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Abstract—The fast growth of Cyber-Physical Systems (CPSs)
has brought us new opportunities to benefit from ever-increasing
quantities of data describing our environment and behaviours.
These data have a strong potential to become the basis of novel
innovative services and products. However, the nature of CPS
data streams makes it challenging to apply known data analytics
methods and tools in an efficient way. This contribution discusses
these challenges and shows how they could be tackled. Specifically,
we present the initial development of a Data Analytics Toolbox
designed to deal with some of them, like the streaming nature of
the information they provide, and the need for efficient filtering
techniques. As a case study, we further describe an application
of the toolbox based on a real business case, aimed at improving
high resolution weather forecast models.

I. INTRODUCTION

The current interconnected society can be characterised by
the growing popularity and relevance of cyber-physical systems
(CPSs) [1], [2]. Everyday objects become unexpected sources
of information about our environment and behaviours. New op-
portunities but also challenges emerge from the large amounts
of data coming from heterogeneous sources and contexts. To
illustrate the quantities, let us consider an average modern car
that processes 4,000 signals at different time resolutions (even
with no advanced driver-assistance sensors), translating to more
than 500 MB of data per hour [3]. Similarly, modern home
automation systems involve hundreds of sensors per building
[4]. The potential of such data is enormous: they can foster a
completely new market of innovative Cyber Physical Products
(CPPs), i.e. products and services that have the features of CPSs
at their core.

The promises of new business opportunities yielded by CPSs
/ CPPs also bring several new challenges. First of all, it is

not simple to combine streams of data coming from different
systems / products, as they may have different quality, may be
a subject of various commercial limitations, and may have been
provided by proprietary vendor-specific implementations, thus
requiring ad-hoc interfaces. Beyond that, CPS data always need
to be associated with confidentiality, privacy, security, IPR and
ethical aspects for which the scientific community has yet no
general answers.

Beyond the previously described challenges, an additional
one has received much less attention from the scientific com-
munity: the problem of analysing such large volume of data.
As it is well-known in machine learning, having data is not
tantamount to gain knowledge, as the former have to be
transformed into the latter. While a plethora of different data
mining algorithms and models have been developed in the
last decades, there are several requirements that are specific to
CPSs. First of all, while data may be available in large volume,
only a fraction of them may be relevant for a given application,
thus efficient filtering strategies are needed to reduce the
computational cost of any analysis. Along the same line, the
streaming nature of CPS data implies that the evolution of a
value through time can be more relevant than the value itself,
thus imposing a dynamical view to data. Thirdly, data coming
from CPSs are intrinsically unreliable and seldom dependable
[5], implying the need of algorithms robust against noise and
missing information. And, finally, data from different sources
have heterogenous resolutions and references, complicating the
process of synchronising the analysis across different CPSs.

In this contribution we describe the initial development of a
Data Analytics Toolbox designed to fulfil these requirements.
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It has been developed within the umbrella of Cross-CPP,
a European H2020 project devoted to the construction of a
framework for supporting the development of services based
on CPS data [6]. The Analytics Toolbox is based on a modular
structure, in which new analytics services can be added to
fulfil new user requirements; and it is aimed at supporting both
fast prototyping of new ideas, and efficient implementation of
data synthesis and analysis techniques. The remainder of the
contribution is organised as follows. Firstly Sec. II discusses
the need for, and the advantages associated to an integrated
analytics toolbox, as opposed to the use of out-of-the-box
solutions. Afterwards, Sec. III describes the global Cross-CPP
solution, how the Analytics Toolbox interface with it, and the
toolbox internal structure. Sec. IV further presents a use case,
based on a real application that is being developed by a CPP
user, involving the improvement of weather prediction models
of very high spatial resolution. Finally, Sec. V concludes with
a discussion of the main learnt lessons and steps ahead.

II. WHY A DEDICATED ANALYTICS TOOLBOX?

As a result of the recent surge of interest in data analysis,
numerous analytics solutions can be found both in the market
and the literature, from low-level libraries for machine learning
(e.g. scikit-learn [7] or TensorFlow [8]), to out-of-the-box
and integrated software solutions (e.g. Amazon’s SageMaker
[9] or Microsoft’s Azure [10]). One may then ask what is
the advantage, or even the need, of providing a custom data
analytics toolbox inside a CPS system, as other options are
already available to the user. We here argue that the availability
of a tailored analytics toolbox has three main advantages.

First of all, it can provide ways for fast prototyping. While
users may be expert on specific business aspects, they may not
have in-house expertise on data analysis, nor the resources to
deploy an analytics solution. The toolbox would then solve the
initial problem, by allowing a first feasibility evaluation of a
business concept at essentially no cost.

Secondly, a toolbox can provide access to advanced algo-
rithms that are not standard in general purpose solutions, for
being specifically tailored to CPS data; and that may not be
part of the usual expertise of a data analyst. To illustrate, our
Data Analytics Toolbox includes a module for network-based
data analysis, as will be described in Sec. III-D. While network
theory has attracted much attention in the academic world [11],
[12], its adoption in real business applications is still far from
being widespread.

Finally, using external data analytics tools requires down-
loading all relevant data; on the contrary, an integrated toolbox
could filter the data prior to analysis, or even provide synthetic
views of the same, for instance through averaging, clustering,
or event-driven triggers. An example of this will be described
in Sec. IV.

III. DATA ANALYTICS INSIDE CROSS-CPP

The objective of the Cross-CPP project is to establish an IT
environment for the integration and analytics of data streams
coming from high volume products with cyber physical fea-
tures. The envisioned solution is based on the information flow
depicted in Fig. 1 - see also [6] for further details. Data, coming
both from cars and buildings, are pre-processed and stored
in the CPP Cloud Storage; the CPP Big Data Marketplace is
then in charge of keeping an index of the stored data, and of
controlling the access. Finally, a set of service providers (i.e.
the end users of the system) can use the Marketplace to access
the data or to execute analytics over them.

In line with this view, the toolbox has been designed with
a modular structure in mind, in which five modules, each one
devoted to a specific analysis, communicate with the Cross-
CPP Marketplace to get the data and yield back results. The
modules, described in detail below, only share the communica-
tion interface with the Marketplace, i.e. they all expose a REST
API interface; and are accessible though the same web interface
in the Marketplace - see Fig. 2 for screenshots. Yet, beside
these commonalities, they are completely independent - e.g.
they have been developed in different programming languages,
and are deployed in different physical servers.

In what follows, the five modules of the Analytics Toolbox
are briefly described.

A. Basic statistics

There are many situations in which the service provider may
not want to analyse a full set of data, but only have a simple
overview of it; for instance, a given service may only be pro-
vided in cold weather, thus a first step may require checking the
average ambient temperature. This module aims at providing
with some very simple statistical functions, calculated over a
subset of the stored data, and with the objective of minimising
communication overheads. Several metrics are included, like:

• metrics of location and dispersion, i.e. average, median
and standard deviation;

• maximum and minimum;
• metrics of shape, including skewness and kurtosis;
• for distributions, including temporal and spatial ones, their

Shannon entropy.

B. Time series

In the analysis of many real-world systems, knowing when
one specific parameter or characteristic changes can be as
important as estimating its exact value. Several are the reasons
behind this.

On one hand, the existence of changes is related to the
stationarity of the system. If one wants to simulate (or forecast)
a system through a model, e.g. constructed through a data
mining approach, such model is only valid as long as the
main properties of the underlying system do not change. To
illustrate, if one builds a model to forecast the time needed by a

2020 9th MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 8-11 JUNE 2020, BUDVA, MONTENEGRO

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 18,2022 at 10:15:49 UTC from IEEE Xplore.  Restrictions apply. 



Cloud 
storage Marketplace Service 

providers

Data analytics modules

Fig. 1: Basic data flow inside Cross-CPP - see main text for details.

Fig. 2: Screenshots of the Marketplace web interface for ac-
cessing the analytics modules. (Top) Selection of the analytics
module. (Bottom) Selection of the time series analysis to be
executed.

driver to reach a destination in the summer, with ideal weather
conditions, such model may be completely wrong when the
winter arrives, and with it several centimetres of snow. Any
real-world analysis executed in a changing environment must
therefore be aware of its non-stationarity, i.e. when and how its
main characteristics change.

On the other hand, and beyond such theoretical reason,
knowing when a time series suffers a sudden change can
also buttress two specific applications. Firstly, time series
segmentation, i.e. transforming a unique signal into a set of

sub-time series, each one of them of guaranteed stationarity.
This can then be used to create simpler models of each time
window. For instance, the full time series can be represented
as a set of piecewise linear segments, which can support the
definition of simpler distance metrics and of time series cluster-
ing algorithms [13]. Secondly, when the system is expected by
construction to be stationary, sudden changes in the time series
it produces can be used to detect malfunctions and abnormal
conditions. To illustrate, a sudden change in the temperature of
a car engine designed to work at 90◦C can indicate a failure
in the cooling system. For some examples on the use of time
series segmentation in fault analysis, the reader may refer to
[14], [15].

This module thus provides a set of tools for detecting when
a time series, representing the evolution of a measurement,
experiences a sudden change - see Fig. 2 bottom panel for
a screenshot of this module’s web interface. Note that the
definition of such changes, also known as drifts [16], strongly
depends on the considered application; to illustrate, one may
be interested in a change in the average value, in the standard
deviation, or even in the presence of correlations between two
or more time series. Several methods for detecting drifts are
thus implemented, including:

• Models based on statistical properties of the time series,
including significant changes in the average or in the
whole probability distribution of the time series.

• Models based on dynamical properties of the time series,
including changes in entropy [17] or irreversibility [18].

• Models based on assessing the structure of relationships
between multiple time series. This can include, for in-
stance, the assessment of the correlation or causality
between pairs of time series, and of their evolution through
time [19].

• Models based on predictive machine learning algorithms.
These models are based on training a forecasting algorithm
using historical data, for then comparing the actual ob-
served value with the forecast of the model [20]; the higher
the error, the more distant is the system from stationarity.

C. Trajectory analysis

The concept of “trajectory analysis” is a very general one,
encompassing many different analyses on data that encode
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a spatio-temporal evolution. Most of the CPP elements are
expected to move, at some point of their life. Additionally, it
has to be noted that analysing a trajectory is not equivalent to
analysing a multivariate time series, as the different components
(e.g. longitude and latitude) are inherently linked. With these
concepts in mind, this library aims at making available a set of
basic tools simplifying the handling and manipulation of this
mathematical object. The following functions are available to
the user:

• simple statistics, like the calculation of velocities and
accelerations;

• interpolation of trajectories, i.e. creating a new trajectory
with a higher (and constant) time resolution, using the
available data to derive the position when not known [21];

• error detection, i.e. the detection of reported positions that
do not comply with physical limitations (e.g. maximum
velocity) or with the past dynamics of the CPP [22];

• multivariate statistics, including the calculation of the
average trajectory from a set of trajectories;

• trajectories clustering, i.e. the identification of sub-groups
of trajectories with high similarity [23];

• group interpolation, understood as the interpolation of one
trajectory by taking into account the dynamics of other
(related) objects; and

• interactions, that is the identification of relationships be-
tween pairs of trajectories - e.g. minimum and maximum
distance reached by two CPPs.

D. Network analysis

Sensors belonging to cyber-physical systems are organised
in complex interaction structures, whose understanding and
analysis can be of relevance. To illustrate, let us consider
the case of a service provider that is interested in getting
information from a set of electrical consumption sensors in
a building, to understand how much energy will be available
for e.g. charging electric cars. In such scenario, it is to be
expected that several sensors will describe rooms of similar
characteristics, and thus that the corresponding consumptions
will be highly correlated. In a similar fashion, it may be
expected that some sensors will “lead” others, i.e. that the
information of the former precedes that of the latter - as for
instance can be the case of room temperature at sunset, in which
east-facing rooms will cool faster and west-facing ones.

In all these situations, the elements composing the system
(being them sensors, cars, or any other elements of interest)
can be represented as nodes of a complex networks [11], [12],
[24], which are pairwise connected when a relevant relationship
is detected between them. The resulting structure can then be
used as input of a data mining task, as discussed in [25]. While
complex networks theory has received a growing attention
from the scientific community in the last decade [26], its
application to real-world problems has been rather limited,
among other reasons because of its mathematical complexity
and high computational cost. The network analysis module is

thus a user-friendly solution to include network-based analyses
in the Cross-CPP system.

Network analysis is usually a computationally intensive task,
as the cost of the calculation of many topological metrics
(i.e. measures describing a particular aspect of the structure)
scales as the square or the cube of the number of nodes. On
the other hand, many networks may evolve slowly in time -
for instance, the structure between sensors in a building may
essentially be static. This module is thus designed to help the
analysis of evolving networks, by identifying those elements
that have not changed since the last iteration, and by avoiding
redundant calculations. Some topological metrics included are:
the efficiency of the network, defined as the average of the
inverse of the geodesic distance between all pairs of nodes
[27]; transitivity, defined as the average number of triangles in
the network, over the total number of possible triangles [28];
centrality of nodes, i.e. measures describing how important
these are inside the network [29]; and modularity, i.e. the
best division into disjoint communities, where a community
is usually defined as set of nodes strongly connected between
them, but loosely connected with the remainder of the network
[30].

E. Machine learning

As a last module, we include the possibility of training
and evaluating machine learning models, able to predict the
class of a future event (classification) or a magnitude of a
variable (regression) [31]. It is worth noting that the design
of the best machine learning model is strongly dependent on
the considered application - i.e. it is almost impossible to find a
one-fits-all solution. Still, the aim of this module is aligned with
the general philosophy of the toolbox: providing a first solution
for a fast prototyping, which can then be optimised according to
the requirements of the problem. The service provider can then
test an initial idea using the provided models; and, if results
are promising, in-house resources can be committed to create
a tailored solution.

This module supports incremental learning algorithms by
means of existing libraries and frameworks that proved to
be applicable in high velocity settings, as, for instance, the
Yahoo/Microsoft Vowpal Wabbit [32]. Selected methods are
interconnected with push data subscription and change noti-
fication channels, to enable incremental improvement/building
of a model and its direct use in the same time. The machine
learning module thus learns and predicts at the same time,
solving the “cold start” problem [33]. The clear distinction
between the phases of model training and of its use, typical
for the batch machine learning applications, is not relevant for
the case of incremental training from data streams. A streaming
model would typically be built for a prediction task in which
the correct value would form a part of the stream data with a
defined time delay.

The implementation builds on open-source machine learning
libraries (scikit-learn [7], PyTorch and Google Tensorflow [8]),
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well-established industrial standards that are used by many
large companies every day.

IV. USE CASE: MONITORING RAIN IN A CITY

As an example of application, we here consider a real
scenario identified by the partners composing the Cross-CPP
consortium. Suppose a service provider interested in the market
of high resolution meteorological forecasts, e.g. in the devel-
opment of a model able to predict the presence of rain with
a city block precision. Achieving such resolution requires the
execution of meteorological models on input data which should
have the same, or even higher, precision; thus the classical
approach of gathering data from a few meteorological stations
per city would not be feasible. The CPP framework would
make this possible: cars driving in the city could send weather
information, as for instance the presence of rain through their
selected wipers level. While the service provider could simply
download these data (i.e. all wipers activities) in real time,
this entails two problems. On one hand, in the case of large
cities with tens of thousands of cars sending information every
second, the amount of information to be handled would be
substantial, with most of it being irrelevant. On the other hand,
wipers information is expected to be noisy, as a driver may
for instance activate them just to clean the windshield; it is
thus necessary to discriminate such random activations from
collective and coherent ones. As will be described below, this
scenario is a perfect case in point of the usefulness of an
integrated analytics toolbox.

Due to the work-in-progress status of the Cross-CPP infras-
tructure, real data from cars were not available when writing
this contribution; they have instead been simulated, through a
set of time series representing the wipers activation in two large
groups of cars. All computations, on the other hand, have been
performed through the system’s libraries. The starting point is
that cars usually activate their wipers when it is raining, but
they might do it even in the absence of rain; furthermore, they
are activated with varying speed (level). We finally suppose
that all cars in a group are in the same part of the city, thus
their activation will be synchronised; yet, the two groups find
rain at different moments. As a naı̈ve solution to the problem,
the service provider may download all time series. These are
depicted in Fig. 3, in which the two top panels represent
the evolution of five time series (i.e. the evolution of wipers
velocity for five cars) for each group. More efficient solutions
can nevertheless be devised.

First of all, instead of the full set of data, the service provider
may request the average of the wipers activation from all cars.
This is represented by the red lines in the top two panels of
Fig. 3. Note that the averaged data can previously be filtered,
for instance to only include cars driving in a specific part of
the city.

Secondly, it is worth noting that the presence of two groups
of cars, located in different regions of the city, is not known be-
forehand. The analytics toolbox provides ways of highlighting

such structure. To illustrate, the pairwise correlation between
the time series coming from cars can be calculated, and the
result depicted as a network. Whenever a high correlation
between pairs of cars is detected, this will map into a strong link
between the two corresponding nodes; the presence of commu-
nities can then be evaluated, e.g. through a simple graphical
representation. When this is performed on our synthetic data
set using the functions of the time series module (specifically,
a Spearman’s rank correlation), the result is what depicted in
the central panel of Fig. 3.

Finally, the service provider can ask the system for a statis-
tical measure alerting about the presence of changes. The blue
line in the bottom panel of Fig. 3 depicts the evolution of the
Permutation Entropy, a well-known metric able to distinguish
between stochastic (i.e. random) and deterministic dynamics
[34], [35]. This entropy has been calculated over the average
of all time series composing the first group. As it can be
appreciated, values of the metric close to 1 indicate a random
dynamics, i.e. that wipers are activated and stopped without
any clear trend - to simplify the interpretation, the grey band
indicate the 68% confidence band observed in random data. On
the other hand, the metric presents three clear minima, which
correspond to the time in which the rain started for the first
group; this is because, as all drivers are activating the wipers
at almost the same time, the evolution of the time series is no
longer stochastic, but instead follows a clear and deterministic
trend. The service provider could then monitor this metric, and
only download the underlying data when a change is detected.

V. CONCLUSION

In this contribution we have presented the initial development
of an Analytics Toolbox for the analysis of CPS data. It includes
both a general architecture for the integration of different
modules, and five specific analysis tools, covering the most
important needs associated with the processing of car and
building information.

From the experience gained in the development of this
Analytics Toolbox, one important lesson has to be highlighted:
the design of the different modules has to reach a fine balance
between generality and specificity. On one hand, the provided
functions ought to be general enough, i.e. should be of rele-
vance for the largest possible pool of services and users. On the
other hand, too general functions may become useless, as each
service has specific needs. This latter case is well represented
by classification models, which have to be tailored to the input
data they are going to process. Such balance can be achieved
in different ways.

First of all, the analytics toolbox should offer different
algorithms and techniques to reach the same analytics goal. To
illustrate, the time series module provides different metrics for
detecting drifts, e.g. based on statistical and information science
concepts. It is then the responsibility of the user to select the
one most suitable for the problem at hand. On the other hand,
this requires the provision of an exhaustive documentation, as
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Fig. 3: Example of the analysis of wiper data. The top two
graphs depict the temporal evolution of the wiper level of two
groups of five cars; the central one the network representation
of the correlation between the ten time series; finally, the
bottom one the evolution of the Permutation Entropy for the
first group. See Sec. IV for details.

users may not be familiar with the idiosyncrasies of each one
of these techniques.

Secondly, flexibility can be increased by providing ways of
concatenating different modules together, in order to exponen-
tially increase the array of available analyses. In the initial
implementation here presented, the average of a set of time
series is itself a time series, which can be analysed by the
corresponding module.

Finally, it is important to design a flexible and modular
environment since the beginning of the development, in which
new modules can seamlessly be introduced according to the
user needs.

In line with this lesson, future work will be devoted to extend
the array of analytics tools offered within the system; and to
provide easier and richer ways of merging different modules
together.
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