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Abstract—This paper presents and describes our design au-
tomation toolkit for automatic synthesis of fault tolerant systems
from unhardened systems. The toolkit is composed of various
parts and tools and its aim is to design its internal algorithms
in such way to be reusable among different HW description
languages. In this paper, VHDL description is used to present
the possibilities of the toolkit. The experimental part of the
paper presents automatic synthesis of a benchmark system into
a limited chip area. The optimization goal was to maximize
the median time to failure (a.k.a. t50) parameter. The main
part of the experimental activities comprises incorporation of
a partial dynamic reconfiguration controller into the system
design to recover the selected component of the system. Two
systems utilizing recovery with the usage of the FPGA dynamic
reconfiguration technique show promising results in terms of
reliability. The recovered system, in which the controller is apart
of the FPGA (e.g. in a different radiation-hardened chip), achieves
by 70% better t50 parameter, compared to the system without
recovery.

Keywords—Fault-Tolerant System Design, Electronic De-
sign Automation, Redundancy Insertion, Redundancy Allocation,
Multiple-choice Knapsack Problem, FPGA, VHDL, t50.

I. INTRODUCTION

Special types of electronic systems are required to with-
stand certain harsh environments, such as environments with
increased radiation. Such systems must perform their function
without interruption of the data processing and without altering
their behavior. One possibility to treat this problematic is
to incorporate the so-called Fault Avoidance (FA) [1]. This
treatment lies in the usage of reliable components to produce
reliable systems that comply with the specifications. The
selection of components for the designer is limited by the
specifications to such components that are produced for the
given environment – e.g. increased radiation. Such compo-
nents are thoroughly tested and usually do not incorporate
the newest manufacturing process nor a newest architecture.
The other treatment includes the so-called methods of Fault
Tolerance (FT) [2]. FT accepts the fundamental fact that any
component may fail and aims to solve high reliability on the ar-
chitectural level. By incorporating the so-called fault-masking
techniques, the system can appear to be fully functional, while
one or more of its components are in a failed state.

Highly-reliable systems include those, that control poten-
tially dangerous processes or can cause a loss of tangible or
intangible assets. Other systems requiring to maintain high

level of reliability include space probes and other space equip-
ment. Such devices are nearly impossible to repair. Failure
of the electronic control system of such device poses an
incredible-high and very unnecessary risk of failure of the
complete mission. Performance parameters of commercially-
available components are, however, usually significantly bet-
ter, as their design does not involve time-consuming testing.
For example, the National Aeronautics and Space Admin-
istration (NASA) Perseverance rover [3], which landed on
February, 18th 2021 on Mars, carries on board the Ingenuity
helicopter [4], the control systems of which are designed
from common commercially-produced components. One of the
purposes is to test the service life of such components in a such
harsh environment, which the Mars atmosphere surely is.

Certain reliable applications also utilize Field Pro-
grammable Gate Arrays (FPGAs), for their performance and
ability to reconfigure, i.e. reprogram their functionality. A
common FPGA holds the configuration bitstream in its SRAM
memory. The SRAM is subject to the so-called Single-Event
Upsets (SEUs), which have the potential to flip a configuration
bit, thus effectively changing the implementation in the FPGA.
One of the uses of FPGAs for the class of space probe
applications is to perform scientific data processing on board of
remotely-controlled rover. For example, the already-mentioned
Perseverance rover uses Xilinx FPGAs for image processing
and machine-learning algorithms for searching for signs of life
on Mars [5]. Nearly 18-times faster data processing is achieved
with the usage of FPGAs, compared to the previous approach.

The usual approach to fault masking is the so-called Triple
Modular Redundancy (TMR), which triplicates the design and
adds a voter to select the representative result. The TMR can
be applied in two general ways: 1) Triplication of the whole
design, which is called the Coarse-Grained TMR (CGTMR).
With regard to maximal efficiency of chip area usage and
maximal level of FT, the CGTMR is not ideal, as it results in
equivalent amount of redundancy throughout the whole design.
In the 2) approach, the design is partitioned to smaller units,
and thereafter, such smaller units are triplicated. Such approach
is called the Fine-Grained TMR (FGTMR). This allows to
target the redundancy towards certain partitions of the system,
based on their criticality.

The fault masking approach itself is not sufficient. The N-
Modular Redundancy (N-MR) systems tend to decrease the
Mean Time To Failure (MTTF) for longer mission times [1],
as the failed components accumulate. For this reason, the
fault-masking approaches are usually combined with repara-
tion mechanisms. Specifically for FPGAs, such mechanisms
include the so-called Partial Dynamic Reconfiguration (PDR).
Although originally meant to change the FPGA configuration978-1-6654-4503-0/21/$31.00 ©2021 IEEE
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at a run time, the PDR can also be used to restore the
configuration of the FPGA, which could have been altered
as a result of the SEU. The PDR can be initiated from inside
of the FPGA itself, making a possibility to create a reparation
unit directly on the same FPGA as the electronic system. Of
course, the bitstream restore can be initiated from the outside
of the FPGA as well, for example by a radiation-hardened
microcontroller.

With the increasing number of partitions, and with numer-
ous FT architectures, the number of possible combinations
rises drastically, thus, making the so-called redundancy al-
location problem a great challenge. This creates a pressure
to automate the complete process of FT system design. The
objective of our research is to design such design automation
methods. Further, our research focuses on the FGTMR and
N-MR techniques for FPGA, partially oriented at the data
processing systems. In this paper, the complete overview of
our existing FT design automation toolkit, which was extended
to provide possibility to incorporate mechanisms of reparation
using PDR, is presented alongside with the case study on
automatically-hardened data-processing oriented benchmark
circuit on a real HW FPGA. The research that was previously
presented in [6], is extended in this paper by the identification
of weakest components of the system and the incorporation of
recovery for such components.

II. RELATED WORK AND THE CONTEXT

This work deals with various research themes, nonetheless,
the main themes include 1) Redundancy Insertion, 2) Reliabil-
ity Allocation and 3) Fault Tolerance Testing.

One commercially available redundancy insertion tool, the
so-called Xilinx TMRTool [7], modifies the synthesized design
during the design process. Another possibility to include re-
dundancy, this time at the source-code level, is the TMRG [8].
The TMRG works with systems described in the Verilog
language. It is focused towards creation of the TMR structure
exclusively, as well as the TMRTool. Different option is to
modify the synthesis tool itself, to produce reliable designs. For
example, the TLegUp [9] is based on the modified version of
the High-Level Synthesis (HLS) tool LegUP [10]. It generates
TMR designs directly from the description in the C language.

Reliability Allocation methods exist throughout the lit-
erature as well. For example, in paper [11], the Improved
Surrogate Constraint (ISC) method was examined, targeting
the computational speed of the design method. In [12], the
penalty guided artificial bee colony algorithm was presented.
The use of particle swarm optimization method is proposed
in [13], while the variable neighborhood search meta-heuristic
method was presented in the paper [14].

Waiting for faults to appear naturally is not feasible during
the testing procedure. Therefore, special techniques are used
to increase the fault occurrence in order to examine the
design during the presence of faults. One approach, utilizing
the RapidSmith library [15], is presented in [16] and later
demonstrated in [17]. The paper [18] shows a method of
observing and modifying signals in the design through the
Joint Test Action Group (JTAG) interface. The approach in [19]
supports various fault models. Some extra gates must be added
to the design before testing. Simulation-based evaluation is
also present in literature [20], [21]. In [22], fault modeling
in combination with design simulation is used. In paper [23]

an approach is presented, in which the fault injection is fully
controlled by a component on the FPGA itself, significantly
improving the testing speed. In paper [24], evaluation platform
designed in our research group is presented. The platform is
executed on a PC, which also captures and evaluates data
obtained from an FPGA. Nonetheless, the complete platform is
more suitable for the final verification of reliability parameters.
In this research, however, massively accelerated evaluations are
needed to complete the design task in a reasonable time.

In our research, we target a comprehensive approach to
automate every part of the FT design process. The main goal is
to design most of the components to be reusable. For example,
if the description code manipulation is isolated from the rest
of the system, it must be possible to replace the code manipu-
lation to instantly add support for a new description language.
Nonetheless, it is beneficial if the language supports direct syn-
thesis to an implementation, for example for an FPGA, such as
VHDL or Verilog. Our goal is to research new methods of FT
design automation, implement them and examine their aspects
in practice. So far, we have implemented code manipulation to
include FT on the behavioral level for the C++ language (in
combination with HLS tools) and on the structural-level for
the VHDL (in combination with traditional VHDL synthesis
tools). The selection of FT methods based on combinatorial
optimization problems and massively-accelerated evaluation of
FT properties were also developed. In this paper, we extend
our method with ability to incorporate system recovery with
the usage of PDR and practically evaluate this approach on two
versions of the system: 1) PDR controller on the FPGA itself,
and 2) PDR controller outside the FPGA (e.g. in a radiation-
hardened external chip).

III. FAULT-TOLERANT SYSTEM DESIGN AUTOMATION

Today’s chip integration allows to implement large systems.
These become increasingly complex. The difficulty to incor-
porate FT into such complex systems also grows, as it shows
to be beneficial to split the system into smaller partitions and
select the proper FT method for each partition exclusively.
Such selection is complex and very time-consuming process,
increasing the interest in automated design of FT systems.

Our design flow is based on the traditional process (i.e. the
originally manual design). The input of both these approaches
is a system description, which we call unhardened or also
original. The other input of the development process is the
specification of desired reliability parameters and the method
of their measurement. The traditional process involved iterative
development of the system by addressing its weak points
and modifying them to remove their impact in the case
of a failure. A designer does these modifications based on
previous experiences and judgment. On the other side, the
automated flow performs the so-called state space exploration
of all the possible configurations. This might involve heuristic
approaches, which reduce the number of states needed to
explore. The output of the development is a system, which
incorporates the needed FT techniques and complies with
the reliability specifications. Also, the output system must be
functionally equivalent. The original and automated flows are
displayed side-by-side in Figure 1.

A. Description-code Modifications

In our design flow, the source code modifications are
contained inside the so-called Helpers. These allow to incor-
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Figure 1: FT System Design with the Original and Automated
Design Flows.

porate various FT methods into a specific description code
language. The FT is incorporated throughout the modification
of the system description, thereby isolating the specifics of
the language in helpers. In our current research, we partition
the system based on every entity instantiation in the top-level
design. The project source code must be prepared with this fact
in mind. The top-level VHDL source should contain number
of components, that will be considered partitions in the design
flow. Each helper incorporates one or many FT techniques into
a specified partition of the system. Obviously, the helpers must
be re-designed for a different language. However, the reliability
allocation algorithms can be fully re-used. For example, in
our previous research, we utilized our so-called Redundancy
Data Type (RDT) helpers [25] to incorporate time and spatial
redundancies into C++ algorithms and synthesize them using
HLS. In our more recent work, we designed VHDL helpers
and utilized them in a case study [6].

In the following case study, we use the VHDL helpers as
well. The source description code must be prepared to instruct
proper modifications of the code. This includes a special
prefix and postfix source code comments before and after an
entity instantiation. These store the guiding information for
the helpers. These include the indication of the beginning (or
ending) of the source code, type of FT method (e.g. TMR, 5-
MR, duplex, etc.). Currently, we focus on entity instantiations
exclusively. The proper setup of such guiding comments is the
responsibility of the so-called Guider (which will be described
further in the text). The products of helpers are generally
compatible with existing synthesis tools, as soon as the helpers
modification procedures comply with the synthesizable lan-
guage. In certain scenarios, the inserted logic must also comply
with the target technology (e.g. a PDR controller must keep
communication compatibility with the PDR interface).

The VHDL helpers modify the original source code files
during two basic steps: 1) In-place modifications, and 2) Out-
of-place modifications. At first, for the in-place modification,
an original source file is loaded and the so-called code-block
token list is extracted. Blocks of code in the token list are
classified (e.g. out-of-interest block, apply modification block,
already modified block, etc.). These are later merged into lists
of self-contained objects. One object thus includes its guider
comments (i.e. the prefix and postfix guiding comments) as
well as the body of its instantiation. These objects are already
prepared to apply modifications to, which includes mainly
changing of the VHDL entity name to instantiate a newly
created FT entity. This new entity is prepared during the out-
of-place modification. An architectural template is copied onto
its place and all the important data is filled in the template.
Such data include the name of the original component, the
signal names, their bit widths, etc. These are collected from
the project source files. The VHDL helper execution then stops
by re-assembling the final code of the original file. The flow
is represented graphically in Figure 2. A simplified example
of the VHDL code is also shown in the figure.
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Figure 2: VHDL Helpers Code Modification Flow, Including
a Simplified Code Example of Usage.

B. Guidance for the Modifications

In our research the helpers must be properly instructed
using the guiding comments. Their content is provided by the
so-called Guider. The Guider is an essential component of the
FT design automation toolkit. It selects the proper FT methods
based on their effect. Such selection must be performed for
each component (i.e. partition of the system).

In our research we convert the problem of FT method
selection to the so-called Knapsack Problem (KP). The KP
is a well-known combinatorial problem, which aims to select
the items from a given set of items. These are put into a
hypothetical knapsack. Such knapsack has a limited capacity.
The selected items must represent the most valuable selection.
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A specific modification of this KP is the so-called Multiple-
Choice Knapsack Problem (MCKP). In the MCKP, the set of
all items is classified and exactly one item must be selected
from each class. This is very similar to our FT selection
problem and it is straightforwardly convertible to our problem:
the items in sets are available variants for each partition
(generated with the usage of helpers) and the knapsack ca-
pacity represents the given budget (e.g. FPGA area, power
consumption, etc.). The item value is represented by the benefit
of a certain component (e.g. lowering the number of sensitive
bits of the bitstream, or increasing the Time To Failure (TTF)
parameter). With this conversion, the FT methods can be
selected automatically using the MCKP solver (i.e. a SW that
solves an instance of the MCKP problem).

There are two possibilities how to use the MCKP solver
as a guider: 1) the MCKP solver can call the helpers, design
synthesis and demand the test and evaluation of the synthesized
design. This is useful in cases, when we do not want to
evaluate each combination of FT technique and partition in
advance, as the method can start to compose systems and
evaluate them instantly. The main disadvantage of such ap-
proach is the number of unsatisfactory-reliable systems that are
unnecessarily evaluated and the quantity of which is relatively
large, significantly prolonging the time to obtain the finished
design. 2) The other possibility is to evaluate each partition
separately and in advance and then use such data to operate the
MCKP solver. The disadvantage lies in the necessity of such
preliminary evaluation of each partition. Also, the resulting
parameters of composed systems are slightly inaccurate, as
these are computed inside the MCKP solver. One advantage
is, that the time-consuming evaluation of unsatisfactory com-
positions is eliminated, as their parameters are estimated in
SW during the MCKP solver execution. For example, if the
median time to failure, usually called the t50, is monitored in
the constraint specifications, the resulting t50 of systems with
serially-dependent partitions can be approximated with equa-
tions for the MTTF. The approximation we use in the following
case study is thus based on Equation 1 to approximate the λ
(i.e. the failure rate). After that, Equation 2 can be used to
compute the overall failure rate of the system. Subsequently,
the t50 is approximated using Equation 1 again.

MTTF =
1

λ
(1)

λsys =
∑
∀c∈C

λc (2)

We use this second approach, as it eliminates the unsatis-
factory evaluations. Nonetheless, in other cases, the method 1)
is still usable for smaller system, despite the automated design
then takes longer.

C. System Recovery Mechanisms

The solver is also modified to provide the guidance on
which component (i.e. partition) is a candidate to be hardened
with recovery mechanisms. This guidance is based on the
significance of deviation from the average value. With the
usage of these parameters, we obtain a set of partitions that
should be recovered after their failure occurs.

The function avg param(S) calculates the arithmetic av-
erage for the complete system set (i.e. the already selected
one version of component per each partition of composed
reliable system; these versions are denoted as S), as shown
in Equation 3. The function card(S) denotes the cardinality
(i.e. the number of elements) of the set S. Equations 4 and 5
describe the calculation of significance (i.e. sig) parameter
from the deviation (i.e. dev) and the selection of the proper
comparison operator. This is because in certain cases, the
target parameter is maximized (e.g. in the case of the Time
To Failure (TTF) parameter). In other cases, the parameter is
minimized (e.g. in the case of the percentage of critical bits of
bitstream on an FPGA). The final set of partitions that should
be recovered after their failure is denoted as R. Equation 6
contains such calculation of the set.

avg param(S) =
1

card(S)
×
∑
∀c∈S

param(c) (3)

sig =

{
1− dev, if param is maximized,
1 + dev, if param is minimized.

(4)

op =

{
<, if param is maximized,
>, if param is minimized.

(5)

R = { c | c ∈ S, param(c) op sig × avg param(S) } (6)

We empirically selected the deviation to be 0.4 of the
average. This means that the significance parameter will be 0.6
or 1.4 for maximized or minimized parameters respectively.
Thus, every partition with its parameter being worse than
the average (i.e. for more than the deviation of 0.4) will be
considered suitable for recovery.

The component recovery is provided by adding a Recon-
figuration Controller (RC) component that repairs a faulty
module. The RC can be either internal, on the same FPGA
with the system, or external, on a different FPGA chip. This
principle has been described by the authors of paper [26]. For a
system described in VHDL language, the Generic Partial Dy-
namic Reconfiguration Controller (GPDRC) [27] implemented
directly into the FPGA logic can be used, which is able to
reconfigure any predefined module. The ability to detect a fault
is important. The hardened component must be able to identify
its faulty modules with an erroneous outputs. The information
on faulty modules is provided to the GPDRC, which then reads
the relevant data needed to reconfigure, the so-called golden
bitstream. These are stored in flash memory, which is more
resilient to SEUs. Subsequently, the reconfiguration itself is
performed by sequentially uploading the golden bitstream via
the Internal Configuration Access Port (ICAP) interface.

D. Testing of Fault Tolerance Methods

For the automation of FT system design, it is also important
to test the resulting degree of FT. The testing is, however, held
in huge quantities, depending on the size of the system and the
number of its partitions. The duration of test basically denotes
the time needed to find the solution. As the previous two stages

IEEE EWDTS 2021, September, 10-13, Batumi, Georgia 29



incorporate mainly text manipulations, their time complexity
is nearly negligible.

In our research, we achieved automated generation of
greatly accelerated testbeds by implementing the Fault-
Tolerance Estimation (FT-EST) framework [28] in VHDL
using the so-called VHDL generics. Using this approach, it is
possible to create a fully functional testbed generator, which is
configurable and easily adapts to demands of the tested design.
The FT-EST is configurable in one configuration file, which
holds settings. These include, for example, the bit width of
input and output pins of the tested system. The method of the
test or the test termination conditions are also configurable in
this file using the prepared enumerated-type constants. In one
VHDL file, the tested unit (i.e. a component or a system) is
instantiated and the needed port connections are routed to it.
After the FT-EST is configured, it is possible to synthesize it
with any common VHDL synthesis SW. A part of the solution
is also a script, that prepares the placement of tested units, as
these must be placed properly to avoid their overlap between
themselves or even with the FT-EST controller components.

With FT-EST testbed, it is possible (among others) to
measure the TTF of each run in milliseconds, excluding
the periods in which the clock signal of tested units was
paused. The pausing from the SW during the fault injection
is necessary to simulate higher fault injection intensities, for
which the speed of fault injection during the circuit run time
would not be sufficient. It also eliminates possible collisions
between the bitstream recovery (e.g. the GPDRC) and the fault
injection mechanism. The re-configurable devices are ideal for
testing, as a system failure can be easily triggered through the
bitstream manipulation and the design can be easily repaired
by reverting the bitstream. Our solution performs tests at-speed
and directly on the real FPGA, utilizing the target technology
of the tested system.

The tests are executed autonomously on the HW. The PC
downloads the bitstream to the FPGA and instructs the testbed
to start the test. It is also possible to pause the clock signal of
the tested units, which is useful to modify the design for the
simulation of failure. If the clock signal is paused, such failure
then appears instantly for the tested units. SEUs are injected
using our Fault Injector (FI) [29]. In order to inject faults only
into utilized parts of tested unit, specifically utilized Look-up
Tables (LUTs). Special SW for detection of utilized bits of a
specified block is used. The SW was developed previously in
our research group and is based on the RapidSmith SW [15]. It
is also possible to instantiate multiple equivalent tested units at
the same time, significantly accelerating the whole approach.

The whole test is controlled by the Experiment Con-
trol Unit (XCU), which is formed by a Finite State Ma-
chine (FSM). Tested units alongside with one golden (i.e.
reference) unit, are instantiated in the Unit Instantiation
Area (UIA). The test data are generated by the Input Gen-
eration Unit (IGU). Primarily, the FT-EST does not tolerate
timing deviations caused by a failure, however, this strict
behavior can be adjusted by modifying the Output Compare
Unit (OCU), which compares outputs to the reference ones.
The Failure Capture Unit (FCU) stores the parameters of the
failure, such as the number of deviations or the real time of
the first observation of an output data deviation. All the stored
data, state registers and configuration registers are accessible
through the universal Communication Interface (CI). This is
connected to the Communication Module (CM), holding the

actual vendor-specific communication implementations. In our
project, we use the Xilinx ChipScope Pro Integrated Con-
troller (ICON) core [30] and the Virtual Input/Output (VIO)
core [31] for communication through the USB JTAG interface.
The only technology-dependent specifics are isolated in the
communication and fault injection components. The rest of
the FT-EST testbed compatibility is not bound to a specific
VHDL synthesis tool nor an FPGA technology, as the testbed
is designed in plain VHDL. The structure of generated testbed
is displayed in Figure 3.

Experiment Control Unit (XCU)

IGU OCU FC
U

Communication Interface (CI)

CM

UIA

PC

G 1 2 n... Arrays

Register Arrays

Bistream
Download

Fault
FT-EST SW

FPGA with FT-EST Testbed

Injection

CNTR

Figure 3: Structure of Automatically Generated Testbed Ar-
chitecture, Red Parts are Subject to Fault Injection.

IV. EXPERIMENTS AND RESULTS

As part of our experimental activities, we created an
artificial benchmark system and used our FT system design
automation toolkit to prepare its FT enhanced version to a
limited FPGA area space.

A. Benchmark System

Our benchmark system is composed of four components,
which will also be considered partitions of the system. These
include: 1) addition of two 16-bit unsigned numbers; 2) 16-bit
constant addition to a 16-bit unsigned number; 3) numones,
which calculates the number of high bits in a 16-bit input
data; and 4) Cyclic Redundancy Check (CRC) calculated on
8 bits (i.e. CRC-8) based on 32 bit wide input. The schematic
diagram of the benchmark system can be seen in Figure 4.

addition addconst numones

crc8

16 b

16 b

16 b

16 b

16 b 5 b

8 b16 b

Figure 4: Diagram of the Benchmark System.

B. On-HW Testing Setup

In the following text, various partitions and complete
systems are tested. For this purpose, we utilized our FT-EST
framework and generated a completely autonomous testbed for
each of the tests. The FT-EST was utilizing Linear Feedback
Shift Register (LFSR) as a generator of stimuli during the
test. Different polynomials were used in the implementation,
to always suit the bit width of the tested unit. The FT-
EST was configured to hold the test with a constant fault
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injection intensity parameter, which we defined in [32]. The
test continues until the tested unit delivers incorrect results
on its output ports. The fault injection intensity determines
the number of randomly-placed fault injections per second,
related to the size of the design. This implies that for a
larger design, faults are injected more frequently, although the
injection intensity parameter remains constant. This is because
the larger component occupies a larger chip area, thus the area
exposed to radiation is also higher. And this must be reflected
to obtain fair results. In our experiments, we empirically chose
the injection intensity of 2e−5 inj/s/bit.

In a real scenario, multiple tested units fit into one FPGA.
As parallel unit execution is supported by the FT-EST, the test
controller actually waits until each of the tested units delivers
incorrect results, while keeping the real time of the first failure
observation (in milliseconds) for each of the tested units. These
TTFs are then downloaded to the control PC. On the PC, the
results are stored in files on a hard drive and further analyzed
to obtain statistical data, mainly the t50 parameter.

C. Partitions Variants

At the beginning of our design flow, various versions of
partitions were created. Variants for a partition are made from
the original version of the partition with the usage of helpers.
As part of our previous research, we created two templates for
our VHDL helpers: the TMR and 5-Modular Redundancy (5-
MR). The number of generated variants for each partition, is
dependent on the helpers that are used. For example, in our
experiments, one TMR and one 5-MR variant is generated to
the original implementation of a partition. Each partition was
then tested on the FT-EST testbed and its t50 parameter was
measured. Resulting parameters of the variants are shown in
Table I. These results were already obtained in our previous
research [6].

TABLE I: Partitions Implementation Versions Including Their
Size and t50 Parameter under Fault Injection Intensity of
2e−5 inj/s/bit [6]

Partition
Name

FT
Technique

Bitstream
Area [b]

t50
[ms]

t50 Compa-
red to Simplex

[ms] [%]

addition
simplex 4 288 197 635 + 0 + 0.00
TMR 7 552 208 793 + 11 158 + 5.64
5-MR 9 856 225 042 + 27 407 + 13.87

addconst
simplex 3 264 337 843 + 0 + 0.00
TMR 6 656 271 246 - 66 597 - 19.71
5-MR 9 088 345 745 + 7 902 + 2.34

crc8
simplex 4 800 39 484 + 0 + 0.00
TMR 9 792 47 222 + 7 738 + 19.6
5-MR 14 272 60 227 + 20 743 + 52.54

numones
simplex 3 072 94 549 + 0 + 0.00
TMR 6 848 102 603 + 8 054 + 8.52
5-MR 10 304 119 195 + 24 646 + 26.07

The results for these variants can be also seen in a box plot
chart in Figure 5. As can be observed, each FT technique has
various impacts, depending on the type and structure of the
partition. Increased redundancy leads to better TTF results,
except of the addconst partition. The TMR version of this
partition is less tolerant to faults, compared to its simplex
(i.e. original) version. We believe that this was caused by the
different structure of this partition, as the addconst is very
dependent on the internally stored constant value, which is
not the case for the otherwise very similar addition partition.
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Figure 5: Time to Failure for Each Partition Version on a Box
Plot Chart [6].

D. Generated Systems and Their Parameters

At first, we evaluated the original system, i.e. a system
that was composed of the original (unhardened) partition ver-
sions. Furthermore, we prepared two additional (i.e. reference)
systems, where each of them is composed of TMR and 5-
MR partition versions exclusively. These are measured in the
first part of Table II. Then, with the usage of previously
described guidance method and the modified MCKP solver,
we created another system of components of mixed type.
The guider was set to maximize the TTF parameter, while
limiting the FPGA chip area to 30 000 bits. The reference and
automatically generated systems were presented as a part of
our previous paper [6]. In this follow-up research, however, the
PDR technique is further incorporated, which improves fault
resiliency. With the previously described deviation parameter
being set to 0.4, the guider algorithm also provides the
recommendation on which partition recovery would increase
reliability the most. This is the case for the partition marked
by a dot in the second part of Table II. We, thus, degraded
the FT method to TMR and used the PDR to further harden
the system. Two systems are created: 1) the reconfiguration
controller is on the chip (i.e. it is subject to the fault injection),
and 2) the reconfiguration controller is outside of the injection
area (i.e. it is outside the FPGA, for example on a standalone
radiation-hardened chip). The structure of both the recovered
systems are shown in Figure 6. Results for these systems can
be seen in the third part of Table II.

The system with reconfiguration controller on the FPGA
is significantly larger, because of the controller. The PDR
controller increases the size of the system approximately
by 85%. It, however, even if the large controller is under
equivalent fault injection intensity as the rest of the system,
still achieved nearly equivalent results compared to the vari-
ant without reconfiguration. In this case, the reconfiguration
controller on the same chip does not improve the parameter.
However, this is still a considerable result, as the reconfigu-
ration controller in our tests is not hardened in any manner.
We expect that for larger systems, the efficiency of the on-chip
PDR controller will be significantly better. The system with the
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Figure 6: Recovered Systems with PDR controller (a) Inside
the System on the FPGA; and (b) Outside the FPGA.

TABLE II: Automatically Generated and Manually Created
System Compositions (as a Reference) [6] and the Recovered
System Including the t50 Parameter under Fault Injection
Intensity of 2e−5 inj/s/bit, (partition marked with the dot is
recommended for recovery by the guider algorithm)

System
Name

FT
Techniques Bitstream

Area [b]
t50

[ms]addition addconst crc8 numones

R
ef

er
en

ce simplex simplex simplex simplex simplex 9 152 23 559
TMR TMR TMR TMR TMR 24 704 42 173
5-MR 5-MR 5-MR 5-MR 5-MR 37 376 55 900

auto 30000 simplex simplex 5-MR • 5-MR 25 856 49 675

au
to

30
00

0 +Rec.
On Chip

simplex simplex TMR+Rec.
On Chip

5-MR 48 000 48 584

+Rec.
Outside

simplex simplex TMR+Rec.
Outside

5-MR 29 376 84 631

external reconfiguration controller is, of course, significantly
more reliable. Its t50 parameter is by 70% better, compared
to the automatically generated system without the PDR. In
comparison to the 5-MR reference system, the t50 parameter
is still more than 50% better. This, however, assumes that the
external reconfiguration controller is resilient against failure.
If such external component is available, the guider algorithm
suggests to utilize it. As can be observed, the size of this
system increased slightly, which might look non-intuitive,
considering the replacement of the 5-MR crc8 with the TMR
recovered version. This is because in the case of PDR, the
redundant modules must be strictly separated (e.g. foreign
module signals must be routed outside of the module), further

complicating the synthesis optimization processes and thus
the logic. Also, the voting component inside the crc8 must
be slightly more complicated, as it signalizes the failing crc8
module (i.e. compared to the previous 5-MR without PDR,
which had to select the representative result only).

Figure 7 displays TTF for each of the systems. As can
be observed, the helpers generally work, as the reference
systems increase their t50 with growing redundancy. The auto-
generated system (i.e. the one automatically composed using
the guider) reaches better t50 parameter than the TMR. From
the box plot it is obvious, that the dissipation of TTF is nearly
equivalent to the reference TMR system [6]. Although the
auto-generated variant without PDR and with PDR on chip
achieves nearly equivalent t50 times, the box plot clearly il-
lustrates, that the recovered variant has much higher dissipation
towards (only) higher values of TTF, which might be a positive
feature. The second recovered variant with PDR controller
outside the FPGA achieves the best results. It is important to
note, that only one component, the crc8, was recovered with
the PDR, yet the result is significantly better. This definitely
confirms the benefit of PDR for recovery of FPGA systems.

400 s

300 s

200 s

100 s

0 s

simplex TMR 5-MR auto_30000 Rec. on
Chip

Rec.
outside

Reference auto_30000
With Recovery

Generated
Without

Recovery

Ti
m

e 
To

 F
ai

lu
re

 [s
]

Figure 7: Time to Failure for Each of the Systems (i.e.
Reference, Auto-generated [6] and Auto-generated with PDR
Controller) on a Box Plot Chart.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, a description of our FT system design
automation toolkit was presented. The toolkit is composed
of various parts and components and each of them was, at
least briefly, described in this paper. The experimental part
of the paper presents incorporation of PDR controller into
the system design. Two systems utilizing recovery with the
usage of the FPGA PDR technique show promising results
in terms of reliability. The recovered system with the on-
chip PDR controller shows similar results, compared to the
system without recovery. This is because the PDR controller
is relatively large, compared to the system and is also subject to
fault injection with equivalent intensity based on the chip area.
The second recovered system, in which the PDR controller
is apart the FPGA (e.g. in a radiation-hardened chip) shows
significantly better results. Its t50 parameter is by 70% better,
compared to the system without recovery.
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The future ideas to further extend our FT design automation
toolkit can be directed towards Software-Implemented Fault
Tolerance (SIFT) methods. It would be interesting to use such
approach to harden SW programs and test them on a real HW
during the presence of faults. Such approach, combined with
HW resiliency against faults, could significantly improve the
overall system reliability.
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