
Brno University of Technology
Faculty of Information Technology

PhD. Thesis

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Symbolic Data Structures for Parametric
Verification

by

Ing. Petr Matoušek

Supervisor: Prof. Ing. Miroslav Švéda, CSc.

Submitted on: 27th May 2005

State doctoral exam passed on: 13th June 2000

The thesis is available at the library of the Faculty of Information Technology.

Abstract

Hardware and software systems will inevitably grow in scale and functionality. Because of
this increase in complexity, the likelihood of subtle errors is much greater. Moreover, some
of these errors may cause a loss of money, time, or even human life. A major goal of soft-
ware engineering is to enable developers to construct systems that operate reliably despite
this complexity. One way of achieving this goal lies in using formal methods, which are
mathematically-based languages, techniques, and tools for specifying and verifying such
systems. Use of formal methods does not a priori guarantee correctness. However, they
can greatly increase our understanding of a system by revealing inconsistencies, ambigui-
ties, and incompleteness that might otherwise go undetected.

Specification is the process of describing a system and its desired properties. Formal
specification uses a language with a mathematically-defined syntax and semantics. The
kinds of system properties might include functional behavior, timing behavior, perfor-
mance characteristics, or internal structure. So far, specification has been most successful
for behavioral properties. One current trend is to integrate different specification lan-
guages, each able to handle a different aspect of a system. Another one is to handle
non-behavioral aspects of a system like its performance, real-time constraints, security
policy, and architectural design.

In this thesis we work with real time systems augmented with parameters. Traditional
approaches to the analysis and verification of real-time systems deal with timed models
where time is expressed by variables that are compared with explicite values (e.g., integers).

Parametric timed and counter models use parameters to define constraints over clocks
or counters. Verification of automata with parameters is generally undecidable. How-
ever, it is decidable for some restricted classes of parametric systems and moreover many
practical systems outside these classes may be successfully verified using semi-algorithms.

Analysis mostly depends on the efficient data structure that is used to express behavior
of the system. In this work we deal with parameterized timed and counter systems and
discuss data structures that are used for their representation.

The main goal of the thesis is to introduce a new data structure called parametric hy-
percubes based on parameterized intervals and operations that are needed for verification.
This structure makes operations over parametric counter automata simpler in comparison
with other approaches. The advantage of this structure is that it reduces the space needed
to represent data and simplifies some operations (emptiness test, intersection, etc.) with
respect to other structures (e.g., parametric DBM or polyhedra). Another advantage is
that the structure extends expressivity of constraints (guards) on transitions in compar-
ison with the original definition of timed and counter automata. It allows constraints of

ii

iii

the form x1 + . . .+xn ≺ t while DBMs allow comparisons of terms with only two variables
xi − xj ≺ t. This new structure was implemented as a library of the verification tool
TReX [BCAS01].

Another contribution of the thesis is a part about analysis of parametric systems.
This part discusses fundamentals of modelling, analysis and verification of parameterized
timed and counter systems. It introduces a methodology for modelling communicating
systems that include three basic components—environment, buffers, and executive units.
We show models of a simple bounded FIFO queue, a delayed queue and a lossy queue that
can be reused for automata-based verification languages where queues are not part of the
language or where a customization is needed.

These proposed principles are demonstrated on a case study—verification of a multicast
protocol PGM. The verification was done using combination of three verification tools
(HyTech, TReX, and Uppaal). In this work we present our experience with parametric
verification, our results, and several sources of complexity with suggestions how to deal
with them.

Preface

For the LORD gives wisdom,
and from his mouth come knowledge and understanding.
He holds victory in store for the upright,
he is a shield to those whose walk is blameless,
for he guards the course of the just
and protects the way of his faithful ones
Bible

This work has been carried out at the Faculty of Information Technology, Brno, Czech
republic and at the laboratory of LIAFA, Paris, France. I am grateful to Professor Miroslav
Švéda for supervising my work here in Czech republic and to Professor Ahmed Bouajjani
for his leading my work in Paris during my stay there.

My thanks belong to my close co-workers and friends Dr. Tomáš Vojnar (FIT) and Mi-
haela Sighireanu (LIAFA) whose valuable hints, notes and encouragement were important
for me during my work on this thesis.

I thank my friend Břeťa for his careful reading of the English text. I very appreciate
his moral and prayer support which was essential to me in the time of finishing this work.
Thanks to my friends who are not mentioned here for their valuable support.

I am also grateful to my mother for her support and her love.

Petr Matoušek
Brno, 26th May 2005

iv

Contents

1 Introduction 1
1.1 A Motivation for the Thesis . 2
1.2 The Goal of the Thesis . 2
1.3 The Structure of the Thesis . 3

2 Model Checking of Timed Systems 4
2.1 Model Checking . 4
2.2 Model Checking of Timed Systems . 5
2.3 Timed Automata . 7
2.4 Data Structures for Timed Automata . 10

2.4.1 Regions . 10
2.4.2 Zones . 11
2.4.3 Difference Bound Matrix (DBM) . 13
2.4.4 Example . 16

3 Parametric Real-Time Reasoning 19
3.1 Parametric Timed Automata . 20
3.2 Parametric Counter Automata . 22
3.3 Comparison of Parametric Timed and Counter Automata 23
3.4 Verification . 23
3.5 Parametric DBMs . 24

3.5.1 Operations on Constrained PDBMs 27
3.5.2 Decidability . 31

3.6 Example . 32
3.7 Polyhedra . 35

3.7.1 Operations over Polyhedra . 37
3.8 Discussion . 39

4 Parameterized Hypercubes 42
4.1 Parameterized Intervals . 42

4.1.1 Arithmetical Term, Formula . 43
4.1.2 Numerical Bounds . 44
4.1.3 Parameterized Bounds . 49

v

CONTENTS vi

4.1.4 Parameterized Intervals . 51
4.2 Parameterized Hypercubes . 55
4.3 Operations on pHCubes . 56
4.4 Implementation in TReX . 62
4.5 Discussion . 66

5 How to Analyse Parameterized Timed Systems 68
5.1 Formal Analysis of Real-time Systems . 68
5.2 Modelling a System . 70

5.2.1 Modelling FIFO Queues . 71
5.3 Properties to be Verified . 73
5.4 Summary . 76

6 Case Study 77
6.1 Formal Analysis . 77
6.2 Modelling PGM . 78
6.3 Tools for Parametric Verification . 83

6.3.1 HyTech . 83
6.3.2 TReX . 86
6.3.3 Uppaal . 87

6.4 Discussion . 89

7 Conclusion 92

Glossary 94

Bibliography 96

Chapter 1

Introduction

Rapid expansion of Internet, communication systems and embedded applications in dif-
ferent fields of human activities create increasing demands on new applications, tools and
equipment that are fast, safe and reliable in terms of functionality. There is a challenge for
many software and hardware companies to create reliable and robust systems. Reliability
and safety of both software and hardware turn our special attention to testing, simulation
and verification. While testing and simulation can prove that a system gives expected
output values for specific inputs, verification helps to prove that a given property (e.g.,
safety) holds for every configuration of the system.

There are two basic approaches to formal verification—theorem proving and model
checking. Theorem proving is a technique where both the system and its desired properties
are expressed as formulas in some mathematical logic. Verification is a process of finding
a proof of a property from the axioms of the system. Model checking is a technique that
relies on building a finite model of a system and automatic checking that a desired property
holds in that model. During verification a model checker searches a generated state space
of all possible behaviors of the system.

Many tools based on model checking and state exploration are efficient and widely used
for verification of finite systems. However, real-time systems are in general not finite-state
and cannot be fully analyzed. Especially, state space of real-time systems is either infinite
or too large for finite-state verification techniques. Since the 90’s there exists a large
community of scientists and engineers who try to formally describe and prove temporal
properties of real-time systems using model checking. There exist several verification tools
for timed verification—both for discrete and continuous time—that have been successfully
used for verification of non–trivial systems.

One direction of research in the area of timed systems is parametric analysis and
verification. Parametric analysis works with systems that contain special variables that
are not changed during the execution—parameters. In parametric models, clocks and
counters can be compared with parameters. Parameters are used in transitions where
they define lower and upper bounds on clocks and counters. Parameters may range over
infinite domains and are related by a set of constraints. Using parametric reasoning, we
can either verify that a system satisfies a property for all possible values of parameters,

1

CHAPTER 1. INTRODUCTION 2

or we can find constraints on the parameters that define the set of all possible values for
which the system satisfies the property.

Verification of timed automata with parameters is generally undecidable. However, it
is decidable for some restricted classes of parametric systems. Moreover, many practical
systems outside these classes may be successfully verified using semi-algorithms. Analysis
of such systems depends on the efficient data structures that are used to express dynamic
behavior of the system. In this work we deal with parameterized timed and counter
systems. We explore current data structures that are used for their representation and
operations over them. The goal of the thesis is a design and an implementation of a
new structure for data representation that extends possibilities of analysis and verification
of parametric systems. Such a structure—parameterized hypercubes—was designed and
implemented as a library for verification tool TReX. The thesis also contains a part
concerning verification of parametric system where we summarize our experience from
several projects and propose a methodology for parametric verification of timed system.

1.1 A Motivation for the Thesis

Motivation for the research in the field of verification of parametric timed systems here
presented was the extension of formal verification of PGM protocol. Reliability of trans-
mission depended on several parameters—the length of transmission window, rate of the
channel, the length of intermediate buffer etc. Our task was to find relations among these
parameters that satisfy a desired property. However, with current verification tools we
were not able to find a solution because the model contained non-linear relation between
parameters as was proved by manual analysis of the model.

We noticed that current implementation of data for parametric reasoning does not
allow assignments of the form x := x+ y + c where x, y are variables and c is a constant.
Thus we decided to design a new data structure based on intervals that would extend
a class of analyzed systems. This structure implements operation for symbolic model
checking with symbolic domain (reals, integers etc.) and is compatible with current data
structure—parametric DBMs.

1.2 The Goal of the Thesis

The main contribution of the thesis is a proposal and implementation of a new data struc-
ture called parameterized hypercubes based on parameterized intervals. We introduce
here operations that are needed for verification. This new structure makes operations
over parametric counter automata simpler in comparison with other approaches. The ad-
vantage of this structure is that it reduces the space needed to represent data and simplifies
some operations (emptiness test, intersection, etc.) with respect to other structures (e.g.,
parametric DBM or polyhedra).

Another advantage of this structure is that it extends expressivity of constraints
(guards) over transitions in comparison with the original definition of parametric timed and
counter automata. Parameterized hypercubes allow constraints of the form x1+. . .+xn ≺ t
while parametric DBMs (PDBMs) allow comparisons of terms with only two variables

CHAPTER 1. INTRODUCTION 3

xi − xj ≺ t. However, adding general constraints is not an exact operation—we show an
algorithm that is approximate. We as well extend an operation of linear assignment of the
form x := x0t0 + . . . + xntn + tn+1 whereas PDBMs use only simple assignment x := t.

The second contribution of the thesis is an overview of basic principles of formal anal-
ysis and verification of timed and counter systems with parameters. We summarize our
experience and give recommendations for analysis of such systems. These principles are
demonstrated on a non–trivial example of multicast PGM protocol and from Liberouter
project [MSV05].

1.3 The Structure of the Thesis

The thesis is structured into three basic parts. First part covers model checking of timed
systems (chapter 2) and parametric reasoning of timed systems (chapter 3). The second
part presents a proposed data structure—parameterized hypercube—and operations over
it. The third part describes practical experience with verification of real-time systems
with parameters and shows a case study of parametric analysis and verification of PGM
protocol.

Further, in the first part we give an overview of symbolic model checking of timed
systems and show two basic structures for data representation—regions and zones imple-
mented as Difference Bound Matrices (DBMs). Operations over DBMs are important for
us because they form the basis which is then extended for parameters. The theory of
timed automata and methods for their analysis is known for many years, so we give only
short overview of the problem of symbolic model checking of timed systems. Then we
move to systems with parameters. We remind the definition and semantics of parametric
timed and counter automata and show two data structures that are used for paramet-
ric reasoning—parametric DBMs (PDBMs) and polyhedra. We describe operations over
them in details and show how parametric analysis differs from non-parametric one. Both
PDBMs and polyhedra were implemented in verification tools TReX, resp. HyTech and
are used for parametric verification. We mention our experience with both tools and show
the need for their extension.

The main part of the thesis (chapter 4) contains definitions of proposed parameterized
intervals and hypercubes. We start from well-known numerical intervals that we extend to
intervals with bounds formed by parametric terms. We define new operators over them—
total order, min operator etc. Then we define constrained parameterized intervals and
formulas. A set of constrained parameterized intervals forms a parameterized hypercube.
This structure is used to represent the valuation of parameters and variables during sym-
bolic analysis of the system. We create operations over them with respect to operations
needed for timed verification as showed on example in the DBMs, PDBMs and polyhedra.

The third part of the thesis contains two chapters describing practical experience with
parametric analysis (chapter 5) and verification of a real protocol (chapter 6). These
two chapters summarize our experience and give recommendations and practical steps for
verification of parametric timed systems.

The last chapter (chapter 7) summarizes the contribution of the thesis and points out
directions for future research in this area.

Chapter 2

Model Checking of Timed Systems

Model checking is one of the methods used for formal verification of the concurrent systems.
The main idea is to generate the state space of the system’s behaviour and to check
properties on these states. Symbolically it means to check whether our system is a model
for desired requirements:

system |= requirements

Requirements are expressed in temporal logics and the system is modelled as a finite
state transition system. Analysis of the system is based on an exhaustive state space
search over all possible behaviours of the system. If the model is finite, the termination is
guaranteed. Even for infinite timed systems there exist several symbolic techniques that
allow us to terminate the analysis–as demonstrated later in the chapter.

The main advantage of model checking is that it is fully automatic. That means it
does not require an experienced user to analyse the property of the described system.
The major disadvantage of model checking is the state space explosion. The number of
configurations increases exponentially with the number of variables, their size and the
number of processes of the model. However, there exist powerful techniques that reduce
size of the state space and make analysis of the state space possible. Even for (continuous)
timed systems we can use model checking techniques for verification.

In this chapter we recall basics of the model checking with focus on timed systems. We
show the theory of timed automata and the way how to represent infinite data domains
using finite structures. On the example of Difference Bound Matrices (DBMs), we point
out basic operations over data structures that are needed for verification. Design and
implementation of these operations for our new data structure form the foundation of the
thesis.

2.1 Model Checking

Model checking is a technique for verifying finite state concurrent systems such as com-
munication protocols. In comparison with theorem proving it can be performed fully
automatically. The procedure uses an exhaustive search of the state space of a system to

4

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 5

determine if some specification is true or not. The procedure can terminate with a yes/no
answer.

The main disadvantage of model checking consists in the state explosion. There are
various techniques to decrease the size of the state space of a system - partial order
reduction, binary decision diagrams (BDDs), abstraction, symmetries etc. In this section
we will remember some of these techniques.

Partial order reduction. This technique is based on the following observation: com-
putations that differ in the ordering of independently executed events are usually indis-
tinguishable by the specification and can be considered equivalent. There are various
approaches to the partial order reduction mentioned in [CGP99]: the stubborn sets pro-
posed by A. Valmari in [Val90], the ample sets presented by D. Peled in [Pel94], or the
persistent sets of P. Godefroid introduced in [God90]. Among other techniques belong K.
McMillan’s unfolding [McM92]. Using these methods we can decrease the size of the state
space. As practice shows, partial order reduction is a very successful method for software
verification.

Binary decision diagrams (BDDs). One of the approaches to deal with the state ex-
plosion problem is using a compact representation of the state space called binary decision
diagrams and symbolic model checking over them. Binary decision diagrams introduced
by R.E. Bryant in [Bry86] provide a canonical form for boolean formulas that is more
compact than conjunctive or disjunctive normal form, and very efficient algorithms for
manipulating them. Because the symbolic representation captures some of the regularity
in the state space determined by circuits and protocols, it is possible to verify systems
with an extremely large number of states. BDDs are very successful especially in hardware
verification.

Abstraction. Predicate abstraction is a technique that is used to prove properties of infi-
nite state systems. It is a combination of theorem proving and model checking techniques.
Given a concrete infinite state system and a set of abstraction predicates, a conservative
finite state abstraction is generated. It is conservative in the sense that for every exe-
cution in the concrete system there is a corresponding execution in the abstract system.
The abstract version of the verification condition is model checked in this abstract system.
If the property is verified then it holds in the concrete system. Otherwise an abstract
counter-example trace is generated. More about abstraction can be found in [CGP99,
chapter 13].

2.2 Model Checking of Timed Systems

Modelling continuous time. For timed systems, clocks may be real values. The timed
transition system is infinite and cannot be simply used for automated verification. How-
ever, D. Dill and R. Alur in [AD94] introduced the notion of region equivalence over clock

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 6

assignments and proved that reachability problem is decidable for timed automata. The
main idea of the region technique is that it is possible to find a finite representation of the
valuation graph which represents all the necessary reachability information symbolically.
At first, infinitely many symbols of the transition system are reduced to the finite number
using time abstraction where time increments over time-transitions are hidden (see sec-
tion 2.3 for details). Then, using equivalence over the state space the number of states
(infinite) is represented by the finite number of classes according to the equivalence. In
other words, the state space is factorized into a finite number of regions.

Difference Bound Matrices (DBMs). A more efficient representation of the state-
space for timed systems is based on the notion of zones ([Dil89],[AD94]). A clock zone ϕ
is a conjunction of inequalities that compare either a clock value or the difference between
two clock values to an integer. We allow inequalities of the following type: x ≺ c, c ≺
x, x − y ≺ c where ≺∈ {<,≤}, x, y ∈ X , X is a set of clocks, and c ∈ N. A key property
of the set of clock zones is closure property under three operations—the intersection, time
elapsing and clock reset.

Clock zones can be efficiently represented using matrices [Dil89]. In order to express a
uniform notation for clock zones, we introduce a special clock x0 that is always 0. Then,
any clock zone ϕ can be written as a conjunction of constraints of the form x− y ≺ c, for
x, y ∈ X ,≺∈ {<,≤} and n ∈ N.

Let D be a difference bound matrix representing clock zone ϕ. Each entry Di,j is in
the form (di,j ,≺i,j) and represents the inequality xi − xj ≺ di,j , where ≺i,j is either <,≤
or (∞, <), if no such bound is known.

In this work we closely investigate parametric DBMs (PDBMs). Parametric DBMs
are an extension of DBMs with parameters. We show later in the text that our pro-
posed structure—a parametric hypercube—is more efficient to represent data for counter
automata than PDBMs with respect to space and processors requirements.

Reachability analysis. The main effort on verification of timed systems has been put
on safety properties that can be checked using reachability analysis by exploring the state
space of timed automata. Symbolically, we can describe reachability analysis for timed
automata with the following algorithm:

R := S0 // a set of reached states

F := F0 // a set of final states

while ((R ∩ F) = ∅) // reached states are different from final

R’ := post(R) // compute the set of successors of R

if (R′ ⊆ R) return "No" // the whole state space was reached

R := R’ // add successors to the set of all states

end while

return "Yes" // final state was reached

Reachability analysis consists of two basic steps: computing the set of successors of a
set of reached states - a result of procedure post(), and searching for states that satisfy or

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 7

contradict given properties - expressed by an intersection of a set of reached states and a
set of final states. In figure above, the analysis ends if the final state is reached, or if the
entire state space is generated without being intersected with a set of final states.

Symbolic reachability analysis. Symbolic reachability analysis is a powerful paradigm
for verification of infinite-state systems, such as parameterized communicating systems
[BCALS01]. Symbolic reachability analysis uses finite structures to represent infinite sets
of configurations, and iterative exploration procedures to compute the set of all reach-
able configurations, or an upper approximation of this set. This technique is used for
verification of infinite systems like time systems are.

Acceleration. Verification of an infinite state system can be enhanced by acceleration
in order to help termination. Instead of repeating the same transition in the reachability
graph we can replace these transitions by an acceleration step. The acceleration step
corresponds to the computation of an upper approximation of the set (in some cases of an
exact set) of reachable configurations by iterating a sequence of transitions an arbitrary
number of times. For instance, starting with initial value x = 0, the iteration of a transition
which increments x by 2 leads to the set of configurations {0, 2, 4, . . .} which can be
represented by constraint x = 2n, with n ≥ 0. Acceleration techniques allow us to
compute a finite representation in one step instead of computing the infinite sequence of
approximations {0}, {0, 2}, {0, 2, 4}, As we will see in next sections acceleration plays
an important role in parametric verification.

2.3 Timed Automata

Timed automata are finite-state machines with clocks which are used to constrain the
accepting runs by imposing timing requirements on the transitions. While ordinary au-
tomata generate sequence of events (states), time automata are constrained by timing
requirements and generate timed sequences. All clocks proceed at the same rate and mea-
sure the amount of time that has elapsed since they were started or reset. Each transition
of the automaton may reset some of the clocks, and it puts certain constraints on the
values of the clocks: a transition can be taken only if the current clock values satisfy the
corresponding constraints.

Timed automata introduced by R. Alur and D. Dill in [AD94] serve as a technique for
modelling finite state machines (FSM) with explicit time which is essential for specification
and analysis of real-time systems. Here, we briefly show the theory of timed automata.

Timed Automata. To express system behaviour with timing constraints, we consider
finite graphs augmented with a finite set of (real-valued) clock. The vertices of a graph are
called locations, and the edges are called switches. While the switches are instantaneous,
time can elapse in a location. A clock can be reset to zero simultaneously with any switch.
At any instant, the reading of a clock equals the time elapsed since the last clock reset.
With each switch we associate a clock constraint, and we require that the switch may be

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 8

taken only if the current values of the clock satisfy the constraint. With each location we
associate a clock constraint called an invariant, and we require that time can elapse in a
location only if its invariant stays true.

Clock constraints and clock interpretation. For a set X of clocks, the set Φ(X) of
clock constraints ϕ is defined by grammar

ϕ := x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2,

where x is a clock in X and c is a constant in Q. A clock interpretation ν for a set X of
clocks assigns a real value to each clock; that is, it is a mapping from X to the set R≥0 of
non-negative reals. For ∆ ∈ R, ν + ∆ denotes the clock interpretation which maps every
clock x to the value ν(x) + ∆. For Y ⊆ X , ν[Y := 0] denotes the clock interpretation for
X which assigns 0 to each x ∈ Y , and agrees with ν over the rest of the clocks.

Syntax. A timed automaton A is a tuple 〈L,L0,Σ,X , I, E〉, where

- L is a finite set of locations,

- L0 is a finite set of initial locations,

- Σ is a finite set of labels,

- X is a finite set of clocks,

- I is a mapping that labels each location s with a clock constraint Φ(X), and

- E ⊆ L×Σ×2X ×Φ(X)×L is a set of switches. A switch e = 〈s, a, ϕ, λ, s′〉 represents
an edge from location s to location s′ on symbol a. ϕ is a clock constraint over X
that specifies when the switch is enabled, and the set λ ⊆ X gives the clocks to be
reset with the switch.

In Figure 2.1, there is an example of a simple timed automaton where L = {s0, s1},
L0 = {s0}, Σ = {a, b}, X = {x}, I = {s1 → x < 20}, and E = {(s0, a, ǫ, x, s1), (s0, b, x >
10, ǫ, s2)}.

s1

a

b

x>10

x<20
x:=0

s0

Figure 2.1: A simple timed automaton

Semantics. The semantics of timed automaton A is defined by a transition system
SA = (QA,Q0,→) associated with it. A state q of SA is a pair (s, ν) such that s is a
location of A and ν is a clock interpretation for X such that ν satisfies the invariant I(s).
The set of all states of SA is denoted QA. There are two types of transitions in SA:

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 9

1. Time transition
∆
→: for a state (s, ν) and a real-valued time increment ∆ ≥ 0

there holds (s, ν)
∆
→ (s, ν + ∆) if for all 0 ≤ ∆′ ≤ ∆, ν + ∆′ satisfies the invariant

I(s).

2. Action transition
a
→: for a state (s, ν) and a switch 〈s, a, ϕ, λ, s′〉 such that ν

satisfies ϕ there holds (s, ν)
a
→ (s′, ν[λ := 0]) and ν satisfies I(s′).

A transition system of our example is depicted in Figure 2.2.

∆

s1,x=0s0,x>0

s1,x>10

s1,x<20

a

a

b

s0,x=0

∆

∆

b

Figure 2.2: Semantics

Executions. An execution or run r of A is an infinite sequence of states and transitions:

r = q0
l0→ q1

l1→ . . .

where i ∈ N, qi ∈ QA, and li ∈ (Σ ∪ R+). We denote by RA(q) the set of runs starting at
q ∈ QA, and by RA =

⋃

q∈QA
RA(q) the set of runs of A.

A state q′ is reachable from state q if it belongs to some run starting at q. We define
ReachA(q) to be a set of states reachable from q:

ReachA(q) = {q′ ∈ QA | ∃r = q0
l0→ q1

l1→ . . .
li→ qi ∈ RA(q), i ∈ N , qi = q′}.

Given a state q ∈ QA we are interested in computing the set of states ReachA(q).

Verification. The semantics of the timed automata—a timed transition system—is the
basis for verification of timed automata. Model checking algorithms can be viewed as
algorithms that search for particular states among all the possible states of the system.
Conceptually, the search can be performed in either of two ways: forwards or backwards.
Forward search consists in traversing the state-space by moving from one state to its
successors and computing the set of reachable states ReachA(q0). The backward search
analyses the graph by exploring the predecessors of a state.

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 10

Having the set of all the possible states of the system we can analyse specified prop-
erties of the system. Properties can be expressed using a formula of the temporal logic.
Verification means to check whether the property specified by the formula is satisfied over
the state space. Methods for verification are out of scope of this work, so we recommend,
for instance, [Yov98] for deep study of verification of timed systems.

2.4 Data Structures for Timed Automata

For representation of clock valuation of the transition system we can exploit different
data structures. First data structure proposed by R.Alur and D.L.Dill [AD94] is based
on regions. The more popular and efficient from the point of view of analysis is a formal
data structure based on zones. Zones are represented using matrices—difference bound
matrices (DBMs).

The core of my thesis is a design of a new data structure and operations over it. Thus,
it is important to understand basic operations on other data structures like DBMs are.
Similar operations like for DBMs were implemented in a new proposed data structure, as
described later in this document.

2.4.1 Regions

Consider timed automaton A as a static model of a system and transition system SA that
represents behaviour of that system, as defined in the previous chapter. The transition
system SA is to be analysed using model checking. However, this system has infinitely
many states and infinitely many symbols. The region analysis uses two techniques to
change these infinite sets to finite ones [Alu99]:

• time abstraction

Time abstraction forms a new time-abstract transition system where all time transi-
tions are hidden. We get a new transition system UA with finite number of symbols.
In the reachability problem for timed automata, we wish to determine reachability
of target locations. It follows that to solve reachability problems, we can consider
the time-abstract transition system UA instead of SA.

• stable quotient

To reduce infinitely many states to finite number R. Alur proposed equivalence
relation over the state space QA called stable partition ∼. The quotient of UA with
respect to a stable partition is the transition system [UA]∼. States of this system
are the equivalence classes of ∼.

Then, we define an equivalence relation on the state space of an automaton ∼= that
equates two states with the same location if they agree on the integral parts of all clock
values and on the ordering of the fractional parts of all clock values. The integral parts
of the clock values are needed to determine whether a particular clock constraint is met
or not, whereas the ordering of the fractional parts is needed to decide which clock will
change its integral part first.

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 11

Region Equivalence ∼=. For a clock x ∈ X , let cx be a constant (maximal constant of
clock x). For d ∈ R, fr(d) denotes the fractional part of d and ⌊d⌋ denotes the integral
part of d. Two clock assignments ν and ν ′ are region equivalent with respect to cx, cy,
ν ∼= ν ′, iff all the following conditions hold:

1. For all x ∈ X , either ⌊ν(x)⌋ = ⌊ν ′(x)⌋ or both ν(x) and ν ′(x) exceed cx.

2. For all x, y, if v(x) ≤ cx and v(y) ≤ cy, fr(ν(x)) ≤ fr(ν(y)) iff fr(ν ′(x)) ≤ fr(ν ′(y)).

3. For all x ∈ X , if ν(x) ≤ cx, then fr(ν(x)) = 0 iff fr(ν ′(x)) = 0.

Region. An equivalence class of clock interpretation [ν] induced by ∼= is called a region.

For instance, consider a timed transition system with two clocks x and y with cx = 2
and cy = 1, where cx, cy are the largest constraints over clocks in the system. The clock
regions are shown in Figure 2.3. The regions include 6 corner points, e.g. (0, 1), 14 open
line segments, e.g. 0 < x = y < 1, and 8 open regions, e.g. 0 < x < y < 1. The number
of clock regions is exponential in the number of clocks and [Alu99].

0

y

1

1 2 x

Figure 2.3: Clock regions

Reachability can be solved in time linear in the number of vertices and edges of the
region automaton, which is linear in the number of locations, exponential in the number
of clocks, and exponentional in the encodings of the constants. The reachability problem
is PSPACE-complete.

2.4.2 Zones

Clock zones [Alu99] are a way how to obtain finite representation for the infinite state
space SA. Zones are clock constraints that can be represented and stored in memory as
DBMs (Difference Bound Matrices). In a zone graph, instead of regions, zones are used
to denote symbolic states. Their representation is more compact than regions.

A clock zone ϕ is a conjunction of inequalities that compare either a clock value or the
difference between two clock values to an integer. We allow inequalities of the following
type:

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 12

x ≺ c, c ≺ x, x− y ≺ c

where ≺∈ {<,≤}, x, y ∈ X , c ∈ N.
If SA has k clocks, then set ϕ is a convex set in the k-dimensional Euclidean space.

Operations over Zones

Every clock constraint used in invariant of an automaton location or in the guard of a
transition is a clock zone (see definition above). They can be used as the basis for various
state reachability analysis algorithms for timed automata.

The reachability analysis using zones is usually expressed in terms of the following
three operations:

• Intersection
For two clock zones ϕ and ψ, ϕ∧ψ denotes the intersection of the two zones. Because
ϕ and ψ are clock zones, they can be expressed as conjunctions of clock constraints.

• Elapsing of Time
For a clock zone ϕ, ϕ ⇑ denotes the set of interpretations ν + δ for ν ∈ ϕ and δ ∈ R.

• Clock Reset
For a subset λ of clocks and a clock zone ϕ, ϕ[λ := 0] denotes the set of clock
interpretations ν[λ := 0] for ν ∈ ϕ.

A key property of the set of clock zones is closure under the above three operations.

Zone Automata

Zone. A zone is a pair (s, ϕ), where s is a location and ϕ a clock zone. We build a
transition system called zone automaton Z(A) whose states are zones ofA. For every initial
location s of A the zone (s, [X := 0]) is an initial location of Z(A), and for every switch e =
(s, a, ψ, λ, s′) of A and every clock zone ϕ, there is a transition ((s, ϕ), a, (s′, succ(ϕ, e))).

Operation succ(). Model checking is based on computation of all possible states of the
system and checking properties on these states. The core principle of the reachability
analysis is to compute a set of successors of a current state. This is done through an
operation succ(); in some papers it is called post() operation.

The set succ(ϕ, e) can be computed using the three operations on clock zones as follows:

succ(ϕ, e) = (((ϕ ∧ I(s)) ⇑) ∧ I(s) ∧ ψ)[λ := 0]

This formula can be interpreted by following steps during analysis of a time automaton:

1. Intersect ϕ with the invariant of location s to find the set of possible clock assign-
ments for the current state.

2. Let time elapse in location s using the operator ⇑.

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 13

3. Take the intersection with the invariant of location s again to find the set of clock
assignments that still satisfy the invariant.

4. Take the intersection with the guard ψ of the transition e to find the clock assign-
ments that are permitted by the transition.

5. Set all of the clocks in λ that are reset by the transition to 0.

Construction of a zone automaton starts from the initial zone (s, ϕ) by computing new
clock zones ϕ′ = succ(ϕ, e) for every edge e = (s, a, ψ, λ, s′) starting in the state s of the
timed automaton A. This new zone (s′, ϕ′) is then checked if it is already included in the
automaton Z(A).

If the zone (s′, ϕ′) does not exists in Z(A), a new state (s′, ϕ′) is added to the graph
Z(A) together with the edge ((s, ϕ), a, (s′, ϕ′). If the zone (s′, ϕ′) is already present in
Z(A), only the edge ((s, ϕ), a, (s′, ϕ′)) is added to Z(A).

2.4.3 Difference Bound Matrix (DBM)

Clock zones can be efficiently represented using matrices [Dil89]. In order to express a
uniform notation for clock zones we introduce a special clock x0 that is always 0. Then,
any clock zone ϕ can be written as a conjunction of constraints of the form x− y ≺ c, for
x, y ∈ X ,≺∈ {<,≤}, and n ∈ Z.

Let D is a difference bound matrix representing clock zone ϕ. Each entry Di,j has the
form (di,j ,≺i,j) and represents the inequality xi − xj ≺ di,j, where ≺i,j is either <,≤ or
(∞, <), if no such bound exists.

Since variable x0 is always 0, it can be used for expressing constraints that only involve
a single variable. Thus, Dj,0 = (dj,0,≺) means xj ≺ dj,0. Similarly, D0,j = (d0,j ,≺) means
−xj ≺ d0,j.

For instance, consider the clock zone:

ϕ = (x1 − x2 < 2) ∧ (0 < x2 ≤ 2) ∧ (1 ≤ x1)

That clock zone can be represented by the matrix D:

D =

∣
∣
∣
∣
∣
∣
∣
∣

x0 x1 x2

x0 (0,≤) (−1,≤) (0, <)
x1 (∞, <) (0,≤) (2, <)
x2 (2,≤) (∞, <) (0,≤)

∣
∣
∣
∣
∣
∣
∣
∣

that encodes following inequalities:
∣
∣
∣
∣
∣
∣

(x0 − x0 ≤ 0) (x0 − x1 ≤ −1) (x0 − x2 < 0)
(x1 − x0 <∞) (x1 − x1 ≤ 0) (x1 − x2 < 2)
(x2 − x0 ≤ 2) (x2 − x1 <∞) (x2 − x2 ≤ 0)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

(0 ≤ 0) (−x1 ≤ −1) (−x2 < 0)
(x1 <∞) (0 ≤ 0) (x1 − x2 < 2)
(x2 ≤ 2) (x2 − x1 <∞) (0 ≤ 0)

∣
∣
∣
∣
∣
∣

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 14

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

1 2 3 4

1

2

3

0 x1

x2

x1−x2=2

Figure 2.4: Clock zone ϕ = (x1 − x2 < 2) ∧ (0 < x2 ≤ 2) ∧ (1 ≤ x1)

In Figure 2.4 you can see the graphical representation of the zone ϕ.
The representation of a clock zone by a difference bound matrix is not unique. For

instance, if we change D1,0 to (4, <) we obtain an alternative DBM for the same zone,
because x1 < 4 includes x1 − x2 < 2 and x2 ≤ 2.

In general, the sum of upper bounds on the clock difference xi − xj and xj − xk is an
upper bound on the clock difference xi − xk. As seen from previous example, the sum of
x1 − x2 < 2 and x2 − x0 ≤ 2 gives the upper bound 4 on x1 − x0, i.e., x1 − x0 < 4.

More formally, if xi − xj ≺i,j di,j and xj − xk ≺j,k dj,k, then

xi − xk ≺′
i,k d

′
i,k

where

d′i,k = di,j + dj,k and ≺′
i,k=

{
≤ ≺i,j=

′≤′ and ≺j,k=
′≤′

< otherwise

Finding minimum constraint d′i,k on each clock difference is called tightening the dif-
ference bound matrix. Deriving the tightest constraint on a pair of clocks is equivalent to
finding the shortest path between two nodes. By repeating that operation on the matrix
until the matrix is changed we get a canonical representation for the clock zone under con-
sideration. Finding the canonical form can be done using the Floyd-Warshall algorithm
which is of cubic complexity. Details about computation of canonical form can be found
at [BY04, chapter 4].

Transformation operations over DBMs are defined with respect to operations on clock
zones from the previous section as follows:

• Intersection
The operation of intersection is used to add a constraint to a zone in state-space
exploration.

We define D = D1 ∧ D2. Let D1
i,j = (c1,≺1) and D2

i,j = (c2,≺2). Then Di,j =
(min(c1, c2),≺), where ≺ is defined as follows:

• If c1 < c2 then ′ ≺′=′≺′
1.

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 15

• If c2 < c1 then ′ ≺′=′≺′
2.

• If c1 = c2 and ′ ≺′
1=

′≺′
2, then ′ ≺′=′≺′

1.

• If c1 = c2 and ′ ≺′
2 6=

′≺′
2, then ′ ≺′=′<′.

• Elapsing of Time
This operation computes the strongest post condition of a zone with respect to delay,
i.e., contains the time assignment that can be reached from D by delay.

Algorithmically, the operation is computed by removing the upper bounds on all
individual clocks. The property that all clocks proceed at the same speed is ensured
by the fact that constraints on the differences between clocks are not altered by the
operation.

We define D′ = D ⇑ as follows:

• D′
i,0 = (∞, <) for any i 6= 0.

• D′
i,j = Di,j if i = 0 or j 6= 0.

Note: The complement operation for pre() operation computes the weakest precondition
of D with respect to delay. Formally, D′ = {u|u + d ∈ D, d ∈ R+}, i.e., the set of time
assignment that can reach D by some delay d.

Algorithmically, this operation is computed by setting the lower bound on all individual
clocks to (0,≤).

This operation may produce non-canonical DBMs.

• Clock Reset
This operation is used to set clocks to zero.

We define D′ = D[λ := 0], where λ ⊆ X as follows:

• If xi, xj ∈ λ then D′
i,j = (0,≤).

• If xi ∈ λ, xj 6∈ λ then D′
i,j = D0,j.

• If xj ∈ λ, xi 6∈ λ then D′
i,j = Di,0.

• If xi, xj 6∈ λ then D′
i,j = Di,j .

Note: This operation can be extended to set clocks to any specific values, so that D′ =

D[λ := m], where m ∈ R.

• Removing constraints
This operation removes all constraints on a given clock, i.e., the clock may take any
positive value. Formally, D′ = {u[x = d] | u ∈ D, d ∈ R+}. This operation is used
in combination with conjunction to implement reset operations on clocks. It can
be used in both forwards and backwards exploration. It is similar to reset clocks
operation.

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 16

• Copy
Copy is used in forward state-space exploration to copy the value of one clock to
another. Formally, D′ = {u[x = u(y)] | u ∈ D}. Copy can be implemented by
assignment Dx,y = (0,≤),Dy,z = (0,≤), which removes all other bounds on x.

• Shift clocks
This reset operation is used for shifting a clock, i.e., adding or subtracting a clock
with an integer value. Formally, D′ = {u[x = u(x) +m] | u ∈ D,m ∈ Z}.

Additionally, we introduce other two classes of operation. One is the property-checking
that includes checking the consistency of a DBM, the inclusion between zones, and whether
a zone satisfies a given atomic constraint. The last class is normalization that is used to
obtain a finite zone graph.

Property-checking operations on DBMs are as follows:

• Consistency test
The most basic operation on a DBM is to check if it is consistent, i.e., if the solu-
tion set is non-empty. In state-space exploration this operation is used to remove
inconsistent states from exploration.

Inconsistent zone has at least one pair of clocks where the upper bound on their
difference is smaller than the lower bound.

• Inclusion test
Another key operation in state space exploration is inclusion checking for the solution
sets of two zones. For DBMs in canonical form, the condition that Di,j ≤ D′

i,j for
all clocks i, j ∈ X is necessary and sufficient to conclude that D ⊆ D′.

Normalization operation is used to obtain a finite zone graph with respect to the
maximal constant each clock is compared to in the automaton. Here we describe the
normalization operation for automata that contain no constraints over clock differences.
For the general case, we refer to [BY03].

Given a clock zone D and a set of maximal constants k = {kx, ky , . . . }, where kx denotes
the maximal constant for clock x, the normalized zone of D is computed as follows:

1. Removing all constraints of the form x ≺ m,x− y ≺ m, where m > kx,≺∈ {<,≤}.

2. Replacing all constraints of the form x ≻ m,x− y ≻ m, where m > kx,≻∈ {>,≥}
with x > kx and x− y > kx, respectively.

2.4.4 Example

Consider a simple timed system: a light switch with delays. To switch the light on it is
needed to press twice the switch within ten seconds. Then the light shines bright until the
maximum time delay passes. Then the light is automatically switched off. If the switch

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 17

off dim bright

y <= 100

x:=0

x > 10

x <= 10

y:=0

y == 100

off, y>=0,x>=0

y−x<=0,x−y<=0

dim, y>=0,x>=0

dim, y>10,x>=0 off, y>=100,x>=100

y−x<=0,x−y<=110

dim, y>=100,x>=0

ϕ_4

ϕ_2

ϕ_1

ϕ_3 ϕ_5

ϕ_6

ϕ_7

x−y<−10

x−y<=0

x−y<=0

x−y<=−100

off, y>10,x>10
bright, y>=0,x>=0,y<=100

x<=110,y−x<=0,x−y<=10

ϕ_4
is included in

ϕ_2

ϕ_7
is included in

ϕ_2

Figure 2.5: A light switch—timed automaton A and its transition system SA

button is pressed just once, the light is dim and after next press the button is switched
off. The system can be modelled by timed automaton A—see Figure 2.5.

Behaviour of the system can be described using transition system SA. This graph
contains nodes in the form (s, ν) where s is the location of the automaton S and ν is a clock
valuation for X . Clock valuation is represented using zones. The transition system SA in
Figure 2.5 represents states generated using post() analysis. Normal lines means transition
of a SA, dotted lines depicts relation inclusion. For example, the state (off, ϕ4) ⊆ (off, ϕ2).
These two states have the same location s (in our case “off”), and ϕ4 ⊆ ϕ2.

Two zones with the same location and witch clock zones ϕ that are included are
symbolically represented as one zone. The graph corresponds to the zone automaton
Z(A). Graphical representation of clock zones ϕ1 − ϕ7 is in Figure 2.6.

Clock zones are represented in the form of difference bound matrices (DBMs) as de-
scribed in the previous section. For our system Z(A) is represented by the following
matrices:

CHAPTER 2. MODEL CHECKING OF TIMED SYSTEMS 18

y

���
���
���

���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

ϕ_1

ϕ_4ϕ_3ϕ_2

10

y

x

x−y<=−10

110

y−x<=0

100 x−y<=10

y

x
110100

100 x−y<=10

y−x<=0y

x

100

y

x

x−y<=−100

100

ϕ_5 ϕ_6 ϕ_7
1010

x

y

x−y<=0

x

y

x−y<=0

10

10

x=y

x

Figure 2.6: A graphical representation of clock zones

ϕ1 =

x0 x y
x0 (0,≤) (0,≤) (0,≤)
x (∞, <) (0,≤) (0,≤)
y (∞, <) (0,≤) (0,≤)

, ϕ2 =

x0 x y
x0 (0,≤) (0,≤) (0,≤)
x (∞, <) (0,≤) (0,≤)
y (∞, <) (∞, <) (0,≤)

ϕ3 =

x0 x y
x0 (0,≤) (−10, <) (−10, <)
x (∞, <) (0,≤) (0,≤)
y (∞, <) (∞, <) (0,≤)

, ϕ4 =

x0 x y
x0 (0,≤) (0,≤) (−10, <)
x (∞, <) (0,≤) (−10, <)
y (∞, <) (∞, <) (0,≤)

ϕ5 =

x0 x y
x0 (0,≤) (0,≤) (0,≤)
x (110,≤) (0,≤) (10,≤)
y (100,≤) (0,≤) (0,≤)

, ϕ6 =

x0 x y
x0 (0,≤) (−100,≤) (−100,≤)
x (∞, <) (0,≤) (110, <)
y (∞, <) (0,≤) (0,≤)

ϕ7 =

x0 x y
x0 (0,≤) (0,≤) (−100,≤)
x (∞, <) (0,≤) (−100,≤)
y (∞, <) (∞, <) (0,≤)

Chapter 3

Parametric Real-Time Reasoning

Parametric analysis works with systems that contain special variables that are not changed
during the execution—parameters. In parametric models, clocks and counters can be
compared with parameters. Parameters are used in transitions where they define lower
and upper bounds on clocks or counters. Parameters may range over infinite domains
and are related by a set of constraints. For instance, we say variable x < MAXDELAY
where MAXDELAY is a parameter. This parameter can be constrained by a relation
MAXDELAY >= 1.

Using parametric reasoning, we can either verify that a system satisfies some property
for all possible values of the parameters, or we can find constraints on the parameters that
define the set of all possible values for which the system satisfies a property.

As mentioned in [AHV93], the important question for parametric automata is the
emptiness: given a parametric timed system, are there concrete values for the parame-
ters so that the automaton has an accepting run? This question is generally undecidable
but there exist algorithms for checking the emptiness of restricted classes of parametric
timed automata. Using semi-algorithms the termination is not ensured, however, in many
practical cases the analysis terminates. There are various techniques that enforce the con-
vergence of the analysis like widening technique or convex hull [ACH+95] implemented in
HyTech, or extrapolation based on control loops introduced in [AAB00] and implemented
in TReX.

As showed in [AD94], the verification problem for timed automata is decidable. It
has been shown in [AHV93] that for parametric timed automata, the reachability problem
is undecidable. However, in [AAB00], the authors propose a semi-algorithmic approach
that allows to deal with parametric counter and timed systems. They define a new sym-
bolic representation called Parametric DBMs (PDBMs) for use in reachability analysis,
and provide powerful technique for computing representations of their sets of reachable
configuration.

Another approach to parametric time automata can be found in [HRSV01]. The au-
thors investigate symbolic representation of parametric timed automata. They also present
a subclass of parametric timed automata (L/U automata) for which the emptiness problem
is decidable.

19

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 20

In our text, this chapter gives an overview of parametric timed and counter systems
as defined in [AAB00] and their representation using PDBMs. It explains main points of
parametric reasoning and points out the significance of a symbolic data representation.
We show two data structures mainly used to represent abstract data domain for para-
metric verification—Parametric DBMs and polyhedra. We focus on operations over these
structures and compare them with operations on DBMs (non-parametric data structure).
We discuss efficiency of implementation of PDBMs and polyhedra in the last section of
this chapter.

3.1 Parametric Timed Automata

Classical timed automata where clocks can only be compared to constants do not allow
parametric reasoning. Here, we consider models of extended automata supplied with real
valued clocks. Clocks can be reset using simple operations, and they can be tested using
simple parametric constraints (they can be compared to parameters in these constraints).
The following definition of parametric timed and counter automata were first introduced
in [AAB00].

A Parametric Timed Automaton (PTA) is a tuple T = 〈L,L0,X ,P, I, δ〉, where

• L is a finite set of locations,

• L0 is a finite set of initial locations, L0 ⊆ L,

• X = {x0, . . . , xnx−1} is a finite set of clocks, each xi ∈ X is interpreted over domain
D,

• P = {p0, . . . , pnp−1} is a finite set of parameters, each pi ∈ P is interpreted over
domain D,

• I : L→ SC(X ,P) is a mapping that associates locations with invariants, SC(X ,P)
is a simple parametric constraint expressed as a conjunction of formulas of the form
x ≺ t or x − y ≺ t where x, y ∈ X ,≺ ∈ {<,≤}, t ∈ AT (P) is an arithmetical term
over P defined by the grammar t ::= c | p | t − t | t + t | c ∗ t where p ∈ P is a
parameter and c ∈ Z is a constant.

• δ is a set of transitions of the form (s1, g, sop, s2) where s1, s2 ∈ L, g ∈ SC(X ,P) is
a guard, and sop is a simple operation over X—a special kind of assignment of the
form x := 0 or x := t where x ∈ X and t ∈ AT (P)

Clocks and parameters range over a set D which can be either the set of positive reals
R≥0 (dense model time) or the set of non-negative integers N (discrete time model). We
call valuation of clocks a vector ~ν = (ν1, . . . , νn), where νi ∈ D. Value ~ν(xi) denotes the
value of variable xi in the valuation ~ν.

A configuration of T is a triplet 〈s, ~ν,~γ〉 where s ∈ L is a location, ~ν : X nx → Dnx is
a valuation of the clocks, and ~γ : Pnp → Dnp is a valuation of parameters.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 21

In Figure 3.1, there is an example of a parametric timed automaton where L = {s0, s1},
L0 = {s0}, X = {x}, I = {s1 → x < p}, and δ = {(s0, ǫ, x := 0, s1), (s0, x ≥ q, ǫ, s2)}.

x>=q
x<p

x:=0
s0 s1

Figure 3.1: A parametric timed automaton

Semantics. Similarly to the timed automata, the semantics of PTA is a transition system
ST = (QT , Q0,→) associated with PTA T where QT = L×Dnx ×Pnp is a set of possible
configurations of T , Q0 is a set of initial configurations, and →: QT × δ ×QT is a set of
transitions of ST .

A state q ∈ QT is a tuple (s, ~ν,~γ), where s ∈ L, ~ν is a clock interpretation for X , and
~γ is a parameter valuation such that (~ν,~γ) |= I(s). We denote QT the set of all states of
ST . There are two types of transitions →:

1. Time transition
∆
→: 〈s1, ~ν1, ~γ1〉 → 〈s2, ~ν2, ~γ2〉 iff s1 = s2, ~γ1 = ~γ2 and exists ∆ ∈ D

such that ~ν2 = ~ν1 + ∆ and for all ∆′ ≤ ∆ : (~ν1 + ∆′, ~γ1) |= I(s1).

2. Action transition
a
→: for a state 〈s1, ~ν1, ~γ1〉 and a transition a = (s1, g, sop, s2) ∈ δ

we define a transition relation
a
→ between configurations as 〈s1, ~ν1, ~γ1〉

a
→ 〈s2, ~ν2, ~γ2〉

such that (~ν1, ~γ1) |= g and ~ν2 = sop(~ν1) ∧ ~γ1 = ~γ2 and (~ν2, ~γ1) |= I(s2).

A graph of symbolic configurations of our example is depicted in Figure 3.2. In addition
to timed automata defined in the previous chapter, each state of the transition system
contains a valuation of parameters in the form of a quantifier-free formula over P, F (P),
by grammar ϕ ::= true | t ≤ t | ¬ϕ | ϕ ∧ ϕ, where t ∈ AT (P). In our figure, operation
∧ is denoted by comma, semicolon separates items of the tuple. In the initial state s0
parameters are not bounded (constrained), so the formula is true.

s1;x>=0,x<p;p>0

s0;x>=0;true

s0;x>=q;q>=0,
p−q<0,p>0

s0;x>=0;q<=0,
p>0

Figure 3.2: Semantics of the parametric timed automaton

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 22

Executions. An execution or run r of T is an infinite sequence of states and transitions:

r = q0
l0→ q1

l1→ . . .

where i ∈ N, qi ∈ QT , and li ∈ (Σ ∪D ∪ D). We denote by RT (q) the set of runs starting
at q ∈ QT , and by RT =

⋃

q∈QT
RT (q) the set of runs of T .

A state q′ is reachable from state q if it belongs to some run starting at q. We define
ReachT (q) to be a set of states reachable from q:

ReachT (q) = {q′ ∈ QT | ∃r = q0
l0→ q1

l1→ . . .
li→ qi ∈ RT (q), i ∈ N , qi = q′}.

For verification we are interested in computing the set of states ReachT (q0).

3.2 Parametric Counter Automata

Parametric counter automata are similar to parametric timed automata. The only differ-
ence is that the function post() is defined without considering time-transitions. Variables
(counters) and parameters are interpreted over naturals, D = N.

A Parametric Counter Automaton (PCA) is a tuple C = 〈L,L0, C, P, I, δ〉, where

• L is a finite set of locations,

• L0 is a finite set of initial locations, L0 ⊆ L,

• C is a finite set of variables (counters) over integers,

• P is a finite set of parameters,

• I : L→ SC(C,P) is a mapping that associates locations with invariants, SC(C,P)
is a simple parametric constraint expressed as a conjunction of formulas of the form
x ≺ t or x−y ≺ t where x, y ∈ C,≺∈ {<,≤}, t is an arithmetical linear term AT (P)
over the P defined by the grammar t ::= c | p | t − t | t + t | c ∗ t where p ∈ P is a
parameter and c ∈ Z is a constant.

• δ is a set of transitions of the form (s1, g, sop, s2) where s1, s2 ∈ L, g ∈ SC(C,P) is
a guard, and sop is a simple operation over C—a special kind of assignment of the
form x := y + t or x := t where x, y ∈ C and t ∈ AT (P).

Semantics. Semantics of PCA is a transition system SC = (QC , Q0,→) associated
with PCA C. A state q of SC is a tuple (s, ~ν,~γ), where s ∈ L, ~ν : Cnc → Dnc is a valuation
of counters, and ~γ : Pnp → Dnp is a valuation of parameters such that (~ν,~γ) |= I(s). We
denote QC a set of all states of SC .

The set D denotes a domain of counter values, D is N. Given a transition a ∈ δ, we
define an action relation

a
→: For a state 〈s1, ~ν1, ~γ1〉 and a transition a = (s1, g, sop, s2) ∈ δ,

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 23

we define a transition relation
a
→ between configurations as 〈s1, ~ν1, ~γ1〉

a
→ 〈s2, ~ν2, ~γ2〉 such

that (~ν1, ~γ1) satisfies g, and ~ν2 = sop(~ν1) ∧ ~γ1 = ~γ2, and (~ν2, ~γ1) |= I(s2). The function
posta is defined here without considering time-transitions.

3.3 Comparison of Parametric Timed and Counter Automata

The main difference between Parametric Timed Automata and Parametric Counter Au-
tomata is whether a parameter can be a clock variable or not. In Parametric Timed
Automata parameters can be clock variables only. PTA define two types of transitions—
action transitions and time transitions.

Parametric Counter Automata allow parameters only for non-clock variables that we
call counters here. PCA define only one type of transitions—action transition.

However, it is possible to combine these two parametric automaton into one heteroge-
nous systems. In such system we can have different types of variables defined over different
domains. However, operations for every type of variables are defined separately.

In [AAB00] such model is called Parametric Timed Counter System (PTCS) that has
both counters and clocks. PTCS is a straightforward extension of the definition of the
PTA’s and PCS’s. It is defined as a tuple M = (L,C,X ,P, I, δ), where C is a finite set
of counters, X is a finite set of clocks and P is a finite set of parameters. In this model
comparisons between clocks and counters in guards and invariants are not allowed.

In both models—PCA and PTA—we can use Parametric DBMs for data representa-
tion. However, it is quite possible to have different data structures for clocks and counters.
While PTA use mostly PDBMs or polyhedra, for PCA we can use simpler data structure.
The design and implementation of such structure—a parametric hypercube—is one of the
objectives of this work. This data structure is described later in the text.

3.4 Verification

In automata-theoretic verification, a state-space of the system is viewed as an automaton.
The set of words accepted by the automaton corresponds to possible behaviours (runs)
of the system. Properties of the system are specified by automaton too. Considering
parametric systems we distinguish two goals of verification—parametric verification and
parameter synthesis:

• For verification of parametric systems, we want to prove that a system satisfies its
specification for all parameters values that meet a given set of constraints. Given a
set Γ ⊆ [P 7→ D] of possible parameter valuations, we wish to verify that no γ ∈ Γ
breaks the requirements put on the system.

• In parameter synthesis, we want to find all parameter valuations Γ(A) that satisfy
desired properties of the system.

In parameterized models we represent states symbolically and support the same opera-
tions as for non-parameterized models. A set of states can be efficiently represented using

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 24

matrices for non-parametric times systems. In the parameterized case, we use constrained
parametric DBMs.

3.5 Parametric DBMs

Parametric Difference Bound Matrix (PDBM) is a symbolic data structure that is used
to represent valuation of variables during system analysis. PDBMs—in comparison to
DBMs—were designed to work with parameters. PDBMs were successfully implemented
in verification tool TReX [BCAS01].

Parametric DBMs were first introduced in [AAB00]. Here, we recall its definition and
show basic operations over PDBMs. For further details, we recommend [AC01].

Parametric DBMs use for its representation parameterized bounds. Let us show the
definition of parameterized bounds for PDBMs. Its definition is then applied to parame-
terized hypercubes defined in chapter 4.1.3.

Parameterized bounds. Let b = (t,≺) be a pair of an arithmetical term with parameters
t ∈ AT (P) with a symbol from {<,≤}. The set of parameterized bounds PB is defined as
follows:

PB = AT (P) × {<,≤} ∪ {(−∞, <), (∞, <)}.

In order to limit the set of values taken by parameters, we define the notion of a con-
strained parameterized bound—a parameterized bound with a constraint (formula) F (P)
that should be satisfied by the parameters. F (P) is a set of quantifier-free formulas over
P given by the grammar ϕ ::= t ≤ t | ¬ϕ | ϕ ∧ ϕ where t ∈ AT (P).

The set of constrained parameterized bounds P̃B over D is defined as follows:

P̃B = PB × F (P)

P̃B is defined on the domain of integers or reals.
Symbols < and ≤ are totally ordered: < is strictly less then ≤.

Total order over parameterized bounds ⊆PB. We use the relation of total order ⊆PB

over constrained parameterized bounds in the following way:
Let b̃1 = ((t1,≺1), ϕ1), b̃2 = ((t2,≺2), ϕ2) ∈ P̃B are two constrained parameterized

bounds. We say that b̃1 ⊆PB b̃2 if and only if the formula ϕincl defined below is satisfiable.

ϕincl = ∀pi ∈ P . ϕ1 ⇒ ϕ2 ∧ ((t1 < t2) ∨ (t1 = t2 ∧ ≺1≤≺2))

The bound (∞, <) satisfies all b̃ ∈ PB, i.e., b̃ ⊆PB ((∞, <), true) for any b̃ ∈ PB.
Definition of the strict order ⊂PB is similar. We say that b̃1 ⊂PB b̃2 if and only if the

formula ϕincls given bellow is satisfiable.

ϕincls = ∀pi ∈ P . ϕ1 ⇒ ϕ2 ∧ ((t1 < t2) ∨ (t1 = t2 ∧ ≺1<≺2))

Bounds b̃1 and b̃2 are equal if and only if b̃1 ⊆PB b̃2 and b̃2 ⊆PB b̃1.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 25

Operators ⊕,⊗. The following definition introduces operators ⊕ and ⊗. Operations ⊕ is
needed for canonization and computation of the normal form, operation ⊗ for intersection
over PDBMs. The satisfiability of parameterized formulas F (P) plays an important role
in the computation of these operations.

Let b̃1 = ((t1,≺1), ϕ1), b̃2 = ((t2,≺2), ϕ2) ∈ P̃B are two constraint parameterized
bounds. We define following operators according to [AC01]:

• Operator ⊕ : P̃B × P̃B → P̃B such that

b̃1 ⊕ b̃2 = (t1 + t2, (min(≺1,≺2)), ϕ1 ∧ ϕ2)

where for all t ∈ AT (P) we define:

t+ ∞ = ∞

t+ (−∞) = −∞

∞ + ∞ = ∞

∞ + (−∞) = ∞

(−∞) + (−∞) = −∞

There are two special bounds:

– Bound ((0,≤), true) is a neutral element for ⊕. For all b̃ ∈ P̃B, ((0,≤), true)⊕
b̃ = b̃.

– Bound ((∞, <), false) is an absorbing element for ⊕. For all b̃ ∈ P̃B, ((∞, <
), false) ⊕ b̃ = ((∞, <), false).

Operator ⊕ is needed when transforming PDBMs into canonical forms and for com-
putation of normal forms.

• Operator ⊗.

Before defining operator ⊗ used in intersection of PDBMs we have to determine the
minimum between two terms. We will use following three formulas:

Φ< ≡ ∃p ∈ P.ϕ1 ∧ ϕ2 ∧ t1 < t2

Φ= ≡ ∃p ∈ P.ϕ1 ∧ ϕ2 ∧ t1 = t2

Φ> ≡ ∃p ∈ P.ϕ1 ∧ ϕ2 ∧ t1 > t2

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 26

Operator ⊗ : P̃B × P̃B → 2P̃B is such that b̃1 ⊗ b̃2 = min(b̃1, b̃2).

min(b̃1, b̃2) = min<(b̃1, b̃2,Φ<)

∪ min=(b̃1, b̃2,Φ=)

∪ min>(b̃1, b̃2,Φ>)

where

min<(b̃1, b̃2,Φ<) =

{
{((t1,≺1), ϕ1 ∧ ϕ2 ∧ (t1 < t2))} if Φ<

∅ otherwise

min=(b̃1, b̃2,Φ=) =

{(t1,≺1), ϕ1 ∧ ϕ2 ∧ (t1 = t2))} if Φ= ∧ ≺1≤≺2

{(t2,≺2), ϕ1 ∧ ϕ2 ∧ (t1 = t2))} if Φ= ∧ ≺2<≺1

∅ otherwise

min>(b̃1, b̃2,Φ>) =

{
{((t2,≺2), ϕ1 ∧ ϕ2 ∧ (t1 > t2))} if Φ>

∅ otherwise

The result of min operation may be a set of one, two or three constrained parame-
terized bounds. Their combination depends on satisfiability of Φ1, Φ2 and Φ3.

There is as well a special bound:

– Bound ((∞, <), true) is a neutral element for ⊗. For all b̃ ∈ P̃B, ((∞, <), true)⊗
b̃ = {b̃}.

Parametric DBM M. Let T = 〈L,L0,X ,P, I, δ〉 be a PTA, X = {x1, . . . , xn} ∪ {x0} a
set of its clocks, where x0 is an additional clock with a special value 0. Using this special
clock we can express the condition xi ≤ ti as xi − x0 ≤ ti.

Then, we define a parametric difference bound matrix (PDBM) M as a matrix that
encodes the constraints in form xi−xj ≺ t (similar to DBMs) where xi, xj ∈ X are clocks,
t ∈ AT (P), and ≺∈ {<,≤} such that:

• M is a square matrix of dimension n+ 1 where n is the number of clock variables.

• Elements of M are parameterized bounds in the form (t,≺) ∈ PB encoding con-
straints xi − xj ≺ t.

• The first column encodes the upper bounds of the variables, the first row encodes
the lower bounds of the variables.

• Element (∞, <) means that interval xi − xj is unbounded (unrestricted).

The following parameterized matrix is taken from the example at page 33.

M =

x0 x y
x0 (0,≤) (−10, <) (−10, <)
x (∞, <) (0,≤) (0,≤)
y (∞, <) (∞, <) (0,≤)

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 27

Valuation of a PDBM [[M]] is a set of valuations of counters, clocks and parameters
(~ν,~γ) that satisfy a formula ψ given bellow:

ψ = ∧nx

i=0 ∧nx

j=0 xi − xj ≺ij tij ∧ ϕ,

for all variables xi, xj ∈ X , where M(i, j) = (≺ij , tij). We say that M is satisfiable for
parametric valuation (~ν,~γ) if [[M]] is nonempty.

Constrained PDBM M̃. A Constrained PDBM is a pair M̃ = (M,Φ) where M is a
PDBM and Φ ∈ F (P) is a parameter constraint. F (P) is a set of quantifier-free first order
formulas given by grammar ϕ ::= true | t ≤ t | ¬ϕ | ϕ ∧ ϕ. A symbolic configuration of
a T automaton is a tuple (q,M̃), where q ∈ QT is a control state (see Semantics of PTA
at page 21), and M̃ is a Constrained PDBM.

Example of a constrained PDBM that encodes following inequalities M̃ = ((y >=
0) ∧ (x >= 0) ∧ (y ≤Max) ∧ (y − x ≤ 0) ∧ (x ≤ 10 +Max) ∧ (x− y) ≤ 10),Max > 0) is
depicted in Figure 3.3.

M̃ = (M, ϕ) =

x0 x y
x0 (0,≤) (0,≤) (0,≤)
x (10 +Max,≤) (0,≤) (10,≤)
y (Max,≤) (0,≤) (0,≤)

,−Max < 0

x−y<=10

����
����
����
����
����
����
����

����
����
����
����
����
����
����

10

y−x<=0

x

y

Max+10
Max

Max

Figure 3.3: Graphical representation of Constrained PDBM M̃

3.5.1 Operations on Constrained PDBMs

• Transformation into a canonical form. PDBMs with the tightest possible
bounds are called canonical. Formally, a Constrained PDBM (M,Φ) is in canonical
form iff for all i,j,k, M satisfies (Mij ,Φ) ⊆PB (Mik,Φ)⊕ (Mkj,Φ), where t ∈ AT (P).
That means every element of the canonical matrix contains the minimal distance
between the variables x1, x2 ∈ X .

Canonical forms of DBMs (non parametric case) are constructed using the Floyd
Warshall algorithm which computes the minimum path between all pairs of entries.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 28

In the parametric case, we follow the same principle by running a symbolic Floyd
Warshall algorithm. During a computation, the algorithm needs to determine min-
imums between terms. For that, the algorithm assumes each of the two possible
cases and checks their consistency with respect to the parameter constraints: given
two terms t1 and t2, it considers the case where min(t1, t2) = t1, resp. t2, and adds
t1 < t2, resp. t1 ≥ t2 to the parameter constraints.

In order to check the consistency of each of the possible cases when computing the
minimum between two terms, we have to test the satisfiability of formulas ϕ of
the form Φ(P) ∧ t1 ≺ t2 where ≺∈ {<,≤} and Φ is a parameter constraint. If
Φ contains linear constraints or all parameters are real, then the test is decidable
[AAB00]. If Φ is nonlinear formula mixing integer and real parameters, this test is
undecidable. Nevertheless, we can test the satisfiability of Φ under the assumption
that all parameters are reals. Further details are mentioned later in Section 3.5.2,
or in [AC01].

The transformation into a canonical form is used to test emptiness.

• Intersection. Let M̃1 = (M1,Φ1) and M̃2 = (M2,Φ2). We already defined inter-
section on constrained parameterized bounds using the operator ⊗. Now we extend
the operation on matrices.

The intersection consists of computing the minimum for every i, j between two terms
M1(i, j) and M2(i, j) under the parameter constraints Φ1∧Φ2. This is done by split-
ting and checking the consistency of each case, as in the construction of canonical
representation. For every two terms we can get one, two or three constrained pa-
rameterized bounds depending on the satisfiability of formulas Φ<,Φ=, or Φ>. The
result will be a set of Constrained PDBMs as shown in the following example [AC01]:

Let X = {x, y, z} be clocks and P = {T1, T2, T3, T4} parameters. Let two control
states of the transition graph be given by conjunction of constrained parameterized
bounds ψ1 = (T1 ≤ x ∧ z ≤ T2 ∧ x − y ≤ 3, T1 ≥ 0 ∧ T2 ≥ 0) and ψ2 = (x ≤
T3 ∧ y ≤ 5 ∧ z ≤ T4 ∧ y − z < 1, T3 ≥ 0 ∧ T4 ≥ 0).

Corresponding PDBMs are M̃1, M̃2 where:

(M1, Φ1) =

0

B

B

B

B

@

x0 x y z

x0 (0,≤) (−T1,≤) (0,≤) (0,≤)
x (∞,<) (0,≤) (3,≤) (∞, <)
y (∞,<) (∞, <) (0,≤) (∞, <)
z (T2,≤) (∞, <) (∞, <) (0,≤)

1

C

C

C

C

A

, T1 ≥ 0 ∧ T2 ≥ 0

(M2, Φ2) =

0

B

B

B

B

@

x0 x y z

x0 (0,≤) (0,≤) (0,≤) (0,≤)
x (T3,≤) (0,≤) (∞,<) (∞, <)
y (5,≤) (∞, <) (0,≤) (1, <)
z (T4,≤) (∞, <) (∞,<) (0,≤)

1

C

C

C

C

A

, T3 ≥ 0 ∧ T4 ≥ 0

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 29

The result of the intersection M̃1 ⊗ M̃2 = {M̃ ′, M̃ ′′, M̃ ′′′}:

(M ′
, Φ′) =

0

B

B

B

B

@

x0 x y z

x0 (0,≤) (−T1,≤) (0,≤) (0,≤)
x (T3,≤) (0,≤) (3,≤) (∞, <)
y (5,≤) (∞, <) (0,≤) (1, <)
z (T2,≤) (∞, <) (∞, <) (0,≤)

1

C

C

C

C

A

, T1 ≥ 0 ∧ T2 ≥ 0 ∧ T3 ≥ 0 ∧ T2 < T4

(M ′′
, Φ′′) =

0

B

B

B

B

@

x0 x y z

x0 (0,≤) (−T1,≤) (0,≤) (0,≤)
x (T3,≤) (0,≤) (3,≤) (∞, <)
y (5,≤) (∞, <) (0,≤) (1, <)
z (T4,≤) (∞, <) (∞, <) (0,≤)

1

C

C

C

C

A

, T3 ≥ 0 ∧ T4 ≥ 0 ∧ T1 ≥ 0 ∧ T2 > T4

(M ′′′
, Φ′′′) =

0

B

B

B

B

@

x0 x y z

x0 (0,≤) (−T1,≤) (0,≤) (0,≤)
x (T3,≤) (0,≤) (3,≤) (∞, <)
y (5,≤) (∞, <) (0,≤) (1, <)
z (T4,≤) (∞, <) (∞, <) (0,≤)

1

C

C

C

C

A

, T1 ≥ 0 ∧ T2 ≥ 0 ∧ T3 ≥ 0 ∧ T2 = T4

• Inclusion. Let M̃1 = (M1, ϕ1) and M̃2 = (M2, ϕ2) be PDBMs in a canonical
form, X = {x0, . . . , xnx−1}, P = {p0, . . . , pnp−1}. The inclusion of M̃1 in M̃2 can
be expressed by an extension of the total order ⊆PB over parameterized bounds to
Constrained PDBMs:

M̃1 ⊆PB M̃2 iff ∀i, j ∈ {0, n − 1} . (M1(i, j), ϕ1) ⊆
PB (M2(i, j), ϕ2)

Definition of the operation ⊆PB over parameterized bounds uses a formula ϕincl to
test the inclusion. Here, this operation is extended to matrices. Then, we get for
the inclusion following relation:

M̃1 ⊆PB M̃2 iff Φincl is satisfiable

Φincl = ∀i, j,∀ ~p ∈ Pnp . ϕ1 ⇒ (ϕ2 ∧ M1(i, j) ≤M2(i, j))

This practically means we build the formula for every pair M1(i, j) and M2(i, j) and
test its satisfiability. If the test is false, the matrices are not included. Otherwise we
continue computing Φincl for other values i, j.

Since M̃1, M̃2 have to be in the canonical form, the operation of inclusion is very
computationally expensive.

• Adding constraints. Guards are conjunctions of constraints in the form xi−xj ≺ t
where xi, xj ∈ X and t ∈ AT (P). Guards can be represented by PDBMs.

Let PDBM M̃g ∈ M̃ represent a guard g over a transition (s1, g, sop, s2) ∈ δ . Let
M̃ represents a current valuation of variables. We compute the intersection between
the guard represented by M̃g and M̃ as follows:

M̃ ′ = M̃g ⊗ M̃

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 30

• Linear assignment. For resetting a clock or setting a counter, we use the operation
in the form x := A.x+~b, where A is a matrix with one 1 on the row. Other elements
on the row are 0’s. Vector ~b symbolically represents variables that form term ti. For
example, xi := x0 + ti.

Let M̃ be a PDBM representing the current valuation of a system. Let x := A.X +~b
where x ∈ X is the form of the clock assignment. A PDBM M̃ ′ that represents a
new valuation after the assignment is computed as follows [AC01]:

M̃ ′ = A ∗ M̃ ∗AT +B.

After the assignment we have to recalculate the canonical form of the result matrix.

• Elapsing of time. We define the operation ⇑ of passing time similarly as for DBMs.
Elapsing time in a given clock means to set value (<,∞) in the corresponding clock
variable. In a matrix, the first column represents the upper bounds on clocks. So
we need to set these values to infinity.

Let M̃ = (M,ϕ) be a constrained parameterized matrix. Matrix M̃ ′ = (M ′, ϕ′) =
M̃ ⇑ is defined as follows:

• M ′
i,0 = (∞, <) if i 6= 0 ∧ xi is a clock.

• M ′
i,j = Mi,j otherwise.

• Test of emptiness. To check emptiness we compute the canonical form of the
matrix. If a canonical PDBM is not satisfied under the specified constraint Φ, the
Constrained PDBM is empty.

• Test of universality. The test of universality checks if all bounds of M̃ = (M,Φ)
are unbounded. That means to compute if ∀i, j . Mij = (∞, <).

• Operation post(). Operation post()—sometimes called succ()—is a procedure that
computes a set of all configurations that are reachable from the given configuration
in one step. This operation is essential for model checking. Operation post() applied
on the given state (configuration) computes a set of immediate followers (states)
according to transitions going out from the given state. By applying post() on new
states we can extend this operation to post∗(). The operation post∗() is used to
generate a set of all configurations of the system.

Starting from initial state q ∈ Q0 of a transition system ST we construct a symbolic
reachability graph where each vertex is a symbolic configuration (q, M̃) and edges
(q, M̃g, (A,~b), q

′) correspond to transitions (s1, g, sop, s2) ∈ δ of T using post∗().
The vertices of the symbolic graph are treated according to a depth-first traversal.
The construction stops when each symbolic configuration that can be generated is
covered by some symbolic configuration that has already been computed. During
this construction, we use acceleration in order to help termination.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 31

Operation post(q, M̃) can be computed using the three operations over PDBMs as
follows:

post(q, M̃) = {(q′, M̃ ′) | (A ∗ (M̃ ⊗ M̃g) ∗ A
T +B) ⇑}

• Acceleration. As written above, acceleration is the technique that helps to speed
up computation of post∗(). [AAB00] shows an extrapolation technique based on
guessing automatically the effect of iterating a loop detected in the configuration
graph an arbitrary number of times.

The idea of acceleration is to detect a cycle in the graph and instead of iterating
infinitely many times to substitute the detected loop with only one cycle augmented
by a special iteration variable. Acceleration checks the distance between variables
of the system in the cycle and if the distance is constant it is expected that after
certain value n, the value of the variable will be equal to the initial value plus n.

Let M̃ = (M,ϕ) be a PDBM and let (q, M̃) be a symbolic configuration where M̃ is
valuation. Let θ be a control loop—a path (q1, g1, sop1, q

′
1) . . . (qn, gn, sop, q

′
n) in the

transition graph ST such that q1 = q′n and ∀i ∈ {1, . . . , n− 1}, q′i = qi+1.

Suppose we have computed M̃1 = (M1, ϕ1), M̃2 = (M2, ϕ2) such that (q, M̃1) =
postθ(q, M̃) and (q, M̃2) = postθ(q, M̃1) . Let ∆ = M1 −M and ∆′ = M2 −M1.

Then, we suspect that the effect of iterating θ will be to add the same ∆ to the
original set at each step. After n iterations the set of reachable configurations will
be S + n∆. This operation introduces a new parameter n ∈ N corresponding to
numbers of iterations of the control loop.

More formally, this extrapolation technique means to check whether the two following
conditions hold:

C1 : ∀~p ∈ Pnp ,∀~n ∈ Nn . ϕ2(p, n) ⇒ ∆ = ∆′

C2 : ∀n ≥ 0 . post2θ((q, M̃ + n ∗ ∆)) = postθ((q, M̃ + (n+ 1) ∗ ∆))

Condition C1 expresses that the effect of θ after two iterations is to add the same
∆. This condition is decided under the constraint ϕ2 which is stronger then ϕ1

associated with M1. This is due to the fact that each transition introduced new
constraints over parameters and variables but never removed any. Condition C2
allows to check that each application of θ has an effect of adding ∆ provided the
guards and the invariants in ∆ are satisfied.

If C1 and C2 hold we add postθ(q, M̃ +n ∗∆) to the set of reachable states, and the

edge (q, M̃1)
θ∗
→ postθ(q, M̃ + n ∗ ∆) to the symbolic graph.

3.5.2 Decidability

In [AC01], the author discusses decidability of parametric systems. Decidability depends
on satisfaction of formulas describing constraints. The formulas we have to test satisfaction

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 32

on them can be of three types:

(1) ∀p ∈ P . ∀n∃m ∈ N . ϕ

(2) ∀p ∈ P . ∀n ∈ N . ϕ

(3) ∃p ∈ P . ∃n ∈ N . ϕ

where ϕ ∈ AT (P).
We have the following cases:

• Parameters are integers. If ϕ is linear, the three formulas above are formulas of
Presburger arithmetics and are decidable.

If ϕ contains at least one non-linear term we cannot test satisfiability of these for-
mulas for integers. In this case, we expect all variables as reals. If a formula is
not satisfiable for reals, it is not satisfiable for integers as well. If it is satisfiable for
reals, we cannot prove that this is valid as well for integers. By interpreting formulas
under reals, we consider upper approximation of the sets of possible configurations.

• Parameters are reals.

– If formulas don’t contain iteration variables, then all three formulas are satisfi-
able.

– If they include iteration variables, we have to eliminate real parameters in the
formula. If such formula is linear over integers, we can decide it. If not, we
cannot say anything. This arithmetic is called half-linear.

• Parameters are reals and integers. The formulas contain half-linear arithmetics (see
above). The method for testing satisfiability is the same as for the case above.

PDBMs use two-dimensional arrays for representing clocks and counters. However,
for counters, we don’t need two dimensions because it is not needed to store differences
between every pair of counters. So we propose a new structure that reduces both space
and time requirements for storing and manipulating data—parametric hypercubes—in
chapter 4.

3.6 Example

To demonstrate the usage of parametric timed automata we show an example here. The
example is the extension of the light switch from Figure 2.5. We replace the constant value
100 with a parameter MAX. A model of the parametric system will be more complicated—
see Figure 3.4.

Behaviour of the system can be described using a transition system—a graph of sym-
bolic configurations QA. A symbolic configuration is a pair (q, (M,Φ)) where q is the
location of the automaton A and M is a clock valuation for X in the form of PDBM and
Φ is a parameter valuation in the form of a quantifier-free formula. We as well call Φ a

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 33

off dim bright

y <= MAX

x:=0

x > 10

x <= 10

y:=0

y == MAX

off, y>=Max,x>=Max

y−x<=0,x−y<=10,−Max<0

dim, y>=Max,x>=0

x−y<=−Max,−Max<0

y−x<=0,x−y<=10,Max=0

off, y>=0,x>=0

dim, y>=0,x>=0

dim, y>10,x>=0

off, y>10,x>10
bright, y>=0,x>=0,y<=Max,y−x<=0

x−y<=0

x−y<−10

bright, y>=0,x>=0,y<=Max,y−x<=0

x<=10+Max,x−y<=10,Max=0x<=10+Max,x−y<=10,−Max<0

x−y<=0

y−x<=0,x−y<=0

off, y>=0,x>=0

dim, y>=0,x>=0

x−y<=0,Max=0

3

9

10

85

6

7

4

2

1

M_4 is included in M_2

included in M_2

M_7 is

M_10 is included in M_2

Figure 3.4: A light switch with a parameter–timed automaton and its transition system

parameter constraint and the tuple (M,Φ) a constrained PDBM. For our system QA is
represented by the following pairs (M,Φ):

(M1, ϕ1) =

0

B

B

@

x0 x y

x0 (0,≤) (0,≤) (0,≤)
x (∞, <) (0,≤) (0,≤)
y (∞, <) (0,≤) (0,≤)

1

C

C

A

, true (M2, ϕ2) =

0

B

B

@

x0 x y

x0 (0,≤) (0,≤) (0,≤)
x (∞, <) (0,≤) (0,≤)
y (∞, <) (∞, <) (0,≤)

1

C

C

A

, true

(M3, ϕ3) =

0

B

B

@

x0 x y

x0 (0,≤) (−10, <) (−10, <)
x (∞, <) (0,≤) (0,≤)
y (∞, <) (∞, <) (0,≤)

1

C

C

A

, true (M4, ϕ4) =

0

B

B

@

x0 x y

x0 (0,≤) (0,≤) (−10, <)
x (∞, <) (0,≤) (−10, <)
y (∞, <) (∞, <) (0,≤)

1

C

C

A

, true

(M5, ϕ5) =

0

B

B

@

x0 x y

x0 (0,≤) (0,≤) (0,≤)
x (10 + Max,≤) (0,≤) (10,≤)
y (Max,≤) (0,≤) (0,≤)

1

C

C

A

,−Max < 0

(M6, ϕ6) =

0

B

B

@

x0 x y

x0 (0,≤) (−Max,≤) (−Max,≤)
x (∞, <) (0,≤) (10,≤)
y (∞, <) (0,≤) (0,≤)

1

C

C

A

,−Max < 0

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 34

(M7, ϕ7) =

0

B

B

@

x0 x y

x0 (0,≤) (0,≤) (−Max,≤)
x (∞, <) (0,≤) (−Max,≤)
y (∞, <) (∞, <) (0,≤)

1

C

C

A

,−Max < 0

(M8, ϕ8) =

0

B

B

@

x0 x y

x0 (0,≤) (0,≤) (0,≤)
x (10 + Max,≤) (0,≤) (10,≤)
y (Max,≤) (0,≤) (0,≤)

1

C

C

A

, Max = 0

(M9, ϕ9) =

0

B

B

@

x0 x y

x0 (0,≤) (0,≤) (0,≤)
x (∞, <) (0,≤) (10,≤)
y (∞, <) (0,≤) (0,≤)

1

C

C

A

, Max = 0 (M10, ϕ10) =

0

B

B

@

x0 x y

x0 (0,≤) (0,≤) (0,≤)
x (∞, <) (0,≤) (0,≤)
y (∞, <) (∞, <) (0,≤)

1

C

C

A

, Max = 0

Graphical representation of clock zones M1 −M7 is in Figure 3.5.

Μ_8

x=y

x

y

����
����
����
����
����
����
����

����
����
����
����
����
����
����

10 Max
Max+10

y−x<=0

x−y<=10Max

x

y

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

��
��
��

��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

Μ_1

Μ_4Μ_3Μ_2

10

y

x

x−y<=−10

Μ_5

x

y

x−y<=0

x

y

x−y<=0

10

10

y

Μ_9

x−y<=10

x

y

y

Μ_7

Max

x

x−y<=−Max

x10

y−x<=0

10

Max
x−y<=10

y−x<=0

Max x

y

10

y

Μ_10 x

x−y<=0

Μ_6

Figure 3.5: A graphical representation of clock zones

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 35

3.7 Polyhedra

Another interesting data structure used for parametric model checking is polyhedron.
Polyhedra are used in HyTech [HHWT97] for representing clocks and other variables.
As PDBMs, polyhedra implement parameters. This is the reason why we look deeply at
this structure here. Our goal is to explore operation over polyhedra and compare them
with operations over PDBMs and parametric hypercubes.

While the approach to the analysis of timed automata is based on regions, the analysis
of linear hybrids systems is based on polyhedra [LSW97]. A polyhedron is a subset of the
Euclidean space Rn, which can be described by linear inequalities of the form Ax ≤ b.
Each guard and invariant of a linear hybrid systems describe a polyhedron.

Polyhedron is described by a linear formula. Given a location p of a linear hybrid
system and a polyhedron z, we can compute all points reachable from (p, z) in the same
way as we did with the region technique. The result of these operations is a pair (p′, z′)
where p′ is a control location of the linear hybrid system and z′ is again a polyhedron.
However, termination is not guaranteed anymore as there are generally infinitely many
polyhedra.

When we cross the border of linearity and enter the field of non-linear systems, then
in general we do not have any algorithm at all. However, even non-linear systems can be
analysed. Often, a linear approximation of the system can be found. Approximations are
also a good idea in the linear case if the analysis does not terminate. Then it might help
to use over-approximation of polyhedra to force the algorithm to terminate. For details,
we recommend [ACH+95].

Timed automata can be considered as special case of hybrid automata where clocks
evolve with the fixed rate equal one. The symbolic model checking of a timed automaton
requires the manipulation of certain linear constraints on clock values in the form x ≺ b
and x− y ≺ b for clocks x, y ∈ X and b ∈ Z.

In linear hybrid automaton, we admit more general linear constraints on continuous
variables in the form A ∗ ~x ≺ ~c where A is a constant matrix and c is a constant vector.
Since the number of possible constraints is no longer finite, when moving from timed
automata to linear hybrid automata, termination is no longer guaranteed.

Convex polyhedra. Convex polyhedra can be viewed as a set of solution of a linear
system. It forms an abstraction for numerical (and parametric) domain. Polyhedra use
two dual representations that are suitable for different operations over polyhedra. The
dual representation are as follows:

• Set of solutions of a system of linear constraints:

P = {x | Ax ≥ B}

where A is a non-zero matrix and B is a vector.

This representation is called an implicit form too. It is suitable for intersection,
inclusion, image and pre-image.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 36

• Convex hull of a system of generators (V,R):

P = {x | x = Lλ+Rµ+ V ν, µ, ν ≥ 0,
∑

ν = 1}

This representation is called a parametric representation and it is a collection of
vertices, rays and lines. It is a linear combination of lines (matrix L), a convex
combination of vertices (matrix V), and a positive combination of extreme rays
(matrix R).

This representation is suitable for inclusion, convex union and test of emptiness.

In Figure 3.6, there is a simple polyhedra with the following representation:

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

y

x

2

4

8

6

6 80 2 4

Figure 3.6: A simple polyhedra

• a set of inequalities:

x+ y ≥ 7

y ≥ 2

−x+ y ≤ 1

• a set of vertices and rays

v1 =

(
5

2

)

v2 =

(
3

4

)

r1 =

(
1

0

)

r2 =

(
1

1

)

Since each form is optimal for different operations and the dual form computation
is exponential O(ND/2), where D is the number of variables and N is the number of
constraints. Both forms are usually used during verification.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 37

3.7.1 Operations over Polyhedra

Polyhedra are closed under intersection, convex union, definition, and affine transforma-
tion. However, they are not closed under union since the union of any two polyhedra is not
necessarily convex. Similarly, polyhedra are not closed under the difference operation. To
obtain closure of these two operations, it is necessary to expand the model from a simple
polyhedron to a finite union of polyhedra.

In this section we introduce basic operations on polyhedra and their comparison with
PDBMs. Implementation of polyhedra operations is described in details in [Wil93].

• Intersection—on systems of constraints

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

{A1 ∗X ≥ B1} ∩ {A2 ∗X ≥ B2} = {A1 ∗X ≥ B1 ∧ A2 ∗X ≥ B2}

Intersection is performed by concatenating the lists of constraints from two or more
polyhedra into one list, and finding the polyhedron which satisfies all of the combined
constraints. This is done by finding the extremal rays which satisfy the combined
constraints, and then reducing both the constraints and rays into one polyhedron.

With this operation there appears a lot of new inequalities.

• Convex hull—approximation of union, on systems of generators

[V1, R1] ⊔ [V2, R2] = [V1 ∪ V2, R1 ∪R2]

The non-convex union operation simply combines two domains into one. The lists
of polyhedra associated with the domains are combined into a single list. This
may create non-minimal representations. In computation it is necessary to take into
consideration that, for example, P1 ⊃ P2 and the union can be reduced simply to P1.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 38

Convex union is performed by concatenating the lists of rays and lines of two poly-
hedra in a domain into one list, and finding the set of constraints which tightly bind
all of those objects. This is done by finding the dual of the list of rays and lines, and
reducing both the constraints and rays into one polyhedron.

• Difference, on systems of linear constraints

Domain difference P1−P2 computes the domain which is a part of P1 but not a part
of P2. It is equivalent to P1∪ ∼ P2, where ∼ P2 is the complement domain of P2. If
P2 is the intersection of a set of hyperplanes (representing equalities) and half-spaces
(representing inequalities), then the universe of P2 is computed as follows:

∼ P2 = ∼ (∩iPi)

= ∪i(∼ Pi)

where

∼ Pi =

{
{x | ATx < 0} when Pi = {x | ATx ≥ 0}
{x | (ATx < 0 ∪ATx > 0)} when Pi = {x | ATx = 0}

The computation of difference is transformed to computation of union. Because
polyhedra is not closed under union, so it is not closed under difference either.

• Linear assignment to variables, on systems of generators

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

x:=2x+y−3

[V,R]
X:=C∗X+D
−−−−−−−−→ [C ∗ V +D,C ∗R]

• Test for inclusion, on system of generators

[V,R] ⊆ {A ∗X ≥ B} ⇔

{
A ∗ v ≥ B, ∀v ∈ V
A ∗ r ≥ 0, ∀r ∈ R

• Test for emptiness, on systems of generators

[V,R] = ∅ ⇔ V = ∅

An empty domain is a polyhedron which includes no points. This happens when
there is no point that can satisfy all of the constraints.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 39

• Test for universality

A universal polyhedron is one that includes all points within a certain dimensional
sub-space. It is unbounded in all directions. It is created if a system is not con-
strained at all.

• Widening. An approximation analysis of polyhedra is provided by abstract inter-
pretation techniques—widening [CC77]. The idea is to extrapolate the limit of a
sequence of polyhedra in such a way that an upper approximation of the limit is
always reached in a finite number of iterations.

We define a widening operator ∇ on polyhedra, such that:

– For each pair (P,P ′) of polyhedra, P ⊔ P ′ ⊆ P∇P ′

– For each infinite increasing sequence (P0, P1, . . . , Pn, . . .) of polyhedra, the se-
quence defined by Q0 = P0, Qn+1 = Qn∇Pn+1 is not strictly increasing.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
����x = y = 0 0 <= y <= x0 <= y <= x <= 1

x x x

y y y

Intuitively, the system of linear constrains of P∇P ′ is made of exactly those con-
straints of P which are also satisfied by P ′. The system of constraints of P∇P ′ is
obtained by removing from the system of P all the constraints not satisfied by P ′.

3.8 Discussion

Polyhedra as well as PDBMs can be successfully used to represent symbolic data struc-
tures. The main difference is the way how they represent symbolic domains. While PDBMs
use matrices to represent set of constraints, polyhedra use lists of vectors, rays and lines
or a set of linear equations/non-equations. Both these structures can be used for timed
domains with parameters.

Polyhedra allow constraints in the form
∑

i ai ∗xi ≺ ci while PDBMs x− y ≺ c, x ≺ c.
Data representation in polyhedral form is less coarse than difference matrices because we
can describe a domain using general linear inequalities of the form ax − y ≺ b, which is
not possible for DBMs.

In Figure 3.7 we can see a polyhedron represented by a set of inequalities y ≥ 0.5x −
0.5, y ≤ 3, y ≥ 2x−5, y ≥ 3x−3. This cannot be represented by difference bound matrices.
DBMs use over–approximation to express this. For example 0 < y ≤ 3, 1 ≤ x ≤ 4, x− y ≤
2, y − x ≤ 1, see Figure 3.8.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 40

y

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

x

y>=0.5x−0.5

y<=3

y>=2x−5

y<=3x−3

Figure 3.7: A polyhedra y ≥ 0.5x− 0.5, y ≤ 3, y ≥ 2x− 5, y ≥ 3x− 3

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

x

y

1<=x x<=4

y<=3

x−y<=2

y−x<=1

Figure 3.8: Over-approximation by DBM 0 < y ≤ 3, 1 ≤ x ≤ 4, x− y ≤ 2, y − x ≤ 1

On the other hand, this feature brings more complexity into polyhedra operations and
computation of a set of successors during system analysis.

There are two main problems in the practical computation with polyhedra [ACH+95]:

• Handling disjunctions of systems of linear inequalities—there is no easy way for
deciding if a union of polyhedra is included into another.

• The fix-point computation may involve infinite iteration.

Polyhedra require space 3∗(n+1) of memory to store its data for n variables while PDBM
requires n2. Thus, polyhedra are more compact to store data valuation. However, it is
not easy to implement some operations, for instance acceleration. Without acceleration it
is not possible to analyse systems with more parameters.

CHAPTER 3. PARAMETRIC REAL-TIME REASONING 41

As acceleration, polyhedra use widening but this operation generates the set of config-
uration which is an upper approximation. Also because of difficult construction of union
of polyhedra (operation is not closed) the set of inequalities becomes too large after com-
putation of the set of successors. Then the system consumes too much memory and the
analysis may finish with the lack of memory.

Polyhedra work well for hybrid systems with not many parameters but for timed or
counter automata with many parameters they are too robust and inefficient.

Chapter 4

Parameterized Hypercubes

In previous chapters we described the basics of verification of timed systems with parame-
ters and showed two data structures for representation of abstract data domains. We men-
tioned that successful analysis of a system—more precisely termination of the analysis—
depends mostly on choice of abstract domains. We showed operation on PDBMs and
polyhedra—two representations that are used for parametric verification to store clocks
and counters.

In this chapter we introduce a new data structure based on intervals [ST02] that can
be used to represent abstract domain for counters with parameters. The advantage of this
structure is that it reduces the space needed to represent data with respect to PDBMs
and simplifies some operations (test of emptiness, intersection etc.). Another advantage
is that this structure allows more general constraints over variables. We can represent
conditions of the form x1 + . . . + xn ≺ t while PDBMs only allow comparison of two
variables xi − xj ≺ t. This extension of constraints was inspired by a real need that we
found during a project where we analysed PGM protocol - see chapter 6.

The chapter is divided into three parts. At the beginning we define parameterized
bounds and intervals—their syntax and interpretation. We as well define an operator
of total order on bounds and intervals that is necessary for other operations. Then we
form a new structure called parameterized hypercubes. We define basic operations over
it. First proposal of these operations was published in [Mat04a]. The last part shows
implementation of this structure in the verification tool TReX and its usage.

4.1 Parameterized Intervals

Parameterized hypercubes are defined as a tuple of constrained parameterized intervals
that form a region of valuations of variables. In this section, we introduce intervals,
parameterized intervals and interval formulas.

42

CHAPTER 4. PARAMETERIZED HYPERCUBES 43

4.1.1 Arithmetical Term, Formula

Arithmetical term AT (X). Let X be a finite set of variables, x a variable of this set
and c a constant over numerical domain, e.g. N. The set of arithmetical terms over X ,
AT (X) is defined by the following grammar:

t ::= c | x | t+ t | t− t | c ∗ t

Arithmetical term with parameters AT (P). Let P be a finite set of parameters, p
a variable of this set and c an integer. The set of arithmetical terms over P, AT (P) is
defined by the following grammar:

t ::= c | p | t+ t | t− t | c ∗ t

Arithmetical formula FO(X). The set of first-order arithmetical formulas over X ,
FO(X), is defined by the following grammar:

ϕ ::= true | t ≤ t | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ | isInt(t)

where t ∈ AT (X). For parametric analysis we consider t ∈ AT (X ∪ P).
Formulas are interpreted over the set of reals, integers, or natural numbers. The

predicate isInt expresses that a term has an integer value. Notations like false, ∨, ∀, and
⇒ are derived as usual from the operators defined in the grammar above. We denote
F (X) quantifier-free formulas in FO(X).

Semantics of an arithmetical formula. The semantics of formulas and terms are
defined as follows. Let I be a numerical domain of variables, I = Z,N, or R. Let ν : X → I

be a valuation of variables in X into the numerical domain I. We denote [[t]]ν the value in
I of the term t under the valuation ν. The satisfaction of formula in FO(X) is defined as
follows:

ν |= true
ν |= t1 ≤ t2 iff [[t1]]ν ≤ [[t2]]ν
ν |= ¬ϕ iff ν 2 ϕ
ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2

ν |= ∃x.ϕ iff ∃v ∈ I.[[x/v]]ν |= ϕ
ν |= isInt(t) iff [[t]]ν ∈ Z

Several fragments of FO(X) are interesting for us:

• RFO(X) is the fragment where the variables take up values in reals and the predicate
isInt does not appear.

• LFR(X) is the fragment where the variables take up values in reals and all terms
used are linear.

CHAPTER 4. PARAMETERIZED HYPERCUBES 44

• FI(X) is the fragment where the variables take up values in integers.

• LFO(X) means the linear arithmetics (Presburger arithmetics). It is the fragment
of formulas from FI(X) without multiplication.

The decidability results for each fragment are:

Fragment Sat Complexity

FO undecidable -

RFO decidable [Tar51] EXPTIME

LFR decidable [Tar51] EXPTIME

FI undecidable -

LFO decidable [FR73] 3EXPTIME

Complexity of decision of linear first-order formulas is 3EXPTIME—it depends expo-
nentially on the length of a formula ϕ. This means that time of system analysis depends
mostly on satisfaction of formulas, than on efficiency of an algorithm for computing con-
figuration states.

In our analysis of parametric counter systems we will use fragments of first-order logic
that are decidable. Let ϕ is a formula from AT (X) and ~ν valuation of variables from X .
Satisfaction of the formula ϕ under valuation ~ν can be expressed as ~ν |= ϕ. For example,
let ϕ = ∃x . x < 5 and valuation of x be ν(x) = 3. We can see that [[∃x . x < 5]]x=3 = true,
i.e., the formula is satisfied under given valuation.

Similarly to PDBMs we distinguish three cases where parameters are integers, reals or
both. For discussion about this topic see Section 3.5.2.

4.1.2 Numerical Bounds

Let I be a numerical domain of variables, I = Z,N, or R. Suppose intervals over I of
the form [a, b], [a,∞) representing the symbolic data structure for variables over I. In our
approach, we define the interval as a pair of the lower and the upper numerical bounds.

Numerical bounds. The set of numerical bounds B over I is given by following definition:

B = I × {<,≤} ∪ {(∞, <)}.

Numerical bounds represent either the lower, or the upper bound of the variable. Their
denotation is as follows: if b = (z,≺) is the lower bound of x, ≺∈ {<,≤} and z ∈ I, the
denotation (interpretation) of b is −x ≺ z, i.e., −z ≺ x. If b is the upper bound, the
denotation is x ≺ z. Such interpretation is efficient because it enables us to encode both
the upper bounds and the lower bounds using operators < and ≤ only.

For example, if b1 = (3,≤) is a lower numerical bound on variable x its denotation is
−x ≤ 3, i.e., −3 ≤ x. If b2 = (5, <) is an upper numerical bound of x it restricts the
variable by x < 5.

CHAPTER 4. PARAMETERIZED HYPERCUBES 45

Interval. We define interval I(x) over I as a pair of numerical bounds. Let bi = (zi,≺i

), bs
1 = (zs,≺s) ∈ B, where ≺i,≺s∈ {<,≤}, zi, zs ∈ I ∪ {∞}, be numerical bounds over I.

The set of intervals I is a set of pairs of lower and upper bound:

I = B × B

We define interval I(x) ∈ I for variable x over I as follows:

I(x) = 〈bi, bs〉,

where bi ∈ B is a lower bound of variable x and bs ∈ B is an upper bound of variable x.
The semantics of this interval is (−x ≺i zi) ∧ (x ≺s zs). Bound zi is the infimum and

zs is the supremum of the interval. For instance, interval I(x) = 〈(3,≤), (7, <)〉 means
−3 ≤ x < 7.

Definition of the interval over a variable can be extended to vectors. Let ~x = (x1, x2, . . . , xn)
be a vector. The vector can be interpreted as a tuple of n variables. Interval I(~x) over In

is the n-tuple of pairs of numerical bounds:

I(~x) = (〈(b1i ,≺
1
i), (b

1
s ,≺

1
s)〉, 〈(b

2
i ,≺

2
i), (b

2
s,≺

2
s)〉, . . . , 〈(b

n
i ,≺

n
i), (bns ,≺

n
s)〉)

This interval forms bounds over variables x1, . . . , xn in the form −b1i ≺1
i x ≺1

s b
1
s, . . . ,−b

n
i ≺n

i

x ≺n
s b

n
s .

For example, let ~x = (x1, x2). Interval I(~x) = (〈(−3,≤), (4, <)〉, 〈(5, <), (10,≤)〉) denotes
data domain for x1 and x2 that can be written as 3 ≤ x1 < 4 and −5 < x2 ≤ 10.

Relation of total order.

1. Relation of total order ⊆♯ over {<,≤}. Let ♯1, ♯2 ∈ {<,≤}. We define the relation
of total order as follows:

♯1 ⊆♯ ♯2 ⇐⇒ (♯1 = ♯2) ∨ ((♯1 =′<′) ∧ (♯2 =′≤′))

Thus, we can say that < is less then ≤. For comparison over this relation we will
use notation ≤ as usual.

For strict inclusion, ⊂♯ the operator is defined as follows:

♯1 ⊂♯ ♯2 ⇐⇒ ((♯1 =′<′) ∧ (♯2 =′≤′))

For example, <⊆♯≤, <⊆♯<, <⊂♯≤.

1i stands for infimum and s for supremum

CHAPTER 4. PARAMETERIZED HYPERCUBES 46

2. Relation of total order ⊆B over numerical bounds. Because the lower bounds and
the upper bounds have different interpretation, we have to distinguish four different
cases in the definition of the relation—ordering of lower bounds, ordering of upper
bounds, ordering of a lower bound and an upper bound, and ordering of an upper
bound and a lower bound. Let a1 = (z1

i ,≺
1
i), a2 = (z2

i ,≺
2
i) be lower bounds and

b1 = (z2
s ,≺

2
s), b2 = (z2

s ,≺
2
s) be upper bounds, a1, a2, b2, b2 ∈ B.

We define the relation of total order ⊆PB over parameterized bounds as follows:

[[a1 ⊆B a2]] = (z1
i < z2

i) ∨ ((z1
i = z2

i) ∧ (≺1
i ≤ ≺2

i))

[[b1 ⊆B b2]] = (z1
s < z2

s) ∨ ((z1
s = z2

s) ∧ (≺1
s ≤ ≺2

s))

[[a1 ⊆B b2]] = (−z1
i < z2

s) ∨ ((−z1
i = z2

s) ∧ (≺1
i ≤ ≺2

s))

[[b1 ⊆B a2]] = (z1
s < −z2

i) ∨ ((z1
s = −z2

i) ∧ (≺1
i ≤ ≺2

2))

Such interpretation is useful for inclusion over bounds of the same type—either lower
or upper bounds. Their denotation of total order is the same and we don’t need to
take into account different interpretation of bounds. Only in cases where upper and
lower bounds are mixed together we need to pay attention to different interpretation
and distinguish the difference by the sign ’-’ for lower bounds.

Test of inclusion of upper and lower bounds is an important operation, for example,
for intersection over intervals (Section 4.3).

For example, in Figure 4.1, we consider the following bounds as lower bounds (a)
(3,≤) ⊆B (7, <), (b) (−2, <) ⊆B (−2,≤), (c) (−2,≤) 6⊆B (−2, <), (d) (5,≤) 6⊆B

(−2, <), while in Figure 4.2 we take them as upper bounds.

a)

−3

−7

infty 2 −5

2infty

infty

infty

infty

infty

infty

infty2

2

2

b) c) d)

Figure 4.1: Lower numerical bounds

infty −2

infty

infty

3

7 −2

−2infty

infty

−2

−2

infty

infty

5infty

a) b) c) d)

Figure 4.2: Upper numerical bounds

Both interpretations of examples (a) and (b) show bounds properly ordered with
respect to ⊆B. Bounds (c) and (d) are not ordered.

CHAPTER 4. PARAMETERIZED HYPERCUBES 47

Strict inclusion over bounds ⊂B is similar to the previous definition except for the
relation over signs. Instead of ≤ (more precisely ≤♯) there will be an operator <
(more precisely <♯).

3. Relation of total order ⊆ over intervals. We define a relation of total order over
intervals similarly to total order over numerical bounds. Let I(x) = 〈bi, bs〉, I(x

′) =
〈b′i, b

′
s〉 be two intervals from I. We define the relation of total order ⊆ over intervals

as follows:

I(x) ⊆ I ′(x) ⇐⇒ (bi ⊆
B b′i) ∧ (bs ⊆B b′s)

Note that interpretation of inclusion of lower bounds is defined differently than
inclusion over upper bounds.

For example, 〈(3,≤), (9, <)〉 6⊆ 〈(−5,≤), (7, <)〉 because 3 6< −5 and 9 6< 7. Indeed,
interval −3 ≤ x < 9 is not included into 5 ≤ x < 7, see Figure 4.3. Relation
〈(−5,≤), (7, <)〉 ⊆ 〈(3,≤), (9, <)〉 is valid.

5 7

−3
9

Figure 4.3: Inclusion of intervals 〈(−5,≤), (7, <)〉 ⊆ 〈(3,≤), (9, <)〉

Interval formulas. Interval formulas are a dual representation of numerical intervals in
a more compact form than intervals as introduced above. It is a data structure similar to
Difference Bound Matrices (DBMs)—see [Dil89].

Let X be a finite set of variables, X = {x1, x2, . . . , xn}, and I be a numerical domain.
We define interval formulas i over X and I by the following grammar:

i ::= true | xj ≺ a | − xj ≺ b | i ∧ i

where a, b ∈ I ∪ {∞}, j ∈ {1, . . . , n}, and ≺∈ {<,≤}. The denotation of the formula is
defined by:

[[true]] = In (whole domain)

[[xj ≺ a]] = {(x1, . . . , c, . . . , xn) | c ≺ a, c ∈ I}

[[−xj ≺ b]] = {(x1, . . . , c, . . . , xn) | − b ≺ c, c ∈ I}

[[i1 ∧ i2]] = [[i1]] ∩ [[i2]]

For example, suppose X = {x1, x2, x3} and I = Z. The following interval formula i defines
data domain in I3:

i = x1 ≤ 5 ∧ −x1 < 2 ∧ x2 ≤ 4

CHAPTER 4. PARAMETERIZED HYPERCUBES 48

where x1 is from interval (−2, 5], x2 from (−∞, 4] and x3 is from (−∞,∞). This formula
encodes interval I(~x) = (〈(2, <), (5,≤)〉), (〈(∞, 0), (4,≤)〉), (〈(∞, <), (∞, <)〉)

As mentioned above, the interval i can be described using DBM. This representation is
larger that the corresponding interval formula, because DBM represents a set of differences
of every two variables in the form x− y ≺ c, where ≺= {<,≤}. There is as well a special
bound x0 that is always 0 and represents a constraint on a single variable. DBMs represent
regions for clocks in timed automata. For counter automata, we don’t use relation of the
form x − y ≺ c (difference between counters). Relations of the form x ≺ c are mostly
sufficient. So we can use intervals instead of DBMs to represent counters in counter
automata.

For instance, x1 ≤ 5 is expressed by x1 − x0 ≤ 5 in DBM. Unbounded variables use
special bounds (∞, 0). Matrix D that represents interval formula i = x1 ≤ 5 ∧ −x1 <
2 ∧ x2 ≤ 4 can be as follows:

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x0 x1 x2 x3

x0 (0,≤) (2, <) (∞, <) (∞, <)
x1 (5,≤) (0,≤) (∞, <) (∞, <)
x2 (4,≤) (7, <) (0,≤) (∞, <)
x3 (∞, <) (∞, <) (∞, <) (0,≤)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Graphic representation of D is depicted in Figure 4.4.

x_1

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

x_2

x_3

x_1=−2

x_1=5

x_2=4

Figure 4.4: Graphical representation of data domain defined by x1 ≤ 5 ∧−x1 < 2 ∧ x2 ≤ 4

We can see that the space requirements for n variables is 2n for intervals while (n+1)2

for DBMs.

CHAPTER 4. PARAMETERIZED HYPERCUBES 49

4.1.3 Parameterized Bounds

Numerical bounds may be extended to parameterized bounds by replacing the numerical
value by an arithmetical term t ∈ AT (P) over the set of parameters P = {p1, . . . , pn}.

Parameterized bounds. Let D be a domain over which clocks and parameters range, D
is the set of integers Z. The set of parameterized bounds PB over D is defined as follows:

PB = AT (P) × {<,≤} ∪ {(∞, <)}.

A parameterized bound b represents a set of non-parameterized (numeric) bounds depend-
ing on the values taken by parameters. In order to constrain the set of values taken by
parameters, we define the notion of constrained parameterized bound, which specifies for
a parameterized bound the constraint (formula) F (P) which should be satisfied by the
parameters.

Total order over parameterized bounds ⊆PB. This operation is similar to the or-
dering of numerical bounds as defined in Section 4.1.2, it is extended to terms from
AT (P). Here, we also distinguish four cases of the interpretation of total order. Let
a1 = (t1i ,≺

1
i), a2 = (t2i ,≺

2
i) be lower bounds and b1 = (t1s,≺

1
s), b2 = (t2s,≺

2
s) be upper

bounds, a1, a2, b2, b2 ∈ PB.

[[a1 ⊆PB a2]] = (t1i < t2i) ∨ ((t1t = t2i) ∧ (≺1
i ≤ ≺2

i)) (a)

[[b1 ⊆PB b2]] = (t1s < t2s) ∨ ((t1s = t2s) ∧ (≺1
s ≤ ≺2

s)) (b)

[[a1 ⊆PB b2]] = (−t1i < t2s) ∨ ((−t1i = t2s) ∧ (≺1
i ≤ ≺2

s)) (c)

[[b1 ⊆PB a2]] = (t1s < −t2i) ∨ ((t1s = −t2i) ∧ (≺1
i ≤ ≺2

2)) (d)

b_1a_1 b_1a_1 b_1a_1

a_2 b_2 a_2 b_2 a_2 b_2

b_1a_1

a_2 b_2

d)c)b)a)

If t2 is +∞ (unbounded), then a ⊆PB b. If t1 is +∞ and t2 is not +∞, then a 6⊆PB b.

Constrained parameterized bounds. The set of constrained parameterized bounds
P̃B over D is defined as follows:

P̃B = PB × F (P)

The interpretation (denotation) of a constrained parameterized bound is given by the
following description:

[[((∞, <), ϕ)]] = {(∞, <)}

[[((t,≺), ϕ)]] = {(v,≺) | ∃ν.ν |= ϕ ∧ v = [[t]]ν}

CHAPTER 4. PARAMETERIZED HYPERCUBES 50

where t ∈ AT (P) is a term over the set of parameters P, ϕ ∈ F (P), and ν : AT (P) → D
is valuation of parameterized terms into the domain D.

We say that a constrained parameterized bound is satisfiable (or not empty) if there
exists any valuation of parameters from P such that the valuation satisfies the constraint
ϕ over parameters.

For example, the upper bound b̃ = ((<, 2 ∗ p− q), p ≤ 3 + q) of x can be interpreted as
x < 2 ∗ p− q ∧ p ≤ 3 + q. This bound is not empty, because there exist many valuations
over N, for example q = 3 ∧ p ≤ 6.

As for numerical bounds, the operators < and ≤ are ordered: < is strictly less than ≤.

Relation of total order ⊆. Relation of total order over constrained parameterized
bounds is an extension of the relation of total order over numerical intervals as defined in
Section 4.1.2. Let b̃1 = ((t1,≺1), ϕ1) and b̃2 = ((t2,≺2), ϕ2) be constrained parameterized
bounds from P̃B, ~p ∈ Pnp is a vector of parameters from P = {p0, . . . , pnp−1}. We define
relation of total order ⊆ on constrained parameterized bounds as follows:

b̃1 ⊆ b̃2 ⇐⇒ ∀~p ∈ Pnp . ϕ1 ⇒ (ϕ2 ∧ (b1 ⊆PB b2))

⇐⇒ ∀~p ∈ Pnp . ¬ϕ1 ∨ (ϕ2 ∧ (b1 ⊆PB b2))

The formula above says that for every valuation of parameters the constraint of the
lesser bound is included in the constraint of the greater bound and that the terms are
included in the context of specified constraints. The constraint ϕ1 is stronger then ϕ2, so
the inclusion of terms is tested under this context (implication).

For computation of the inclusion, it is useful to test negative formula, i.e., to find a
valuation ν that makes negative formula false. The non-inclusion will be as follows:

b̃1 6⊆ b̃2 ⇐⇒ ∃~p ∈ Pnp . ϕ1 ∧ (¬ϕ2 ∨ (b1 6⊆PB b2))

This formula says that two constrained parameterized bounds are not included under
context of ϕ1, ϕ2 if there exists any valuation of parameters such that either ϕ2 is not
valid or parameterized bounds are not included.

The strict order, ⊂, between constrained parameterized bounds may be defined simi-
larly.

With this definition, the bound ((∞, <), true) is the top element of the set of bounds
with respect to both ordering relations. This means that every bound is included in
((∞, <), true).

The equality operator =. The equality operator = over constrained parameterized
bounds is defined as usual. For any b̃1, b̃2 ∈ P̃B:

b̃1 = b̃2 ⇐⇒ (b̃1 ⊆ b̃2) ∧ (b̃2 ⊆ b̃1)

The minimum operator min. Similarly to PDBMs, we define operator min on param-
eterized intervals. It can be used in intersection and so-called correct form computation
(see Section 4.1.4).

CHAPTER 4. PARAMETERIZED HYPERCUBES 51

Let b̃1 = ((t1,≺1), ϕ1) and b̃2 = ((t2,≺2), ϕ2) be two elements of P̃B, ~p a vector of
parameters from P. The definition of the min operator uses following three formulas:

Φ< ≡ ∃~p ∈ Pnp .ϕ1 ∧ ϕ2 ∧ t1 < t2

Φ= ≡ ∃~p ∈ Pnp .ϕ1 ∧ ϕ2 ∧ t1 = t2

Φ> ≡ ∃~p ∈ Pnp .ϕ1 ∧ ϕ2 ∧ t1 > t2

The min operator is defined as follows:

min : P̃B × P̃B → 2P̃B

min(b̃1, b̃2) = min<(b̃1, b̃2,Φ<)

∪ min=(b̃1, b̃2,Φ=)

∪ min>(b̃1, b̃2,Φ>)

where

min<(b̃1, b̃2,Φ<) =

{
{((t1,≺1), ϕ1 ∧ ϕ2 ∧ (t1 < t2))} if Φ<

∅ otherwise

min=(b̃1, b̃2,Φ=) =

{
{((t1,min(≺1,≺2)), ϕ1 ∧ ϕ2 ∧ (t1 = t2))} if Φ=

∅ otherwise

min>(b̃1, b̃2,Φ>) =

{
{((t2,≺2), ϕ1 ∧ ϕ2 ∧ (t1 > t2))} if Φ>

∅ otherwise

The result of min operator may be a set of one, two or three constrained parameterized
bounds. If an operand of min is a special bound ((∞, <), true)—unlimited bound, the
minimum is trivially the other operand:

min(((∞, <), true), b̃) = {b̃}

Bound ((∞, <), true) is a neutral element for min.

For example, let b̃1 = ((p+ 3, <), p > 8) and b̃2 = ((q,≤), q < p+ 3). Then,

min(b̃1, b̃2) = ((p + 3, <), p > 8 ∧ q < p+ 3 ∧ p+ 3 < q)

∪ ((p + 3, <), p > 8 ∧ q < p+ 3 ∧ p+ 3 = q)

∪ ((q,≤), p > 8 ∧ q < p+ 3 ∧ p+ 3 > q)

Because Φ< and Φ= are trivially false, the result is only one bound with a new constraint,
i.e. min(b̃1, b̃2) = ((q,≤), p > 8 ∧ q < p+ 3).

4.1.4 Parameterized Intervals

Constrained parameterized intervals. In the previous section we showed a relation
between numerical bounds and intervals. This relation can be extended to parameterized
bounds and intervals. Let x ∈ X be a variable and P a set of parameters.

CHAPTER 4. PARAMETERIZED HYPERCUBES 52

The set of constrained parameterized intervals Ĩ for variables from X and parameters
from P over D is defined as follows:

Ĩ(X ,P) = PB × PB × F (P)

A constrained parameterized interval Ĩ(x,P) for variable x and parameters from P
over D is a pair of constrained parameterized bounds

Ĩ(x,P) = (〈(ti,≺i), (ts,≺s)〉, ϕ)

where ≺i,≺s∈ {<,≤}, ti, ts ∈ AT (P), ϕ ∈ F (P) such that

(−x ≺i ti) ∧ (x ≺s ts) ∧ ϕ

For example, let P = {p, q} and ϕ = p > 0 ∧ q ≤ p + 10. Then Ĩ(x,P) = (〈(3 − p,<),
(q + 10,≤)〉, ϕ) denotes the interval (p − 3 < x ≤ q + 10) ∧ (p > 0 ∧ q ≤ p + 10). The
interval is depicted on Figure 4.5.

p−3 q q+100 p

Figure 4.5: Parameterized interval (p − 3 < x ≤ q + 10) ∧ (p > 0 ∧ q ≤ p+ 10)

Relation of total order over constrained parameterized intervals ⊆Ĩ . Let i =
(〈a, b〉, ϕ) and i′ = (〈a′, b′〉, ϕ′) be constrained parameterized intervals from Ĩ(X ,P), where
a, a′ ∈ PB are the lower bounds, b, b′ ∈ PB are the upper bounds, and ~p is a vector for
parameters from P. Total order over constrained parameterized intervals is similar to
total order over numerical intervals:

(〈a, b〉, ϕ) ⊆Ĩ (〈a′, b′〉, ϕ′) ⇐⇒ ∀~p ∈ Pnp . ϕ⇒ (ϕ′ ∧ (a ⊆PB a′) ∧ (b ⊆PB b′))

Parameterized intervals can be extended to vectors. Let ~x = (x1, x1, . . . , xn) be a
vector of variables {x1, . . . , xn}. Constrained parameterized interval Ĩ(~x,P) over Dn is an
n-tuple of pairs of constrained parameterized bounds

Ĩ(~x,P) = (〈(t1i ,≺
1
i), (t

1
s ,≺

1
s)〉, . . . , 〈(t

n
i ,≺

n
i), (tns ,≺

n
s)〉, ϕ)

The minimum operator minI . Here we extend the operator min on constrained pa-
rameterized intervals. Let I = (〈a, b〉, ϕ) and I ′ = (〈a′, b′〉, ϕ′) be two constrained pa-
rameterized intervals. Minimum of intervals I and I ′, written minI(I, I ′), is a union of

CHAPTER 4. PARAMETERIZED HYPERCUBES 53

constrained parameterized intervals given as follows:

minI(I, I ′) = (〈min<(a, a′,Φ<),min<(b, b′,Φ2
<)〉,Φ< ∧ Φ2

<)

∪ (〈min<(a, a′,Φ<),min=(b, b′,Φ2
=)〉,Φ< ∧ Φ2

=)

∪ (〈min<(a, a′,Φ<),min>(b, b′,Φ2
>)〉,Φ< ∧ Φ2

>)

∪ (〈min=(a, a′,Φ=),min<(b, b′,Φ2
<)〉,Φ= ∧ Φ2

<)

∪ (〈min=(a, a′,Φ=),min=(b, b′,Φ2
=)〉,Φ= ∧ Φ2

=)

∪ (〈min=(a, a′,Φ=),min>(b, b′,Φ2
>)〉,Φ= ∧ Φ2

>)

∪ (〈min>(a, a′,Φ>),min<(b, b′,Φ2
<)〉,Φ> ∧ Φ2

<)

∪ (〈min>(a, a′,Φ>),min=(b, b′,Φ2
=)〉,Φ> ∧ Φ2

=)

∪ (〈min>(a, a′,Φ>),min>(b, b′,Φ2
>)〉,Φ> ∧ Φ2

>)

Finding the minimum on intervals means to find the minimum on the upper and the
lower bounds using operator min as defined in Section 4.1.3. Since the minimum on each
parameterized bound may result in three new constrained parameterized bounds, we have
to make a combination with all of these bounds to get the minimum on intervals.

Parameterized interval formula. Let X be a finite set of variables, X = {x1, . . . , xn}.
Let P be a set of parameters. The set of parameterized interval formulas over X and P,
PIF (X ,P), is defined by the following grammar:

ι ::= true | x ≺ t | − x ≺ t | ι ∧ ι

with t ∈ AT (P).

Constrained parameterized interval formula. Like for bounds, we define a set of
constrained parameterized interval formulas, CPIF (X ,P), as follows:

CPIF (X ,P) = PIF (X ,P) × F (P).

The denotation (semantics) of the constrained parameterized interval formula (ι, ϕ) over
the numerical domain I is defined by:

[[true, ϕ]] = In

[[xi ≺ t, ϕ]] = {(x1, . . . , xi, . . . , xn) | ∃ν.ν |= ϕ ∧ xi ≺ [[t]]ν}

[[−xi ≺ t, ϕ]] = {(x1, . . . , xi, . . . , xn) | ∃ν.ν |= ϕ ∧ −xi ≺ [[t]]ν}

[[ι1 ∧ ι2, ϕ]] = [[ι1, ϕ]] ∩ [[ι2, ϕ]]

where xi ∈ X , t ∈ AT (P), and ϕ ∈ F (P). If the constraint for a variable in ι̃ represents
an empty numerical interval, then ι̃ is empty, [[ι̃]] = ∅.

A formula in CPIF (X ,P) may contain none or several inequalities with respect to a
variable of X . For example, if X = {x1, x2} and P = {p, q}, the following formula

((x1 ≤ p ∧−x1 ≤ q ∧ x1 ≤ 3), (p ≥ 1 ∧ q ≤ 0))

CHAPTER 4. PARAMETERIZED HYPERCUBES 54

contains no inequality for x2 (which is equivalent to x2 < ∞ ∧ −x2 < ∞) and several
inequalities for x1.

In the example above, the lower bound of x1 is −q and the upper bound is p and 3.
To have a correct form of the interval (some sort of normal form with only one pair of
bounds on a variable), we need to find minimum on both these bounds, that means to
find min(p, 3) in the context of ϕ = p ≥ 1 ∧ q ≤ 0. Because of parameters, there are two
case—either p is the minimum, or 3 is the minimum; recall definition of min() in Section
4.1.3. Note that this splitting implies a stronger constraint on ϕ. In the first case (a), it
adds the constraint p < 3 (p is the minimum), in the other case (b), the constraint p ≥ 3
(3 is the minimum), see Figure 4.6. Surprisingly, the latter case implies interval of x1 that
does not depend on the value of parameter p. So, the interval for x1 may be rewritten as
follows:

(x1 ≤ p ∧ −x1 ≤ q ∧ x1 ≤ 3, p ≥ 1 ∧ q ≤ 0)

= (x1 ≤ p ∧ −x1 ≤ q, 1 ≤ p < 3 ∧ q ≤ 0)

∨ (x1 ≤ 3 ∧ −x1 ≤ q, 3 ≤ p ∧ q ≤ 0)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����x2

0 2 4 x1

x2

0 1 2 4 x131

p

a)
b)

x1<=3x1>=−q

3

x1>=−q x1<=p

−q −q

Figure 4.6: Minimum of constrained parameterized intervals.

Relation between the interval formula and bounds. For implementation purposes,
it is more efficient to represent parameterized bounds of vector ~x using an interval formula
from CPIF (X ,P). A parameterized interval formula associated with a constrained pa-
rameterized interval Ĩ(~x,P) = (〈(t1i ,≺

1
i), (t

1
s,≺

1
s)〉, . . . , 〈(t

n
i ,≺

n
i), (tns ,≺

n
s)〉, ϕ) is define as

follows:

cpif(~x,P) = (−x1 ≺1
i t

1
i ∧ x1 ≺1

s t
1
s ∧ . . . ∧ −xn ≺n

i t
n
i ∧ xn ≺n

s t
n
s , ϕ)

So, we can say, that the interval formula is a dual representation of constraints over
variables defined by bounds of the interval. Both representation are important. We

CHAPTER 4. PARAMETERIZED HYPERCUBES 55

use conjunction of parameterized bound for internal representation of data domains of
variables. Interval formula is more efficient for description of data operations.

Parameterized intervals and bounds presented here are used for a definition of a new
abstract data structure, parameterized hypercubes, that will be introduced in the following
section.

4.2 Parameterized Hypercubes

Parameterized hypercubes (pHCubes) symbolically represent valuation of variables x1, . . . , xn.
This symbolic data structure is efficient to represent counters in extended time and counter
automata. Manipulation with this structure (intersection, union,widening) is easier in
comparison with other parametric data structures like PDBMs or polyhedra.

This structure represents a set of possible values of every variable using parameterized
intervals constrained by a formula ϕ. First, we recall the definition of a constrained
parameterized interval over a variable x:

Ĩ(x,P) = (〈a, b〉, ϕ) = (〈(ti,≺i), (ts,≺s)〉, ϕ)

where ≺i,≺s∈ {<,≤}, a = (ti,≺i) and b = (ts,≺s) are constrained parameterized bounds
such that (−x ≺i ti) ∧ (x ≺s ts) ∧ ϕ. Terms ti, ts (infimum and supremum) are from
AT (P) ∪ {∞}, constraint ϕ is a quantifier-free formula over P given by the grammar
ϕ ::= t ≺ t | ¬ϕ | ϕ ∧ ϕ.

A parameterized hypercube is an abstract data structure based on constrained param-
eterized intervals. It can be described using a parameterized interval formula in the form
of a conjunction of constraints over parameterized terms as follows:

∧

j

(tji ≺i xj ≺s tjs) ∧ ϕ

where xj ∈ X is a variable, and tji , resp. tjs, is the lower, resp. the upper bound.
Here, we will use dual representation using intervals. A parameterized hypercube ph

over a set of variables X = {x1, . . . , xn} is a vector of parameterized bounds constrained
by a formula ϕ:

ph(X) = (~I, ϕ) = (I1, . . . , In, ϕ) = (〈a1, b1〉, . . . , 〈an, bn〉, ϕ)

where ai, resp. bi are the lower, resp. the upper parameterized bound of variable xi, ϕ is
a constraint over parameters P.

For example, let ~v = (x, y, z) be a set of variables over X , P = {p, q}, and ϕ ∈ F (P).
Then ph(~v) is a pHCube over vector ~v such that

ph(~v) = (〈(<, 0), (≤, 2∗p+1)〉, 〈(<,∞), (<,∞)〉, 〈(≤,−3), (<, 3+ q)〉,−p ≤ 1 ∧−q ≤ −1)

This structure represents valuation of three variables x, y, z. Variables x and z are bounded
by intervals (0 < x ≤ 2 ∗ p + 1), (3 ≤ z < 3 + q), respectively. Variable y is unbounded
(−∞ < y < ∞) and covers the entire domain. Parameters {p, q} are constrained by the
formula ϕ = p ≥ −1 ∧ q ≥ 1. Graphical representation of ph(~v) is shown in Figure 4.7.

CHAPTER 4. PARAMETERIZED HYPERCUBES 56

3<=z�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�

�
�
�
�z

0 x

1

2

3

4321

x<=2*p+1

z<3+q

Figure 4.7: Parameterized hypercube ph(~v)

4.3 Operations on pHCubes

In this section, we will define operations on pHCubes and their relation to the verification
of counter automata. For brevity, we will use ph instead of ph(X) to express an instance
of pHCube over variables from X in the following text.

• Emptiness test. We test emptiness before applying any other operation during sys-
tem analysis, for example, inclusion, equality, etc. Let ph = (〈a1, b1〉, . . . , 〈an, bn〉, ϕ)
be a pHCube and ~p be a vector of parameters from P. We say that ph is not empty
if the following formula ψ is satisfiable

ψ = ∃~p ∈ Pnp . ϕ ∧
∧

i

(ai ⊆
PB bi)

which can be written as comparison of terms

ψ = ∃~p ∈ Pnp . ϕ ∧
∧

i

(−ti ≤ ts)

Note:

More precisely, the second formula should contain (−ti < ts) ∨ ((−ti = ts) ∧ (≺i ≤ ≺s))

according to definition of ⊆PB. For shortening we use the expression −ti ≤ ts.

Conversely, ph is empty if the negation of this formula is satisfied.

• Universality test. A pHCube is universal if every bound is infinite. In this test
we don’t take into account a context expressed by formula ϕ. Universality does
not depend on ϕ, it has to be satisfied in every context. The implementation of
this operation is simple. pHCube ph is universal (unbounded) if and only if
∀i ∈ {1, . . . , n} . ai = {<,∞} ∧ bi = {<,∞}.

CHAPTER 4. PARAMETERIZED HYPERCUBES 57

• Inclusion. The test of inclusion is a very important operation over pHCubes. After
computing a set of new configurations using post(), we test if the new pHCubes are
included in a set of the already known configurations represented by pHCubes.

The inclusion of pHCubes is defined using the relation of total order ⊆PB over
constrained parameterized bounds. Here, we extend this relation onto pHCubes. Let
ph = (〈a1, b1〉, . . . , 〈an, bn〉, ϕ) and ph′ = (〈a′1, b

′
1〉, . . . , 〈a

′
n, b

′
n〉, ϕ

′) be two pHCubes.
We define inclusion on pHCubes as follows:

ph ⊆ ph′ ⇐⇒ ∀~p ∈ Pnp . ϕ⇒ (ϕ′ ∧
∧

i

(ai ⊆
PB a′i ∧ bi ⊆

PB b′i))

For implementation, it is more efficient to test non-inclusion. The new formula is

ph 6⊆ ph′ ⇐⇒ ∃~p ∈ Pnp . ϕ ∧ (¬ϕ′ ∨
∨

i

(¬(ai ⊆
PB a′i ∧ bi ⊆

PB b′i))

⇐⇒ ∃~p ∈ Pnp . ¬(ϕ⇒ ϕ′) ∨ (ϕ ∧
∨

i

(¬(ai ⊆
PB a′i ∧ bi ⊆

PB b′i))

We test inclusion by testing satisfiability of the formula. If it is not satisfied, the
pHCube are included. Before inclusion testing, the test of emptiness has to be done
on both pHCubes, because empty pHCube is included in every pHCube. So, if ph
is empty, ph ⊆ ph′. Otherwise, if ph′ is empty, ph 6⊆ ph′.

• Equality. The test of quality can be implemented via the operation of inclusion
because ph = ph′ ⇐⇒ (ph ⊆ ph′) ∧ (ph′ ⊆ ph).

• Intersection. Computation of intersection is an expensive operation. For every
dimension, we need to test all possible cases of relations between two intervals.
Here, we demonstrate intersection for pHCubes with only one variable. Let ph =
(I, ϕ) and ph′ = (I ′, ϕ′) where I = 〈a, b〉, I ′ = 〈a′, b′〉, a = (ti,≺i), b = (ts,≺s

), a′ = (t′i,≺
′
i), b

′ = (t′s,≺
′
s). The result of the intersection will be a list of pHCubes

(I ′′, ϕ ∧ ϕ′ ∧ ψ). We distinguish the following cases:

1. If I ′ < I (a) or I < I ′ (b), then the intersection will be empty, i.e., I ∩ I ′ = ∅.
The following constraint must be satisfied: ψ = b′ ⊂PB a ∨ b ⊂PB a′, that
means ψ = t′s < −ti ∨ ts < t′i.

a’ b’

ba

a’ b’

ba

b)a)

I’

I I

I’

2. If I ∩ I ′ 6= ∅, the following four cases are possible:

(a) ψ = a′ ⊂PB a ∧ b ⊂PB b′, i.e., ψ = ti < t′i ∧ ts < t′s, I
′′ = 〈a, b〉

CHAPTER 4. PARAMETERIZED HYPERCUBES 58

(b) ψ = a′ ⊂PB a ∧ b′ ⊆PB b, i.e., ψ = ti < t′i ∧ t′s ≤ ts, I
′′ = 〈a, b′〉

(c) ψ = a ⊆PB a′ ∧ b ⊂PB b′, i.e., ψ = t′i ≤ ti ∧ ts < t′s, I
′′ = 〈a′, b〉

(d) ψ = a ⊆PB a′ ∧ b′ ⊆PB b, i.e., ψ = t′i ≤ ti ∧ t′s ≤ ts, I
′′ = 〈a′, b′〉

d)

b

a’ b’

I

I’
a

a)

b’a’

a b

I

I’

b) c)

b’a’

a b

b’a’

b

I I

I’ I’
a

For computation, only case (2) is needed to implement. We don’t need to detect
case (1) because we are interested in intersection only. If case (1) happens none of
the formulas from case (2) will be satisfied and the result will be an empty pHCube
anyway.

• Correct form (normal form). Parameterized intervals are defined by conjunction
of inequalities with parameters. Sometimes an interval can be expressed by more
than one upper (lower) bound as the result of adding constraints, for example. In
that case we are interested in finding normal form that is minimal and uniquely
represents the interval.

As shown on example in Section 4.1.4, the correct form of an interval is the minimum
of the lower, resp. the upper bound of the interval. For computation, we apply the
operator minI defined at page 52.

Let ph(X) = (~I, ϕ), where ~I = (I1, . . . , In), Suppose that variable xi is bounded by

another interval I ′i(x). Then correct form Icf
i (x) of the interval is as follows:

Icf
i (x) = minI(Ii(x), I

′
i(x))

• Adding constraints. Guards or invariants in parametric counter automata are
generally inequalities in the form x0t0 + . . .+xntn ≺ tn+1, where xi ∈ X , ti ∈ AT (P)
while PDBMs allow only expressions of the form x0 − x1 ≺ t.

Here, we will present adding a constraint on one variable. The extension to more
variables is straightforward (only repeat this computation for all of them), thus we
will not present it here.

We distinguish two cases of constraints—a simple constraint x ≺ t, and a general
constraint x0t0 + . . .+ xntn ≺ tn+1:

– simple constraint x ≺ tg

Computation of the simple constraint is quite easy—we have to find intersection
of current valuation of a variable and a guard. Let I(x) = (〈a, b〉, ϕ) be a
constrained parameterized interval over variable x where a = (ti,≺i) is the lower

CHAPTER 4. PARAMETERIZED HYPERCUBES 59

bound and b = (ts,≺s) is the upper bound, t ∈ AT (P). Let x ≺gs tgs ∧ −x ≺gi

tgi be a guard expressed as a constrained interval Ig(x) = (〈ag, bg〉, ϕg) where
ag = (tgi,≺gi), bg = (tgs,≺gs). The resulting interval I ′ = (〈a′, b′〉, ϕ′) is the
intersection of the lower, resp. upper bound of interval I(x) with the guard
Ig(x) as follows:

I ′(x) = I(x) ∩ Ig(x)

– general constraint x0t0 + . . .+ xntn ≺ tn+1

For a general constraint, the operation of adding a constraint is not exact. We
have to compute an approximate value of bounds of a guard. We will show
computation only for one variable x0, for example. We require that term t0 is
a constant, t0 6= 0.

x0t0 + . . .+ xntn ≺ tn+1

x0 ≺
tn+1

t0
−
t1
t0
x1 − . . .−

tn
t0
xn

Now, we will substitute all variables xk, k ∈ {0, . . . , n} on the right side by their
upper bounds tks, if tk is positive, or by their lower bounds tki, if tk is negative.
We get a bound of general constraint tg:

x0 ≺
tn+1

t0
−
t1
t0
t̂1 − . . .−

tn
t0
t̂n

︸ ︷︷ ︸

where t̂k =

{
tki if tk ≥ 0
tks if tk < 0

tg

If t0 is positive then we get an upper bound of the guard, i.e., tgs = tg. If
t0 is negative then we get a lower bound of the guard, i.e., tgi = tg. Now,
we can specify a general constraint as in the previous case by a constrained
parameterized interval Ig = (〈ag, bg〉, ϕg), where ag = (tgi,≺), bg = (tgs,≺).
If the guard specifies only one bound on a variables (for example, the upper
bound) the other bound will be an infinite bound, i.e., (∞, <).

A new interval I ′(~x) after adding constraints will be the intersection of these
two intervals as follows:

I ′(~x) = I(~x) ∩ Ig(~x)

For example, suppose numerical intervals over x, y, z such that 1 < x < 3, 2 < y < 5,
and 0 < z < 10. Suppose a guard x−2y < 3. Then, for variable x we get x < 3+2y,
that is after substitution x < 7. For y we get y > 3

2 + x
2 , i.e., y > 3. So, intersection

of the guard and the original interval is 1 < x < 3, 3 < y < 5, and 0 < z < 10.

• Linear assignment. Linear assignment is an operation used for setting a counter
(variable) to a specific value. In parameterized counter automata, we allow a general
assignment of the form x := x0t0 + . . .+xntn + tn+1, where ti ∈ AT (P), xi ∈ X . The
operation of assignment is exact for a simple assignment of the form x := t where
we set the upper and the lower bound of x to value (t,≤) and (−t,≤) so that x ≤ t
and −x ≤ −t what is equivalent to t ≤ x ≤ t.

CHAPTER 4. PARAMETERIZED HYPERCUBES 60

Let I(x) = (〈(ti,≺i), (ts,≺s)〉, ϕ) be a constrained parameterized interval over vari-
able x. Let x := t′ be a simple linear assignment. Then a constrained parameterized
interval I ′(x) after assignment x := t′ is as follows:

I ′(x) = I(x)|x:=t′ = (〈(−t′,≤), (t′,≤)〉, ϕ)

In case of general assignment of the form x := x0t0 + . . . + xntn + tn+1, we have to
compute a new lower bound and a new upper bound on variable x. The lower bound
t′i is given by following computation:

t′i = t̂0.t0 + . . . + t̂n.tn + tn+1 where t̂k =

{
tki if tk ≥ 0, k ∈ {0, . . . , n}
−tks if tk < 0

Term tki means the lower bound (infimum) of xk, tks means the upper bound (supre-
mum). The new lower bound t′i is given by adding of lower bounds if coefficient tk
is positive and by minus of upper bounds if coefficient tk is negative.

The upper bound t′s is computed similarly:

t′s = t̂0.t0 + . . .+ t̂n.tn + tn+1 where t̂k =

{
tks if tk ≥ 0, k ∈ {0, . . . , n}
−tki if tk < 0

For example, suppose numerical intervals over variables x, y, z such that 1 < x < 3,
2 < y < 5 and 0 < z < 10. Then, after general linear assignment x := 2 − y + 2z,
a new interval of x will be −3 < x < 20, because t′i(x) = 2 − 5 + 0 = −3 and
t′s(x) = 2 − 2 + 2.10 = 20.

Let I(x) = (〈(ti,≺i), (ts,≺s)〉, ϕ) be a constrained parameterized interval over vari-
able x. Let x := x0t0+. . .+xntn+tn+1 (shortly x := ~t) be a general linear assignment.
Then a constrained parameterized interval I ′(x) after assignment x := ~t on x is as
follows:

I ′(x) = I(x)|x:=~t = (〈(t′i,≤), (t′s,≤)〉, ϕ)

To define a linear assignment on parameterized hypercubes, we can simply consider
a pHCube as a set of parameterized intervals and perform linear assignment on every
interval.

Let ph(X) = (I0(x0), . . . , In(xn), ϕ) be a parameterized hypercube over variables
X = (x0, . . . , xn). Let T (X) be a set of general linear assignments of the form
xi := x0

i t
0
i + . . .+ xn

i t
n
i + tn+1

i , i ∈ {0, . . . , n}. Then, a new parameterized hypercube
ph(X ′) after assignment is as follows:

ph(X) = ph′(X)|X :=T (X) = (I ′0(x0), I
′
1(x1), . . . , I

′
n(xn), ϕ)

where I ′i(xi) = Ii(xi)|xi:=~ti
.

• Operation post(). Operation post() is a procedure similar to the one defined
for PDBMs. It computes a set of configurations of the system starting from the
given state of PCA C. For every state s ∈ L and its valuation (ν, γ) expressed as

CHAPTER 4. PARAMETERIZED HYPERCUBES 61

parameterized hypercubes we go through all possible transitions given in the form
(s1, g, sop, s2) (see definition of PCA at Section 3.2 for details) and compute a set of
new configurations. Unlike timed variables, counters don’t have time transitions, so
we don’t need an operation of elapsing of time as for PTAs.

Formally, the set of configurations form a transition system SC = (QC ,Q0,→) of
symbolic configurations where q ∈ QC is a node of SC and τ = (q, phg, T, q

′) is a
transition between q and q′. pHCube phg represents a guard over transition τ and
T is a linear assignment.

Let X = (x0, . . . , xn) be a set of variables of the system and ph(X) a current valu-
ation of counters and parameters. Operation post(q, ph(X)) over pHCubes can be
computed as follows:

post(q, ph(X)) = {(q′, ph′(X)) | (ph(X) ∩ phg(X))|X :=T (X)}

where phg(X) is a valuation of guards of the transition and T (X) is a set of linear
assignments over the transition.

• Acceleration. Acceleration over pHCubes uses an algorithm proposed in [AAB00]
for PDBMs. Implementation requires operations manipulating pHCubes—subtraction,
addition and multiplication to calculate control loops, conditions for acceleration and
effect of acceleration.

Let (q, ph) be a symbolic configuration and let θ be a control loop. Suppose that
difference between (q, ph) and postθ(q, ph), ∆, is equal to the difference between
post2θ(q, ph) and postθ(q, ph) ∆′. Formally, this condition is called C1 and is defined
under the context of constraints expressed by ϕ1 for (q, ph) and by ϕ2 for post(q, ph)
as follows: C1 : ∀~p ∈ Pnp ,∀~n ∈ Nn . ϕ2(p, n) ⇒ ∆ = ∆′ where ~n ∈ Nn is a vector
of extrapolation variables. We suspect that the effect of iterating θ will be the
same at each iteration—to add increment ∆ to the original set. This expectation
is expressed formally by the following condition C2 : ∀n ≥ 0 . post2θ((q, ph + n ∗
∆)) = postθ((q, ph + (n + 1) ∗ ∆)). If C2 holds there is an exact approximation,
i.e., by removing iteration and adding new extrapolation variables computation of
acceleration is still exact—see [AC01] for prove.

This is the main idea of acceleration. It helps to speed up computation of configu-
rations.

Implementation of acceleration requires simple operations add, mul and sub to add
an effect of the control loop, multiplication by extrapolation variables or finding
difference between two control states. These operations are simple and there are not
presented in this text.

In the following example we will demonstrate acceleration on a simple counter sys-
tem. Suppose a system with one counter x ∈ C and one parameter T with initial
constraint T > 0, see Figure 4.8.

The initial configuration of the system is c1 = (q0, 0, T > 0) where 0 is the value of
x and T > 0 is the initial constraint on the parameter. After applying control loop

CHAPTER 4. PARAMETERIZED HYPERCUBES 62

x:=0
q

x<=T/x:=x+2

θ

Figure 4.8: A simple parametric counter system

θ, a new configuration is c2:

c2 = postθ(c1) =

= (q0, (0 ≤ x ≤ 0) ∩ (x ≤ T), 0 < T)|x:=x+2 =

= (q0, 0 ≤ x ≤ 0, 0 < T)|x:=x+2 =

= (q0, 2 ≤ x ≤ 2, 0 < T)

The difference of the valuations of c2 and c1 is the interval ∆1 = 〈(2,≤), (2,≤)〉 .
Another iteration of post() will have a similar effect:

c3 = postθ(c2) =

= (q0, (2 ≤ x ≤ 2) ∩ (x ≤ T), 0 < T)|x:=x+2 =

= (q0, 2 ≤ x ≤ 2, 2 < T)|x:=x+2 =

= (q0, 4 ≤ x ≤ 4, 2 < T)

The difference between valuations of c3 and c2 is ∆2 = 〈(2,≤), (2,≤)〉. We can see
that ∆1 = ∆2, i.e., effect of the first and the second iteration of θ is to add the same
value 2 to x. We check if condition C2 holds

postθ(q0, 2 ∗ n ≤ x ≤ 2 ∗ n, n < T ∧ 0 ≤ n) =

= (q0, 2 ∗ (n+ 1) ≤ x ≤ 2 ∗ (n + 1), 2 ∗ n < T ∧ 0 ≤ 2 ∗ n)

If it is satisfiable, we add a new control state to the set of configuration states and
a new transition as shown in Figure 4.9.

Using acceleration, we reduce an infinite graph of symbolic configurations to the
finite one what is a key point of successful parametric verification.

4.4 Implementation in TReX

The abstract data structure of a parameterized hypercube and operations over it that
we presented in the previous section were implemented in the TReX verification tool
[BCAS01] developed in LIAFA, Paris.

CHAPTER 4. PARAMETERIZED HYPERCUBES 63

q_0, 0<=x<=0, 0<T q_0, 0<=x<=0, 0<T

q_0, 2<=x<=2, 2<T q_0, 2n*2<=x<=2n*2, 2n<T, 0<=n

q_0, 4<=x<=4, 4<T

θ

θ

θ

θ

θ∗

a) b)

Figure 4.9: Effect of acceleration—before (a) and after (b) acceleration

TReX is a tool that enables an automatic analysis of automata-based models equipped
with variables of different kinds of infinite-domain data structures with parameters. These
models are parametric timed automata extended with integer counters and communicating
through unbounded lossy FIFO queues.

Analysis of the model is based on symbolic reachability analysis. Symbolic structures
are used to represent infinite sets of configurations, and forward/backward exploration
procedures generate a symbolic reachability graph. The termination is not guaranteed,
but efficient extrapolation techniques (e.g., acceleration, as showed before) are used to
help it.

TReX allows to check on-the-fly safety properties as well as to generate the set of
reachable configurations and a finite symbolic graph. The generated finite symbolic graph
is a finite abstraction of the analysed model which can be used for finite-state model
checking.

Architecture. The kernel algorithm used in TReX is generic and can be used for any
kind of data structures for which it is possible to provide a symbolic representation struc-
tures, symbolic operations post(), prec(), and an extrapolation procedure—see Figure 4.10.

TReX is formed by three parts—modules:

1. Algorithms

This module computes generic reachability states for every data structure. Algo-
rithms implement operations post(), pre() and extrapolation techniques. Using such
an algorithm it is possible to implement a new data structure and operation over it
and add this data structure as a library to TReX. Before verification we can then
specify what kind of data structure will represent given variables—we can set specific
data domains for variables.

CHAPTER 4. PARAMETERIZED HYPERCUBES 64

symbolic reachability

extrapolation techniques

Constrained PDBM

SRE, FOAF, pHCube

FOAF

Decision procedures

Data structures

Algorithms

Omega

TREX

Reduce

.if

Model

Initial constraints

configuration

Initial

Observer

.if

graph

Finite symbolic

configurations

Reachable

yes/no
on−the−fly

verification

Figure 4.10: TReX architecture

2. Data structures

Module Data structure includes several symbolical data structures—PDBM, SRE,
FOAF. This module implements these abstract data structures and operations over
them—e.g, inclusion, intersection, emptiness test etc.

3. Decision procedures

For certain operations, TReX calls external decision procedures (REDUCE, OME-
GA). This concerns manipulation of arithmetical formulas.

TReX provides the following data representations—simple regular expressions (SRE),
see [AAB99, ABJ98], that represent configuration of lossy FIFO channels, and Constrained
PDBMs [AAB00] that represent sets of configurations of clocks and counters with evolution
depended on parameters. Efficient manipulation with first–order arithmetical formulas
was implemented in a package FOAF (First–Order Arithmetical Formulas). This library
is used to represent linear and non-linear constraints on parameters.

Satisfiability of formulas is checked using external decision procedures. TReX uses
OMEGA [Ome96] for formulas over integers and REDUCE [Hea99] for formulas over
reals.

Parameterized hypercubes. A library for manipulating pHCubes was created in C++.
It implements intervals with symbolic bounds of generic type T defined using templates.
A concrete specification of a class pHCube is as follows:

CHAPTER 4. PARAMETERIZED HYPERCUBES 65

template <typename T>

class phcube {

public:

/* build/copy/destroy */

phcube(var_t); /* universe */

phcube(var_t, const bound_sym_t*); /* constant for a bound */

phcube(const phcube<T>&); /* copy */

~phcube();

public:

bool is_included_in(const typename T::ty, const phcube<T>*, const typename T::ty) const;

bool is_equal(const typename T::ty, const phcube<T>*, const typename T::ty) const;

protected:

var_td m_iDomain; /* domain of variables represented */

var_t m_iSize; /* size of the vectors, computed using the domain */

Vector<bound_sym_t *> *m_vlBound; // lower bound

Vector<bound_sym_t *> *m_vuBound; // upper bound

};

The library provides basic operations required for manipulation of data structures.
These operations formally introduced in the previous section are:

• is empty()—test of emptiness,

• is universe()—test of universality,

• is included()—test of inclusion,

• is equal()—test of equality,

• intersection()—intersection of two pHCubes,

• add constraint()—intersection with the linear constraint,

• assign variable()—linear assignment,

• substitute variable()—transfer function for backward analysis,

• set bounds()—set the upper and the lower bound of a variable,

• add()—addition of intervals,

• sub()—difference of intervals,

• mul()—multiplication of bounds,

• get extrapolation vars()—builds the list of extrapolation variables,

• substitute vars()—an operation need by extrapolation.

CHAPTER 4. PARAMETERIZED HYPERCUBES 66

Operations intersection(), add constraint(), assign variable(), substitu-

te variable() return as result lists of pHCubes because pHCubes are not closed under
these operations.

A new package with a library for manipulating parameterized hypercubes will be a
part of a new version of TReX.

Verification using TReX. TReX uses the If language [BFG+00] for model specification.
It allows to specify initial constraints over a parameter, the initial symbolic configuration
and the safety properties to be checked on-the-fly expressed by an observer.

On the output, TReX generates

• a finite symbolic graph in the Aldebaran format of Cadp [FGK+96] that can be used
for further finite-state model checking and minimization, and

• a set of reachable configurations in format of InVeSt [BLO98] which is an invariant
checker and can be used for verification of invariance properties of the model.

If we decide to perform an on-the-fly check of a safety property, the property should be
given as an observer, ie. an extended automaton sharing transition labels with the input
model. If the property is not satisfied, TReX generates a diagnosis trace showing the
sequence of transitions from the initial state of the model to the state with bad behaviour.
The symbolic configuration of the bad state can be used to synthesize constraints under
which the safety property is satisfied.

TReX is also able to check some kind of liveness properties. It can synthesize fairness
constraints stating the bounded iterability of some kind of loops. For further reading
about liveness property we recommend [BCALS01] and [PS00].

4.5 Discussion

In this chapter, we introduced a new data structure for analysis and verification of para-
metric systems called parameterized hypercubes. This data structure is based on intervals
and it is used mainly for counters in parametric counter automata. It cannot be used di-
rectly for timed automata because time domains require constraints of the form x− y ≺ t
to specify time regions whilst counters do only x ≺ t.

Original definition of parametric counter automata given in [AAB00] and shortly shown
in Section 3.2 defines only simple guards and assignments over PCA. The reason is that a
data structure used for PCA is implemented by PDBMs that permit only expressions of
the form x− y ≺ t for constraints (guards) and x := t for assignments.

Parameterized intervals allow constraints of the form x0t0 + . . . + xntn ≺ tn+1 and
assignments x := x0t0 + . . .+xntn + tn+1. This extends expressivity of the model towards
systems based on polyhedra that generally allow linear inequalities for constraints.

On the other hand pHCubes utilize acceleration to speed up system analysis and
effective implementation of operations like intersection, inclusion and test of emptiness.
Because pHCubes encode only bounds of each variable (not their difference) they reduce

CHAPTER 4. PARAMETERIZED HYPERCUBES 67

space needed for data representation. While PDBMs require n2 memory cells to represent
data domain for n variables, pHCubes require only 2∗n (the lower and the upper bound).

The main contribution of parameterized hypercubes can be summarized into the fol-
lowing points:

• linear constraints in guards of transitions of the form x0t0 + . . . + xntn ≺ tn+1,

• general actions (assignment) over transitions of the form x := x0t0+. . .+xntn+tn+1,

• space reduction in comparison with PDBMs,

• normalization is not needed for intervals manipulation.

Chapter 5

How to Analyse Parameterized
Timed Systems

Parameterized timed and counter systems are a subclass of timed/counter systems with
specific features. In this chapter, we look more deeply to practical issues connected with
analysing such systems. Some theoretical aspects were already mentioned in the chapter
3. Here, we focus more on practical hints and observations made by the author during
formal analysis and verification he did within projects ADVANCE [Mat04a] and Liberouter
[MSV05].

In the first section, we describe basic steps of formal analysis of a system. We point
out issues raised by continuous time variables and parameters. The second part of this
chapter shows our experience how to create a model of a system. We divide a model
in three kinds of model components—a model of environment, a model of buffers, and a
model of executive units. This was applied in Liberouter project [MSV05]. In the second
section, we focus on buffers that were the main object of the author’s research. In the
third section, we give an overview of properties that can be analysed during verification.

5.1 Formal Analysis of Real-time Systems

Formal analysis of a system usually consists of four basic parts:

1. Creation of a model.

• The model is an abstraction of the real system. The level of abstraction is the
main question—we need to detect parts of a model that can be hidden in the
abstract model without changing functionality of a system to be examined.

• The model is described using formal language. Description is then unambiguous
and precise.

• Special request on an expression of a model is that description should be easy
to read and understand. This contradicts with the previous point a little bit,
especially for those people who are not familiar with reading of formal descrip-
tions. A great advantage is to use tools with graphical interface where the

68

CHAPTER 5. HOW TO ANALYSE PARAMETERIZED TIMED SYSTEMS 69

formal description is hidden behind simple figures as we can see, for instance,
in Uppaal.

• Description language can be usually an input language of a verification tool.
There exist also convertors that translate descriptions from one language to
another, for instance SDL2IF that translates a SDL description to If language.

2. Validating the model.

• The main issue of validation can be expressed by the question “Does the model
correspond to the modelled system?” It is necessary to present the model to
designers to see if it reflects their ideas of functionality of the system.

3. Definition of required properties.

• Among such properties there can be logical correctness, response of the system
etc.

• Properties can be encoded as logical formulas in LTL or CTL, using some
special syntax assertions (assertions—statements that have to be satisfied in
every configuration of the system during its behaviour), invariants, reachability
conditions, etc. These expressions are tightly connected to a verification tool
we decided to use.

4. Simulation and/or verification of required behaviour.

• Simulation is useful for making sure that the model corresponds to the mod-
elling system. We can also observe the behaviour of the system for well-known
conditions and input values and expected input values.

• Nevertheless, simulation can never state that the system is correct or that a
specified property is true for all input values and control states of the system.

• Verification can prove that the property is valid for all input values and states
of the system.

• If verification ends with the result that the property is not satisfied we can find
a counter-example showing why the property is violated. It helps us to detect
flaws in system design. Even if the verification is not successful it may find
different bugs than simulation due to a different way of traversing the state
space of the system.

Timed and counter systems with parameters are generally undecidable. We showed
some semi-algorithms (e.g. extrapolation) that helps termination of verification of para-
metric systems. Many times the analysis of such system does not finish and crashes
because of the lack of memory. In this case, we can review our model in order to detect
sources of complexity and eliminate them. Here we discuss some of common sources of
complexity and possible ways how to deal with them.

Clocks. While analysing timed systems the complexity of computation increases by num-
ber of clocks. However, for many practical problems only a few clocks are sufficient. There

CHAPTER 5. HOW TO ANALYSE PARAMETERIZED TIMED SYSTEMS 70

exist algorithms for automated reduction of redundant clocks. Some tools (e.g., Kronos)
implement a technique that eliminate redundant clocks from a system—active clock re-
duction [DT98]. If uses for clock reduction a technique based on slicing [Wei84]. However,
in tools that do not implement these techniques and it is necessary to eliminate clocks
manually.

Parameters. In parameterized systems values of variables are not computed precisely.
Variables contain symbolic values (terms) with parameters that are constrained by logical
formulas. During the analysis symbolic values are manipulated as shown in the previous
chapters and also constraints develop. By passing a transition with guard or invariant
a new constraint is added. Thus test of satisfiability of such formulas becomes more
complicated and time consuming. This increases with the number of parameters.

If there are too many parameters, it is good to instantiate some of them (revert them
to numerical constants) and try to analyse a model for some instances of such parameter.
Of course, in this case we resign on parametric analysis but we can get partial results at
least—as shown in the following case study.

Sometimes it is useful to define initial constraints or initial configuration of the system.
Doing this we can reduce the size of a generated set of configurations.

5.2 Modelling a System

Modelling a system is to create an abstract model that describes the behaviour of the orig-
inal system. The abstract model hides complexity of the original system and preserves just
those system features that are interesting with respect to the system analysis. The level
of abstraction is given by complexity of the system and also by expressivity of modelling
language. Usually it reflects the description language of a tool we used for verification.
For instance, dealing with timed systems, we can express time as discrete events (ticks)
and model them using a counter.

While modelling communication systems (transmission protocols, programmable hard-
ware) we noticed that a model of the class of such systems is useful to divide in three kinds
of model components:

• environment—generators of incoming requests (packets), output units (waiting for
a result),

• buffers (queues, channels)—they can be deterministic, stochastic, or non-deterministic;
we can model lossy queues, delayed queues, etc.,

• executive units—processing units that perform operations over data in the system;
they are mostly interesting from the point of view of delay on the processing requests,
communication with environment, and data transformation.

Here, in this text we will be interested mostly in FIFO queues, for other components
you can see [MSV05].

CHAPTER 5. HOW TO ANALYSE PARAMETERIZED TIMED SYSTEMS 71

5.2.1 Modelling FIFO Queues

A FIFO queue (buffer, channel) is a typical abstract data structure that contains a se-
quence of stored data. FIFO queues are used to represent transmission channels, interme-
diate buffers between a processing unit and a memory, etc. Few verification tools (e.g. If)
implement FIFOs in such way that FIFOs are special data structure in the system which
are manipulated using a language of the verification tool.

Here, we introduce patterns for modelling FIFO queues in the framework of automata
without an explicit support of such structures which is the case of, e.g., Uppaal. And
even if queues are supported, the patterns may be used if one wants to customize the
built-in implementation.

We can have lossy queues where some data may be lost. These are important to
model communication channels. There are delayed queues where data are delayed. We
can have bounded or unbounded queues, or we can also deal with queues where a symbolic
constant value—a parameter—defines the maximum length of the queue. In parametric
verification, we are then interested in the values for which the parameter satisfies the
expected properties. This approach is called parameter synthesis [AHV93].

If we do not refer to the actual data stored in a queue we may abstract the queue to
one value only—a counter of the number of items in the queue. This approach was used,
for example, in the Liberouter project [MSV05].

empty

nonempty

full

throwing

count == FIFOsize-1
data_in?
count := count + 1

release?
count := count - 1

count ==1
release?

count := count - 1

count < FIFOsize-1

data_in?
count := count + 1

count > 1
release?

count := count - 1

data_in?
count:=count+1

data_in?

Figure 5.1: Model of a simple bounded FIFO queue

Simple Bounded FIFO Queues. A simple bounded FIFO queue can be modelled in
an abstract way as a finite automaton with three control states—empty, nonempty, and

CHAPTER 5. HOW TO ANALYSE PARAMETERIZED TIMED SYSTEMS 72

full—augmented with a bounded counter count that represents a number of items currently
present in the queue (Figure 5.1). If we add a new item in the queue, the counter count
is incremented. If an item is removed from the queue, the counter is decremented. The
maximum length of the queue is a constant value FIFOsize. Notation x? means reading
from the queue into a variable x, x! means writing x into the queue.

Notice the special state named throwing that we have added to the model of a queue.
This state forms a so-called observer—a state that is used for observing some features of the
behaviour of the system being examined1. Here, we are interested in the queue overflow.
If the queue overflows, the system moves to the state throwing. In the verification, we
then define a property “the buffer will never overflow” as a logical statement “the system
never enters the state throwing”, A� ¬throwing in the CTL logic.

empty

nonempty

y<=MAX_DELAY

full
y<=MAX_DELAY

throwing

count == FIFOsize-1
data_in?
count := count + 1

release?
count:=count - 1,
y:=0

y>=DELAY

count ==1 && y >= DELAY
release?

count:=count-1, y:=0

count < FIFOsize-1

data_in?
count:=count + 1

count>1 && y >= DELAY

release?
count := count - 1,
y:=0

data_in?
count:=count+1, y:=0

data_in?

Figure 5.2: Model of a delayed FIFO queue

FIFO queues with delays. Delayed FIFO is a model of FIFO with time where it is
guaranteed that every request is delayed by at least DELAY time units. Delayed FIFO
are modelled using Timed Automata [Alu99]. In figure 5.2 there is a delayed FIFO queue
with clock y. Transitions that release an element of the queue are augmented with time
constraints allowing to release an item only if the constraint is satisfied. The time of the
release is non-deterministic y ≥ DELAY . If we want to define a precise maximal delay of
the queue we have to add an invariant y ≤MAX DELAY to each state.

1Observers are usually independent automata that monitor the execution and decide whether a safety
property is violated. In this case we reduce the observer to a state.

CHAPTER 5. HOW TO ANALYSE PARAMETERIZED TIMED SYSTEMS 73

Lossy FIFO queue. Lossy FIFO queues can be with time or without time. In Figure
5.3 we consider untimed lossy FIFO queue.

empty

nonempty

full

throwing

count == FIFOsize-1
data_in?
count := count + 1,
lp:=lp+1

release?
count:=count - 1

lp<NLOSS

count ==1 && lp <NLOSS
release?

count:=count-1

count < FIFOsize-1

data_in?
count:=count + 1,
lp:=lp+1

count>1 && lp < NLOSS
release?

count := count - 1

data_in?
count:=count+1,
lp:=lp+1

data_in?

count > 1 && lp>=NLOSS
count := count - 1, lp:=0

lp >= NLOSS

count:=count-1, lp:=0

count==1 && lp>=NLOSS
count:=count-1, lp:=0

Figure 5.3: Model of a lossy FIFO queue

The model includes a special counter lossy period lp that counts a number of success-
fully sent elements. If the count reaches constant NLOSS, it generates a loss that means
it decrements the number of items of the queue without sending it to the next block. In our
model we have NLOSS equal to 5, i.e., every fifth element is lost. Using this abstraction
we can model queues where we know the rate of losses. Distribution of losses is uniform,
that means, we don’t model chunks of losses.

5.3 Properties to be Verified

In this part we recall basic types of temporal properties to be verified, principles how
they are implemented in verification tools and practical hints to describe common require-
ments using the following properties. The following classification of properties is based on
[BBF+01].

• Reachability property

A reachability property states that “some particular state can be reached”. Often
we are mostly interested in negation of that property—we cannot reach a state that
violates the property. In temporal logic it can be expressed as EFϕ that we can
read as “there exists a path from the current state along states that satisfy ϕ”.

Reachability properties are relatively easy to verify. During model checking analysis
we construct the reachability graph (configuration graph) of a system where we can
check if a good/bad state is present.

CHAPTER 5. HOW TO ANALYSE PARAMETERIZED TIMED SYSTEMS 74

For reachability analysis, we use two basic algorithms—forward and backward anal-
ysis.

– Forward analysis

Starting from the initial states we build the set of reachable states using oper-
ation post(). We add iteratively successors of initial states until no new states
can be added.

– Backward analysis

Here we start from target states and add their predecessors using operation
pre() until no new states can be added. Then we test whether some initial
states are in the resulting set. The computation of predecessors in the case of
automata with variables, guarded transitions and assignments is more compli-
cated then forward analysis because it require solving equations, finding values
of the variables, etc. During this computation, it is not sure if analysed states
leads to the initial states because we get out of the well constrained states for
which the system was designed. Another issue is to define a set of target states.
This has to be done before backward analysis starts.

• Safety properties

A safety property is interpreted as “nothing bad ever happens”. Many specifications
are expressed naturally as safety properties.

A subset of safety properties is invariance. A system is said to be correct if and
only if its reachable states all satisfy a ϕ requirement, that can be expressed in
temporal logic as AGϕ for CTL, for instance. This is called invariants testing. An-
other approach is to use monitors (observers)—independent automata that monitor
execution of the model of the system and accept only its legitimate behaviour.

Invariance is mostly implemented by testing reachability of negated formula, i.e,
testing if ¬ϕ is satisfied because EFϕ = ¬AG¬ϕ . One method is to perform
forward reachability analysis from the initial states, and then check whether the
intersection with the violating states ¬ϕ is empty.

For other safety properties, i.e., AG(ϕ1 ⇒ (AG(ϕ2 ⇒ AGϕ3))), the property is
expressed using a property automaton. Then we test the intersection of the system
automaton and the property automaton for emptiness.

In many cases it is not necessary to construct the entire state space of the mod-
elled system. It is sufficient to generated only those states of the modelled system
that are needed for testing the emptiness of the intersection of the modelled system
with the property automaton. This technique is called on–the–fly model checking.
The advantage of on–the–fly model checking is that when computing the intersec-
tion of the system automaton with the property automaton, some states may never
be generated at all. Another advantage is that a counterexample may be found
before completing the construction of the intersection of the two automata. Once
a counterexample has been found and reported, there is no need to complete the
construction.

CHAPTER 5. HOW TO ANALYSE PARAMETERIZED TIMED SYSTEMS 75

If a state that violates the property is found, the analysis is stopped with the negative
answer—property ϕ is not satisfied. Most tools generate also an error trace from
the initial state so a designer can see conditions that violate property ϕ. In case of
parametric analysis we can synthesize values of parameters that allows forbidding
behaviour of the system.

• Liveness properties

A liveness property states that “something good should eventually happen”. The
notion “something good” can be expressed as an configuration state R. Then analysis
check if all states forward reachable from the initial states are backward reachable
from a state R.

In CTL we can express liveness property using combinator F. For instance “any
request will ultimately be satisfied” is expressed as AG(req ⇒ AF sat).

In timed systems we are interested in so called bounded liveness. This is a liveness
property that comes with a limited delay. For example, we can say that “any request
will be responded within 15 seconds”. However, this formula is in fact the safety
property [BBF+01].

In model analysis we implement the bounded liveness using a monitor—a special
automaton that checks if the requirement is violated. The monitor typically contains
special states which are only reachable by violating executions. The monitor must
act strictly as an observer of the original system, without changing its behaviour.

• Deadlock-free property

Deadlock-freeness is a special property that states that “the system can never be in
a situation where no progress is possible”. This property is not safety property.

It can be verified using formula AGEX true in CTL but often special treatment is
used.

• Fairness

Fairness is a particular type of assumption that is very often needed for ensuring
liveness. Numerous different notions of fairness has been defined. In [MP92] the
authors introduce two kinds of fairness—weak fairness and strong fairness.

Weak fairness (also known as justice) states that if transition t is enabled in every
state from some point on, then it will eventually occur. The definition rules out
executions where t never occurs although it is always ready to occur. Thus weak
fairness is suitable for modelling assumptions such that each process of a system gets
processor time.

Strong fairness (or compassion) requires that if transition t is enabled infinitely many
times, then it should also occur infinitely many times. With strong fairness one can
specify, for instance, that a server does not systematically disfavour any one of its
clients.

CHAPTER 5. HOW TO ANALYSE PARAMETERIZED TIMED SYSTEMS 76

5.4 Summary

In this chapter, we discussed fundamentals of modelling, analysis and verification of a pa-
rameterized timed system. We recalled basic steps of formal analysis that include creation
of a model, validation of the model, definition of required properties, and verification.
While dealing with timed systems with parameters, number of clocks and parameters is
important for the termination of the verification. It depends also on the relation be-
tween parameters (linear/non-linear), initial constraints over the parameters and number
of processes of the model.

We also introduced a template to model communicating system. We distinguish three
types of components of such system—environment, buffers, and executive units. In this
text we dealt mainly with buffers and proposed a model of a simple bounded FIFO queue,
a delayed FIFO queue and a lossy FIFO queue for automata-based verification languages
where queues are not a part of the languages or where a customization is needed. These
types of queues can be combined or enhanced by additional features.

In the last section we recalled basic types of properties for verification and principle of
there usage and implementation. In the next chapter, we will show an application of this
theoretical approach on a concrete example.

Chapter 6

Case Study

This part presents our experience with parametric verification of PGM protocol. The
work was made at laboratory LIAFA under supervision of professor Ahmed Bouajjani and
with collaboration of Mihaela Sighireanu from this institute. It was a part of ADVANCE
project supported by the European Commission (FET project ADVANCE, contract No.
IST-1999-29082). One of the deliverables of the project was to model and verify the PGM
protocol [Bou02]. In this chapter we summarized results done by author of the thesis
during this project. Full paper with results can be found at [Mat04b].

In our work we concentrated on three tools we used for analysis—Uppaal, HyTech,
and TReX. Using combination of these tools we were able to automatically find relations
between parameters of the protocol. Our results automatically obtained were consistent
with previous results derived manually in [BS03].

This chapter is divided into four section. First section gives general comments on
formal analysis of a system. It mentions steps to create a model, its specification in
language of a verification tool and steps of verification. Second section shows on an
example of protocol PGM the phase of modelling. Third section presents our verification
in three verification tools and describes our results. The last section summaries our results
and experience with verification of the timed system with parameters.

6.1 Formal Analysis

In this section we give an overview of basic steps that we did during analysis of PGM
protocol—creation of model, specification of properties, and verification.

(i) System specification. We created an abstract model and described it using extended
timed automata with parameters. The automata communicate using shared variables.

(ii) Implementation in verification tools. Formal model was translated into input
languages of Uppaal, HyTech, and TReX. Transformation was straightforward, because
Uppaal and TReX use timed automata for model description. HyTech models systems
using hybrid automata. Timed automata can be considered as a subset of hybrid automata,

77

CHAPTER 6. CASE STUDY 78

so translation of the model to HyTech was not difficult too.

(iii) Verification. Because Uppaal does not support parameters, we instantiated pa-
rameters and verified the model for a set of different values. Parametric verification was
made in HyTech and TReX. During verification we faced a problem of non termination.
If the analysis did not terminate we used following algorithm:

1. We checked traces/runs to find a source of non-termination.

2. We refined a model—we put an additional restriction on parameters, instantiated
some parameters, etc.

3. Verification was repeated.

Parametric verification resulted in relations between parameters (parameter synthesis)
that satisfied the observed property.

6.2 Modelling PGM

This section deals with the modelling of PGM protocol. Our model of PGM was tuned
during time of analysis—a few features were modelled not very precisely, first models were
too large to finish verification etc. Here, we present the last version of our model where
we were able to prove desired properties.

Network
Elements

Receivers

Sender

Figure 6.1: PGM—multicast transmission.

PGM protocol. PGM protocol defined in [SFC+01] is a complex multicast protocol. It
works on a network of nodes with multiple senders and multiple receivers. Its dynamic
behaviour is depicted in Figure 6.1. Transport-layer originators of PGM data packets are
referred to as senders, transport-layer consumers of PGM data packets are referred to as

CHAPTER 6. CASE STUDY 79

receivers, and network-layer entities in the intervening network are referred to as network
elements.

In the normal course of data transfer, a sender multicasts sequenced data packets
(ODATA), and receivers unicast selective negative acknowledgments (NAKs) for data
packets detected to be missing from the expected sequence. Network elements forward
NAKs hop-by-hop to the source, and confirm each hop by multicasting a NAK confir-
mation (NCF) in the response to the interface at which the NAK was received. Repairs
(RDATA) may be provided by the sender in the response to a NAK.

Since NAKs provide the sole mechanism for reliability, PGM is particularly sensitive to
their loss. To minimize the NAK loss, PGM defines a network-layer hop-by-hop procedure
for reliable NAK forwarding—see Figure 6.2.

Receiver

Network
Element

Source

ODATA, RDATA
SPM
NCF

NAK

Figure 6.2: Data packets defined in PGM.

In our approach we abstract the model to a simple one-sender and one-receiver system.
Joining and leaving multiple nodes during session can be considered as nodes missing data
[BS03].

Abstract model. Analysing the full PGM protocol is beyond limits of current verification
tools because of

• dynamic topology—joining/leaving out a node,

• multiple senders,

• a lot of different packet types (SPM, NCF, NAK),

• a lot of processes, counters and clocks.

Possible sources of complexity are the number of clocks and counters, the number of
parameters, non-linear relations between variables. However, by combination of different
tools for analysis we were able to prove the reliability property.

CHAPTER 6. CASE STUDY 80

Our abstract model is based on a global view of the protocol running in the sender and
one of its receivers, as presented on Figure 6.3. The intermediate network between the
sender and the receiver is abstracted into a unreliable, unbounded FIFO queue. Only data
packets (ODATA) are transmitted between the sender and the receiver, the other packets
(SPM, NAK, NCF, RDATA) are abstracted also.

Sender

Receiver

Network

TXW_TAIL TXW_SIZE

L

Figure 6.3: Abstract model of PGM.

Using the abstract model we can abstract from individual packet numbers. We are
not interested in a precise sequence number to detect losses. When the receiver receives a
packet it is informed by global variable that there was a loss (or multiple losses) preceding
the incoming packet. The receiver knows an actual size of the data in the network (variable
L—the length of FIFO queue), the number of old data in the sender’s transmission window
and the speed of the transmission. From these values it is possible to detect if a lost
packet can be recovered. In Figure 6.3 we can see that the number of packets present in
transmission window for recovery is TXW SIZE - L. The real possibility of recovery depends
on the speed of transmission expressed by parameter RATE.

Formal description. For verification purposes we use extended timed automata with
parameters (see previous section) to describe our abstract model. The choice of the for-
malism was made with regard to verification tools we intended to use. Our prime goal
was to synthesize parameters of a protocol. So we looked for tools that implement para-
metric verification. Because the observed system is a communication protocol working in
real-time, the need of explicit continuous time was raised. Following these requirements
we decided to use extended timed automata with parameters to formally describe PGM
protocol.

Our PGM model is composed of three automata—a sender, a network and a receiver
with six parameters, one finite variable, two clocks, two counters and two communication
channels, see Figures 6.4, 6.5, and 6.6.

The automata work simultaneously and are synchronized by rendez-vous on gates SN
and NR. They communicate using shared variables L and lp. The states labeled by C
are urgent states, i.e., states where the time is not allowed to advance.

CHAPTER 6. CASE STUDY 81

S0

x<=SND_PERIOD

Start

x>=SND_PERIOD

SN!

x:=0

x:=SND_PERIOD

Figure 6.4: PGM model - sender

The sender. The sender generates new data each period (SND PERIOD). The data sent
are stored in the transmission window that advances each time new data are sent. The
transmission window is fully opened during the session to recover as many data packets as
possible. If data loss is detected, we test if an original data packet is in the transmission
window. If not, a non-recoverable data loss has happened and the full recovery property
is violated.

N0p

y<=0

N0

y<=CH_PERIOD

SN?

L:=L+1

y>=CH_PERIOD,L==0

y:=0

y>=CH_PERIOD,L>=1
NR!

L:=L-1,y:=0

y>=CH_PERIOD,lp==0,
L>=NLOSS+1

NR!

y:=0,L:=L-NLOSS-1,
lp:=1

Figure 6.5: PGM model - network

The network. The network automaton models the transmission channel between the
sender and the receiver with transmission delays and non-deterministic losses. The net-
work receives data from the sender and increments the length of buffer L. The buffer is
unbounded, it can grow without limitation. The network element either delivers data to
the receiver with the speed defined by CH PERIOD parameter or multiple data are discarded

CHAPTER 6. CASE STUDY 82

in order to model losses during transmission. The model allows NLOSS data packets to be
lost, NLOSS being a parameter. The initial buffer length is set to BUFFER LENGTH, which
means the system is in process of communication—we don’t model opening and closing
stages of communication.

R01 R_recoveryR0

R_EL

R_AR

R_AL
lp==1NR?

lp==0

TXW_SIZE <=RATE+L+NLOSS,
TXW_SIZE >= RATE+L+2

def_lost:=def_lost+RATE+L+NLOSS-TXW_SIZE+1

def_lost:=def_lost+NLOSS

TXW_SIZE <= RATE + L+ 1

TXW_SIZE >= RATE + L + NLOSS + 1

def_lost:=def_lost+0

lp:=0

lp:=0

lp:=0

Figure 6.6: PGM model - receiver

The receiver. The receiver is informed about losses using a global variable lp. When a
loss occurs the receiver calculates possibility of recovery. The result depends on TXW SIZE,
BUFFER LENGTH, RATE and the current length of the buffer L’.

By reasoning about the recovery of transmitted data we distinguish three possible
cases—every lost packet can be recovered, some lost packets can be recovered or nothing
can be recovered. This depends on the size of the sender’s transmission window, the speed
of transmission, the delay in the network etc. These cases can be described by following
manually obtained results:

∀R All lost packets may be recovered (full recovery) if TXW SIZE > RATE + L′ + NLOSS,
state R AR,

∀L None of the NLOSS lost packets may be recovered (no recovery) if TXW SIZE ≤ RATE+
L′ + 1, state R AL, or

∃R Some of the lost packets may be recovered (partial recovery) if TXW SIZE > RATE +
L′ + 1 and TXW SIZE ≤ RATE+ L′ + NLOSS (state R EL) .

The full recovery may be done for the first case if the parameters satisfy constraint
SND PERIOD ≥ CH PERIOD∧TXW SIZE ≥ RATE+BUFFER LENGTH. This constraint on param-
eters was obtained manually in [BS03]. In this paper we focus on automatic Al synthesis
of parameters. However, it is interesting to compare the manually obtained results with

CHAPTER 6. CASE STUDY 83

output of verification tools listed in the following section. It can be seen that the results
are consistent.

6.3 Tools for Parametric Verification

In parametric verification we used three tools—HyTech, TReX and Uppaal. In this
part we introduce the tools and our results. As mentioned in [AHV93], a large class
of parametric verification problems is undecidable. In [AAB00] the authors introduce
a semi-logarithmic approach based on an expressive symbolic representation, parametric
DBMs, and extrapolation techniques that allow one to speed up reachability analysis and
help its termination. We will see how important an effective extrapolation technique is in
comparison with TReX and HyTech.

6.3.1 HyTech

HyTech [HHWT95] is a tool for analysis of linear hybrid automata [ACHH93]. A hy-
brid automaton is a mathematical model for hybrid systems that models both their dis-
crete and continuous behaviour. Hybrid automata can be considered a generalization of
timed automata with continuous variables. Timed automata have one type of continuous
variables—clocks. Generally, hybrid systems are undecidable [HHWT95]. Linear hybrid
systems form a subclass of hybrid systems which can be analysed semi-automatically
[ACHH93]. Invariants, guards and actions in linear hybrid systems depend linearly on
time and other variables.

HyTech is a symbolic model checker for linear hybrid automata. The ability of
HyTech to perform parametric analysis is an important feature. It is able to synthe-
size parameter values, i.e., to find the correct values for the parameters so that the system
will satisfy a specified property.

Model description. HyTech takes a description of a model as in input in the form
of linear hybrid system and analysis commands. System description contains variables of
several types: discrete, clock, stopwatch, parameter and analog. Guards and constraints
are composed of linear terms and expressions. Each automaton is composed of locations
and their transitions. Locations are labeled with their invariants. Transitions contain
guards with enabling conditions and the successor location. There must be provided an
initial state of an automaton and an initial value of the variables.

Model analysis. Analysis in HyTech is specified by two parts: declaration of regions,
and a sequence of analysis commands. Analysis commands provide a means of manipulat-
ing and outputting regions. At any time instant, the state of a hybrid automaton is speci-
fied by a location and constraints on variables. This is called a region. HyTech computes
the forward reachable region by finding the limit of the infinite sequence I, post(I),
post2(I), ... of regions. All timed safety requirements, including bounded-time response
requirements, can be verified using the reachability set. However, the iteration scheme is
a semi-decision process: there is no guarantee of termination.

CHAPTER 6. CASE STUDY 84

In our first approach, we computed the reachability set of the system. The property
to be verified in the system was expressed in negative form using a region that violates
the property: final reg := def lost > 0. Term def lost > 0 describes states where
the recovery property is not satisfied, i.e. number of definitely lost packets is greater
then zero. Firstly, HyTech generates a set of all reachable configurations of the system.
Then intersection with specified property is applied on the set. If the property holds
we get a non-empty result in the form of equations between parameters that satisfy our
model and specified conditions. Declaration of analysed region and analysis commands in
HyTech for the first approach is following:

-- definition of initial and final region

init_reg, final_reg: region;

-- region inizialization

init_reg := loc[sender] = S0 & x = SND_PERIOD & loc[Node] = N0 & y =

0 & L = BUFFER_LENGTH & lp = 0 & loc[receiver] = R0 & def_lost = 0

& RATE >= 1 & TXW_SIZE >= 1 & NLOSS >= 1 & BUFFER_LENGTH >= 1 &

CH_PERIOD >= 1 ;

-- a violation state (final_reg)

final_reg := def_lost > 0;

-- analysis

reached := reach forward from init_reg endreach;

prints "------------";

print omit all locations

hide non_parameters in reached & final_reg endhide;

For the first approach computation did not terminate. In symbolic model checking
there are very important techniques like acceleration that help to speed up and terminate
the analysis. For above written example HyTech had a problem to accelerate and after
few hours the computation failed because of the lack of memory.

The second approach analyses the model on the fly. At first, the nearest reachable
region is computed using post() operation and then, immediately intersection of the region
and the undesirable property final region is tested. If the intersection is non empty, non-
reliable state was reached. If the intersection is empty, we continue in the iteration. We
cannot find all states satisfying the property but we can determine states that violate
the property and synthesize parameters for non-allowed states. In HyTech, the second
approach is written as follows:

init_reg, reached,old, final_reg: region;

init_reg := loc[sender] = S0 & x = SND_PERIOD & loc[Node] = N0 & y =

0 & L = BUFFER_LENGTH & lp = 0 & loc[receiver] = R0 & def_lost = 0

& RATE >= 1 & TXW_SIZE >= 1 & NLOSS >= 1 & BUFFER_LENGTH >= 1 &

CH_PERIOD >= 1 ;

final_reg := def_lost > 0;

-- initialize region reached:

reached := init_reg;

prints "------------";

while empty(reached & final_reg) do

old:= reached;

CHAPTER 6. CASE STUDY 85

reached:=post(old);

print diff(reached, old);

endwhile;

prints "reached & final_reg:";

print omit all locations hide non_parameters in reached & final_reg

endhide;

Results. During the analysis of PGM we distinguish four different cases depending on
the speed

• Case 1: SND PERIOD > CH PERIOD - the rate of arrivals is less than that of departures,
the size of the queue converges to zero. Following constraints on parameters were
synthesized:

CH_PERIOD < SND_PERIOD & CH_PERIOD >= 1 & NLOSS >= 1 & NLOSS <= BUFFER_LENGTH

& RATE >= 1 & TXW_SIZE >= 1 & TXW_SIZE + NLOSS <= RATE + BUFFER_LENGTH + 1

|

RATE >= 1 & NLOSS <= BUFFER_LENGTH & TXW_SIZE + NLOSS >= RATE + BUFFER_LENGTH + 2

& CH_PERIOD < SND_PERIOD & CH_PERIOD >= 1 & TXW_SIZE <= RATE + BUFFER_LENGTH

The result shows that for TXW SIZE ≤ RATE+BUFFER LENGTH−NLOSS (the first part of
the formula) nothing can be recovered and for TXW SIZE > RATE+BUFFER LENGTH−
NLOSS (the second part of the formula) some losses can be recovered. This corre-
sponds to results obtained by TReX - see later.

• Case 2: SND PERIOD = CH PERIOD—arrivals are of the same speed as departures,
the size of the queue decreases to zero by the number of losses NLOSS these are
non-deterministic losses in the queue.

The constrained obtained are the same as in the previous case.

• Case 3: CH PERIOD/SND PERIOD > NLOSS—arrivals are faster then departures and
losses, the queue grows beyond any limits.

For this case and case 4, we introduce a new parameter q = CH PERIOD/ SND PERIOD,
and we consider that q ≥ 2. Parameter synthesis obtained by HyTech for q = 2 as
follows.

q >= NLOSS + 1 & SND_PERIOD > 1 & BUFFER_LENGTH >= 1 & NLOSS <= BUFFER_LENGTH + 1

& RATE >= 1 & TXW_SIZE + NLOSS <= RATE + BUFFER_LENGTH + 2 &TXW_SIZE>= 1 & NLOSS >= 1

|

q >= NLOSS + 1 & NLOSS <= BUFFER_LENGTH + 1 & RATE >= 1 & TXW_SIZE + NLOSS >= RATE

+ BUFFER_LENGTH + 3 & SND_PERIOD > 1 & TXW_SIZE <= RATE + BUFFER_LENGTH + 1

This is for q = 2. If we set q equal to {3, 4, . . .} we obtain similar results that differ
by constants in relation with TXW SIZE.

• Case 4: NLOSS > CH PERIOD/SND PERIOD > 1—arrivals are faster than departures
but not enough to fill the losses between two deliveries, the size of the buffer does
not grow fast enough because of the losses.

The experiments and the results are similar to the third case.

CHAPTER 6. CASE STUDY 86

6.3.2 TReX

TReX [BCAS01] is a tool that allows one to analyse automatically automata-based models
equipped with variables of different kinds of infinite domain and with parameters. The
models are parametric timed automata extended with integer counters and communicating
through unbounded FIFO queues.

The verification technique is improved with an efficient extrapolation technique. TReX

allows on-the-fly model checking as well as the generation of the set of reachable configu-
ration and of a finite symbolic graph.

Model description and analysis. A model of the system is specified using an input
language that is a subset of IF language [BFG+00]. A model contains timed automata
with counters, parameters and gates for synchronization. In .cnd file we specify initial
constraints on parameters to help its termination. The output of the verification is a
resulting finite graph (.sg), a set of symbolic configurations (.res) and a list of traces/runs
(.tr) over a symbolic configuration graph.

Using a set of traces and a graph of symbolic configuration we can observe behaviour
of the system and find a relation between parameters satisfying desired property. In our
case we search for configurations where the number of definitely lost packets is zero. This
configuration satisfies the full recovery property.

In HyTech we were able to verify only counter-examples, i.e., configurations where the
property was violated. We did not succeed to generate a full set of reachable configuration.
On the contrary, TReX successfully generates a full graph of all reachable configurations.
From this graph we can synthesize parameters satisfying the desired property. For instance,
in Figure 6.7 we can see all possible traces (runs) of the model for which the desired
property def lost = 0 holds. The graph was generated from TReX (.tr file) for the
full recovery property (def lost = 0) and CH PERIOD= SND PERIOD. We can observe a
dependency of an initial value of the buffer BUFFER LENGTH on current length L of the
buffer for all recovery property.

Results. The results obtained from a set of symbolic configurations cover all three cases
of recovering losses. We can see that relations in the case of no recovery and of par-
tial recovery correspond with HyTech results and full recovery with manually obtained
relation. The example is for SND PERIOD > CH PERIOD:

• R AR—full recovery
txw size ≥ rate + buffer length and buffer length ≥ nloss + 1

• R EL—partial recovery
txw size ≥ rate + buffer length -nloss - n3 - 1 and twx size ≤ rate + buffer length - n3 - 3 and buffer length

≥ nloss + n3 - 3 and buffer length ≥ n3 - 2 and n3 ≥ 0

• R AL—no recovery
txw size ≤ rate -nloss + buffer length - n3 - 1 and buffer length ≥ nloss + n3 - 2 and buffer length - n3 - 1

≤ 0 and n3 ≥ 0

CHAPTER 6. CASE STUDY 87

i

SN

NR

SN

NR

LOSS

SN

SN NR

i

NR

SN

i

SN

LOSS

i

i

S0 (#1)
 not lp,def_lost=0,

l=0

S5 (#23)
 lp,def_lost=0,

l=-1+buffer_length-nloss

S1 (#2)
 not lp,def_lost=0,

l=buffer_length

S9 (#26)
 lp,def_lost=0,

l=-1+buffer_length-nloss

S3 (#4)
 lp,def_lost=0,

l=-1+buffer_length-nloss

States: 12, edges: 16
Acceleration: 2 (attempts)

S3 (#5)
 not lp,def_lost=0,
l=-1+buffer_length

S1 (#6)
 not lp,def_lost=0,
l=1+buffer_length

S3 (#8)
 lp,def_lost=0,

l=buffer_length-nloss

S3 (#9)
 not lp,def_lost=0,

l=buffer_length

S5 (#13)
 lp,def_lost=0,

l=buffer_length-nloss

S9 (#15)
 lp,def_lost=0,

l=buffer_length-nloss

S1 (#18)
 not lp,def_lost=0,
l=-1+buffer_length

Figure 6.7: TReX—symbolic reachability graph

Variables nX ∈ N are called iteration variables. They are used by acceleration proce-
dures to describe symbolically the number of iterations of detected loop.

6.3.3 Uppaal

Uppaal is a tool for validation and verification of RT systems developed by collaboration
of Uppsala University in Sweden and Aalborg University in Denmark [PL00]. A model
is described using timed automata. Verifier checks specified properties that are expressed
using simple temporal logic with operators E<>, A[], E[], A<>. Uppaal verifies an
existence of a deadlock using special property A[] not deadlock.

Model description. A part of Uppaal tool is a simulator that performs simulation
on a specified model. We used the simulator especially in the first stage of the model
specification where we tuned our model and compared it with the given protocol—see

CHAPTER 6. CASE STUDY 88

Figure 6.8: Simulation of PGM in Uppaal.

Figure 6.8. A model was described graphically using a built-in editor. The specification
is visual and enables the first check of the consistency of the model. Specification of our
model in Uppaal is in Figures 6.4, 6.5, and 6.6.

Model analysis. In our project we did the verification using Uppaal states where
def lost > 0 and def lost = 0. Uppaal does not support parametric verification, so
we instantiated parameters. Using Uppaal we were able to prove that our results obtained
by HyTech and TReX are consistent and that our model is deadlock-free.

Results. In this part we briefly show obtained results.

• Result 1: relation between the current length of the buffer and the number of def-
initely lost packets for different values of parameters. constants: CH PERIOD: 10,

SND PERIOD: 15, RATE: 0

CHAPTER 6. CASE STUDY 89

TXW SIZE 10 10 10 10 10 12 11 10 10 12 12 13 14 10 10 2

NLOSS 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5

BUFFER LENGTH 0 5 8 9 10 10 10 11 12 12 12 12 12 5 5 4

max L 1 6 9 10 11 11 11 12 13 13 13 13 13 6 6 5

def lost 0 0 0 1 2 0 1 3 3 2 2 1 0 0 0 0

From the above table we see that:

1. max L = BUFFER LENGTH+ 1
Because of CH PERIOD < SND PERIOD the buffer cannot grow except for the
initial phase of the transmission.

2. L ≥ NLOSS+ 1
We can produce losses only if the queue is greater then NLOSS+1 packets.

• Result 2: relation between TXW SIZE and BUFFER LENGTH.

TXW SIZE 10 7 7 7 7

NLOSS 3 3 4 5 5

BUFFER LENGTH 5 5 5 5 6

def lost 0 0 0 0 1

The second table shows that we have a definitely lost packets if L >= NLOSS+1 and
if TXW SIZE > BUFFER LENGTH+ 1. Losses occur only if we reach L ≥ NLOSS+ 1, so
BUFFER LENGTH ≥ NLOSS+ 1.

• Result 3: relation for CH PERIOD > SND PERIOD.

If we test our model for CH PERIOD > SND PERIOD, i.e, (CH PERIOD= 2 SND PERIOD,
SND PERIOD=10,CH PERIOD=20), than we obtain following results:

1. queue L grows beyond every limit,

2. def lost is at most NLOSS.

6.4 Discussion

Analysis and verification of parameterized models is difficult because the appropriate prob-
lems are usually, in general, undecidable. In this paper, we showed our experience and
results of synthesis of the parameters for PGM protocol. We detected the following sources
of complexity that prevent the tool to finish the verification:

The number of clocks and counters. The number of clocks and counters in the model
can cause that reachability analysis does not terminate. One of the suggestion for dealing
with it is to abstract out some of the clock or counter variables. There are as well several

CHAPTER 6. CASE STUDY 90

automated approaches—a technique based on slicing [Wei84], or active clock reduction
[DT98]—that are implemented in some tools (e.g., Kronos, If). However, the issue of
reducing the number of clocks and counters has not been very well explored yet and it is
a possible area for future research.

Parameters. Parameters form another type of complexity. To speed up verification
it is useful to set strict initial constraints (bounds) on parameters that limit the size of
the generated state space. For instance, by setting parameter CH PERIOD > 0 the tool is
prevented to explore states where CH PERIOD < 0.

Nonlinear relation between parameters. During the analysis PGM protocol we dis-
covered a big issue concerning parameters that are related non-linearly. Current tools and
verification techniques cannot solve this problem in a satisfactory way. As a solution we
propose to instantiate parameters which are non-linear. For instance, we introduced substi-
tution of SND PERIOD= 2 * CH PERIOD, then for SND PERIOD= 3* CH PERIOD, SND PERIOD=
4 * CH PERIOD, etc.

Analysis does not terminate. It is not surprising when analysis does not terminate
or crashes because of the lack of memory. Timed systems with parameters are generally
not decidable. The termination of the analysis is sensitive to several aspects. In our case
study we synthesize following recommendations:

• Explicit on-the-fly verification. This was extremely useful in verification with HyTech.

• Analysis of traces. We used a symbolic reachability graph - at least a part of it—
to find a beginning of the non-termination. By setting the initial constraints on
parameters we can refine the model and narrow the state space. It may help the
verification to terminate.

We worked with three different tools—Uppaal, HyTech and TReX. In combined
analysis using these tools we were able to find constraints on the parameters that sat-
isfied desired property—the full recovery property. We proved that for SND PERIOD ≥
CH PERIOD ∧ TXW SIZE ≥ RATE + BUFFER LENGTH the property is satisfied. In comparison
with previous work [BS03], our result was obtained automatically.

Analysis using Uppaal helped us to visually describe our model and simulate its be-
haviour. We used its verifier to prove the full recovery property for a model with in-
stantiating parameters. Verification of deadlock detection proved the consistency of the
model. For parametric analysis we used HyTech and TReX. HyTech had problems
with termination so we verified only the negation of the property and detected configura-
tions that violate that property. This covers two cases—partial recovery and no recovery.
Using TReX, we obtained a full graph of symbolic configurations and observed relations
between parameters. We synthesized parameters for all three cases—full recovery, partial
recovery and no recovery. The results were consistent with those obtained manually in
previous work, and those obtained using HyTech and Uppaal.

CHAPTER 6. CASE STUDY 91

Tool Formal specification Data

structure

Params Acceleration Notes

HyTech hybrid automata polyhedra yes not very good problem with ter-
mination

Uppaal extended timed auto-
mata (simple version)

DBMs no yes includes simulator,
graphical interface

TReX extended timed auto-
mata

PDBMs yes yes generates symbolic
reachability graph

Table 6.1: Features of verification tools

In Table 6.1, a brief comparison of verification tools that were used for parametric
verification of PGM protocol is shown.

Chapter 7

Conclusion

The main goal of the thesis was to explore common data structures used for parametric
verification and propose a new structure that would increase expressivity of operations
over transitions of timed and counter automata with parameters. Such operations are
needed if we want, for example, to increment counters by linear expressions with more
than one variable. This cannot be represented by widespread Difference Bound Matrices
that allow only expressions of the form x − y ≺ t where t ∈ {<,≤}. Another symbolic
structure—polyhedra—allows such assignment and guards, nevertheless its implementa-
tion is not efficient for acceleration. In this work, we studied properties of data structures
for parametric verification and operations over them. Then we proposed a new data
structure based on intervals that can be used for representation of counters with parame-
ters. This structure allows general guards and assignments and extends expressivity of the
model further in comparison with parameterized DBMs. On the other hand, this structure
remains simpler than, for example, polyhedra. It implements acceleration that speeds up
analysis of a system.

This work builds upon the work of A. Bouajjani, E. Asarin, A. Collomb–Annichini,
M. Sighireanu and others on symbolic techniques for parametric reasoning on paramet-
ric timed and counter automata, mainly introduced in [AAB00], [BCALS01], [BCAS01],
[AC01], and [AHV93]. We extend definitions presented in these works and apply their
results on a new data structure.

In our work we formalize the definition of parameterized bounds constrained by logical
formulas and define basic operations over them. Then we extend the definition to intervals.
We show operations of inclusion, intersection and finding a minimum on parameterized
terms. Unlike numerical intervals we cannot evaluate the expression precisely because it
contains symbolical values—parameters. We can only check if there exists any valuation
of parameters that satisfies such expression and initial conditions over parameters (like
P > 0). Practically it means to keep more than one case in a set of explored states and
to check satisfiability of the constraints for given conditions.

Data structure for constrained parameterized terms contains not only terms with pa-
rameters but also logical formulas that specify constraints over parameters. Both these
values change during the evolution of the system. This puts special requirements on data

92

CHAPTER 7. CONCLUSION 93

structures such as a compact and unique format (canonical form) and simple manipulation
with values and constraints. In our text we introduced basic operations over parameterized
data structures and their efficient implementation.

These structures have their limits. We mention that if a constraint is a nonlinear for-
mula mixing integer and real parameters, the satisfiability is not decidable. Nevertheless,
in such case we can suppose that parameters are reals and test the satisfiability in real
arithmetics. This test is decidable.

There are many other abstract data structures that are used for timed verification—
real vector automata [BRW98], numerical decision diagram [WB00], covering sharing trees
[DRV01], clock difference diagrams [LWYP99], octagons [Min01], etc. It would be inter-
esting to study these representations in detail and compare their expressivity, complexity
of their operations, and possibility of extension with parameters. Another field of research
can be extension of parametric timed and counter systems with probability.

In chapters 5 and 6, we discussed fundamentals of modelling, analysis and verification
of parameterized timed and counter systems. We introduced a methodology for modelling
communicating systems that include three basic components—environment, buffers, and
executive units. We proposed models of a simple bounded FIFO queue, a delayed queue
and a lossy queue that can be reused for automata-based verification languages where
queues are not a part of the language or where a customization is needed.

These principles were applied in the project of parametric verification of PGM protocol
that is described in the chapter 6. We describe steps how to create a model and the
specification in a language of a verification tool. For verification we used three verification
tools HyTech, TReX and Uppaal. We presented here our experience with combination
of parametric verification in three tools and our results. At the end of the chapter we
point to several sources of complexity of the systems and propose how to deal with them.

For future research in that area will be interesting to exploration further basic princi-
ples for parametric verification of real systems as outlined in chapters 5 and 6. It would
be worthwhile to identify basic classes of verified systems—like communication protocols,
hardware designs, embedded systems—and specify a set of common properties for these
classes that are mostly required to be satisfied. And then to introduce a general methodol-
ogy how to build a model of the system, how to specify and verify the examined properties
using model checking and what kind of tools can be used. Nevertheless, this requires longer
experience with verification of such systems.

Glossary

abstraction – simplification that hides some aspects of a modelled system

assignment – a transition can modify the value of variables; assignment specifies which
variables will be set and how; for example x := 5

bound – an arithmetical term (can be with parameters) that restricts possible values of
a variable; i.e., x < 5 + t means that variable x of integer domain is restricted to
interval (−∞, 5 + t) where 5 + t is a (non-strict) bound

configuration – a state of the transition system; it is identified by a state of an automaton
related to this transition system and current values of the variables; for example
(s, ν, ψ)

constraint – a condition in the form of logical formulas that has to be satisfied; i.e.,
p ≤ 5 ∧ p > t is a constraint on parameter p

counter – a special non-clock integer variable that increments beyond any limits; counters
similarly to clocks can be a parameterized

guard – a constraint (condition) on the variables; it guards a transition t so that the
transition cannot occur unless the condition on the variables is satisfied; for example,
x < 5 ∧ y = t+ 2

hybrid system – a transition system designed to provide access to dynamic variables
(timed systems can be viewed as a special kind of hybrid systems); in hybrid au-
tomaton, with each control state is associated a relation of evolution with respect to
time for each variable; for example, using differential equations ẋ = 2

invariant – a constraint over a state that has to be satisfied while activity is in the state;
for example x ≤ 12

model checking – an automatic technique for verifying finite state concurrent systems; it
is based on an exhaustive search of the state space of a system; the main disadvantage
of model checking is the state explosion (cf. to theorem proving)

parameter – a special symbolic variable that is not initialized; uninitialized constant

94

CHAPTER 7. CONCLUSION 95

parametric verification – verification on a model where clocks or counters can be com-
pared with parameters; during analysis and verification parameters are considered
to be special symbols; they are not evaluated

specification – formal description of system properties to be verified

symbolic model checking – model checking method that attempts to represent the
states and transitions of a configuration system for verification symbolically (not
explicitly); using forward/backward exploration procedure a finite symbolic reacha-
bility graph is generated

symbolic representation – data structure that represents data symbolically (by for-
mulas, for example) instead of explicitly (by enumeration); it is used to represent
infinite sets of configurations

state space explosion – enormous increase of states during system analysis because of
the interaction with one another

timed automata – finite automata that describe the system control states and the tran-
sitions between states; they include clocks to represent quantitative time and time
constraints over transitions and states

temporal logic – logic with special operators that work with time (ordering of events);
for example, CTL with operators X,F,G,U

transition system – a graph that describes the behaviour of an automaton; transition
system represents the dynamics of the system while automaton shows its static
behaviour

valuation – a mapping associating with each clock/counter its current value (real number,
integer)

Bibliography

[AAB99] P.A. Abdulla, A. Annichini, and A. Bouajjani. Symbolic verification of lossy
channel systems: Application to the bounded retransmission protocol. In
Proceedings of 5th TACAS, volume 1579 of LNCS. Springer Verlag, 1999.

[AAB00] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for paramet-
ric reasoning about counter and clock systems. In E.A. Emerson and A.P.
Sistla, editors, Proceedings of the 12th CAV, volume 1855 of LNCS, pages
419–434. Springer Verlag, July 2000.

[ABJ98] P.A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems
with unbounded, lossy, FIFO channels. In Proceedings of the 10th CAV,
volume 1427, pages 305–317, 1998.

[AC01] A. Annichini-Collomb. Vérification d’automates étendus: algorithmes
d’analyse symbolique et mise en oeuvre. PhD thesis, Joseph Fourier Uni-
versity, December 2001.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theor. Comput. Sci., 138(1):3–34, 1995.

[ACHH93] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata:
an algorithmic approach to the specification and verification of hybrid sys-
tems. In R.L.Grossman, A.Nerode, A.P.Ravn, and H.Rischel, editors, Hybrid
systems, volume 736 of LNCS, pages 209–229. Springer Verlag, 1993.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[AHV93] R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In
ACM Symposium on Theory of Computing, pages 592–601, 1993.

[Alu99] R. Alur. Timed automata. In Proceedings of 11th CAV, volume 1633 of LNCS,
pages 8–22. Springer Verlag, 1999.

[BBF+01] B. Bérard, M. Bidoit, A. Finkel, A. Petit, L. Petrucci, P. Schnoebelen, and
P. McKenzie. Systems and Software Verification. Model-Checking Techniques
and Tools. Springer Verlag, 2001.

96

BIBLIOGRAPHY 97

[BCALS01] A. Bouajjani, A. Collomb-Annichini, Y. Lackneck, and M. Sighireanu.
Analysing fair parametric extended automata analysis. In Patrick Cousot, ed-
itor, Proceedings of Static Analysis Symposium, volume 2126 of LNCS, pages
335–355. Springer Verlag, July 2001.

[BCAS01] A. Bouajjani, A. Collomb-Annichini, and M. Sighireanu. TReX: A tool for
reachability analysis of complex systems. In Proceedings of CAV, volume 2102
of LNCS, pages 368–372. Springer Verlag, June 2001.

[BFG+00] M. Bozga, J.-C. Fernandez, L. Girvu, S. Graf, J.-P. Krimm, and L. Mounier.
IF: A validation environment for times asynchronous systems. In E.A. Emer-
son and A.P. Sistla, editors, Proceedings of the 12th CAV, volume 1855 of
LNCS, pages 543–547. Springer Verlag, July 2000.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. InVeSt: A tool for the verification
of invariants. In Proceedings of the 10th CAV, volume 1427, 1998.

[Bou02] A. Bouajjani. ADVANCE Project Deliverable Report, chapter Modeling and
Verifying the PGM protocol. LIAFA, 2002.

[BRW98] B. Boigelot, S. Rassart, and P. Wolper. On the expressiveness of real and
integer arithmetic automata. In Proceedings of ICALP’98, 1998.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35-8:677–691, 1986.

[BS03] Marc Boyer and Mihaela Sighireanu. Synthesis and verification of constraints
in the pgm protocol. In Stefania Gnesi, editor, Proceedings of International
FME Symposium, LNCS, pages 264–281. Springer Verlag, 2003.

[BY03] Johan Bengtsson and Wang Yi. On clock difference constraints and termina-
tion in reachability analysis of timed automata. In J. S. Dong and J. Wood-
cock, editors, Proc. of ICFEM’03, number 2885 in Lecture Notes in Computer
Science. Springer Verlag, 2003.

[BY04] J. Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In W.Reisig and G.Rozenberg, editors, Lecture Notes on Concurrency
and Petri Nets, volume 3098 of LNCS, 2004.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation fixpoints.
In Proceedings of the 4th Annual Symposium on Principles of Programming
Languages. ACM Press, 1977.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
1999.

BIBLIOGRAPHY 98

[Dil89] D.L. Dill. Timing assumptions and verification of finite-state concurrent sys-
tems. In J. Sifakis, editor, Proceedings of the 1st CAV, volume 407 of LNCS,
pages 197–212. Springer Verlag, 1989.

[DRV01] G. Delzanno, J.-F. Raskin, and L. VanBegin. Csts: Compact data structures
for parameterized verification. Software Tools for Technology Transfer, 2001.

[DT98] C. Daws and S. Tripakis. Model checking of real-time reachability properties
using abstractions. In Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’98, volume 1384, Lisbon, Portugal, 1998.

[FGK+96] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP (cæsar/aldebaran development package): A protocol
validation and verification toolbox. In R. Alur and T.A. Henzinger, editors,
Proceedings of the 8th CAV, volume 1102, pages 437–440, August 1996.

[FR73] M.J. Fischer and M.O. Rabin. Super-exponential complexity of presburger
arithmetic. In Proceedings of a Symposium in Applied Mathematics of the
American Mathematical Society and the Society for Industrial and Applied
Mathematics, Providence, RI, April 1973.

[God90] P. Godefroid. Using partial orders to improve automatic verification methods.
In Proceeding of the 2nd Workshop on Computer-Aided Verification, volume
531 of LNCS, pages 176–185. Springer Verlag, 1990.

[Hea99] A.C. Hearn. REDUCE — User’s and Contributed Packages Manual.
Codemist Ltd., February 1999. version 3.7.

[HHWT95] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to hytech. In
Proceedings of TACAS, volume 1019 of LNCS, pages 41–71. Springer Verlag,
1995.

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1(1):110–122, 1997.

[HRSV01] T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric
model checking of timed automata. In Proceedings of TACAS’01, 2001.

[LSW97] K.G. Larsen, B. Steffen, and C. Weise. Continuous modeling of real-time and
hybrid systems: From concepts to tools. International Journal on Software
Tools for Technology Transfer, 1(1-2):64–85, 1997.

[LWYP99] K.G. Larsen, C. Weise, W. Yi, and J. Pearson. Clock difference diagrams.
Nordic Journal of Computing, 6(3):271–198, 1999.

[Mat04a] P. Matoušek. A New Data Structure Based on Intervals for Parametric
Counter Automata. In Proceedings of MOVEP’04, pages 16–21. Université
Libre de Bruxelles, December 2004.

BIBLIOGRAPHY 99

[Mat04b] P. Matoušek. Tools for Parametric Verification. A Comparison on a Case
Study. Journal of Universal Computer Science, 10 (2004):1469–1494, 2004.

[McM92] K. McMillan. Using unfolding to avoid the state explosion problem in the
verification of asynchronous circuits. In G.von Bochmann and D.K.Probst,
editors, Proceeding of Computer-Aided Verification (CAV) 1992, volume 663
of LNCS, pages 164–177. Springer Verlag, 1992.

[Min01] A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE,
pages 310–319. IEEE CS Press, 2001.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems, volume I: Specification. Springer Verlag, 1992.

[MSV05] P. Matoušek, A. Smrčka, and T. Vojnar. High-level Modelling, Analysis and
Verification on FPGA-based Hardware Design. Accepted to CHARME’05,
2005.

[Ome96] Omega Team. The Omega Library, November 1996. version 1.1.0.

[Pel94] D. Peled. Combining partial order reduction with on-the-fly model-checking.
In D.Dill, editor, Proceeding of the 1994 Workshop on Computer-Aided Veri-
fication, volume 818 of LNCS, pages 377–390. Springer Verlag, 1994.

[PL00] P. Pettersson and K.G. Larsen. Uppaal2k. Bulletin of the European Associ-
ation for Theoretical Computer Science, 70:40–44, February 2000.

[PS00] A. Pnueli and E. Shahar. Liveness and acceleration in parametrized verifica-
tion. In Proceedings of the 12th CAV, volume 1855, 2000.

[SFC+01] T. Speakman, D. Farinacci, J. Crowcroft, J. Gemmell, S. Lin, D. Leshchiner,
M. Luby, A. Tweedly, N. Bhaskar, R. Edmonstone, T. Montgomery, L. Rizzo,
R. Sumanasekera, and L. Vicisano. PGM reliable transport protocol specifi-
cation. RFC 3208, IETF, Decembre 2001. 111 pages.

[ST02] Karsten Strehl and Lothar Thiele. Interval diagrams for efficient symbolic ver-
ification of process networks. IEEE Transactions on Computer-Aided Design
of Integrated Ciruits and Systems, 2002.

[Tar51] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, 2nd edition, 1951.

[Val90] A. Valmari. A stubborn attack on state explosion. In Proceeding of the 2nd
Workshop on Computer-Aided Verification, volume 531 of LNCS, pages 156–
165. Springer Verlag, 1990.

[WB00] P. Wolper and B. Boigelot. On the construction of automata from linear
arithmetic constraints. In Proceedings of the 6th Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 1785, 2000.

BIBLIOGRAPHY 100

[Wei84] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

[Wil93] Doran K. Wilde. A library for doing polyhedral operations. Internal publica-
tion 785, IRISA, Rennes, France, December 1993.

[Yov98] S. Yovine. Model checking timed automata. In G. Rozenberg and F. Vaan-
drager, editors, Lectures on Embedded Systems, volume 1494 of LNCS, 1998.

