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ABSTRACT
Anomaly detection in industrial control systems based on traffic
monitoring is one of the key components in securing these critical
cyber-physical environments. Many anomaly detection methods
have been proposed in the past decade. They are based on various
principles stemming from signature detection, statistical analysis,
or machine learning. Because of the lack of ICS communication
datasets, their evaluation and mainly comparing their performance
is problematic. If provided as a prototype implementation, the meth-
ods are implemented in various languages and require different
input formats. In the present paper, we propose a library that can
process ICS communication, extract required information, e.g., var-
ious packet-level or flow-level features, and provide the data to
a user-specified anomaly detection method. It is possible to inte-
grate the library in the system that automates the entire processing
pipeline enabling us to conduct experiments with different methods
while saving the time needed for manual data preparation.
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• Security and privacy → Network security; • Networks →

Network monitoring.
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1 INTRODUCTION
Detection of security threats in industrial networks became critical
after criminals committed several serious attacks against critical
systems worldwide. Research on anomaly detection for the ICS
environment has produced numerous methods to identify the non-
standard network traffic possibly indicating the attack. Though

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ECBS’21, May 26–27, 2021, Novi Sad, Serbia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9057-6/21/05. . . $5.00
https://doi.org/10.1145/3459960.3459963

authors commonly evaluate published research methods, it is often
difficult to reproduce them and compare them with other existing
approaches. This is mainly because not all authors publish imple-
mentations of their experimental methods or datasets using for
evaluation.

Recently, most approaches to network traffic classification and
anomaly detection have been based on machine learning algo-
rithms. Regardless of the algorithm used, heavy data preprocessing
is required to extract features from the source data. In the case of
network data, we are speaking about extracting either statistical
information about the communication and/or selected fields and
computed values from the network protocols. Researchers usually
build their own ad-hoc solutions containing a wide range of existing
single-purpose tools to implement network traffic processors.

Once the input data is ready, the data science part begins. The
anomaly detection method’s design means applying selected algo-
rithms and repeating experiments until all parameters are set. The
method provides the best result on datasets available. In the initial
phase of the design, the interactive approach using, for instance,
Jupyter Notebooks provides a suitable environment for researchers.
Later, when the method’s major contours are fixed, the automation
of the process is required.

Anomaly detection methods are acceptable for deployment if
their accuracy, reliability, and robustness can be demonstrated and
thoroughly tested. Methods that work well in experiments may
suffer various issues when applied in the real-world environment.
In particular, an excessive false-positive rate may be very annoying
for operators, eventually leading to disabling the method. To test
the method, a rich collection of datasets is necessary. While the
carefully collected ICS communication traffic from a controlled
environment is used for design and immediate evaluation of the
method, datasets collected in a real environment are necessary for
further testing.

1.1 Motivation
While several data science libraries and frameworks offer rich envi-
ronments for data analysis, visualization, and design of classifica-
tion and anomaly detection methods, the data preparation phase
usually requires the application of various CLI tools, which is a
time-consuming and tedious activity. The data preparation phase’s
output can be a dataset represented as a CSV file or in some other
suitable format. Sometimes the dataset needs to be rebuilt, which
entails another cycle of data preparation activity. For the network-
based anomaly detection methods, the data source is represented
by packet traces. To extract the features from packet traces, packets
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need to be decoded, which requires specialized tools implementing
the required protocol parsers.

The presented work’s motivation is to improve the development
life cycle of anomaly detectors that integrates the data preparation
phase. It involves at least two different patterns of activities that
are usually done using different sets of tools:

• The interactive pattern, which is suitable in the initial phases
for performing exploratory data analysis identifying accept-
able anomaly detection models.

• The batch pattern, which is used in the following stages of
development when different methods and parameters are
tested on large datasets to select the best available model.

With a carefully crafted environment, we believe that both activities
can be supported by the same collection of tools, thus saving the
transition between design phases and avoiding learning different
tools.

1.2 Contributions
Our contributions are as follows:

• We design and implement a new packet capture prepro-
cessing library that can be referenced from the anomaly
detection design projects. The library provides functionality
that covers packet capture reading, packet decoding, fea-
ture extraction, conversation tracking, and data exporting
to a representation suitable for integration with machine
learning toolkits.

• We perform a preliminary evaluation of the library’s per-
formance in terms of execution time for the most expected
tasks. We compare it with the baseline represented by the
tshark tool, one of the most used applications for packet
traces processing.

• We provide a demonstration of the easy to use through the
example of two AD methods. These methods work on dif-
ferent data sources, namely, flow records and timed packet
series. It is shown that the library is flexible enough to sup-
port both cases.

While the library is still under development, we believe re-
searchers can already use it for AD methods experiments. The
implementation is publicly available on GitHub.

1.3 Paper Organization
The paper’s remainder is organized as follows: Section 2 overviews
the anomaly detection methods focused specifically on the ICS do-
main. Section 3 provides a discussion of related works, listing the
known environments supporting the traffic classification develop-
ment. Section 4 presents the architecture and main components of
the proposed library. Section 5 provides the evaluation and demon-
stration of two use cases. The paper is concluded in section 6 by
summarizing the current state and discussing the future work.

2 ANOMALY DETECTION IN ICS NETWORKS
Intrusion detection systems (IDS) have been adapted to protect
industrial control systems. Anomaly-based detection systems that
analyze network communication are specific types of IDS. The

anomaly detection system is supposed to reveal differences be-
tween the actual system behavior and the one considered to be
normal. Anomaly detection systems can work at various layers of
the ISO/OSI model, for instance:

• A system observes the network-layer communication only.
The normal ICS system behavior is determined in terms
of, e.g., the common number of packets or amount of data
transferred, expected hosts, and communication protocols.

• A system can learn or be instrumented [24] with the particu-
lar ICS model of the control process to detect any deviation
from the expected behavior. It is required to decode ICS
application protocols and provide other system-specific in-
formation for modeling the normal behavior and detecting
anomalies.

Some systems do not perform full packet inspection, but they
work with network flow records instead. While these systems’
advantage is performance and scalability, their accuracy may be
affected by the lack of information available.

Various methods and algorithms have been used for anomaly
detection in ICS environments. Ahmed et al. [18] presented a sur-
vey with the generic framework of AD methods and categorized
methods as classification-based, statistical, clustering, and those
based on information theory. In the rest of this section, we present
the selected methods roughly grouped according to their major
characteristics.

2.1 Classification-based Methods
One-Class Support Vector Machine (OCSVM) was employed by
Shang et al. in [19] to detect anomalies in Modbus communication.
A normal communication behavior model is based on observation
of Modbus function codes. Inoue et al. [20] compared Deep Neural
Networks and one-class Support Vector Machines applied on logs
from the Secure Water Treatment (SWaT) testbed showing that
DNN has a better false-positive ratio while the SVM was able to
detect more attacks. A method called TABOR was introduced by
Lin et al. in [21]. It consists of timed automata and Bayes networks
for profiling the normal operational behavior of SCADA systems.
The normal behavior models are used as one-class classifiers to
identify irregular behavioral patterns and dependencies. Support
Vector Machine (SVM), Random Forest, k-nearest neighbor, and
k-means clustering were considered for anomaly detection meth-
ods and compared using the synthetic ICS dataset by Anton et al.
[13]. Anomaly detection employing neural networks has become
popular recently [22]. Siegel [17] reported improvements over tra-
ditional machine learning methods between 5%-15% for two sensor
datasets. Kreimel et al. gave a comparison of neural networks with
a model-checking approach for monitoring SCADA systems using
a real testbed representing the substation domain in [16]. Their ex-
periments demonstrate that both methods provide accuracy greater
than 90%.

2.2 Model-based Methods
Finite-automata are often considered as a suitable behavior model
for ICS communication. Faisal, Cardenas, and Wool [24] proposed
a DFA-based model for Modbus using the specification approach.
Contrary to traditional learning approaches, the model is created
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mostly manually from the design documents. Zhanwei and Zenghui
[25] used a discrete multi-input and multi-output (MIMO) system
model to represent Modbus communication. Elbez et al. [23] ap-
plied an Auto-Regressive Fractionally Integrated Moving Average
(ARFIMA) model to describe the GOOSE communication. It was
shown that the statistical AD based on the Generalized Likelihood
Ratio Test (GLRT) and the cumulative sum (CUSUM) is capable of
detecting anomalies in GOOSE communication.

2.3 Time-series Analysis
Time series analysis methods aim at exploiting the characteristics
of ICS communication, namely periodicity. Barbosa et al. [26] in-
troduced a novel approach for learning periodic traffic patterns.
The traffic is decomposed to a sequence of tokens consumed by a
learner module, which processes each token to identify and charac-
terize periodic activities. Learned cycle models are used to detect
deviations in the traffic. The method is demonstrated on Modbus
and MMS traffic. Lai et al. [12] built a traffic model based on a
structural time series model for a chemical industry system. The
structural model is given in terms of a trend item, a seasonal item, a
cyclical item, and an irregular item. Model parameter estimation is
done using standard Kalman filter recursions and the EM algorithm.
Lin and Nadjm-Tehrani [14] dealt with the timing characteristics
of spontaneous events in an IEC-104 network. The Inter-arrival
time model and correlation model are created and consumed by
the anomaly detector that generates alarms for unusual network
behaviors.

3 RELATEDWORK
The need to compare different traffic classification techniques was
imminent about a decade ago when the pace of introducing new
methods was significantly rising. As the answer to this concern,
traffic classification design and evaluation systems were introduced.
This section lists the most relevant systems, followed by a brief
comparison with our library.

NeTraMark [2] was the first Internet traffic classification bench-
mark where eleven different state-of-the-art traffic classifiers were
integrated. It enables the creation of new classifiers and their com-
parison by basic performance metrics. Also, the rich GUI with
multiple visualization views is provided.

A long-term effort led to the development of the Traffic Identifica-
tion Engine (TIE) [7]. TIE is an open-source tool for network traffic
classification developed between 2008-2014, focusing on evalua-
tion, comparison, and combination of different traffic classification
techniques. The TIE focuses only on traffic classification, but it
offers different operating modes, including real-time. The TIE was
popular in the community and has been widely used to design and
evaluate traffic classifiers.

A similar system, TrafficS [3], is a real-time network traffic clas-
sification and benchmarking tool. It features a traffic sampling
method suitable to design and evaluate high-performance classi-
fiers. The system tracks changes in statistical features to discover
the most significant ones that affect the classification performance.

The Piper framework [7] was recently developed, which imple-
ments a unified network traffic processing pipeline to supply data
for different ML applications. By consolidating data preprocessing,

it is possible to deploy multiple ML-based analysis modules for
real-time applications.

Some other tools exist that provide an environment suitable
for classifier construction and evaluation. For instance, Network
Traffic-based Application Identification (netAI) has been devel-
oped for identifying the applications of the corresponding network
flows. The environment is a collection of standalone tools, including
machine learning suite WEKA. The environment is quite flexible
though it requires the deep knowledge of several different tools and
some effort to integrate them correctly into the working processing
pipeline.

The idea of our library is close to NeTraMark and TIE. Contrary
to NeTraMark, our library does not provide a rich user interface in
itself. Instead, the integration with Jupyter Notebook is considered,
enabling us to use any available visualization package for data pre-
sentation and graphing. Contrary to TIE, TrafficS, and Piper, we
do not primarily aim at providing an environment for real-time
classifiers. Instead, we focus on providing a unified data process-
ing pipeline that integrates the entire design lifecycle into a single
development environment. We also support both packet-level and
flow-level data sources. The full packet content is retained in the
traffic storage. Also, the interactive design and experimentation
is a key principle offered. The system offers comparable perfor-
mance with the existing solutions when integrated with an efficient
machine learning library.

4 LIBRARY OVERVIEW
The library is written in C# language targeting .NET Core frame-
work, which enables it to run on all major OSes. The library imple-
ments the first two stages of the processing pipeline, as depicted in
Figure 1. The individual components can also be used independently
from projects that require packet capture processing functionality.
The library can be referenced from a command-line tool or interac-
tive Jupyter notebooks with .NET Core support. The first option
is useful for implementing standalone tools in the later stages of
the development. The second option is mainly utilized during the
method design and prototyping, including interactive code execu-
tion and modification.

The main components of the library are as follows:
• Capture trace providers implement loading and storing packet
from and to packet capture files.

• Protocol decoders parse themost common network protocols
and selected ICS protocols (DLMS, DNP3, MODBUS/TCP,
S7COMM). It is possible to implement new protocol parsers
when required.

• Traffic store is the heart of the library. It is a (persistent) key-
value database for storing packets and conversation, based
on the FASTER key-value store providing high performance
and supporting data larger than a memory.

• Conversations and packet processors provide methods that
consume conversations or packets, respectively, and produce
user-defined results.

The library is primarily used for packet trace preprocessing. The
output data is produced by conversation and packet processors.
When developing a new AD method, the user usually provides
a conversation or packet processor implementation to obtain the
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Figure 1: Processing pipeline of the training phase

required type of output data. The main phases of this procedure
are described in the remainder of this section.

4.1 Injecting Packets
The processing pipeline starts by consuming a stream of packets,
either read from a packet capture file or captured on a network
interface. Often, not all traffic is interesting, and the BPF can be
set to filter input packets. When the packets are injected, they
are grouped into conversations. The conversation represents the
bidirectional flow. Thus, the original packets and identified conver-
sations are stored in the traffic data repository. This store provides
fast insertion and updates. The implementation uses techniques to
reduce memory allocations to improve performance.

4.2 Processing Conversations
When packets are injected into the library, they are immediately
collected in conversations. The conversation is a transport-level
bidirectional session defined as the tuple consisting of the following
field: transport protocol, source IP address, source port, destination
IP address, and destination port. No checking is made on whether
the connection is the correct TPC session, i.e., filtering retransmitted
segments, detecting missing segments, or checking SYN, FIN, and
RST flags are not performed. Conversation processors can further
analyze the conversations, possibly extracting valid TCP sessions.

Once packets are in the traffic store, they can be accessed directly
or via their parent conversations. In both cases, a processor is
applied on packets to produce the required results. There are two
types of processors:

• A conversation processor is used to analyze and extract
features from the whole conversation. It takes a conversation
as an input and produces the output of the specified type.
For instance, the NetFlowProcessor generates NetFlow-like
records from conversations.

• A packet processor is used to compute resulting records from
individual packets. A processor provides a method that takes
a packet as an input and generates the specific output. For
instance, the MODBUS packet processor parses the packet

and produces a collection of selected fields, e.g., function
code and address of fields referenced.

The library enables batch processing of conversations and pack-
ets using processors. By this means, features can be extracted for
either individual packets or conversations. Since conversation pro-
cessors have access to full packets, they can also use packet proces-
sors to obtain individual packets’ values. For instance, considering
MODBUS/TCP communication, it is possible to extract MODBUS
function codes, enabling to enrich a set of features with application-
level information. This is employed in Modbus Packet and Modbus
Conversation processors that export features for individual MOD-
BUS packets and bidirectional flows, respectively.

We have implemented several conversation processors, but the
user can implement her own by extending provided abstract classes.
Implementing the new processor amounts to specify the result
type and a function that computes the output value for each input
record. To avoid repetitions and code duplication, the conversation
processors can be used within other processors or pipelined using
basic composition operations. Also, it is possible to apply multiple
processors to the same source data and then aggregate their results.

4.3 Exporting Features
The processors’ main goal is to extract information relevant for
further processing in AD method training or testing. The result of
applying the processor to an input collection is a set of records. The
library provides functions that turn resulting records into the input
compatible with the machine learning library ML.NET [8]. The
ML.NET uses abstract data type DataView for defining the input
and output of all operations. A generated record can be represented
by any struct or class type with arbitrary nested values. Because
DataView is a collection of simple records, our library performs
automatic flattening using information obtained from reflection.
The access methods are generated in runtime for all types used as
DataView objects to improve the performance. The further feature
manipulation is then done by applying methods from DataOpera-
tionsCatalog on DataView input provided by the ML.NET library.
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4.4 Model Training
The anomaly detection model training is done primarily in the
realm of the ML.NET library. The choice of this library is obvious.
It provides an off-the-shelf collection of high-performance machine
learning algorithm implementations and enables integration with
some major ML frameworks. It is also possible to use tools other
than ML.NET. The data interface consists of a collection of records
produced by conversation or packet processors. All produced collec-
tions have pull-based access, which means that data are computed
on demand, improving the performance and reducing the memory
overhead. To integrate with other tools, it is enough to implement
a connector similar to that for DataView.

4.5 Interactive Mode
Jupyter Notebook provides a suitable environment for interactive
data exploration and experimental anomaly detection method de-
sign. The library’s integration is possible thanks to .NET Interactive
package that implements a .NET support for Jupyter notebooks.

In the interactive mode, the user mainly calls functions from a
uniform API surface provided by the library. This API offers the
library’s most helpful functions that implement common usage
patterns, e.g., loading packet trace to a conversation table, applica-
tion of conversation processor, and storing conversation records
to the CSV file. The standard libraries, e.g., LINQ, Collections, I/O,
offer additional operations to manipulate data enumerations and
access files. Machine learning and data visualization is enabled by
referencing ML.NET and XPlot.Plotly packages.

4.6 Batch Mode
Usually, in the batch mode, the new (console) application is written.
This application references the necessary libraries for data prepro-
cessing, machine learning, and output generating. The application
is then repeatedly executed in experiments with different methods
and parameters. All public classes of the library that implement
specific parts of the data processing functionality can be directly
used from the console application too. It is possible to tune data
processing performance using optimized data loaders, parameters
of conversation tables that control the allocated storage space, dif-
ferent processors, etc. Because of using the uniform development
environment, the most of the source code (including data prepro-
cessing) is the same as in the interactive phase.

5 EVALUATION AND USE CASES
The evaluation presented in this section aims to demonstrate that
the proposed library can improve the data preparation phase in
terms of performance and user experience.

In the performance evaluation, the proposed tool is compared
with tshark, commonly used for extracting data from packet capture
files during the data preparation phase. Both tshark and the library
are asked to perform the same tasks: data extraction from the source
capture file. The amount of time required for various sizes of inputs
is then compared.

The possible application scenarios of the proposed library are
demonstrated using two simple anomaly detection methods. The
first method consumes network flow data to learn the model using
a one-class K-means algorithm. The normal behavior is represented

through the expected number of operations within a fixed interval
window. The second method works on packet-level and builds the
model that performs time series anomaly detection. Spikes and
change points identified in the series of packets are reported as
anomalies.

The purpose of these AD implementations is only to demonstrate
the library’s principles and its smooth integration with a machine
learning library. For this reason, we have not considered evaluating
the performance of demonstrated anomaly detection methods in
terms of accuracy, precision, recall, and other relevant metrics.
Instead, the purpose is to show that the data preprocessing library
easily integrates with the machine learning framework.

The primary datasets considered for evaluation are from the in-
dustrial cybersecurity conference 4SICS, which hosts ICS/SCADA
cybersecurity stakeholders across critical industries. When com-
pared to other available datasets, the 4SICS packet traces contain
the richest set of ICS communication. We tested the environment
with other available MODBUS datasets [27], but the results are only
presented for 4SICS data. The environment can also decode other
ICS traffic (DNP3, S7, DLMS), but we left experiments with these
protocols for future work mainly because of the lack of suitable
datasets.

5.1 Data preprocessing performance
experiments to measure the computation time required for the
data processing in a typical application scenario. All experiments
are conducted on 2-processor 16-cores Intel Xeon CPU E5-2620
machine running at 2.1GHz, with 128GB RAM running 64-bit Win-
dows 10. We measured data load time and data processing time. We
present the result only for three representative datasets containing
MODBUS/TCP communication. The size of source capture files
was 25MB, 140MB, and 200MB containing 246k, 1.2M, and 2.2M
packets, respectively. The results are shown in Table 1. It consists
of three rows each for the dataset used. The first four columns give
information on the datasets: dataset name, file size in bytes, number
of packets, and the duration. The next columns are running times
for different experiments.

To set a baseline we used a tshark tool that generates CSV files for
provided capture files consisting of selected MODBUS/TCP fields
(column tshark). The library was benchmarked separately for the
two phases:

• Packet trace ingestion - packets from the source capture file
are loaded in the storage performing conversation identifica-
tion (column Ingest). The packet storage stands for the data
source in interactive and batch mode instead of the original
capture files.

• Feature Export - packets from the store are processed using
Modbus processors. Either packet-level features (column
Exp/P) or conversation-level features (column Exp/C) are
extracted.

Each benchmark was executed several times to get the average
running time. In addition to the similar output as tshark (CSV file of
Modbus packet fields), the pipeline can produce the IPFIX records
of MODBUS/TCP conversations. As seen, the overall processing is
an order of magnitude faster using the library compared to tshark.
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Table 1: Dataset parameters and processing time

Dataset Size[B] Packets Duration tshark[ms] Ingest[ms] Exp/P[ms] Exp/C[ms] Pipeline[ms]

4SICS-151020 25,711,082 246,137 6:59:57 15764 782 396 473 1650
4SICS-151021 139,998,821 1,253,100 24:00:02 83217 3089 1621 2293 7004
4SICS-151022 209,236,002 2,274,747 15:02:02 145320 6338 2469 3159 11966

Listing 1: An example implementation of the AD trainer

/ / PART 1 : Data i n g e s t i o n
us ing var c onv e r s a t i o nTab l e = F a s t e rConv e r s a t i o nT a b l e

. C rea t e ( $ " { s o u r c e F i l e } . db " ) ;
u s ing var l o a d e r = c onv e r s a t i o nTab l e . Ge tS t reamer ( ) ;
u s ing var pcapReader = new SharpPcapReader ( s o u r c e F i l e ) ;
wh i l e ( pcapReader . GetNextFrame ( out var rawFrame ) ) {

l o a d e r . AddFrame ( rawFrame ) ;
}
l o a d e r . C lose ( ) ;

/ / PART 2 : Data p r e p a r a t i o n
var p r o c e s s o r = new Modbus . ModbusB i f l owProces sor ( ) ;
var windows = c onv e r s a t i o nTab l e . Conve r s a t i on s

. GroupByWindow ( s t a r t , d u r a t i o n ) ;

var modbusProcessor = new ModbusB i f l owProces sor ( ) ;
var r e c o r d s = windows . Se lec tMany ( conv =>

conv e r s a t i o nTab l e . P r o c e s sConv e r s a t i o n s ( conv ,
modbusProcessor . ApplyToWindow ( s t a r t , d u r a t i o n ) ) ) ;

/ / PART 3 : Model T r a i n i ng
var t r a i n i n gDa t a = r e c o r d s . AsDataView ( ) ;
var mlContext = new MLContext ( ) ;
var no rma l i z e = mlContext

. Trans forms

. NormalizeMinMax ( " F e a t u r e s " ) ;
var op t i on s = new KMeansTrainer . Opt ions {

NumberOfClus ters = numberOfClus te r s
} ;
var p i p e l i n e = no rma l i z e

. Append ( mlContext . C l u s t e r i n g . T r a i n e r s . KMeans ( o p t i on s ) ) ;

var model = p i p e l i n e . F i t ( t r a i n i n gDa t a ) ;

5.2 OC-KMeans Anomaly Detection
This method implements a clustering algorithm to model normal
traffic as a collection of clusters. Based on identified clusters of
normal flows, it is possible to classify the new flow either as normal
or unknown.

In the training phase (see the algorithm in Listing 1), IPFIX
records representing the normal behavior are clustered using the
K-means algorithm. Each cluster identifies a conversation pattern.
The input to the K-means algorithm is a feature vector that is cre-
ated from selected Modbus IPFIX fields. The code of the trainer
consists of three parts. The first part implements data loading to
the store. This needs to be done only once for every dataset used
for training. The second part implements data preparation.Modbus-
BiflowProcessor processes the conversations from the library store.
Before ModbusBiflowProcessor is applied, the stored conversations
are ordered and grouped in the defined duration windows as re-
quired by the ADmethod. This amounts to i) compute intervals and
identify included conversations by applying the GroupByWindow
operator, and ii) limit the application of the conversation proces-
sor only to a part of the conversation that appears in the current
window (operator ApplyToWindow). The third part is the trainer

Listing 2: An implementation of Time Series AD

/ / PART 1 : DATA PREPARATION
var f rames = t a b l e . P roce s sF rames ( t a b l e . FrameKeys ,

new TimedFrames ( ) ) ;
var i n t e r v a l s = f rames . GroupBy ( x =>x . T i ck s / t i m e I n t e r v a l . T i ck s ) ) ;
var f r amesVa lue s = i n t e r v a l s . S e l e c t ( x => new PacketCountData {

Timestamp = x . Key ∗ t i m e I n t e r v a l . T icks ,
Value = x . Count ( ) } ) ;

/ / PART 2 : TIME SERIES AD
var mlContext = new MLContext ( ) ;
var da tav i ew = mlContext . Data . LoadFromEnumerable ( f r amesVa lue s ) ;
i n t p e r i o d = mlContext . AnomalyDetect ion

. D e t e c t S e a s o n a l i t y ( datav iew , " Value " ) ;
var op t i on s = new SrCnnEnt i r eAnomalyDetec to rOpt ions ( ) {

Thre sho ld = 0 . 3 , S e n s i t i v i t y = 8 0 . 0 ,
DetectMode = SrCnnDetectMode . AnomalyAndMargin ,
P e r i od = pe r i o d

} ;

/ / PART 3 : Invoke SrCnn a l go r i t hm to d e t e c t anomaly
var outputDataView = mlContext . AnomalyDetect ion

. DetectEnt i reAnomalyBySrCnn ( datav iew , " P r e d i c t i o n " ,
" Value " , o p t i o n s ) ;

var p r e d i c t i o n s = mlContext . Data
. CreateEnumerab le < Pa cke tCoun tP r ed i c t i on >( outputDataView ,

reuseRowObjec t : f a l s e ) ;

implementation using ML.NET. The result is the model that can be
saved and used for anomaly detection. The training data is trans-
ferred to ML.NET using the AsDataView method, which maps the
records from the conversation processor to the IDataView type
required by the ML.NET. The created model can be further used for
evaluation and parameter tuning.

5.3 Time Series Anomaly Detection
To demonstrate the library’s use for time series anomaly detection,
the output from a packet processor is fed to SR-CNN anomaly de-
tector [10]. The code snippet is shown in Listing 2. The detector
expects a series of data. The first part prepares the data by collecting
packets in defined time intervals. For each interval, we determine
packet count. Although, any aggregation can be used, e.g., total
octets transmitted, number of TCP segments, etc. The second part
creates MLContext, loads prepared data, and computes the season-
ality. Finally, in the third part, the anomalies are detected, and the
result is provided in the predictions collection.

6 CONCLUSION
To evaluate the existing anomaly detection techniques and simplify
the design of new methods, we implemented a library for network
data preprocessing. Designers can utilize the library during the in-
teractive design activities by referencing it from Jupyter Notebooks
as well as for writing standalone anomaly detection tools.
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The presented library implements a function for processing
packet traces. In addition to common functions of similar tools,
conversation tracking is implemented. It enables users to obtain
arbitrary flow-level and packet-level features by applying the cus-
tom processors. The preliminary evaluation demonstrates that the
library can be employed in the design pipeline providing the neces-
sary performance, and it is easy to use.

We compared the proposed library to a tshark-based preprocess-
ing pipeline commonly used to extract features from packet traces.
We were able to improve the overall performance of the preprocess-
ing phase. However, it does not mean that tshark is not a suitable
tool for data preprocessing and feature extraction. Tshark offers
much more functions than our library and supports hundreds of
communication protocols. Our library offers a specialized collection
of functions supporting only the limited set of use cases related to
the design and development of anomaly detection methods. The
aim was also to enable the tight integration with machine learning
libraries avoiding generating and loading intermediate CSV files.
Finally, we can use the library directly from Jupyter notebooks for
interactive development, simplifying the entire process.

The proposed library is still in an early stage of development.
Further performance improvements, new features, the unification
of the preprocessing pipeline, and support for on-line processing
are anticipated steps towards the full-fledged implementation. The
source code of the library is publicly available1.
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