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Abstract—Boolean network scoping represents a common ap-
proach incorporated in conventional synthesis tools for main-
taining the good scalability of the synthesis process. Recently,
an approach to the local resynthesis based on combination of
evolutionary optimization with the principle of Boolean network
scoping has been proposed. Local resynthesis is an iterative
process based on the extraction of smaller sub-circuits from a
complex circuit that are optimized locally and implanted back to
the original circuit. The main advantage of the local resynthesis
is that it can mitigate the problem of scalability of representation
which is typical to the evolutionary algorithms as the efficiency
of the evolutionary optimization applied at the global level
deteriorates with the increasing circuit complexity. Unfortunately,
the efficiency of local resynthesis is highly influenced by the
efficiency of the sub-circuit extraction process. We propose a
new method, based on the reconvergent paths identification.
The evaluation is done on a set of highly optimized complex
benchmark problems representing various real-world controllers,
logic and arithmetic circuits. It provides better results compared
to the state-of-the-art logic synthesis tool and both locally and
globally operating evolutionary optimizations presented earlier.
A substantially higher number of redundant gates was removed
in more than 70% cases, while keeping the computational effort
at the same level. A huge improvement was achieved especially
for the controllers. On average, the proposed method was able
to remove more than 14.3% of gates. The highest achieved gate
reduction was more than 45% of gates.

Index Terms—Logic optimization, Cartesian Genetic Program-
ming, Evolutionary Resynthesis

I. INTRODUCTION

Logic synthesis transforms a high-level description into a
gate-level or transistor-level implementation. Due to the com-
plexity of the problem, the synthesis process is typically bro-
ken into a sequence of steps. Among others, logic optimization
represents an important part of the whole process. The goal
of the logic optimization is to transform a suboptimal solution
into an optimal gate-level implementation with respect to given
synthesis goals. The problem is typically represented using a
suitable internal representation due to the scalability issues.
Current state-of-the-art logic synthesis tools, such as ABC,
represent circuits using a directed acyclic graph composed of
two-input AND nodes connected by direct or negated edges
denoted as and-inverter graph (AIG). The AIG representation
is simple and scalable, and leads to simple algorithms but it
suffers from an inherent bias in representation. While eight

of ten possible two-input logic gates may be represented
by a single AIG node, XOR and XNOR gate require three
AIG nodes each. The efficiency of synthesis is then limited
as it mostly fully relies on transformations that disallow an
increase the number of AIG nodes. However, the ability to
capture XOR gates is essential for efficient representation of
arithmetic and XOR-intensive circuits. It has been shown that
there exists a huge class of real-world circuits for which the
synthesis fails and provides very poor results [1, 2, 3]. In
some cases, the area of the synthesized circuits is of orders
of magnitude higher than the known optimum. If a large
design is broken down to multiple smaller circuits and such a
failure occurs during resynthesis, we obtain an unacceptably
large circuit. To address this problem, various approaches have
been proposed. E.g. binary decision diagrams (BDDs) can
be employed [4, 5]. Due to their limited scalability, Amaru
et al. employed a two step synthesis process based on a
selective and distinct manipulation of AND/OR and XOR-
intensive portions of the logic circuit [6]. In the first phase,
XOR-intensive regions are identified in the input Boolean
network. These regions are then optimized in the second phase
independently on the rest of the network. In average, the
method outperforms the AIG-based ABC by 18% when the
number of transistors is considered. Fiser et al. introduced
XOR-AIGs to explicitly support XOR gates [7]. The synthesis
is based on a modified rewriting selecting subgraphs with four
leaves. Unfortunately, no significant improvement has been
reported in the paper. Haaswijk et al. employed XOR majority
graphs (XMGs) to extend the capabilities of exact synthesis
oriented on area optimization. To summary, the methods
perform either a preprocessing or circuit decomposition [6]
or precomputation of ideal solutions [7]; other methods rely
on XOR transformations or presence technology cells (eg.
XMGs).

Other authors tried to avoid intermediate representation
and the need for circuit preprocessing. Various machine-
learning approaches working directly at the level of gates
were successfully applied to address this problem [1, 8].
Vasicek demonstrated that the evolutionary synthesis using
Cartesian Genetic Programming (CGP) conducted directly at
the level of common gates is able to provide significantly better
results compared to the state-of-the-art synthesis operating on



AIGs [8]. On average, the method enabled a 34% reduction
in gate count on an extensive set of benchmark circuits when
executed for 15 minutes. A similar approach was successfully
applied even to synthesis of conventionally hard to synthesize
circuits [2]. Many other machine learning techniques have
been recently used for circuit synthesis, see e.g. [9] which
lists various methods used to the synthesis of incompletely-
specified functions. It was observed, however, that the ef-
ficiency of the evolutionary approach deteriorates with the
increasing circuit complexity, i.e. the increasing number of
gates. Motivated by this fact, combination of evolutionary opti-
mization with the principle of so called Boolean network scop-
ing has been proposed in [10, 11]. Boolean network scoping
represents a common approach incorporated in conventional
synthesis tools for maintaining the good scalability of the
synthesis process. The key idea is to use an iterative procedure
which extracts sub-circuits that are subsequently optimized by
Cartesian Genetic Programming and implanted back into the
original circuit provided that there is an improvement at the
global level. This approach can be understood as the EA-based
resynthesis. As has been shown, size of the sub-circuits has an
impact on the scalability of the CGP and also on the efficiency
of the whole optimization process. Small sub-circuits ensure a
good scalability of the evolutionary optimization, but they lead
to minor improvements at the global level because this method
operates mainly locally similarly to the conventional rewriting.
Huge sub-circuits, on the other hand, increase possibilities for
an improvement but the performance of the CGP deteriorates
with increasing the size of the optimized circuit. In order to
have a reasonable optimization method, it is necessary to find
a good trade-off between the mentioned two extremes. Two
methods of Boolean network scoping were proposed in the
literature. The first was inspired by the conventional method
based on computing so called k-feasible cuts. The other one
was based on so called windowing method. Both methods
achieved significant reduction w.r.t. the number of gates in the
benchmark circuits. However, the authors found out that their
approach to the sub-circuit selection may cause an inefficiency
in the optimization. It happens when there is an attempt to
optimize a sub-circuit that lacks the redundancy nodes or
the interconnection between its nodes are poor. Therefore the
evolutionary optimization spends a significant ammount of
time searching for a solution that has already been reached
instead of moving on to the optimization of another sub-circuit.

Our goal is to improve the performance of the the sub-circuit
selection – mainly to focus on particular areas in the circuits
that may potentionaly boost the efficiency of the evolutionary
optimization. In order to achieve this goal, we propose to
optimize sub-circuits containing so-called reconvergent paths.

II. BACKGROUND

This section presents relevant background on conventional
as well as EA-based optimization of logic circuits and intro-
duces the notation used in the rest of the paper.

A. Boolean networks

Every circuit can be represented using a Boolean network.
A Boolean network is a directed acyclic graph (DAG) with
nodes represented by Boolean functions [12]. The sources of
the graph are the primary inputs (PIs) of the network and the
sinks are the primary outputs (POs). The output of a node
may be an input to other nodes called fanouts. The inputs of
a node are called fanins. An edge connects two nodes that
are in fanin/fanout relationship. Considering this notion, And-
Inverter Graph is a Boolean network composed of two-input
ANDs and inverters. The network primary inputs are signals
that are driven by the environment, there is no node driving
these signals in the network. Similarly, the primary outputs
are signals that drive the environment and are needed by inner
network nodes as well. The size of the network is the number
of the nodes (primary inputs and outputs are not considered).

B. Limiting the scope of Boolean networks

Network scoping represents a key operation to ensure a good
scalability of synthesis tools when working with large Boolean
networks. It forms an integral part of rewriting as well as
refactoring. Two approaches have been proposed to limit the
scope of logic synthesis to work only on a small portion of a
Boolean network – windowing and cut computation [11, 12].

The windowing algorithm determines the working area
denoted as window by computing transitive fanin and transitive
fanout. The algorithm takes a node (typically referred to as
pivot node) and two integers m and n defining the number
of logic levels on the fanin/fanout sides of the node to be
included in the resulting window. The transitive fanin is a set
of nodes on the fanin side that are distance-m or less from the
pivot node. Similarly, the transitive fanout is a set of nodes
on the fanout side that are distance-n or less from the pivot
node. These two sets are then used to obtain the leaf and root
sets that uniquely determine the window. The window of a
Boolean network N is a connected subnetwork N′ ⊆ N that
corresponds to the subset of nodes of the network containing
nodes from root set together with all nodes on paths between
the leaf set and the root set. The nodes in the leaf set are not
included in the window. The complete algorithm can be found
in [11, 12]. The main problem of this algorithm is that it is
hard to predict how many logic levels have to be traversed to
get a window of the desired parameters.

The second approach based on computing so called k-
feasible cuts is usually preferred to avoid determining the
required number of logic levels. A cut of a node, called root
node, is a set of nodes of the network, called leaves, such
that each path from PI to the root node passes through at
least one leaf. A cut is k-feasible if the number of nodes
(i.e. cut size) in the cut does not exceed k. The volume of
a cut is the total number of nodes encountered on all paths
between the root node and the cut leaves. An example of
two different 3-feasible cuts is shown in Fig. 1. The problem
is that the cut computed using a naive breadth-first-search
algorithm may include only few nodes and leads to tree-
like logic structures. Such a structure does not lead to any



(a) Cut CI = {7, 2, 3} (b) Cut CII = {1, 2, 3}

Fig. 1: Example of two possible 3-feasible cuts for root node
m and given Boolean network. The cut CII is preferred as its
volume is five (root node m and contained nodes 5, 7, 8 and
9). There is only two contained node (node 8 and 9) in the
case of CI.

don’t cares in the local scope of the node and attempting
optimization using such a cut would be wasted time. A simple
and efficient cut computation algorithm producing a cut close
to a given size while heuristically maximizing the cut volume
has been introduced in [12]. The k-feasible cuts are important
not only for the gate-level logic synthesis but also for FPGA-
based synthesis as a k-feasible cut can be implemented as a
k-input LUT.

C. Evolutionary Synthesis of Logic Circuits

Evolutionary algorithms (EAs) have been used to synthesize
logic circuits since late nineties [13, 14]. Miller et al., the
author of Cartesian Genetic Programming (CGP) [15], is
considered as a pioneer in the field of logic synthesis of gate-
level circuits. He utilized his own variant of genetic program-
ming to synthesize compact implementations of multipliers
described by means of a behavioral specification [16]. Despite
of many advantages of this unconventional technique, only
small problem instances were typically addressed. To tackle
the limited scalability, various decomposition strategies have
been proposed. A good survey of the existing techniques is
provided, for example, in [17]. In 2011, the scalability of CGP
has been significantly improved by introducing a SAT-based
CGP. It exploits the fact that the candidate solutions must be
functionally equivalent with their parent in logic optimization
in order to be further accepted. It also exploits the knowledge
of differences between parental and candidate circuits. The
efficiency of SAT-based method was further improved by com-
bining a SAT solver with an adaptive high-performance circuit
simulator used to quickly identify the potential functional non-
equivalence. The most advanced SAT-based CGP employs a
simulator that is driven by counterexamples produced by the
SAT solver [8]. Neither the original nor the latter approach
rely on a decomposition of the optimized circuits.

Since its introduction, CGP remains the most powerful
evolutionary technique [14]. CGP models a candidate circuit
having ni PIs and no POs as a linear 1D array of nn
configurable nodes, as can be seen in the Figure 2. Each node
has na inputs and corresponds with a single gate with up to
na inputs. The inputs can be connected either to the output

of a node placed in the previous L columns or directly to PIs
to avoid a feedback. The function of a node can be chosen
from a set of nf functions. Depending on the function of a
node, some of its inputs may become redundant. Also, the
fixed number of nodes nn does not mean that all the nodes
contribute to the POs. These key features allow redundancy
and flexibility of CGP.

The candidate circuits are encoded as follows. Each PI as
well as each node has associated an unique index. Each node
is encoded using na + 1 integers (x1, · · · , xna

, f) where the
first na integers denote the indices of its fanins and the last
integer determines the function of that node. Every candidate
circuit is encoded using nn(na +1)+no integers. The last no
integers specify the indices corresponding with each PO.

CGP is a population oriented approach which operates with
1 + λ candidate solutions. The initial population is seeded
by the original circuit ought to be optimized. Every new
population consists of the best circuit chosen from the previous
population and its λ offspring created using a mutation oper-
ator that randomly modifies up to h integers. Considering the
CGP encoding, a single mutation causes either reconnection of
a gate, reconnection of primary outputs or change in function
of a gate. The selection of the individuals is typically based
on a cost function (e.g. the number of active nodes). In the
case that there are more individuals with the same score, the
individual that has not served as a parent will be selected
as the new parent. This procedure is typically repeated for a
predefined number of iterations.
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(1, 3, 3) (1, 3, 1) (2, 4, 3) (4, 2, 1) (6, 7, 0) (5, 7, 2) (6, 9)

Fig. 2: Example of a CGP individual encoding a logic circuit
(one-bit full adder) with ni = 3 inputs and no = 2 outputs.
The individual is encoded using an array of nn = 6 two-
input single-output nodes whose functions are chosen from a
set of primitive functions Γ = {NOT,AND,OR,XOR}. The
nodes are arranged in a two-dimensional grid for improved
readability. Redundant connections and nodes, (those that do
not contribute to the outputs) are highlighted by dotted line.

D. EA-based resynthesis

Let C be a combinational circuit described at the level of
common gates represented by a Boolean network N consisting
of |N | nodes. Each node corresponds with a single gate
in C. The pseudo-code of the proposed optimization procedure
based on evolutionary resynthesis presented in [11] is shown
in Algorithm 1.

An iterative process which consists of a sequence of three
steps that are executed in a loop is applied. A working area
(Boolean network W ) is extracted from the Boolean network



N ′ in the first step. The goal is to obtain a smaller circuit
which is easier to manipulate with. Each W that is not suitable
for the subsequent optimization is skipped in the next step in
order to eliminate execution of a relatively time-consuming
resynthesis for the windows that are unlikely to lead to any
improvement. Identification of the suitable windows can be
based on the size of W (small windows are filtered out) or a
more advanced metric which reflect, for example, the number
of inputs and depth (thin windows are filtered out). In the
third step, resynthesis by means of the CGP is applied to the
extracted Boolean network. At the beginning, each node in the
window is assigned an unique index and netlist corresponding
with the nodes in the window is created. This netlist is
then used to seed the initial population. The evolutionary
optimization is executed for a limited number of iterations.
The number of iterations should be determined heuristically.
The more iterations are allowed, the higher improvement can
be achieved. On the other hand, many iterations on a small
window wastes time. Finally, the optimized logic network W ′

is evaluated w.r.t. N ′ and if it performs better, it replaces
all non-leaf nodes included in W . The whole optimization
algorithm is terminated when a predefined number of iterations
or a given runtime is exhausted.

Algorithm 1: OPTIMIZATION OF DIGITAL CIRCUITS
USING EA-BASED RESYNTHESIS [11]

Input: A Boolean network N
Output: Optimized network N ′, cost(N ′) ≤ cost(N)

1 N ′ ← N
2 while terminated condition not satisfied do
3 m← identify the best candidate root node m ∈ N ′

4 W ← GetSubcircuit(m)
5 if W is a suitable candidate then
6 W ′ ← OptimizeNetworkUsingEA(W )
7 if cost((N ′ \W ) ∪W ′) < cost(N ′) then
8 N ′ ← (N ′ \W ) ∪W ′

9 return N ′

In [11], two different approaches to the extraction of W
were proposed. The first one was based on the cut computed
using a naive breadth-first-search algorithm. The problem
here was, that W extracted a tree-like logic structure and
consisted of only few nodes, mainly when working with
networks of a small depth. In order to maximize the volume of
W , the another approach based on the windowing algorithm
was presented. Instead of predicting how many logic levels
were needed to traverse in order to get the W of a desired
volume, the W was cumulatively expanded with all of the
neighbouring nodes of the nodes already present in the W ,
so that W was expanded in every possible direction. This
approach successfully overcame the issues connected with the
earlier mentioned breadth-first-search-based algorithm. The W
is always extracted randomly in these two methods, without
incorporating any further knowledge about the circuit (e.g.
number of nodes, PIs, POs, depth, atc.). The optimization step
itself may then lead to an inefficiency when trying to optimize
a W , that can not be optimized any more or, when the W does

not include sufficient interconnection between its nodes. As
shown in [11], the main progress in optimization of a circuit
was achieved mostly in the beginning of the optimization; after
that, the node reduction seemed to be not very significant even
though the circuits still contained redundant nodes. Also, only
a part of the CGP generations computed for each sub-circuit
had an effect on reduction or at least modification the sub-
circuit. In conclusion, many iterations of the optimization were
executed without actually making an impact on the overall
result.

III. THE PROPOSED METHOD

To overcome limitation mentioned in Section II-D, we
propose to increase the redundancy of the nodes in W . Before
selecting the W itself, we try to find a so-called reconvergence
path. Reconvergent paths lead from one source node through
two different areas of the network and meet again in a
receiving node that is in the fanout cone of the source node.
Such a path may increase a chance of a good optimization
result, as it may contain more redundant nodes than the other
areas of the network N [12].

Algorithm 2: Reconvergence path-based procedure
GetSubcircuit

Input: A Boolean network N ,
minimum (rwmin) and maximum (rwmax) volume of W ,
maximum rpmax volume of reconvegent path rp
Output: A working area RW , rwmin ≤ |W |≤ rwmax

1 RW ← ∅
2 rp← ∅
3 init roots← randomly select 10 nodes from N
4 foreach rm ∈ init roots do
5 rp← select a reconvergence path starting from rm

containing rpmax nodes
6 if rp is empty then
7 rp← select random node from init roots

8 push all nodes from rp to RW
9 init queue q with rp

10 while q not empty ∧ |RW |< rwmax do
11 rm← pop a node from q
12 RW ← RW ∪ {rm}
13 X ← fanin(rm) ∪ fanout(rm)
14 push all nodes from X \RW that are not already in q

into q

15 if |RW |< rwmin then
16 RW ← ∅
17 W ←

⋃
rm∈RW

fanin(rm)

18 return RW

The principle of the proposed selection strategy is shown
in Algorithm 2. The input is a boolean network N and the
output is a set of nodes (selection) denoted as RW . At first,
a search for a reconvergence path rp of a desired volume (in
means of number of gates within the path) is done. This search
is done for a 10 randomly selected nodes from the circuit -
subset init roots. The first rp that is found proceeds to the
next step of the algorithm and its root node becomes the rm
node. If the reconvergent path is not found for any node from
init roots, the rp is initiated only with a randomly chosen



root node from the init roots. Then, all the nodes from rp
are copied to RW (see line 8). If the volume of the RW is
not already at its upper limit rwmax, the RW is expanded
with the nodes connected to the nodes already present in the
RW . The expansion starts from the root node rm. If the RW
contains less than rwmin nodes at the end of the selection,
it is declined from the optimization process and search for a
more suitable RW starts again. An example of the outcome
of our algorithm can be seen in the Figure 3.
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Fig. 3: Example of the window consisting of 10 nodes
created using the reconvergence path selection algorithm 2.
The reconvergence path rp starting in the root node rm is
highlighted using the filled nodes. The nodes q5–q10 are those
added during the final expansion of the selection RW . The
nodes at the bottom are primary outputs. The root and leaves
of the window are denoted as R and L, respectively. The nodes
in the window have assigned an index (the number located
below a particular node) used to uniquely identify each node
in the CGP. The labels qi inside the nodes denote the order i
in which the nodes were chosen.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

The proposed method was implemented in C++ as a part of
Yosys open synthesis suite [18]. This tool allows us to directly
manipulate with Verilog files and it integrates ABC [19],
a state-of-the-art academic tool for hardware synthesis and
verification. The reconvergence path selection was done with
the help of the Mockturtle C++ logic network library [20]. The
goal of this paper is to evaluate performance of the proposed
method (further denoted as GSRW) and compare the results to
those presented in [11] – to the method using the windowing
algorithm for the sub-circuit extraction (denoted as GSW), and
also the EA-based method (denoted as global) applied to the
whole Boolean network. In addition to that, we will include
the results from ABC to establish a baseline. Each of the
three evolutionary methods operate at the level of optimized
and mapped Boolean networks to avoid the bias of AIG
representation. To provide a fair evaluation, we used the same
set of benchmark circuits as in [11]. This set includes 28 highly
optimized real-world circuits to evaluate all of the methods.
Nineteen Verilog netlists are taken from IWLS’05 Open Cores

benchmarks, the remaining nine netlists represent various
arithmetic circuits1. The circuits were optimized by ABC
(several iterations of ABC command ‘resyn’) and mapped
to gates using a library of common 2-input gates including
XORs/XNORs gates (ABC command ‘map’). After mapping,
optimization by the three observed methods was executed and
final number of mapped gates in circuits was examined. All of
the optimized circuits were formally verified w.r.t their original
form (ABC command ‘cec’).

We target the area-optimization. The only criterion in the
fitness function considered in this paper is the area on a
chip expressed as the number of gates. Thus the improvement
is measured in terms of the number of removed gates. The
other parameters such as delay or power consumption are not
reflected. The line 7 of Algorithm 1 thus reduces to |W ′|< |W |
which is much simpler to evaluate. For each method and each
benchmark, five independent runs were executed to obtain
statistically valid results. All of the optimized circuits were
formally verified with respect to their original form (ABC
command ‘cec’) to avoid any error in the evaluation.

The procedure OptimizeNetworkUsingEA is based on the
CGP implemented as described in Section II-C with the
following parameters: na = 2, λ = 1, h = 2, nn = |W |,
Γ = {BUF,NOT,AND,OR,XOR,NAND,NOR,XNOR}.
The CGP parameters were chosen in accordance with [8].
A single call of this procedure is executed for the global
method (the procedure takes the whole Boolean network and
returns its optimized version). On contrary, several calls of
this procedure are executed both in the proposed GSRW
method and the GSW method. The global method terminates
when niters iterations are exhausted. One iteration corresponds
with evaluation of a single candidate solution. In the case of
the proposed method a simple divide-and-conquer strategy is
employed. The termination conditions are designed as follows.
The GSRW and GRW methods are allowed to execute niters
iterations. Each iteration corresponds with a single execution
of the OptimizeNetworkUsingEA procedure. This procedure
terminates either when a given number of evaluations (nevals)
is exhausted or when a predefined amount of time (tmax)
has elapsed. The latter condition helps to ensure a good
scalability and predictability of the worst-case CPU time
of the optimization which could be enormous especially in
those cases when many hard-to-solve candidate solutions are
generated during the evolution. The GSRW method is allowed
to select a reconvergent path of a rpmax volume. In [11],
the global method was terminated either when nevals×niters
evaluations were exhausted or when the CPU time reaches
tmax×niters seconds. To set up all the necessary parameters
of the optimization, we used the same experimental settings as
were used in [11]. This helps to fairly evaluate all evolutionary
methods because they are allowed to evaluate the same number
of candidate solutions. To match the setup with that used
in the already available works, we chose niters = 2 × 104,
nevals = 5 × 105, and tmax = 10 seconds in this work. The

1The benchmarks can be found at https://lsi.epfl.ch/MIG



volume of the reconvergent path in the GSRW method is set to
rpmax = (10, 20, 50, 100) gates and the minimal and maximal
volume of the selection rwmin = 5, rwmax = 100 nodes
respectively. This setup ensures that 1010 candidate solutions
are generated and evaluated for every method.

B. Experimental results

The overall results obtained from all of the considered
approaches are summarized in Tab. I. The first three columns
contain information about the benchmarks (name, number of
PIs and POs). The next two columns show parameters of the
optimized and mapped circuits produced by ABC; the number
of gates and logic depth are given. These numbers serve as a
baseline for our comparison. Then, the achieved improvement
expressed as the relative reduction with respect to the baseline
is reported for the global and both local methods. For each
method, we report the average improvement and also the
best obtained results (section best improvement). The statistics
is based on all five independent runs for every circuit and
every method. The results presented for the proposed GSRW
method are in the form of an average improvement obtained
from the average improvements of the five independent runs
for every desired reconvergent path volume as mentioned
in IV-A. The average results for the different reconvergent
path volumes are quite similar for each circuit (the average
difference between them is 2% at maximum). The similar
reduction result is caused by the total volume of the selected
sub-circuits (rwmax = 100 nodes). However, the presence of
the reconvergent paths in the sub-circuits had the main impact
on the gate reduction process. Hence, we decided to present an
overall average of all of the obtained results for every circuit
for the GSRW.

The proposed method was able to reduce the size of every
circuit even though the circuits have already been optimized
by ABC. On the average, the GSRW method achieved 13.4%
circuit size reduction on the IWLS’05 benchmarks and 14.5%
reduction on arithmetic circuits. The highest improvement,
45.9%, was recorded for the ‘hamming‘ benchmark. Although
the GSRW method is in principle non-deterministic (similarly
to the GSW), the best results obtained by it are relatively
close to the average ones which suggests that this evolutionary
method is quite stable. Compared to the global method, the
GSRW method performs substantially better considering the
average as well as the best results. It won in 26 out of 28 cases.
The GSW method won in 24 cases against the global method.
So, the global method comes out as a loser in this comparison,
except for the two cases (‘mem ctrl‘ and ‘spi‘). It can be
concluded, in general, that the global method works well
especially for small instances that are compact (do not contain
many independent sub-circuits) and that have a reasonable
depth (10 to 25 levels). When compared to the GSW method,
the GSRW is a winner in reducing the IWLS’05 Open Cores
benchmarks – it won in 18 out of 19 cases. However, the
GSW method achieved better results in the reduction of the
arithmetic set of benchmarks. It was better in 5 out of 9 cases.

We also investigated and compared the corresponding
convergence curves of the performance of the evolutionary
methods. Global method converges quickly but the reduction
process typically ends at a local optima. Both the the GSW
and the proposed GSRW method profit from the usage of
smaller sub-circuits, that require less computational effort to be
optimized compared to the whole circuits. As can be clearly
seen in the convergence graphs in the Figure 4, the GSW
method reaches its solution earlier than the GSRW method.
However, the GSRW compensates the slower convergence
with better utilization of the computation time thanks to
the suitable structure of the sub-circuits. Hence, substantially
higher number of the total 1010 candidate solutions generated
during the optimization successfully participated in the final
circuit reduction.

Considering the arithmetic circuits, the GSRW performs
worse compared to the GSW method. In five cases (‘ham-
ming‘, ‘diffeq1‘, ‘div16‘, ‘MAC32‘, ‘revx‘), the performance
of the GSRW was surpassed by the GSW. When examining the
convergence curves and parameters of the produced windows,
we came to a circumstance which is responsible for those
results and is connected to the structure of the circuits. The
Figure 5 shows the numeral IDs of root nodes of the every
one of the sub-circuit identified using the GSRW method. The
blue ones represent those, for which the desired reconvergent
path was found and the orange ones are those for which
the reconvergent path does not exist and the same window-
like selection as in the GSW was established. It can be
seen, that for the ‘hamming‘ benchmark (see Figure 5c), the
reconvergent path was selected in almost every iteration of
the optimization algorithm, which is good. However, we can
clearly see, that the root nodes (and thus the reconvergent
paths) were always selected from a limited set of nodes, as
the blue-boxed IDs are concentrated around quite a thin area
across all of the computed iterations. This brings us to a
conclusion that in this case (and in the four others as well,
as the root node dissipation was pretty similar for them)
the selection algorithm was stuck to a limited set of the
reconvergent paths present in the particular circuits. Therefore,
the optimization was performed on a relatively small part of
the boolean networks for the whole time and the remaining
parts of the circuits were left unnoticed, which caused worse
reduction in comparison with the GSW method, which selects
the sub-circuits randomly. Despite not reaching the best results
in those five cases because of this issue, the GSRW method
was still able to reduce those five circuits by a decent amount
of gates.

This statement could be supported with the root node dis-
sipation for the cases where the GSRW method outperformed
the other methods. As an example, we present the ‘pci spoci‘
and ‘sasc‘ benchmarks. It can be seen, that the root nodes
(majority of them rooting a reconvergent path) were selected
from a much wider area compared to the total number of
nodes in the circuit. That caused the good performance of
the GSRW method not only in this case, but also in all of
the other winning cases reported in the Table I. Presence of
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Fig. 4: Convergence trough all of the generations
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Fig. 5: Root location through the iterations.

the blue-marked root nodes in Figures 5a, 5b shows, that the
GSRW was not always able to select a window containing a
reconvergent path, but it was able to modify the circuit in a
way that new suitable reconvergent paths appeared and were
further selected for optimization. So, being highly successful
in the reconvergent path selection does not necessarily imply
the best final circuit reduction, mainly when there is a small
number of reconvergent paths available.

V. CONCLUSION

State-of-the-art EA-based optimization is able to produce
substantially better results at the cost of a higher run time
compared to the conventional logic synthesis. However, the
run time increases with the increasing complexity of the
Boolean networks. Previous works addressed this problem by
combining the EA-based optimization with the principle of
the so called Boolean network scoping. However, the methods
used for sub-circuit selection were causing an inefficiency
resulting in a waste of computational time, when trying to
reduce sub-curcuits, that could not be optimized any further.
Our work addressed this problem by selecting sub-circuits that
contain so-called reconvergent paths. This allowed us to focus
the computational effort on the parts of the original circuits
that have the high chance of reduction in means of number of
gates. The proposed method outperformed the earlier presented
works focused on EA-based optimization combined with sub-

circuit selection in 22 out of 28 cases. When compared to the
globally working EA-based optimization, the proposed method
won in 26 out of 28 cases. The overall average reduction
was 13.4% for the IWLS’05 benchmarks and 14.5% for the
arithmetic benchmarks. In our future work, we would like to
further improve the sub-circuit selection so that it does not
stuck to a limited set of reconvergent paths as it had in some
of our experiments.
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