1
S S) ≤ cond (DF)cond (F)

o that the spectral condition number of the preconditioned Schur complement S does not depend on κi , i ∈ N .
Finally note that conjugate gradient method in the kth step of ALGORITHM SSN is initialized and terminated

daptively using the same ideas as in ALGORITHM PF.

. Numerical experiments

The computations were performed by the supercomputer Salomon at IT4I VŠB-TU Ostrava [20]. The Salomon
luster consists of 1009 compute nodes. Each node is a powerful x86-64 computer with Intel Xeon E5-2680v3
rocessors equipped with 24 cores and at least 128 GB RAM. All codes are implemented in Matlab R2020a. The
elocity component is eliminated in both algorithms implicitly by solving auxiliary linear systems involving A with
he preliminary Cholesky factorization of A. To this end we use the Matlab function chol. We use ALGORITHM

PF with c1 = 10−3, c2 = 109, cmin = 10−12, cmax = 0.5, c3 = 10−2, ε = 10−3, rtol = 0.9, cfact = 0.9. These values
urned out to be optimal, as it follows from the tests in [14]. ALGORITHM SSN uses rtol = 0.01, cfact = 0.5, and
= 10−3. The termination tolerances ε lead to the relative residua of order 10−5. In the tables below we observe

he numbers nit, nF of the outer iterations, and of matrix–vector multiplications by Fκ or F, respectively. Note that
F determines overall complexities of computations. In all examples the computational domain Ω is represented by

he unit cube (0, 1)3. To construct its partition Th we first cut Ω into small cubes and then each cube is split into five
etrahedras, see Fig. 1. The partition Th is generated by Iso2mesh toolbox [10]. As we have already mentioned, the
nite element spaces use P1-bubble/P1 element pairs on Th . The resulting mesh will be characterized by values of

he parameters nu , n p, ns introduced in Section 3. The stiffness matrices are assembled by the vectorized code [2,11].

xample 1. The boundary ∂Ω consists of three parts γD , γN , and γS defined by γD = γtop ∪ γfront ∪ γback,
N = γleft ∪ γright, γS = (0, 1) × (0, 1) × {0}, where γtop = (0, 1) × (0, 1) × {1}, γfront = {0} × (0, 1) × (0, 1),
back = {1} × (0, 1) × (0, 1), γleft = (0, 1) × {0} × (0, 1), γright = (0, 1) × {1} × (0, 1). Data of problem (3) are

as follows: f = −2ν div D(uexp) + ∇ pexp, ν = 1/2, σ N = 2νD(uexp)n − pexpn, g = 50, and κ = 500, where
exp = (uexp,1, uexp,2, uexp,3),

uexp,1(x, y, z) = 4(1 − cos(2πx)) sin(2πy)z(1 − z),

uexp,2(x, y, z) = 4 sin(2πx)(cos(2πy) − 1)z(1 − z),

uexp,3(x, y, z) = 0,

pexp(x, y, z) = 2π (− cos(2πx) + 2 cos(2πy) − cos(2π z)).

t is easy to verify that the couple (uexp, pexp) solves the Stokes system with the no-slip condition on γD ∪γS and the
eumann condition with σ N on γN . Therefore for an appropriate choice of g it solves also problem (3). Data are

hosen in such a way that both, slip and stick zones appear on γS . The tangential velocity field ut and the pressure
n γS are seen in Fig. 2, while the distribution of ∥ut∥ and max{∥σ t∥, g} on γS are depicted in Fig. 3. Finally Fig. 4
epresents σ t and σ̃ t on γS .

In Table 1 we summarize the resulting values of nit, nF, and CPU time (in seconds) for different finite element
eshes with increasing nu , n p, and ns . Looking at the values of nF, one can deduce that both algorithms are

calable, i.e., nF changes moderately with growing size of the problem. The computations without preconditioning
re considerably less efficient as it is seen from Table 2.
11

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx

t
t
t
a
v
t
e
o

Fig. 1. Partition Th of Ω = [0, 1]3.

Fig. 2. Tangential velocity field (left), pressure (right) on γS .

Example 2. Data are the same as in the previous example with the exception of g. By an appropriate choice of
he slip bound one can affect the behaviour of the fluid on γS . Our aim is to choose g in such a way that either
he slip or the stick occurs on the whole or at least on a substantial part of γS . First we set g = 1. In this case
he upper bound in (3)6 is attained and the slip appears almost everywhere on γS except for small neighbourhoods
round the corners. On the other hand for g = 500 the upper bound in (3)6 is not reached and ut = 0 and in
iew of (3)5 u = 0 on γS . The computational attributes for both cases are summarized in Tables 4 and 5. From
hem one can observe the scalability of the methods also for these limit situations. In the case g = 500, our
xperimental data uexp and pexp coincide with the analytic solution of the problem (3). Therefore convergence rate
f the finite element approximation may be evaluated. In Table 3 we introduce Err (h) = ∥u − u ∥ ,
1 h exp (L2(Ω))3

12

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx
Fig. 3. Tangential velocity norm (left), max{∥σ t∥, g} (right) on γS .

Fig. 4. Distribution of σ t (left) and σ̃ t (right) on γS .

Table 1
Computations with preconditioner for g = 50, κ = 500.

nu/n p/ns ALGORITHM PF ALGORITHM SSN

time (s.) ni t/nF time (s.) ni t/nF

1512/729/63 1 9/397 0.2 7/189
5148/2197/143 3 11/443 1 7/203
12240/4913/255 7 12/319 4 8/252
23940/9261/399 19 11/351 8 8/238
41400/15625/575 44 12/327 16 8/235
65772/24389/783 70 11/293 30 8/231
98208/35937/1023 124 11/265 66 8/262
139860/50653/1295 249 11/257 135 8/270

Err2(h) = ∥uh − uexp∥(H1(Ω))3 + ∥ph − pexp∥L2(Ω), and Rateq (h j−1, h j) = log2(Errq (h j−1)/Errq (h j)) for q = 1, 2.
Thus, the convergence rate is estimated from each two adjacent discretizations. One can see that these estimates
are better than it is predicted by the theory [1,5].

Example 3. Up to now we supposed that γN is non-empty ensuring uniqueness of the pressure p. If γN = ∅ then the
pressure is determined up to an arbitrary constant. The easiest way how to overcome this difficulty in computations
is to fix the value of p at some point in Ω . We use the same data as in Example 1 excluding the boundary condition
13

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx
Table 2
Computations without preconditioner for g = 50, κ = 500.

nu/n p/ns ALGORITHM PF ALGORITHM SSN

time (s.) ni t/nF time (s.) ni t/nF

1512/729/63 4 12/1512 2 11/1871
5148/2197/ 143 33 15/7360 10 10/3227
12240/4913/255 186 16/15908 83 15/7103
23940/9261/399 > 3600 –/– 201 9/6695

Table 3
Convergence rate of FE approximation for P1-bubble/P1.

j h j Err1(h j) Rate1(h j−1, h j) Err2(h j) Rate2(h j−1, h j)

1 1/4 0.3425 – 3.1748 –
2 1/8 0.1368 1.32 1.3565 1.22
3 1/16 0.0483 1.5 0.5308 1.35
4 1/32 0.0244 0.98 0.2360 1.16

Table 4
Computations with preconditioner for g = 1, κ = 500.

nu/n p/ns ALGORITHM PF ALGORITHM SSN

time (s.) ni t/nF time (s.) ni t/nF

1512/729/63 0.3 12/140 0.1 5/87
5148/2197/143 1 16/121 0.4 5/76
12240/4913/255 4 22/139 1 5/70
23940/9261/399 13 24/159 2 5/74
41400/15625/575 33 30/223 5 5/69
65772/24389/783 94 42/308 8 5/70
98208/35937/1023 145 32/232 19 5/70
139860/50653/1295 302 34/251 32 5/68

Table 5
Computations with preconditioner for g = 500, κ = 500.

nu/n p/ns ALGORITHM PF ALGORITHM SSN

time (s.) ni t/nF time (s.) ni t/nF

1512/729/63 0.6 12/240 0.3 7/175
5148/2197/143 2 11/423 4 6/176
12240/4913/255 7 9/365 2 6/171
23940/9261/399 29 9/577 7 7/205
41400/15625/575 58 8/541 17 8/219
65772/24389/783 107 7/415 30 7/202
98208/35937/1023 283 8/678 49 6/171
139860/50653/1295 540 8/624 104 6/209

on γN and with the following minor change, namely the boundary ∂Ω is now decomposed into two parts γD and
γS = (0, 1) × (0, 1) × {0}. To define the discrete pressure p unequivocally, we prescribe p(x) = 0 at the point
x = (1, 1, 1). This is realized by omitting last row in the matrix B and the last row and the last column in the
matrix E. Consequently, the matrix C appearing in both algorithms has full row-rank. Complexity of computations
is seen in Table 6. Also in this case one can observe the scalability of the methods.

6. Conclusions

We proposed two algorithms for solving the Stokes flow with the stick–slip boundary conditions in 3D, both
based on dual strategies. ALGORITHM PF is the path-following variant of the interior point method whose outer loop
14

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx
Table 6
Computations with preconditioner for g = 50, κ = 500, and γN = ∅.

nu/n p/ns ALGORITHM PF ALGORITHM SSN

time (s.) ni t/nF time (s.) ni t/nF

1176/728/49 0.5 10/349 0.3 6/133
4356/2196/121 1.9 12/400 0.6 7/172
10800/4912/225 6 14/327 2 7/194
21660/9260/361 16 14/340 6 7/191
38088/15624/529 35 12/293 11 7/189
61236/24388/729 67 12/310 22 7/188
92256/35936/961 127 11/262 45 7/204
132300/50652/1225 240 12/274 97 8/217

uses the dumped Newton iterations. The inner linear systems are solved by the preconditioned conjugate gradient
method with the adaptive precision control. The preconditioner (with diagonal blocks) removes ill-conditioning of
system matrices in the later iterations. ALGORITHM SSN is the active-set implementation of the semi-smooth
Newton method whose inner system matrices are symmetric owing to the presence of the non-zero adhesive
coefficient. The inner linear systems are solved similarly as in ALGORITHM PF. Now the preconditioner removes
ill-conditioning caused by small finite element mesh norms. Numerical experiments indicate scalability of both
algorithms. ALGORITHM SSN is more efficient than ALGORITHM PF also in the case of the comparable complexity
characteristic nF , since its implementation is easier, requires less accompanying computations and programming
manipulations. The classical (minimization) active-set strategy algorithms are not efficient by our experiences for
these kinds of problems.

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic from the National
Programme of Sustainability (NSU II) project “IT4Innovations excellence in science - LQ1602” (RK,VS) and by
the project No. 17-01747S of the Czech Science Foundation (HK,RK). The paper also includes the results of the
internal BUT FIT project FIT-S-20-6427 (VS). A part of this work was prepared during the stay of the second
author at LMNO University of Caen Normandy in June 2018.

References

[1] D.N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes equations, Calcolo 22 (4) (1984) 337–344.
[2] V. Arzt, Finite Element Meshes and Assembling of Stiffness Matrices (Master’s thesis), VŠB-TU Ostrava, Czech Republic, 2019.
[3] M. Ayadi, L. Baffico, M.K. Gdoura, T. Sassi, Error estimates for Stokes problem with Tresca friction conditions, ESAIM Math. Model.

Numer. Anal. 48 (2014) 1413–1429.
[4] J.K. Djoko, J. Koko, Numerical methods for the Stokes and Navier–Stokes equations driven by threshold slip boundary conditions,

Comput. Methods Appl. Mech. Engrg. 305 (2016) 936–958.
[5] H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics,

Oxford University Press, Oxford, 2005.
[6] H. Fujita, A mathematical analysis of motions of viscous incompressible fluid under leak and slip boundary conditions, RIMS Kokyuroku

888 (1994) 199–216.
[7] J. Haslinger, I. Hlaváček, J. Nečas, Numerical methods for unilateral problems in solid mechanics, in: Handbook of Numerical Analysis,

Volume IV, Part 2, Vol. 4, North Holland, Amsterdam, 1996, pp. 313–485.
[8] J. Haslinger, J. Stebel, Stokes problem with a solution dependent slip bound: Stability of solutions with respect to domains, ZAMM

Z. Angew. Math. Mech. 96 (9) (2016) 1049–1060.
[9] M. Hintermüller, V.A. Kovtunenko, K. Kunisch, Obstacle problems with cohesion: A hemi-variational inequality approach and its

efficient numerical solution, SIAM J. Optim. 21 (2) (2011) 491–516.
[10] Iso2mesh: A 3D surface and volumetric mesh generator for MATLAB/Octave, 2018, url: http://iso2mesh.sourceforge.net [online].
[11] J. Koko, Efficient MATLAB codes for the 2D/3D Stokes equation with the mini-element, Informatica 30 (2) (2019) 243–268.
[12] R. Kučera, Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints, SIAM

J. Optim. 19 (2) (2008) 846–862.
[13] R. Kučera, J. Haslinger, V. Šátek, M. Jarošová, Efficient methods for solving the Stokes problem with slip boundary conditions, Math.

Comput. Simulation 145 (2018) 114–124.
15

http://refhub.elsevier.com/S0378-4754(20)30470-5/sb1
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb2
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb3
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb3
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb3
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb4
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb4
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb4
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb5
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb5
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb5
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb6
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb6
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb6
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb7
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb7
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb7
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb8
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb8
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb8
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb9
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb9
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb9
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://iso2mesh.sourceforge.net
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb11
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb12
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb12
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb12
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb13
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb13
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb13

J. Haslinger, R. Kučera, T. Sassi et al. Mathematics and Computers in Simulation xxx (xxxx) xxx
[14] R. Kučera, J. Machalová, H. Netuka, P. Ženčák, An interior point algorithm for the minimization arising from 3D contact problems
with friction, Optim. Methods Softw. 28 (6) (2013) 1195–1217.

[15] R. Kučera, K. Motyčková, A. Markopoulos, J. Haslinger, On the inexact symmetrized globally convergent semi-smooth Newton method
for 3D contact problems with Tresca friction: the R-linear convergence rate, Optim. Methods Softw. 35 (1) (2020) 65–86.

[16] R. Kučera, K. Motyčková, J. Pacholek, T. Sassi, The semi-smooth Newton method for solving the Stokes problem with the stick-slip
boundary condition, AIP Conf. Proc. 1978 (1) (2018) 360003.

[17] C.L.M.H. Navier, Sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Inst. Fr. 6 (1823) 389–440.
[18] J. Nocedal, A. Wächter, R.A. Waltz, Adaptive barrier update strategies for nonlinear interior methods, SIAM J. Optim. 19 (4) (2009)

1674–1693.
[19] C.L. Roux, Steady Stokes flows with threshold slip boundary conditions, Math. Models Methods Appl. Sci. 15 (2005) 1141–1168.
[20] Salomon hardware overview, 2020, url: https://docs.it4i.cz/salomon/hardware-overview/ [online].
16

http://refhub.elsevier.com/S0378-4754(20)30470-5/sb14
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb14
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb14
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb15
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb15
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb15
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb16
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb16
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb16
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb17
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb18
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb18
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb18
http://refhub.elsevier.com/S0378-4754(20)30470-5/sb19
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/

	Dual strategies for solving the Stokes problem with stick–slip boundary conditions in 3D
	Introduction
	Formulation
	Finite element approximation and algebraic problems
	Algorithms
	Path-following method
	Semi-smooth Newton method

	Numerical experiments
	Conclusions
	Acknowledgements
	References

