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Abstract. Moldable scientific workflows represent a special class of sci-
entific workflows where the tasks are written as distributed programs
being able to exploit various amounts of computer resources. However,
current cluster job schedulers require the user to specify the amount of
resources per task manually. This often leads to suboptimal execution
time and related cost of the whole workflow execution since many users
have only limited experience and knowledge of the parallel efficiency and
scaling. This paper proposes several mechanisms to automatically opti-
mize the execution parameters of moldable workflows using genetic al-
gorithms. The paper introduces a local optimization of workflow tasks, a
global optimization of the workflow on systems with on-demand resource
allocation, and a global optimization for systems with static resource al-
location. Several objectives including the workflow makespan, computa-
tional cost and the percentage of idling nodes are investigated together
with a trade-off parameter putting stress on one objective or another.
The paper also discusses the structure and quality of several evolved
workflow schedules and the possible reduction in makespan or cost. Fi-
nally, the computational requirements of evolutionary process together
with the recommended genetic algorithm settings are investigated. The
most complex workflows may be evolved in less than two minutes using
the global optimization while in only 14s using the local optimization.

Keywords: task graph scheduling, workflow, genetic algorithm, mold-
able tasks, makespan estimation

1 Introduction

All fields of science and engineering use computers to reach new findings, while
the most compute power demanding problems require High Performance Com-
puting (HPC) or Cloud systems to give answers to their questions. The problems
being solved nowadays are often very complex and comprise of a lot of various
tasks describing different aspects of the investigated problem and their mutual
dependencies. These tasks compose a scientific processing workflow [3]. There
are immense of such scientific workflows in various fields [22], yet they have one
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thing in common. They all demand to be computed in the minimum possible
time, and more often, for the lowest possible cost.

The execution of a scientific workflow on an HPC system is performed via
communication with the HPC front-end, also referred to as job scheduler [13].
After the workflow data has been uploaded to the cluster, the workflow tasks
are submitted to the computational queues to wait until the system has enough
free resources, and all task dependencies have been resolved (predecessor tasks
have been finished).

Modern HPC schedulers control multiple processing queues and implement
various techniques for efficient task allocation and resource management [15].
However, the workflow queuing time, computation time and related cost are
strongly dependent on the execution parameters of particular tasks provided by
the user during submission. These parameters usually include temporal param-
eters such as requested allocation length, as well as spatial parameters including
the number and type of compute nodes, the number of processes and threads, the
amount of memory and storage space, and more frequently, the frequency and
power cup of various hardware components. These parameters, unfortunately,
have to be specified by the end users based on their previous experience with
the task implementation and knowledge on the input data nature.

In everyday practice, the estimations of task allocation lengths are quite
inaccurate, which disturbs the scheduling process. Most users deliberately over-
estimate the computational time in order to provide some reserve to mitigate
performance fluctuation and prevent premature termination of the task execu-
tion [23]. Moreover, many complex tasks are written as moldable distributed
parallel programs being able to exploit various amounts and types of computing
resources. Nonetheless, it is again the user responsibility to choose appropriate
values of these parameters according to the input data.

The task moldability is often limited by many factors, the most important of
which being the domain decomposition [6], parallel efficiency [2], and scalabil-
ity [14]. While the domain decomposition may limit the numbers of processing
units (nodes, processes, threads) to rather a sparse list of acceptable values, the
parallel efficiency determines the execution time and cost for a given task and
a chosen amount of resources. Naturally, the lower the parallel efficiency, the
lower the speed-up, and consequently, the longer the computation time and the
higher the computational cost. Finally, the scalability upper-bounds the amount
of exploitable resources by the overall available memory.

While the field of rigid workflow optimization, where the amount of resources
per task cannot be tuned, has been thoroughly studied and is part of common
job schedulers such as PBSPro [13] or Slurm [30], the automatic optimization
and scheduling of moldable workflows has still been an outstanding problem,
although firstly solved two decades ago in [10].

For the last decade, many papers have focused on the estimation of rigid
workflow execution time in HPC systems and enhancing the resource manage-
ment. For example, Chirkin et al. [7] introduces a makespan estimation algorithm
that may be integrated into schedulers. Robert et al. [25] gives an overview of
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task graph scheduling algorithms. The usage of genetic algorithms addressing the
task scheduling problems has also been introduced, e.g., a task graph schedul-
ing on homogeneous processors using genetic algorithm and local search strate-
gies [17] and a performance improvement of the used genetic algorithm [24].
However, handful works have taken into the consideration the moldability and
scaling behaviour of particular tasks, their dependencies and the current cluster
utilization [4, 9, 29].

This paper focuses on the automation optimization of the moldable scientific
workflow execution using genetic algorithms [28]. The optimization of execution
parameters is based on collected historical performance data (i.e., strong scal-
ing) for supported tasks in the workflow. The paper presents several objective
functions and trade-off coefficients that allow to customize the pressure either
on the overall execution time, or the computational cost, or both.

The rest of the paper is structured as follows. Section 2 describes the op-
timization algorithm, the solution encoding specifying the amount of resources
per task, the objective and fitness functions evaluating the quality of the candi-
date workflow schedule and the details of the applications use cases. Section 3
elaborates on the quality of the genetic algorithm and its best set-up, presents
the time complexity of the search process and compares several workflow exe-
cution schedules by the optic of particular objective functions. The last section
concludes the paper and draws potential future improvements of this technique.

2 Proposed Algorithm

The assignment of optimal amount of compute resources to particular tasks
along with the scheduling of the workflow as a whole is known to be an NP-hard
problem [9]. There have been several attempts to use heuristics to solve this
problem [4, 16, 18, 26], however, they are either tightly connected to an existing
HPC cluster and its scheduler, use idealized models of strong scaling and parallel
efficiency, or optimize only one criterion such as makespan, cluster throughput,
or execution cost. The user tunability of these approaches are thus limited.

Therefore, we decided to use genetic algorithms, which are highly flexible in
combinatorial optimization and scheduling [8]. From the vast number of existing
implementations, PyGAD [11], an open-source Python library for building the
genetic algorithm, was chosen. PyGAD supports various types of genetic opera-
tors and selection strategies, and offers a simple interface for objective function
definition.

The overall concept of the moldable workflow scheduling optimization using
PyGAD is shown in Fig. 1. The structure of the task graph is converted into
a 1D array where each element corresponds to a single task and holds its exe-
cution parameters. The genetic algorithm traverses the search space and seeks
for good solutions by applying genetic manipulations and selection strategies on
the population of candidate solutions. The quality of these candidate solutions
is evaluated by the fitness function. Although the paper presents three different
methods to evaluate the schedule quality, the concept is similar in all cases. First,
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Fig. 1. A workflow is transformed to a vector of integer elements specifying assigned
amount of resources to particular tasks. This vector represents a candidate solution
of the GA search space. The final output of the optimization can be visualized as
a workflow schedule.

the execution time for every task is calculated based on the task type, execution
parameters set by the GA, input data size, and known parallel efficiency/strong
scaling behavior. Next, the tasks are submitted to the cluster simulator that
draws up an execution schedule and calculates the makespan (the critical path
through the workflow including queuing times) and execution cost. The output
of the optimization is a set of best execution parameters for individual tasks
minimizing given criteria implemented by the fitness function.

2.1 Solution Encoding

In order to optimize workflow execution schedules using GA, it is necessary to
transform the workflow into a template for candidate solutions (chromosomes)
I. The workflow’s DAG is traversed in a breath-first manner producing a vector
of N tasks (genes). Every gene i corresponds to a single task and holds the
execution parameters (resources) Ri assigned to the task i, see Eq. (1).

I = (R1, R2, . . . , RN ) (1)

The execution parameters being investigated in this study only consider the
number of computing nodes assigned to a given task. This set can be simply
extended in the future to support, e.g., node cpu frequency and power cup or
the number of processes/threads per node.

The number of nodes assignable to a given task is naturally constrained by
1 from the bottom, and by the size of the computing system from the top.
Moreover, it is also limited by the type of the task, its scalability, and the size of
input data. The strong scaling, parallel efficiency and scalability were measured
for each task type and input data size in advance using short benchmark runs
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and stored in the performance database. These constraints are imposed at the
beginning of the fitness function evaluation.

2.2 Fitness Function

This paper considers three different types of the fitness function looking at the
optimization problem from different angles: (1) Independent local optimization
of the execution time for particular tasks useful when running small tasks on
large HPC systems, (2) Global optimization of the whole workflow minimizing
the execution time and related computational cost under on-demand resource
allocations, (3) Global optimization of the whole workflow time and cost on
statically allocated cluster parts, i.e., the idling nodes also contribute to the
computational cost.

Local optimization of workflow tasks. This fitness functions optimizes each
task independently considering only the execution time while neglecting the com-
putational cost, see Eq. (2). This fitness function does not use the cluster simu-
lator but only sums the execution time of all tasks. Let us note that the highest
possible number of computing nodes may not lead to the fastest execution time
due to unbalanced local decomposition, high overhead of parallel computation,
etc.

This fitness function relies on the cluster scheduler to assemble a good execu-
tion schedule of the whole workflow when provided optimal setup for particular
tasks. This statement is likely to be valid for large HPC clusters with hundreds
of nodes and tasks employing low tens of nodes. From the scheduling point of
view, this fitness function is the fastest one.

fitness = t =

N∑
i=1

ti(Ri) (2)

where t is the aggregated net execution time of N tasks in the workflow, each of
which running on Ri nodes for time ti.

Global optimization with on-demand allocation. This fitness function
minimizes the overall execution time t of the workflow given by the sum of
the execution time of the tasks along the critical path in the workflow graph
(makespan [12]), together with the computational cost c given by a sum of com-
putational cost of all tasks in the workflow, see Eq. (5).

As we know from the problem definition, those two requirements usually go
against each other. Therefore, an α parameter to prioritize either makespan or
cost is introduced. In order to balance between proportionally very different cri-
teria, a kind of normalization is introduced. The makespan is normalized by the
maximum total execution time of the workflow tmax, which is considered to be
the sum of the execution times of all N tasks executed by only a single com-
putation node in a sequential manner. The cost is normalized by the minimum
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execution cost which is the cost of the workflow computed by a single node in
a sequential manner, see Eq. (3). This presumption is valid for typical parallel
algorithms with sub-linear scaling, i.e., parallel efficiency as a function of the
number of nodes is always smaller than 1, E(P ) < 1.

cmin = tmax =

N∑
i=1

ti(1) (3)

ci = ti(Ri) ·Ri (4)

fitness = α ·
∑
j∈M

(
tj(Rj)

tmax
) + (1− α) ·

N∑
i=1

(
ci(Ri)

cmin
),

where M = {i|i ∈ CriticalPath}

(5)

This fitness function suits best the workflow being executed in environments
with shared resources where only truly consumed resources are paid for, e.g.,
shared HPC systems.

Global optimization with static allocation. The last fitness function de-
scribed by Eq. (8) also minimizes the workflow makespan, but the computational
cost now takes into the consideration also idling nodes. Let us imagine we have a
dedicated portion of the cluster consisting of 64 nodes statically allocated before
the workflow has started. The computational cost, the user will be accounted for,
equals to the size of the allocation multiplied by the makespan, no matter some
nodes are not being used for the whole duration of the workflow execution. The
fitness function thus attempts to shake down the tasks to minimize the amount
of idling resources while still minimizing the makespan. The execution cost is
then normalized by the highest possible cost in the dedicated system where only
one node works.

cmax = tmax · P (6)

c =
N∑
i=1

ti(Ri) ·Ri (7)

fitness = α
∑
j∈M

(
tj(Rj)

tmax
) + (1− α)

cmax − c
cmax

,

where M = {i|i ∈ CriticalPath}
(8)

Similarly to the previous case, t is the overall execution time of the workflow,
and tmax is the maximum overall execution time obtained for a serial scheduling
of sequential tasks. The number of nodes statically allocated to the workflow is
denoted by P . The number of nodes assigned per tasks i is Ri. The maximum
possible cost is represented by cmax while the actual cost based on the current
execution parameters and the workflow structure is denoted by c.
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2.3 Cluster Simulator

In order to create a workflow execution schedule and calculate the makespan, we
developed a simple cluster simulator called Tetrisator. The name of this compo-
nent is inspired by the Tetris game [5] since there is a strong analogy in arranging
the blocks of different sizes and shapes with the optimization of the execution
schedule to minimize execution time and cost. The blocks can be seen as tasks
and their sizes are given by required amount of resources and corresponding ex-
ecution time. The blocks a.k.a tasks may be molded to be ”wider” or ”longer”
by changing the number of resources, however, their surface does not have to
stay constant due to varying parallel efficiency.

Tetrisator simulates the operation of an artificial HPC system with a prede-
fined number of computing nodes P . The tasks are submitted to the simulator in
the same order as defined in the chromosome (a breadth-first top down traversal).
During the submission, the numbers of nodes assigned to particular tasks are
taken from the chromosome and the corresponding execution times are located
in the performance database. The breadth-first traversal also allows a simple
definition of task dependencies the simulator has to obey. If there are multiple
tasks being ready to be executed, the submission order is followed. This is in-
spired the default behaviour of the PBS job scheduler with the backfilling policy
switched off [27].

3 Experimental Results

The experiments presented in this paper have the following goals: (1) confirm
the hypothesis that it is possible to find suitable schedules for given workflows
using genetic algorithms, (2) investigate the suitability of the α parameter to
prefer of one optimization criterion over the other one (overall execution time
vs. computational cost), and (3) evaluate the computational requirements of the
optimization process on various workflow sizes.

3.1 Investigated Moldable Workflows

The performance and search capabilities of the proposed optimization algorithm
were investigated on three scientific workflows inspired by real-world applications
of the acoustic toolbox k-Wave [19] for validation of neurostimulation procedures,
see Fig. 2. The workflows are composed of two different kinds of tasks, simulation
tasks (ST) and data processing tasks (PT). The first workflow shows a barrier
behaviour where all simulation tasks at the first level have to finish before the
data is processed by a single data processing task. Only after that, the second
level of STs can continue. The second workflow uses a reduction tree where the
data processing is parallelized in order to reduce the execution time of PT tasks.
The last workflow, not shown in the figure, is composed of the set of independent
STs executed in embarrassingly parallel manner.
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Fig. 2. The structure of two investigated workflows. The simulation tasks are inter-
leaved with data processing tasks implying barriers between stages (left), the data
produced by the simulation tasks are merged via a reduction tree (right).

Fig. 3. Strong scaling of the k-Wave toolbox measured for < 1, 36 > nodes on domain
sizes composed of 5003, 5123 and 5443 grid points. k-Wave simulations are the main
part of simulations tasks in the examined workflows.

The simulation tasks are heavy computing programs scalable from 1 to 36
nodes, see Fig. 3. Their scaling was measured using the C++/MPI implementa-
tion of the k-Wave toolbox on the Barbora supercomputer at IT4Innovations1.
The scaling behaviour depends on the input data size and shows several local
optima for the number of nodes being powers of two. The shortest execution
time was seen for 35 nodes. From these three examples, the first one was chosen
in our experiments. The data processing tasks are lightweight tasks executable
on one or two nodes. Their time complexity grows linearly with the number of
input files they have to process.

In real k-Wave applications, the size of the domain for all STs is the same,
however, the amount of time steps may vary by up to 25%. This is given by

1 https://docs.it4i.cz/barbora/introduction/
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the mutual position of the transducer and the patient’s head, which influences
the distance the ultrasound wave has to travel. Moreover, the performance of
all processors in the cluster is not equal. According to [1], the fluctuations may
cause up to 5% deviations in the execution time. Both factors are considered by
adding random perturbations to the task execution time during the workflow
generation.

3.2 Local Task Optimization of the Execution Time

First, we investigated the local optimization of the proposed workflows, which
is the simplest kind of optimization. This optimization only considers the net
execution time of all tasks neglecting the queueing times and simulation cost.
Thus no α parameter is used. This technique shows very good capabilities in
optimizing particular tasks. From 20 independent runs of the GA, more than
90% of trials always found the best possible solution, the fitness of which can be
analytically derived.

Table 1 shows suitable parameters for the genetic algorithm along with the
number of generations necessary to find the optimal schedule, the execution time
in seconds and the success rate. Since the variability of the results across different
workflows was negligible, we collapsed all results into a single table.

The table reveals that the necessary population size linearly grows with the
size of the workflow from 25 up to 150 individuals, but still stays quite small. This
is natural behaviour since bigger workflows require longer chromosomes which in
turn requires larger populations to keep promising building blocks of the solution.
The best selection strategy driving the GA through the search spaces appears to
be Steady state selection, although the difference to the Rank and Tournament
selections was marginal. The number of generations to be evaluated before the
GA finds the optimal schedule stays relatively constant close to 200. On the
other hand, the execution time appears to grow quadratically. This growth can
be attributed to a product of increasing population size which rises the number
of fitness function evaluations, and the linearly growing time complexity of the
fitness function evaluation. Nevertheless, an execution time of 14s with 95% of
success rate for the biggest workflow is an excellent result.

3.3 Global Workflow Optimization of Execution Time and Cost

The global optimization of the workflow considers both criteria and balances
between them using the α parameter. In this section we investigate two fitness
functions oriented on on-demand and statically allocated resources.

The influence of the α parameter. Let us first investigate the influence of
the α parameter on both global fitness functions. In practise, the α parameter
can be seen as a user-friendly control slider promoting either the execution time
or cost. The following values of α were tested: 0.95 and 0.8 prioritizing the min-
imal makespan, 0.5 balancing the makespan and the cost / usage of resources),
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Table 1. Computation requirements of the local optimization method together with
recommended genetic algorithm (GA) settings that lead to optimal schedules obtained
in the shortest time. Other GA settings common for all experiments is uniform crossover
of 0.7 probability, random mutation of 0.01 probability, and 5% elitism.

Workflow
Size

Population
Size

Selection
Method

Median Number
of Generations

Average
Runtime

Success
Rate

7 25
Steady State,

Rank
180 0.27s 100%

8 25
Steady State,

Rank
220 - 250 0.37-0.42s 100%

15 50

Steady State,
Rank,

Tournament,
Roulette Wheel

120-200 0.52-0.87s 100%

16 50
Steady State,

Rank,
Tournament

180-200 0.98 - 1.08s 100%

31 100
Steady State,

Rank
100 1.40s 100%

32 100
Steady State,

Rank
190 3.41s 90-95%

63 100
Rank,

Steady State
215 5.61s 100%

64 150
Steady State,

Rank
260 13.29s 90-95%

and 0.2 and 0.05 prioritizing the minimal execution cost and unused resources,
respectively.

For each value of α and suitable GA settings, 20 independent runs were
carried out. For the sake of brevity, only a few examples of selected workflows
with the best GA settings will be shown. For each example, the results from
all runs were collected, sorted, and 5% of the best solutions visualized in the
form of a Pareto frontier. The color of the data points and lines representing the
frontiers correspond to the α parameter used.

Let us start with the quality of solutions produced by the on-demand alloca-
tion fitness, see Fig. 4 and 5. Although evolved solutions for various α parameter
may slightly overlap, Fig. 4 shows that we managed to drive the genetic algo-
rithm to find desired solutions (forming clusters) that meet given optimization
constraints. By adjusting the α parameter, we move along an imaginary curve
composed by the combination of all Pareto frontiers. Thus when the importance
is attached to the simulation cost, it is possible to get a schedule that reduces
the cost by 10%, however, runs for 12% longer time, and vice versa. It can also
be seen that each value of α works well only in a relatively short interval (the
middle of the frontier). At the edges it is usually outperformed by a different
values of α.
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Fig. 4. Pareto frontier and dominated solutions calculated using the fitness function
for on-demand allocations for the workflow with two levels of simulation tasks and
various values of the α parameter.

Fig. 5. Pareto frontier and dominated solutions calculated using the fitness function
for on-demand allocations for the workflows without dependencies and various values
of the α parameter.

The workflows without dependencies, however, show much worse parametriza-
tion, see Fig. 5. The only sensible value of α seems to be 0.05. Other values
produce much worse compromises between time and cost. The only exception
is the value 0.95 which can offer 15% - 20% cost-effective schedules, but many
times slower.
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Fig. 6. Pareto frontier and dominated solutions calculated using the fitness function
for static allocations for the workflow with two levels of simulation tasks and various
values of α balancing between makespan and percentage of unused resources.

Fig. 7. Pareto frontier and dominated solutions calculated using the fitness function
for static allocations for the workflow without dependencies and various values of α
balancing between makespan and percentage of unused resources.

For experiments using the fitness function for static cluster allocations, we
only show three different α parameters because the solutions highly overlap, see
Figs 6 and 7. The solutions found for workflows containing task dependencies
seem to be saturated by the same minimal execution time. Smaller α parameter
pushes the genetic algorithm to find solutions with smaller amount of unused
resources (up to 44%) but a range of found solutions is quite high. From this
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Table 2. Recommended settings for the GA and the on-demand allocation fitness
function. Other settings common for all experiments are uniform crossover of 0.7 prob-
ability, random mutation and 5% elitism.

Alpha
Workflow

Size
Population

Size
Selection
Method

Mutation
Probability

Median Number of
Evaluations

0.95 7 - 16 25 Rank 0.001 2000 - 19750
31 - 64 50 Steady State 0.01 5000 - 10000

0.80 7 - 16 25 Steady State 0.01 1250 - 2500

31 - 64 50, 100 Rank 0.001 22000 (50) - 45000 (50)

0.50 7 - 64 50, 100 Rank 0.001 2500 (50) - 65000 (100)
0.20 7 - 64 25, 50 Rank 0.001 8750 (25) - 42500 (50)

0.05 7 - 64 50, 100 Steady State 0.01 5000 (50) - 30000 (100)

point of view, 0.05 for α gives the most reasonable solutions. This is even more
visible for workflows without task dependencies where 0.05 for the α parameter
optimizes both makespan and the amount of unused resources.

The experiments showed that both criteria, the makespan and percentage of
idle resources, are highly correlated. Thus, the lower percentage of idle resources
the faster execution time. Although this may sound natural, the anomalies in the
scaling behaviour of particular tasks has the potential to break this presumption.
This experiment, however, shows that the scaling plots in Fig. 3 are very close
to the perfect scaling.

Suitable Parameters of the Genetic Algorithm. Table 2 presents recom-
mended settings for the genetic algorithm which produced best results along
with the computational requirements expressed as the number of fitness func-
tion evaluations (i.e., a product of the number of generations and the population
size). When two population sizes are given, the smaller one is used for the smaller
workflows, and vice versa. The median number of evaluation is calculated for the
actual population size shown in bracket in the last column. The range is bounded
by two values, the one for the smallest workflow in the range and the one for the
biggest workflow.

Table 3 presents an average execution time for a single generation. In con-
nection with Table 2, the absolute wall clock time of the evolution process can
be calculated. As an example, a schedule for a workflow with 64 dependant tasks
can be evolved in 2 minutes and 20 seconds. We found out that schedules for
tasks without dependencies may be evolved in 2 to 3 times shorter time.

The recommended settings of the genetic algorithm covers 0.7 probability of
uniform crossover, steady state selection, 1% random mutation and 5% elitism.
Workflow with less than 31 tasks could be evolved with 25 individuals in the
population whereas bigger workflows (up to 64 tasks) with 50 individuals. It
took approximately from 2500 (100 generations for 25 individuals) to 25000 (500
generations for 50 individuals) evaluations to evolve schedules for workflows of
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Table 3. The execution time of the evolution process for various workflows with depen-
dencies and population sizes measured using global fitness functions on the Salomon
cluster at IT4Innovations. The evolution runtimes for workflow without dependencies
are approximately three times smaller.

Population Size Runtime per a Single Generation in Seconds

Workflow Size 7 8 15 16 31 32 63 64

25 0.004 0.005 0.010 0.010

50 0.007 0.009 0.019 0.021 0.040 0.043 0.112 0.120

100 0.013 0.018 0.037 0.043 0.077 0.088 0.227 0.220

150 0.110 0.132 0.382 0.335

7 to 64 tasks. So, a schedule for the workflow of 64 tasks with dependencies is
evolved in a minute.

Investigation of the Workflow Schedules. Here, we show and compare
several evolved schedules using different fitness functions. For better visibility,
only schedules for workflows of 15 and 16 tasks are shown. Figure 8 shows two
execution plans for 15 and 16 tasks, respectively, locally optimized by Eq. (2).
Regardless of the number of tasks in the workflow, the genetic algorithm always
picks 35 nodes for simulation tasks and 2 nodes for data processing tasks because
this selection assures their minimal execution time.

Fig. 8. Evolved schedules for investigated workflows with 16 and 15 dependant tasks
using a local optimization.

Figure 9 shows evolved schedules using a global optimization for on-demand
allocations balancing the makespan and computational cost with α = 0.5. When
compared with schedules depicted in Fig. 8, it is evident that the GA preferred
much smaller amounts of nodes for simulation tasks which resulted in a cost
reduction by 40% and makespan increase by 37% for the workflow of 16 tasks.
In the case of the workflow with 15 tasks, we may however observe that the
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Fig. 9. Evolved schedules for investigated workflows with 16 and 15 dependant tasks
using a global optimization for on-demand allocations balancing the makespan and
computational cost.

Fig. 10. Evolved schedules for workflows with 16 and 15 dependant tasks using a global
optimization balancing the makespan and the amount of unused resources (24.49% for
the left workflow, 15.21% for the right workflow).

makespan is even better when the global optimization is used. This is given by
the way the local optimization works, i.e., the concurrency is not expected. Here,
the global optimization gives better results in both aspects, i.e., the makespan
was reduced by 30% and the computational cost by 37%.

Figure 10 shows evolved schedules using a global optimization balancing the
makespan and the amount of unused resources with α = 0.5. If we compare them
with schedules in Fig. 8, we can see that in both cases the makespan is reduced
by 51% in case of 15 tasks, and by 35% in case of 16 tasks while the amount
of unused resources was reduced from 53.0% and 50.0% to 15.21% and 24.49%,
respectively.
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Since the global optimization approaches are not comparable, we just em-
phasize the differences between obtained solutions in Fig. 9 and Fig. 10. It can
be seen that the solutions evolved using the global optimization focusing on the
amount of unused resources have shorter makespans because there is an effort
to use, i.e., pay for, the resources for the shortest time. If we evaluate these solu-
tions using the fitness function for on-demand allocations, it is obvious that we
get more expensive solutions than those which were originally evolved using this
fitness function. Since we cannot compare the solutions in absolute numbers, we
can come out of the premise that computational cost equals to actually used
resources. In other words, the solution for 15 tasks found by fitness function
for static allocations used 85% of available resources but the solution found by
fitness for on-demand allocations used only 42%. The same states for 16 tasks
where the solution found by the fitness function for static allocations used 75% of
available resources but the solution found by the fitness function for on-demand
allocations used only 19%.

The makespans of 15 tasks schedules differ by 29% while there is a 31%
difference in obtained computational cost and the amount of unused resources.
The schedules of 16 tasks differ by 59% in their makespans and by 14% in the
computational cost.

4 Conclusions

This paper investigates the execution optimization of moldable scientific work-
flows. It uses genetic algorithm to evolve schedules for workflows comprising of
two kinds of tasks with and without mutual dependencies. The presented objec-
tive functions use collected historical performance data for supported workflow’s
tasks. Those objective functions implement a trade-off coefficients that allow
the schedule customization to either minimize one objective to another or to
balance them. The paper introduces three objective functions that provide the
(1) local optimization of workflow tasks minimizing their execution times, (2)
global optimization with on-demand resource allocation balancing the workflow
makespan and its computational cost, and (3) global optimization with static
resource allocation balancing the workflow makespan and the cluster’s idling
nodes.

After performing the experiments, we confirmed our hypothesis that (1) we
are able to generate good schedules for various workflows as well as meet differ-
ent optimization criteria. For local optimization, we got very good results where
more than 90% of performed trials found the optimal solution. (2) When per-
forming a multi objective optimization, we introduced an α trade-off parameter
and confirmed we can prioritize one objective to another. Here, we got the best
results for the global optimization with on-demand resources and workflows with
task dependencies where solutions found for the different parameter α form clus-
ters. Let us note, that the trade-off parameter allows to customize the solution
parameters only in a limited scale of makespan and cost, e.g., 10%. Much worse
parametrization could be seen for workflows without task dependencies for both
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global optimization methods where the only value 0.05 of α produced sensible
solutions. (3) We measured and summarized computational demands of each
presented objective function and workflows of different sizes. Using the local
optimization, the workflow of 64 tasks could be evolved in 14 seconds. Global
optimization is more computationally demanding but we managed to get the
schedule for the most complex workflow with task dependencies in roughly 2
minutes. Finally, the paper provides the genetic algorithm settings to reproduce
the presented results.

4.1 Future Work

Here we summarize several ideas to be addressed soon. First, we would like
to better tune the presented trade-off coefficient α and better define ourselves
among other already existing optimization heuristics. Next, we would like to
validate our approach against standard task graphs2 of different sizes.

Furthermore, a couple of the algorithm improvements is to be addressed.
Currently used cluster simulator traverses tasks within a workflow in a breadth-
first top down order and follows the task submission order when multiple tasks
are ready to be executed. A mechanism such as backfilling commonly presented in
the PBS job scheduler is not implemented. In practise, we use mainly PBS-based
clusters for our workflows, thus, we would like to integrate this functionality
to the presented Tetrisator. We will also consider a possibility to integrate an
already existing cluster simulator, e.g., ALEA [21].

Next, more real world tasks together with their measured performance data
would be incorporated. In reality, we usually cannot measure and hold perfor-
mance data for all input data sizes and input parameters options. Therefore, we
need to implement interpolation based heuristics [20].
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