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Abstract—This paper presents and evaluates the possibility
of automatic design of fault-tolerant systems from unhardened
systems. We present an overview of our toolkit with its three
main components: 1) fault-tolerant structures insertion (which we
call helpers); 2) fault-tolerant structures selection (called guiders);
and 3) automatic testbed generation, incorporating advanced
acceleration techniques to accelerate the test and evaluation.
Our approach is targeting complete independence on the HW
description language and its abstraction level, however, for our
case study, we focus on VHDL in combination with fine-grained
n-modular redundancy. In the case study part of this paper,
we proved that it is undoubtedly beneficial to select a proper
fault tolerance method for each partition separately. Three
experimental systems were developed with the usage of our
method. Two of them achieved better reliability parameter while
even lowering their chip area, compared to static allocation of
equivalent fault tolerance technique type. In the case study, we
target the best median time to failure, the so-called t50, however,
our method is not dependent on this parameter and arbitrary
optimization target can be selected, as soon as it is measurable.

Keywords—Fault-Tolerant System Design, Electronic De-
sign Automation, Redundancy Insertion, Redundancy Allocation,
Multiple-choice Knapsack Problem, FPGA, VHDL, t50.

I. INTRODUCTION

Certain types of electronic systems must be able to main-
tain high level of reliability. The various reasons for this exist.
For instance a control system of a medical equipment must
remain stable otherwise a human health would be endangered.
Another group of systems cannot be repaired because it
is difficult or even impossible to access them. This group
includes, for example, satellites, space research probes or space
rovers. The design of all of these systems must, therefore,
reflect the demand for the high reliability. Generally, reliable
systems must be able to perform their task while delivering
correct results in prescribed time. One well-known approach to
reliable system design is the so-called Fault Tolerance (FT) [1].
This approach is based on FT enhancement of the system,
while the components are considered naturally unreliable. The
architecture of the system is, however, designed and configured
in such way, that a failing component does not influence the
correctness of produced results nor their timing requirements.

In our research, we focus primarily on FT of commercially
available Field Programmable Gate Arrays (FPGAs) that are
storing their configuration bitstream in the SRAM memory.
These are, especially in the area with increased radiation,
prone to the so-called Single Event Upsets (SEUs). SEUs
have potential to flip a configuration bit, thus, changing the
implemented design function and possibly the correctness of
results. Primarily, we research the possibilities in the FT design
automation. Our previous publications [2], [3], [4] presented
the possibilities of automatic incorporation of FT structures

into algorithms written in a higher programming language,
synthesized using the High-Level Synthesis (HLS) Design
Flow [5]. In this new paper, we present a new method of incor-
porating FT structures into VHDL language. Description code
modification algorithms are strictly separated from allocation
algorithms. This is different from the related work FT design
automation tools and allows to operate our FT automation
toolkit on various description languages of various levels of
abstraction while re-using most of the toolkit. As opposed to
behavioral-level C++ design in [3], this paper is primarily fo-
cused towards designs described in the structural-level VHDL.
This research aims to abstract from the description language
and bring the FT system design automation in a comprehensive
way, which should also be the contribution of our research.

Tools to insert a particular redundancy method exist. Some
of them are available only commercially, such as the Xilinx
TMRTool [6], which works as a part of the synthesis process,
during which it modifies the synthesized design. Another
tool is the BYU-LANL TMR Tool (BL-TMR) [7], which is
not strictly commercial as the TMRTool. The tool targeting
Verilog, called TMRG [8], works on the description-code level.
It focuses on Triple Modular Redundancy (TMR) exclusively.

Approaches to solve the reliability allocation problem can
also be found in literature. For example, the genetic algorithm
was used for this purpose in [9] and [10], where the use of
Non-dominated Sorting Genetic Algorithm II (NSGA-II) was
used to find a number of promising solutions. The authors
of paper [11] present a combination of previously mentioned
BL-TMR insertion tool with design space exploration, while
targeting various optimization goals.

After a design is hardened, it must be properly tested to
ensure its compliance with its specification. In the papers [12],
[13], techniques of fault injection into a real FPGA board
are shown. There is no need to modify the original design,
which is an important advantage. The paper [13] presents the
platform called FLIPPER. This platform utilizes two FPGAs,
one running the Design Under Test (DUT) and the other acting
as a controller. The paper [14] presents evaluation platform,
which was previously developed in our research group. It runs
on a PC and evaluates data captured from an FPGA. This
platform is, however, more suitable for the final testing, not
for the massively accelerated evaluations, that are necessary in
the process of FT system design automation.

This paper is organized as follows: Section II shows the
principles of our FT design automation toolkit and its main
concepts. The experiments setup and results are presented in
Section III. Finally, the Section IV concludes the paper.

II. FAULT-TOLERANT DESIGN AUTOMATION

The following section presents our FT design automation.
Our approach is based on the traditional flow, which incor-
porates manual iteration-oriented improvement of the system
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while addressing its weakest points. In the automated flow,
there is a description of the original system and the target spec-
ification available at the beginning. The specification might
include, for example, the percentage of critical bits of FPGA
bitstream or a Time to Failure (TTF). At first, the system must
be partitioned. At the moment, partitions are created based on
instances of VHDL entities. For the description language, the
so-called helpers are built. These allow to incorporate FT into a
partition of the system. Subsequently, the so-called guider must
select the most appropriate FT technique for each partition,
following the reliability specifications. The last part of the
automated flow is testing. This part is crucial according to our
previous experiences. The testing and parameters measurement
are usually performed in high quantities, making it very
time-consuming part of the design flow. The context of the
traditional and the automated flow can be observed in Figure 1.
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Figure 1: Traditional and Automatic Flows for FT System
Design.

A. The Helpers: Fault Tolerance Incorporation

In this paper, we use the newly created helpers for VHDL,
which allow us to harden specific entity instances. We consider
these as partitions, in the sense of the previously established
terminology. Special code comments must be written around
the instantiation, which instruct the helpers to make the spe-
cific modification. Our VHDL helpers are based on a group
of generic templates, which simplifies the addition of new
architectures. These are, however, limited by the encapsulation
of the entity instance, as these are currently considered as black
boxes. The group of templates is supplemented by additional
procedures that search for necessary data and use this data to
fill a generic template. At first, the VHDL helper divides the
original VHDL file into code-block tokens delimited by the
special code comments and identifies the tokens (e.g. instan-
tiation block, don’t care block, etc.). After that, the instances
marked for modification are selected and the whole VHDL
project is searched for basic pieces of the source description
code. These include, for example, entity declarations, signals,
etc. These are then parsed to obtain additional information,
such as signal directions, bit widths etc. for filling the generic
template. Also the clock signal name is detected, in order to
route this signal to an optional auxiliary component, such as a
scrubbing unit, in the template. After the template is filled, the
previous instantiation is modified to refer to this newly filled
template. The modification flow is displayed in Figure 2.

B. The Guiders: Fault Tolerance Strategy

It is important to have a strategy to select proper FT tech-
niques for each partition, while meeting the given constraints
(e.g. chip area). Such strategy, in our toolkit, is called the
guider. The guider basically solves the allocation of redun-
dancy techniques. It selects the appropriate FT techniques for
the partitions, in order to strengthen FT of the system, while
considering one or more constraints. Unachievable constraints
cause the design process to stop without a candidate solution.
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Figure 2: Simplified Code Example with VHDL Modification
Flow, Automated using VHDL Helpers.

In our toolkit, we utilize a form of the so-called Multiple-
Choice Knapsack Problem (MCKP) [15] solver in place of the
main guider. The MCKP is a specific variant of the general
Knapsack Problem (KP). The KP is one of the so-called com-
binatorial optimization problems [16], the target of which is to
maximize the value of items put into a hypothetical knapsack
of a given load capacity. The MCKP variant constrains the
items that are put into the knapsack. The items are divided
to classes and from each class, exactly one item must be
selected. As can be seen, the solution to this problem is
convertible to our problem of FT technique selection: we have
classes of different implementations for each partition. Each
implementation has different value (i.e. benefit in the form
of increased FT) and different weight (i.e. chip area, power
demand, etc.).

C. Fault Tolerance Evaluation

Testing and evaluation of a component or a system is
performed relatively often during the design flow. This makes
it the most time-consuming part of the complete FT design
flow. For this reason, we developed our Fault Tolerance
Estimation (FT-EST) framework [4], in which we stressed
its acceleration possibilities to expedite the evaluation. A test
design consists of a test controller and the tested units. We call
this complete formation a testbed.

The generated testbed has a fixed structure, although the
components are very configurable. The main part of a testbed
includes the so-called Input Generation Unit, which generates
the so-called stimuli for the testing. These can be streams of
data (e.g. generated using a counter or a Linear Feedback Shift
Register (LFSR) unit) or transactions of data. The outputs of
tested units are compared against the golden (i.e. reference)
unit and the differences are captured. The running tested unit is
paused through clock-gating. Fault Injector [17] artificially and
permanently changes utilized bits of Look-Up Tables (LUTs) in
specified times, based on the required fault intensity. Detailed
description of our FT-EST testbed generator can be obtained
from our previous publication [4].

III. THE CASE STUDY AND EXPERIMENTAL RESULTS

In the following section, a case study utilizing our FT
system design automation toolkit will be presented, based
on hardening of an artificially constructed system. Also the
parameters of the resulting systems will be discussed alongside
with the design flow.

A. Toolkit Setup

In our experiments, we prepared the helpers to include
the TMR and 5-Modular Redundancy (5-MR) techniques. We
also utilize the MCKP guider. We focus on the minimization
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of the median time to failure, also called the t50 parameter.
This parameter defines the time of 50% probability that the
system is still fully functioning. The t50 quantification is more
useful for our measurement, as it tends to remove extreme
values, opposed to the classical Mean Time To Failure (MTTF),
which utilizes the mathematical average. Also, the MTTF (i.e.
the period from system start, for which the fault masking is
possible) tends to lower with the added modular redundancy
for longer mission times [18]. We chose to precisely evaluate
each partition in advance and then estimate the resulting
system parameters inside the MCKP solver. After the solver
finishes, the best matched system is then evaluated precisely.
We use the FT-EST framework to generate our testbeds. As
the test stimuli generator, we use various bit-width variants of
LFSRs utilizing corresponding maximal-length polynomials to
produce a pseudo-random sequence of all the possible combi-
nations. The fault model includes permanent faults of utilized
bits of LUTs. Faults are injected into the precisely selected part
of the FPGA configuration bitstream. Their intensity is derived
from this bitstream size of the tested design, based on the fault
injection intensity unit – injection/s/bit. To measure the results,
testbeds for each partition and each system are synthesized
using the Xilinx Integrated Synthesis Environment (ISE) 14.7
and prepared using the Xilinx PlanAhead 14.7. Testbeds are
run on the ML506 board [19] with the Virtex 5 technology.

B. Toolkit Input: Benchmark System

We prepared a benchmark system composed of four hypo-
thetical partitions: 1) addition, 2) constant addition, 3) Cyclic
Redundancy Check on 8 bits (CRC-8) computation; and
4) number of high bits detection. Connection of these com-
ponents including their input and output bit widths can be
observed in Figure 3. The system was described in VHDL.

addition addconst numones

crc8

16 b

16 b

16 b

16 b

16 b 5 b

8 b
16 b

Figure 3: Benchmark System Structure.

C. The Helpers: Variants Generation

With the usage of helpers, we created two hardened variants
for each partition of the system. The overview of the partitions,
including their real measured parameters, can be seen in
Table I. As can be observed, each partition has a different size.
After the application of each technique, the FPGA synthesis
surely optimized the larger partitions better, as the sizes of
hardened partitions do not correspond to the theoretically pre-
dicted overheads (i.e. more than triple for TMR and quintuple
for 5-MR techniques). The so-called majority voters, which
are an integral part for both the TMR and 5-MR architectures,
were both included in the timing analysis and subject to fault
injection (as other parts of the complete component or system).
As can be seen, the t50 parameter improved for each partition
except the addconst TMR version, for which it was nearly 20%
worse, compared to the simplex t50. This might be caused by
the internal structure of the implementation or the nature of the
computation itself. The addconst holds the added constant in its
implementation. This, if hit, results in a logically functioning
design. The results are, however, computed from a different
constant values, rendering them incorrect. As can be seen
from the results, the effectiveness varies among the partitions,
thus supporting the need to methodically select the proper FT
method for each partition.

TABLE I: System Partitions with Their Size and Reliability
Parameters under Fault Injection Intensity of 2e−5 inj/s/bit

Partition
Name

FT

Technique
Bitstream

Area [b]

t50
[ms]

t50 Compa-

red to Simplex

[ms] [%]

addition
simplex 4 288 197 635 + 0 + 0.00

TMR 7 552 208 793 + 11 158 + 5.64

5-MR 9 856 225 042 + 27 407 + 13.87

addconst
simplex 3 264 337 843 + 0 + 0.00

TMR 6 656 271 246 - 66 597 - 19.71

5-MR 9 088 345 745 + 7 902 + 2.34

crc8
simplex 4 800 39 484 + 0 + 0.00

TMR 9 792 47 222 + 7 738 + 19.6

5-MR 14 272 60 227 + 20 743 + 52.54

numones
simplex 3 072 94 549 + 0 + 0.00

TMR 6 848 102 603 + 8 054 + 8.52

5-MR 10 304 119 195 + 24 646 + 26.07

The box plot chart displayed in Figure 4 illustrates the
scatter on the measured values for each partition. As can
be seen, the benefit of an FT technique is very fluctuating
among different circuit types. Also, the simplex minimum
time to failure (i.e. the worst measured case) is always better,
compared to the TMR and 5-MR versions. This means that
the dispersion rates of hardened partitions (at least towards
minimum values) are higher. Also, for the crc8 and numones
partitions, the middle 50% interquartile range is concentrated
nearer the median, indicating lower variability of these results.
This indicates that the TMR and 5-MR work better on these
partitions. The addconst was the only component visibly
deviating in efficiency of FT techniques, specifically for TMR.
As can be seen, the 5-MR version has a slightly better median
value, although the difference is nearly negligible. Nonetheless,
for the 5-MR version of this partition, the variability of the
middle 50% is also smaller, similarly but not so obvious as
for the numones and crc8 partitions.

5 20 50 200 500 2 000

Time To Failure [s]

Figure 4: Box Plot Chart of Time to Failure for Each Partition
and Their Hardened Variants.

D. The Guiders: Automatic Composition of Systems

Three systems were automatically composed using our
methods. Methods were configured to minimize the t50 pa-
rameter while not exceeding a given chip area. These area
limits were based on the bitstream area that was subject to the
fault injection. This was 20 000, 25 000 and 30 000 bits. The
overview of synthesized systems, including their parameters,
can be seen in Table II. We also created two additional
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homogeneous reference systems, each of which is utilizing one
type of FT technique applied to each partition.

TABLE II: Automatically and Manually Composed Systems
(as a Reference) with Reliability Parameters under Fault In-
jection Intensity of 2e−5 inj/s/bit

System
Name

FT

Techniques Bitstream

Area [b]

t50
[ms]

addition addconst crc8 numones

auto 20000 simplex simplex 5-MR simplex 18 624 43 198

auto 25000 simplex simplex 5-MR TMR 22 400 49 935

auto 30000 simplex simplex 5-MR 5-MR 25 856 49 675

ref simplex simplex simplex simplex simplex 9 152 23 559

ref TMR TMR TMR TMR TMR 24 704 42 173

ref 5-MR 5-MR 5-MR 5-MR 5-MR 37 376 55 900

As can be observed, the guider based on the MCKP
solver targeted the mostly failure-prone partitions: the crc8
and the numones. Incorporation of FT techniques into the
remaining two partitions was evaluated as not sufficiently
effective. The crc8 partition was the most error-prone, and
thus the highest hardening was allocated for this partition in all
the three cases. The smallest automatically composed system
occupied approximately 18 kbits, that is only 75.34% size of
the reference system size for which the TMR was manually
assigned to each partition. Despite this, the automatically
composed system shows slightly better t50 parameter than for
the manually created reference, thus, saving circa 25% of area.
The second automatically composed system is still by 9.33%
smaller than the manually created TMR one, yet its t50 is
more than 7 s longer. For the last automatically created system,
the t50 is nearly equivalent to the previous, second one. The
size of the third system is, however, larger. This wrong choice
of partitions by the MCKP solver is apparently caused by
imprecise estimation of system t50 from the components t50
times, thus, confusing to solver to choose sub-optimal selection
of FT techniques. Nevertheless, this third system is still more
than 30% smaller compared to the manually created 5-MR
system and its t50 is only by 11% worse.

IV. CONCLUSIONS

This paper presents a novel approach to FT system design,
which is able to work in various abstraction levels with various
language description formats. We implemented our solution in
the form of a toolkit with each part of the toolkit specializing
on a different task of the FT system design automation.
New template-based approach to helpers for incorporating FT
techniques into VHDL was presented alongside with the usage
of MCKP solver as the guider for the redundancy allocation.
Our automatic testbed generation framework was also briefly
described. We modified it to monitor, detect and report the
time of the first failure observation. The experimental eval-
uation and illustration of our approach was presented in the
Section III. In this section the experimentation is performed on
our artificial benchmark circuit. During our experiments, we
proved that it is undoubtedly beneficial to select FT method
for each partition separately. Three automatically generated
versions of the experimental system were developed with the
usage of our method. Two of them achieved better reliability
parameter while even lowering their chip area, compared to
static allocation of equivalent FT technique type.
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