
20
21

 2
4t

h 
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n 

D
es

ig
n 

an
d 

D
ia

gn
os

tic
s 

o
f E

le
ct

ro
ni

c 
C

irc
ui

ts
 &

 S
ys

te
m

s 
(D

D
E

C
S

) 
| 9

78
-1

-6
65

4-
35

95
-6

/2
0/

$3
1.

00
 ©

20
21

 I
E

E
E

 | 
D

O
I: 

10
.1

10
9/

D
D

E
C

S
52

66
8.

20
21

.9
41

70
66

2021 24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)

Synthesis of approximate circuits for LUT-based
FPGAs
Zdenek Vasicek 

Brno University of Technology, 
Faculty of Information Technology, 
IT4Innovations Centre of Excellence 

Brno, Czech Republic 
Email: vasicek@fit.vutbr.cz

Abstract—Approximate computing is an emerging paradigm 
that trades the accuracy of computation to achieve gain in terms 
of design area, critical path delay and/or power consumption. 
There is a rich body of literature showing that the approximate 
hardware components serving as basic building blocks for energy- 
efficient implementation of complex systems offer a remarkable 
gain in efficiency and/or performance in exchange for small 
losses in output quality. However, recent studies revealed that 
the approximate components optimized mainly for ASICs offer 
asymmetric gain when used in FPGAs. In this work, we present 
an iterative design method for automated synthesis of elementary 
approximate components natively optimized for usage in LUT- 
based FPGAs. The method takes into account the number of 
LUTs and LUT-level propagation delay instead of the number 
of gates and logic levels typically considered in other works. 
Using this method, we synthesized various approximate adders 
(up to 64-bit) and multipliers (8-bit and 16-bit). Compared to 
the current state-of-the-art, our designs achieve better trade-off 
when considered the worst case absolute error, number of LUTs 
and propagation delay. The discovered approximate adders and 
multipliers are available online in the form of Verilog netlists 
consisting of 4, 5 and 6-input LUTs.

I. I n t r o d u c t i o n

There are many applications from various domains, includ
ing machine learning, computer vision, and signal processing, 
that exhibit a form of inherent resilience to small errors 
in the computation [1]. Approximate computing paradigm 
exploits the idea of accepting a certain level of inaccuracy in 
computations in order to reduce complexity and improve other 
parameters of digital systems. The typical goal is to improve 
design area, power consumption, performance or consumed 
energy. The current research covers the whole computing 
stack, integrating thus areas of microelectronics, circuits, com
ponents, architectures, networks, operating systems, compilers 
and applications. Approximations are conducted for embedded 
systems, ordinary computers, graphics processing units and 
even field-programmable gate arrays (FPGAs). For details, 
please refer to the recent surveys [2], [3], [4].

Functional approximation currently represents the preferred 
technique on how to introduce approximations to hardware

This work was supported by Czech Science Foundation project 19-10137S.

978-1-6654-3595-6/21/$31.00 ©2021 IEEE

components. The idea of functional approximation is to imple
ment a slightly different function to the original one provided 
that the error is acceptable and other design parameters are 
reduced adequately. Transformation from the original (exact) 
circuit to its approximate counterpart can be performed in 
different ways and at different levels: netlist transformation, 
Boolean rewriting, and approximate high-level synthesis [5]. 
In netlist transformation, gate-level representation is typically 
used and modified to obtain an approximate circuit. Boolean 
rewriting manipulates with Truth table representation and uses 
common synthesis tools to obtain the implementation. High- 
level synthesis uses approximate building blocks to approx
imate a complex system. A detailed explanation of these 
principles and survey of the available approaches is provided, 
for example, in [5].

There is an extensive amount of research targeting the 
lowest level of abstraction, i.e. the approximation of basic 
building blocks represented mainly by the arithmetic circuits 
such as adders, multipliers or dividers. This area is particularly 
attractive since approximate circuits are employed as basic 
blocks for realizing application-specific accelerators that are 
highly relevant components of modern system-on-chips and 
hardware accelerators [6], [7]. The first works were the result 
of manual design, typically targeting a particular component 
and providing only one or few different circuit implemen
tations optimized for a particular target technology. Hence, 
many interesting design points remained unexplored. Due to 
the limited scalability and the necessity of manual tuning, 
automated approximate logic synthesis (ALS) methods have 
been developed to provide approximate designs showing high- 
quality trade-offs between key design parameters for any cir
cuit without a priori knowledge of its functionality [5]. Several 
approximate libraries consisting of approximate components 
have been created using various ALS approaches [4], [8], [9].

The approximate circuits included in the approximate li
braries are typically designed and optimized to be used in 
ASICs. However, recent studies have demonstrated that the 
circuits offer asymmetric saving when used in LuT-based 
FPGAs [9], [10], [11]. A detailed analysis conducted on 
top of the state-of-the-art 8-bit multipliers revealed that the 
approximate circuits that might be optimal for ASICs are

17

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 03,2021 at 16:31:02 UTC from IEEE Xplore.  Restrictions apply. 



typically suboptimal when implemented in FPGAs [11]. In 
many cases, even negative gain was observed. To address 
this issue, some authors have started to optimize the approx
imate circuits manually to maximally exploit the structure of 
chosen target FPGAs [9], [10]. To avoid the manual LUT- 
level optimization, Prabakaran et al. applied machine learning 
approaches to identify the set of Pareto-optimal approximate 
circuits from already available approximate libraries [11]. The 
proposed method was used to construct several sets of Pareto- 
optimal arithmetic approximate circuits suitable for FPGAs 
that outperform current state-of-the-art implementations in 
many key parameters.

In this paper, we present an iterative design method for 
automated logic synthesis of basic approximate components 
that are inherently optimized for the usage in LUT-based 
FPGAs. The method takes into account the size of LUTs, 
the number of LUTs and propagation delay instead of the 
gate-level design parameters such as the number of gates or 
logic levels, typically considered in ALS approaches targeting 
ASICs.

II. Ap p r o x i m a t e  l o g i c  s y n t h e s i s  f o r  LUT-b a s e d  

FPGAS

A. Problem formulation

The design of approximate circuits represents a problem 
in which we know neither complete nor partial subset of 
input-output relations. To cope with this issue, the intended 
behaviour is typically defined relatively to the behaviour of a 
certain design point, typically an exact implementation of an 
approximate circuit. The design problem is then formulated 
as an optimization problem whose goal is to minimize the 
number of components and/or another criterion of the exact 
implementation provided that the distance (error) of the can
didate solutions is not worse than a predefined error level.

Problem: Given exact circuit C and a threshold e, the goal 
is to find a circuit C with the minimal cost such that the error 
E(C, C) < e.

B. Overall principle

The ALS method used in this work is given in Algorithm 1. 
To simplify the problem, the design space exploration is 
based on a variant of hill climbing algorithm, an optimization 
technique which belongs to the family of local search strate
gies suitable for search in complex environments [12]. The 
algorithm starts with the netlist of an exact circuit (denoted 
as C) and attempts to find a better solution by making an 
incremental change to the netlist. I f  the change produces a 
better solution, another incremental change is made to the new 
solution, and so on until the terminating condition is satisfied 
(e.g. no further improvements can be found or the predefined 
amount of time is exhausted). Note that all accepted solutions 
have to satisfy condition on the target error level specified by 
the user. The best solution so far discovered is stored in p. Up 
to Psize variants of p are created in each iteration to foster the 
exploration performance. It means, a population of candidate

Algorithm 1: The proposed LUT-aware ALS
Input: gate-level netlist of an exact circuit (C),

target error level (e), Psize > 1, Nops > 1, 
k € {4, 5, 6} ^

Output: approximate LUT-level netlist (C) where
E (C, C) < e

1 p ^  C;
2 while terminating condition not satisfied do

7
8 
9

10 
11 
12
13 end

P ^  {p}; 
while i  < Psize do 

/ *  A pp ly No: random ly chosen
tra n s fo rm . o p e ra tio n s  to  p 

p' ^  Transform(p);
/ *  Perform  k - in p u t  LUT mapping 

to  de te rm ine  the  c o s t o f  p' 
if cost(Map(p')) < cost(Map(p))) then 

/ * Check i f  p ' s a t is f ie s  the  
ta rg e t  e r ro r  le v e l  

if E(C,p') < e then 
| P  ^  P  U {p '} 

end 
end 

end
p ^  SelectBest(P);

5

6

*/

*/

*/

/ *  Perform  k - in p u t  LUT mapping * /
14 <3 ^  Map(p);
15 return C;

solutions (denoted as P) consisting of the best design (p) and 
valid design alternatives (p') is generated.

C. Generating design alternatives

Circuits are represented as netlists composed of 2-input 
LUTs (nodes). The netlists correspond to directed acyclic 
graphs and are allowed to contain dangling nodes. The design 
alternatives are created using a set of randomly selected 
transformation operations. Up to Nops operations are executed 
within a single transformation. Every operation can alter one 
of the following parts:

1) node function: e.g. AND node can be modified to inverter 
or vice versa, replaced by identity (wire), etc.; or

2) node input connection: a chosen input can be connected 
either to primary inputs, or to the output of any node 
provided that there will be no cycles in the resulting 
netlist; or

3) primary output connection: output can be connected to 
the output of any node, a primary input, or to logic 
constant ’0’ .

The proposed set of operations enables not only disconnect 
nodes but also introduce new ones (by modifying and re
activating dangling nodes). The nodes can become dangling 
by changing either primary output connection or node input

18

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 03,2021 at 16:31:02 UTC from IEEE Xplore.  Restrictions apply. 



connection or by changing node function resulting in decreas
ing of its arity.

D. Search space exploration

The search is guided by the objective function which 
determines how good a particular design (denoted as p') is. 
In accordance with literature and from practical reasons, the 
predefined error level e is used as the constraint instead of 
being considered directly in the minimized objective function 
(see e.g. [13]). If a candidate circuit violates this constraint, it 
is simply discarded.

The goal of the search algorithm is to minimize the cost 
of a candidate solution which equals to the LUT count-level 
product (LLP):

cost(p') =  nodes(Map(p')) x levels(Map(p')), (1)

where Map(p') refers to a netlist obtained fromp' applying the 
k-input LUT mapping. Only better or equal candidate solutions 
are considered for the next iteration (included in P as shown 
in line 8). The cost of the candidate solutions is determined 
first (see line 6) because the error checking is usually more 
time consuming. Then, the error constraint is verified. This 
can be done either by a Monte-carlo simulation or by a SAT 
solver depending where there is need for error guarantee. The 
details can be found, for example, in [14]. In principle, the 
algorithm allows us to employ arbitrary error metric E in 
this step because one of the properties of the approximate 
circuits is that the error typically increases with increasing 
the number of removed nodes. If we consider this fact and 
construct the objective function to force the search towards 
more compact solutions (circuits having the minimal possible 
number of nodes for a given target error level), which is our 
case, the actual error of the candidate circuits will be implicitly 
forced to be as close as possible to the target e.

Finally, the procedure SelectBest determines the best- 
scored individual from the population P at the end of each 
iteration. The selection prioritizes candidate solutions that 
differs from p (i.e. parental solution used to generate them). 
This strategy supports the diversity and prevents getting stuck 
in local optima.

III. Ex p e r i m e n t a l  s e t u p

The primary goal of our study is to evaluate the impact 
of the proposed approach on the quality of the obtained 
approximate circuits as well as on the time required to 
generate a particular result and compare the results with the 
recently released open-source library containing state-of-the- 
art approximate designs optimal for FPGAs [11].

A. Benchmarks

The proposed method is used to design approximate ver
sions of various multipliers and adders whose error is no worse 
than a given threshold. In particular, 8-bit, 16-bit, 32-bit and 
64-bit adders and 8-bit and 16-bit multipliers were used as 
benchmarks. Due to the limited space, only partial results are 
presented in this work.

TABLE I
Pa r a m e t e r s  o f  s o m e  b e n c h m a r k  c i r c u i t s  u s e d  i n  t h is  w o r k .

benchmark operand circuit gates 4-LUT a 6-LUT b

d rcwt size architecture count levels count levels count levels

adder 16 RCA 77 31 31 15 24 8
TA_BK 110 13 50 6 35 6
TA_LF 113 11 52 5 35 5
TA_SK 128 10 57 5 37 5

64 RCA 317 127 127 63 96 32
TA_BK 488 21 230 10 163 10
TA_LF 557 15 266 7 170 7
TA_SK 704 14 321 7 209 7

multiplier 8 CSAM_RCA 320 28 120 14 92 13
CSAM_CSA 347 25 127 12 95 11
WTM_CSA 396 26 172 11 123 9
WTM_CLA 418 22 212 12 155 10

a The number of LUTs and LUT levels after mapping to 4-input LUTs. 
b The number of LUTs and LUT levels after mapping to 6-input LUTs.

The approximation process starts with an accurate circuit 
(seed) which is then transformed to its approximate variant. 
We used several different architectures of the exact circuits. 
This helps us to evaluate the impact of the initial seed on 
the quality of the obtained approximate circuits which has not 
been investigated in the literature.

We chose four different ASIC architectures for each adder 
and multiplier. As depicted in Figure 1, the architectures form 
a Pareto frontier for the number of gates and the number of 
logic levels. The concrete values of the circuits referenced 
in this work are provided in Table I. Let us mention two 
prominent ones -  the most known Ripple-Carry Adder (RCA) 
and Sklansky Tree Adder (TA_SK). The ripple carry adder 
(RCA) represents the most compact architecture exhibiting 
the largest propagation delay when implemented in ASICs as 
well as FPGAs. Sklansky Tree Adder (TA_SK) represent one 
of the tree-style parallel prefix adders (denoted as TA_XX) 
lying on the other side of the spectra. Compared to RCA, 
64-bit TA_SK, for example, can operate at more than 9 
times higher frequency but occupy 2.5 x more resources. As 
shown in Table I, however, even those reference architectures 
offer asymmetric gain when implemented in LUT-based tech
nologies. TA_SK does not offer any advantage compared to

Fig. 1. Parameters of circuits used for benchmarking. Note that the 16-bit 
multipliers are omitted from the plot as they require more than 1400 gates 
(400 LUTs).

19

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 03,2021 at 16:31:02 UTC from IEEE Xplore.  Restrictions apply. 



TA_LF. Both architectures have the same propagation delay 
independently of the number of LUT inputs. Carry save 
array multiplier with RCA in the final stage (CSAM_RCA) 
represents the most compact design both in ASICs as well as 
FPGAs. Wallace tree-based adders (denoted as WTM_xxx), 
on the other hand, have substantially better propagation delay 
for the price of higher occupied area.

B. Experiments

The proposed algorithm was implemented in C++. Several 
error metrics have been proposed in the literature to measure 
the distance between approximate and reference circuits. As 
a proof-of-concept we chose the worst case absolute error 
(WCE) defined, for example, in [14]. Compared to the other 
metrics, WCE can be determined formally without sacrificing 
error guarantees. In addition, it enables us to directly compare 
the results with [11]. Twenty WCE thresholds were considered 
for each benchmark circuit. The WCE violation was deter
mined using a SAT solver and ABC as proposed in [15]. 
At the end of each experiment, exact WCE was calculated 
using Algorithm 5 proposed in [14]. For each threshold, five 
independent experiments were executed to obtain statistically 
sound results. The approximation process is terminated when 
there is no improvement for more than 10,000 iterations or a 
given runtime (3,600 seconds in our case) is exhausted.

LUT mapping is performed using Mockturtle library [16]. 
Every candidate netlist is represented using XAG network 
before LUT mapping. LUTs in the netlists are restricted to 
those hex values: 1, 6 (XOR), 7, 8 (AND), 9, A, E (OR). In 
addition to the LLP cost function described in Section II-D, 
we implemented and evaluated also the common cost function 
based on area-delay product (ADP). Three LUT sizes were 
considered: k e {4,5,6}. The remaining parameters were 
chosen as follows: Psize =  4, Nops =  1. In total, 14,400 
independent experimental runs were executed on a server 
equipped with 2.4 GHz Intel Xeon CPU. At the end, we 
obtained many design alternatives described at the level of 
LUTs as well as gates.

IV. Re s u l t s  a n d  d i s c u s s i o n  

A. Efficiency of the proposed cost function

Figure 2 shows the overall results using boxplots calculated 
from all the experiments targeting the design of approximate 
adders. Each of four subplots shows the statistics related to 
a particular analysed parameter. We depicted the achieved 
reduction in the number of LUTs, gates, LUT levels, and logic 
levels depending on the allowed level of WCE and utilized 
cost function. In order to present a sound statistics, we plot the 
relative (i.e. normalized) values because of their independence 
of the used seed and operand size. WCE is normalized 
and expressed in terms of the percentage number of invalid 
bits (denoted as NWCE) because it enables us to compare 
parameters of circuits having different operand size. NWCE 
is calulated as NWCE =  log2(WCE)/(w+1) for w-bit adders 
and NWCE =  log2(WCE)/2w for w-bit multipliers, where 
WCE is the error of a particular approximate circuit (i.e. not

(10, 15](25, 30](40, 45](55, 60](70, 75] (10, 15](25, 30](40, 45](55, 60](70, 75]

180

160

140

£  120 
jo
> 100 ju
5 80
—I

60

40

180 i  

160 

£  140

20 J--- 1------- 1------- 1------- 1------- 1---
(10, 15](25, 30](40, 45](55, 60](70, 75] 

NWCE (%)

20 J--- 1------- 1------- 1------- 1------- 1---
(10, 15](25, 30](40, 45](55, 60](70, 75] 

NWCE (%)

Fig. 2. Performance of the approximation depending on the chosen cost 
function. The lower value means the better result. Normalized values are 
shown on Y-axis; 100% refers to the parameters of the initial exact circuits 
as listed in Table I.

of the chosen target error level which may be higher in some 
cases). NWCE is categorized into four groups to illustrate its 
dependence of the achieved level of reduction.

The first subplot clearly demonstrates the advantage of the 
method utilizing LLP cost function. Considering the number of 
LUTs, the approximation based on the proposed cost function 
produces more compact circuits compared to the common cost 
function based on the number of gates (denoted as ADP). On 
the average, the number of reduced LUTs is by 5-7% higher 
in each category. But the main benefit of the LUT-aware cost 
function lies in the ability to control the propagation delay. 
ADP does not even guarantee that the number of LUT levels 
stays preserved. As shown in the left bottom plot of Figure 2, 
the number of levels can rise dramatically. For NWCE within 
(10,15]%, for example, the number of LUT levels increased 
by at least 20% for the majority of generated approximate 
circuits. There are even instances whose propagation delay 
rised by 70%. On contrary, LLP leads to approximate circuits 
exhibiting the same or better delay depending on the level of 
NWCE. The number of LUT levels is typically preserved for 
small NWCEs and decreases with the increasing NWCE.

The right column of Figure 2 shows that ADP leads to 
better results when we target the ASICs. The area on the 
chip expressed in terms of the number of 2-input gates is 
substantially better compared to the results obtained using 
LLP. Moreover, the propagation delay expressed in terms of 
the number of logic levels is also much better.

20

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 03,2021 at 16:31:02 UTC from IEEE Xplore.  Restrictions apply. 



1 6 -b it adder 6 4 -b it adder

1400

1200

w 1000
in
o  800
fO
Ü  600 

£
400

200

0
0 2 0  40  60 80 100

ta rg e t NWCE (%)
0 2 0  40  60 80 100

ta rg e t NWCE (%)

Fig. 3. Performance of the proposed method as a function of the used seed 
and required error level. The average time needed to design approximate adder 
with a given target error (top part) and the search performance expressed in 
terms of the number of evaluated candidate circuits per seconds (bottom part).

B. Computational complexity

The size of the approximate circuits is proportional to the 
level of WCE. The higher WCE, the higher reduction of LUT 
count (LUT levels) can be achieved. According to this depen
dence, one could expect the computational complexity grows 
with the increasing target WCE. Interestingly, an opposite 
behaviour is observable in reality. This fact is demonstrated 
in Figure 3.

The top row of Figure 3 shows the average time required to 
design an approximate circuit satisfying a given target WCE. It 
can be seen that the design time decreases with the increasing 
target error. On the average, more than 3,250 seconds are 
required to design a 64-bit approximate adder having NWCE 
around 20% from TA_SK adder. Less than 500 seconds are 
sufficient to design an approximate adder having the same 
bit-width but NWCE around 95%. This behaviour is caused 
mainly by the fact that the number of iterations evaluated 
within a certain period of time increases with increasing 
WCE (please see the bottom row of Figure 3 showing this 
dependence). There are two reasons for that. First, the size of 
the approximate circuit decreases in the course of the design 
process together with the increasing error that usually grows 
until it reaches the given target error level. Second, smaller 
circuits are easier to prove for WCE target level violation as 
they lead to more compact SAT instances.

We can observe that the search performance (i.e. the number 
of candidate circuits evaluated per second) increased dramat
ically. For 16-bit RCA adders, for example, around 350-410 
candidate circuits can be evaluated per second when the target

NWCE is less than 60%. The number of evaluations increases 
up to 1,400 per second (i.e. by 3-4 times) when the NWCE is 
around 95%. The similar situation is observable also for other 
widths as well as multipliers. It roughly holds for the adders 
that the number of evaluations per second decreases by the 
factor of two with doubling of the operand size. Around 800 
evaluations per second can be achieved for 8-bit adders for 
NWCE less than 60%.

Apart from that, Figure 3 shows that the design time is 
dependent not only on target error level but also on the utilized 
seed which serves as a starting point for the search. Despite of 
the relatively stable search performance which changes only 
subtly with the seed (see the bottom part of Figure 3), the 
total design time may increase dramatically for some seeds 
and target errors (see the top part of Figure 3). While the 
dependence curve is nearly flat for the RCA architecture, it 
has a clear maximum in the middle of the NWCE range 
for more complex architectures (see e.g. the most complex 
TA_SK benchmark). This is caused by the increasing number 
of iterations needed to find an approximate circuit. In other 
words, it means that the fitness function changes regularly (at 
worse at every 10,000 iterations) and the search thus continues 
for longer period of time.

It can be concluded that the time of approximation is in 
reasonable bounds even for relatively complex arithmetic 64- 
bit instances. Five to ten minutes are required to approximate 
16-bit adders and less than 60 minutes for 64-bit adders. More 
than 2,000 seconds are reported in [17] when approximating 
64-bit RCA for the lowest considered WCE which was chosen 
to be 0.1% (i.e. NWCE equals to 86.7%). Less than 450 
seconds are required in our method. In [15], the authors 
allocated two hours for the approximation of 64-bit adders.

C. Quality of the produced approximate circuits

Figure 4 reports the discovered Pareto optimal approximate 
adders and multipliers when considering the following three 
mutually conflicting parameters: the number of LUTs, the 
number of LUT levels and the level of WCE. Due to the 
limited space, we included the results only for 16-bit adders 
and 8-bit multipliers.

Looking at the top part of Figure 4 showing the best 
obtained 16-bit approximate adders, we can identify two imag
inary chains of design points -  the adders with low propagation 
delay but higher number of LUTs that are created from low- 
latency tree adders, and the adders obtained from RCA that 
occupy low area but are slow. Similar trend is observable also 
for multipliers. This phenomenon is valid independently on the 
chosen bit width. This result demonstrated that the proposed 
approximation method tends to preserve the main character
istics of the circuit used as the initial search point. This is 
especially important for lower error levels that are typically 
used in practice, because it gives us the ability to decide 
whether to prefer delay instead of area or vice versa. For higher 
error levels, it does not matter which architecture is used as the 
seed because the resulting approximate circuits have similar 
parameters. The distribution of the generated design points

21

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 03,2021 at 16:31:02 UTC from IEEE Xplore.  Restrictions apply. 



35

30

25

g  20 

* 15 

10 

5 

0

100

80

i/>
3  60 

=fc
40

20

0

16-bit adders

J®'
*^ 6°-04̂-

a^60'02"

1 @>" ^ 2 3 ^ * « « »
0 1 CsF?

^ 6°'

LUT levels 
( 0, 2 ]

•  (2,4]
•  (4, 6]
•  (6, 8] 
Source
� designed 
tt [11]

o^ 6: S - o6u
0  atf*60-

O

o*c

8-bit m ultip liers

vÛ - fit*

� ^ > 16* 
Bl£ )*. �� m0\8U

LUT levels 
( 0, 6 ]

• (6,9]
•  (9, 12]
•  (12, 14] 
Source
� designed 
«  [ 11]

O

7^

40 60

NWCE (%)
0 20 B0 100

Fig. 4. Parameters of the state-of-the-art (see the highlighted points) and 
discovered Pareto-optimal (6-input LUTs count, LUT levels, WCE considered) 
approximate adders and multipliers.

also suggests that there must exist some approximate adders 
filling the design space between the imaginary chains.

Figure 4 also includes comparison with the state-of-the-art 
designs. For this purpose, we used the open-source Pareto- 
optimal arithmetic approximate circuits suitable for FPGAs 
introduced in [11]. To establish a fair evaluation, we chose 
the sub-set of circuits optimal with respect to the WCE and 
# LUTs. The circuits are synthesized using the same setup as 
used in this work.

The approximate circuits published in [11] were obtained 
by identifying implementations exhibiting the best LUT pa
rameters from a rich set of approximate circuits obtained 
using an area-based cost function. The results shows that our 
method is able to achieve better trade-offs. This is consistent 
with the findings presented in Section IV-A demonstrating the 
superiority of the LUT-aware cost function.

V. Co n c l u s i o n s

We presented a novel iterative method for synthesis of 
approximate circuits optimized for LUT-based technologies. 
The method operates internally at the level of 2-input LUTs 
and produces LUT-level netlists that may consist of up to k- 
input LUTs, where the value of k can be chosen by the user 
depending on the intended target technology. Compared to the 
existing ALS methods, we used a cost-function which takes 
into account the effect of LUT mapping. This setup ensures 
that the search is forced towards more compact/faster design 
alternatives. One of the key properties of the proposed method 
is the ability to keep the propagation delay under control. 
As discussed, the number of LUT levels remains at worse

preserved compared to the initial exact circuit. This allows 
to explore different portions of design space by changing the 
initial seed depending on the user requirements. For example, 
if  there is a requirement to minimize the area by introducing 
some error, we can approximate slow but compact ripple-carry 
adder. On the other hand, if  we need to improve the latency, 
we should use some tree adder as the initial point.

The experimental evaluation performed on common arith
metic benchmark circuits confirmed that the designs optimized 
for ASICs can be transferred to other technologies, but the 
achieved gain is highly suboptimal. I f  we need to achieve 
the best possible trade-off, we should always design the 
approximate circuits to match the target technology.

The set of the pareto-optimal arithmetic adders and 
multipliers designed within this work is available online 
at https://ehw.fit.vutbr.cz/pub/ddecs21 as open-source library 
which includes approximate circuits optimized for LUT-based 
architectures consisting of 4-, 5-, or 6-input LUTs.

Re f e r e n c e s

[1] V. K. Chippa, S. T. Chakradhar et al., “Analysis and characterization of 
inherent application resilience for approximate computing,” in The 50th 
Annual Design Automation Conference 2013. ACM, 2013, pp. 1-9.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM 
Comput. Surv., vol. 48, no. 4, pp. 62:1-62:33, 2016.

[3] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A 
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8-22, 2016.

[4] M. Shafique, R. Hafiz et al., “Invited: Cross-layer approximate comput
ing: From logic to architectures,” in Proc. of DAC’16, 2016, pp. 1-6.

[5] I. Scarabottolo, G. Ansaloni et al., “Approximate logic synthesis: A 
survey,” Proc. of the IEEE, vol. 108, no. 12, pp. 2195-2213, 2020.

[6] S. Hashemi, H. Tann et al., “Approximate computing for biometric 
security systems: A case study on iris scanning,” in 2018 Design, 
Automation Test in Europe Conference Exhibition (DATE), 2018, pp. 
319-324.

[7] V. Mrazek, L. Sekanina, and Z. Vasicek, “Using libraries of approximate 
circuits in design of hardware accelerators of deep neural networks,” 
in 2020 2nd IEEE International Conference on Artificial Intelligence 
Circuits and Systems (AICAS), 2020, pp. 243-247.

[8] V. Mrazek, R. Hrbacek et al., “Evoapprox8b: Library of approximate 
adders and multipliers for circuit design and benchmarking of approxi
mation methods,” in Proc. of DATE’17, 2017, pp. 258-261.

[9] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxlib: Library of FPGA- 
based approximate multipliers,” in Proceedings of the 55th Annual 
Design Automation Conference. New York, NY, USA: ACM, 2018.

[10] B. S. Prabakaran, S. Rehman et al., “DeMAS: An efficient design 
methodology for building approximate adders for FPGA-based systems,” 
in 2018 Design, Automation Test in Europe Conference Exhibition 
(DATE), 2018, pp. 917-920.

[11] B. S. Prabakaran, V. Mrazek et al., “ApproxFPGAs: Embracing ASIC- 
based approximate arithmetic components for FPGA-based systems,” in 
2020 57th ACM/IEEE Design Automation Conference, 2020, pp. 1-6.

[12] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 
3rd ed. Prentice Hall, 2010.

[13] S. Reda and M. Shafique, Eds., Approximate Circuits. Springer 
International Publishing, 2019.

[14] Z. Vasicek, “Formal methods for exact analysis of approximate circuits,” 
IEEE Access, vol. 7, no. 1, pp. 177309-177 331, 2019.

[15] M. Ceska, J. Matyas et al., “Approximating complex arithmetic circuits 
with formal error guarantees: 32-bit multipliers accomplished,” in Proc. 
of 36th IEEE/ACM Int. Conf. On Computer Aided Design. IEEE, 2017, 
pp. 416-423.

[16] M. Soeken, H. Riener et al., “The EPFL logic synthesis libraries,” Nov. 
2019, arXiv:1805.05121v2.

[17] V. G. U, V. V. S et al., “LUT-based circuit approximation with targeted 
error guarantees,” in 2020 IEEE 29th Asian Test Symposium (ATS), 2020,
p p .1-6.

22

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 03,2021 at 16:31:02 UTC from IEEE Xplore.  Restrictions apply. 


