
Efficient Acceleration of Decision Tree Algorithms
for Encrypted Network Traffic Analysis

Roman Vrána
Faculty of Information Technology

Brno University of Technology
Božetěchova 1/2 612 66 Brno, Czech Republic

ivrana@fit.vutbr.cz

Jan Kořenek
Faculty of Information Technology

Brno University of Technology
Božetěchova 1/2 612 66 Brno, Czech Republic

korenek@fit.vutbr.cz

Abstract—Network traffic analysis and deep packet inspection
are time-consuming tasks, which current processors can not
handle at 100 Gbps speed. Therefore security systems need
fast packet processing with hardware acceleration. With the
growing of encrypted network traffic, it is necessary to extend
Intrusion Detection Systems (IDSes) and other security tools by
new detection methods. Security tools started to use classifiers
trained by machine learning techniques based on decision trees.
Random Forest, Compact Random Forest and AdaBoost pro-
vide excellent result in network traffic analysis. Unfortunately,
hardware architectures for these machine learning techniques
need high utilisation of on-chip memory and logic resources.
Therefore we propose several optimisations of highly pipelined
architecture for acceleration of machine learning techniques
based on decision trees. The optimisations use the various
encoding of a feature vector to reduce hardware resources. Due
to the proposed optimisations, it was possible to reduce LUTs
by 70.5 % for HTTP brute force attack detection and BRAMs
by 50 % for application protocol identification. Both with only
negligible impact on classifiers’ accuracy. Moreover, proposed
optimisations reduce wires and multiplexors in the processing
pipeline, positively affecting the proposed architecture’s maximal
achievable frequency.

Index Terms—acceleration, network, threat, detection, decision
tree,

I. INTRODUCTION

The ever-increasing speed of network lines needs more and
more effort to increase the speed of networking systems. As
every packet can arrive every five ns on 100 Gb line, high-
speed packet processing is necessary. The problem is critical,
especially in network security systems, where every packet
drop directly impacts network threat detection.

With encrypted network data we cannot rely only on the
pattern matching in Intrusion Detection Systems (IDS). IDS
systems have to be enhanced by utilising statistical information
such as packet lengths or inter-packet gaps. Anderson [1] has
shown how machine learning can be used to analyse encrypted
network traffic. He was able to achieve very high precision
in the detection and identification of network threats. The
machine learning techniques have been successfully used for
other use-cases such as classifying application protocols [7],
identifying DNS over HTTPS [6] or detect SSH brute-force
attacks [2].

Although deep neural networks are top-rated in various
fields, encrypted traffic analysis is usually based on decision
tree-based classifiers such as Random Forest (RF) or Ad-
aBoost. These classifiers are highly accurate, have determin-
istic behaviour, and can be easily analysed because they use
a set of parallel decision trees. This also makes designing a
hardware accelerator easier since the tree structure is relatively
simple to map into hardware.

Several architectures have been proposed for mapping deci-
sion tree-based classifiers to hardware [3]–[5]. These architec-
tures unfold nodes of decision trees to pipeline stages to create
deep pipeline and achieve high throughput. As the feature
vector is transferred on large data bus and features are selected
in every pipeline stage by large multiplexers, the architectures
need many hardware resources.

We focused on designing a hardware architecture that would
allow for an online analysis of encrypted network traffic using
a set of decision tree classifiers. The proposed architecture uses
a single processing pipeline for every decision tree. It reduces
the size of the feature vector to decrease hardware resources
and reduce routing problems. The proposed architecture is
evaluated on three different classifiers, which are used [2], [6],
[7] for the analysis of encrypted network traffic. It was possible
for all classifiers to significantly reduce hardware resources
with only negligible impact on precision.

II. RELATED WORK

The first mapping of RF classifier to FPGA [5] uses a deep
processing pipeline, where each stage represents one level of
a decision tree and has a memory block store all nodes of
the same tree level. The pipeline depth and the number of
parallel memories correspond to the decision tree depth. As
the nodes are stored in memories, the architecture significantly
reduces resource requirements compared to directly mapping
the tree structure to the FPGA logic. Direct mapping also has
frequency issues due to the routing problems caused by the
number of parallel trees connected to the one feature vector.

Despite pipeline structure and nodes stored in memory
blocks, the architecture in [5] still utilises many hardware
resources and has problems with routing. A large feature
vector causes routing issues and increases hardware resources978-1-6654-3595-6/21/$31.00 ©2021 IEEE

2021 24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)

115

115

20
21

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

D
es

ig
n

an
d

D
ia

gn
os

tic
s o

f E
le

ct
ro

ni
c

C
irc

ui
ts

 &
 S

ys
te

m
s (

D
D

EC
S)

 |
97

8-
1-

66
54

-3
59

5-
6/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
D

EC
S5

26
68

.2
02

1.
94

17
06

8

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 21,2022 at 11:49:15 UTC from IEEE Xplore. Restrictions apply.

utilisation because of large multiplexers and many flip-flop
registers in every pipeline stage.

Prasanna et al. [4] proposed a discretisation technique by
mapping the input feature values into intervals denoted by
thresholds taken from the original decision tree. This ap-
proach results in an encoder for each feature, which reduces
memory requirements and comparators’ size in the decision
tree pipeline. However, if the classifier has a tree with small
depth, the utilisation of hardware resources is increased. To
alleviate this potential issue, Prasanna [4] introduces ap-
proaches integrating a preprocessing step into the classifier
tree to reduce resource utilisation at the cost of requiring two
comparisons to fit the input value into the interval. However,
two comparisons in every pipeline stage directly impact the
throughput because two comparisons can stop the pipeline
and reduce the processing speed. To avoid pipeline blocking,
we choose encode features before entering the decision tree
pipeline. Moreover, this optimisation still uses a wide data
bus to pass features over the pipeline stages and thus need
many flip-flop registers. The big feature vector bus directly
impacts multiplexers, routing resources, and system frequency
similarly as in the original architecture [5].

III. DESIGN OPTIMIZATIONS

In our work, we focus on optimising the architecture
described in [5] while using the memory-centric solution
described [3]. Figure 1 shows an overview of the classifier
with the input pipeline. The upper part of the figure shows
a schematic of a decision tree which we then map to the
pipeline architecture below. Each level of the tree is mapped
to a single step of the pipeline. Memory component MEM
holds all thresholds in the decision tree level, index of the
feature used in the comparison, and the classification result.
In every pipeline stage, first data are read from memory and
then passed to the CMP block. The CMP block then selects
the feature and performs the comparison which decides how
the next step in the pipeline will perform.

The main issue of the described architecture is the large
width of the feature vector which in turn may result in
complicated routing. This issue stems from using either a
large number of input features or using values that are too
precise and require fine resolution which can also increase
the complexity of comparators. The feature count can be
reduced relatively easily by omitting those features that are
not significant enough in the decision process. To reduce
the comparator complexity, we can use fixed-point arithmetic
with proper setting instead of floating point arithmetic. This
significantly reduces resources needed for the comparator logic
with negligible impact on accuracy. To reduce the size of the
feature vector however, we need to implement an optimization,
that preserves the accuracy as much as possible. We explore
two possible approaches to achieve this goal.

Second significant factor influencing the amount of re-
sources used is depth of the tree since each level exponentially
increases the amount of nodes and thus number of items
stored. This would lead to a large consumption of BRAMs

Decision Tree

Fe
a
tu

re
 V

e
ct

o
r

Pi
p
e
lin

e
Tr

e
e
 L

e
v
e
l

Pi
p
e
lin

e
..
.

CMP

MEM

..
.

..
.

C
M

P

CMP

MEM MEM

...

... ..
.

Stage 0 Stage 1 Stage N

Fig. 1. Mapping of a decision tree into the pipeline

while many of them would not be utilised properly. To reduce
this issue, the proposed design starts using BRAMs only when
they can be utilised at 50% of their capacity at least. Until then,
the required memory blocks are implemented in logic.

The proposed design uses 32-bit fixed-point arithmetic
feature thresholds to minimize the loss of accuracy as much
as possible when replacing the floating-point arithmetic. This
significantly reduces the resources required to implement the
decision block. The width of the fixed-point value however
becomes an issue when we add the information about the
class and the feature index. The resulting item may be wider
than one row of the memory. This would require either to
store the data in multiple consecutive rows or using memory
configuration with support for wider data. The first approach
would require accessing the memory multiple times to load
the item thus increasing latency. The other approach would
increase on-chip memory usage while not being able to
efficiently utilize the item width.

When classifying a sample with a decision tree in general,
we are not looking for the exact value of a selected feature.
Instead, we are trying to fit the feature into a certain range.
This allows us to devise a mapping that would provide a com-
parable result while requiring less resources and/or improve
the on-chip memory utilisation. In our work we will explore
two approaches for reducing the width of the feature vector
as well as size of the data stored in every tree level.

The first proposed approach is trying to reduce the resources
by lowering the resolution of used features. To decrease
resolution, we only pick from each feature the first-N most
significant bits. This simple step results in a narrower pipeline
since only the step before entering the classifier needs to be
implemented using the full width. All following steps will use
the reduced width. The reduction must take the precision of the

116

116

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 21,2022 at 11:49:15 UTC from IEEE Xplore. Restrictions apply.

original input into account. Otherwise, the loss of resolution
will lead to a significant loss of accuracy.

In the second approach, we use thresholds’ values from
the original classifier to map the input vector to integer
arithmetic. The thresholds serve as upper bounds of intervals.
For every input feature value, we have to find a corresponding
interval. The approach requires the implementation of a tree
structure similar to the classifier to encode the input vector.
The encoder’s output is a new input vector where each item
is an index of the interval. Intervals allow us to reduce the
vector’s size more precisely than the previous approach at the
cost of a more complex encoder.

IV. RESULTS

We evaluated the throughput and utilisation of hardware
resources for various techniques of mapping decision tree-
based classifiers to the high-speed hardware architecture. The
proposed hardware architecture uses unrolling the decision tree
into the deep pipeline [5] together with two optimisations
to encode floating-point input values into integers. These
optimisations decrease mapping complexity and reduce hard-
ware resources. We look at the estimated resources required
to implement a classifier with proposed optimisations and
compare it with the original pipelined architecture. We use
a Xilinx Kintex-7 device as a target technology to provide
numbers of utilised LUTs and BRAMs. For the evaluation,
we selected 3 different IDS use-cases: (i) DNS-over-HTTPS
detection, (ii) HTTPS login brute-force detection and (iii)
traffic classification. In all cases, we’re aiming to achieve
an accuracy comparable to related work aimed at described
cases. The reference classifier in terms of resources spent is
an implementation based on design described in [5].

A. Discretisation by sorting to buckets

The first approach to further reduce on-chip resources is
to take the input values and reduce the bitwidth of the input
vector by taking only first N bits of the each feature. This
relatively simple approach helps reduce the width of the
pipeline as well as memory requirements. The effect however
introduces a loss in resolution of the feature value which can
lead to significant reduction in accuracy. Graphs in figure
2 demonstrate the impact of the approach using different
bitwidth. From the results it can be clearly observed that we
can achieve accuracy that’s comparable to the original solution
while using noticeably less resources. The only requirement
is that the reduction must not reduce the resolution too
significantly. The impact of this can be observed in 2-A when
we use only 8 bits for the features and in 2-B when using 8
or 16 bits per feature. However with proper setting the loss in
accuracy is negligible while noticeably reducing the resources
used.

B. Discretisation by sorting into intervals

Second optimisation approach uses data from the original
classifier to create a discretisation tree for each feature. This
allows for a more accurate conversion while significantly

reducing resources needed to implement the classifier. Graphs
in figure 3 demonstrate the impact of the conversion in all
presented use cases. As we can see, the discretisation tree
allows to reduce the input vector even further at the cost of
using a little bit more resources to encode the initial values.
These resources may actually exceed the unoptimised design,
either when the classifier is small (small depth of decision
tree) as is the case for 3-A or when the encoder requires a
deep pipeline as in 3-C. In 3-B we can observe a reduction in
resources while preserving the accuracy.

C. Final Comparison

Both tested approaches show a noticeable reduction in the
resulting classifier’s resources while having a negligible impact
on the overall performance. All approaches show a significant
reduction in LUTs used to implement the architecture. As
shown in the L7 classification use-case, the optimisation
allows us to save LUTs, FFs and BRAMs. Graphs in figure 4
compare both optimisation approaches to the original classifier
without optimizations applied for every described use case.
As can be seen from the results, both optimisations reduce
resources utilisation compared to the original HW design.
The reduction allows us to add or remove additional trees
or implement deeper pipeline if needed more easily. In terms
of applied optimisations, sorting values into buckets is more
efficient for L7 classification since it requires a higher reso-
lution. The tree-based discretisation requires more resources
to implement while providing only marginally better results.
However, for other use-cases, the tree-based discretisation
saves more resources and allows us to implement a narrower
pipeline.

V. CONCLUSIONS

We introduced optimised hardware architecture for en-
crypted network traffic analysis in IDS systems. The archi-
tecture is designed for Random Forest, AdaBoost and other
decision trees based classifiers. High-speed frequency and
throughput are achieved by deep processing pipeline. The
architecture utilises two types of optimisations focused on the
feature vector’s data width, which directly impacts the size of
multiplexors and flip-flops in every processing pipeline stage
and interconnection wires in the processing pipeline. We could
reduce by optimisations LUTs by 70.5 % for HTTP brute force
attack detection and by 83 % for DNS over HTTPS detection.
Moreover, the optimisations reduced LUTs by 24 % and
BRAMs by 50 % for the application protocol identification.

As future work, we want to analyse more deeply application
identification use-case. To further reduce hardware resources,
we want to remove one classifier by a set of smaller binary
classifiers.

ACKNOWLEDGMENT

This work was supported by Brno University of Tech-
nology project FIT-S-20-6309 and Security Research project
VI20192022143 granted by Ministry of Interior of the Czech
Republic.

117

117

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 21,2022 at 11:49:15 UTC from IEEE Xplore. Restrictions apply.

8 16 24
Bucket width

0

25

50

75

100
A) DoH

8 16 20 24
Bucket width

0

25

50

75

100
B) HTTPS Bruteforce

Accuracy LUTs Flip-Flops BRAMs

8 16 24
Bucket width

0

25

50

75

100
C) L7 Classification

Fig. 2. Accuracy and resources used for bucket optimisation

2 3 4
Encoding tree depth

0

50

100

A) DoH

5 6 7 8 9
Encoding tree depth

0

25

50

75

100
B) HTTPS Bruteforce

Accuracy LUTs Flip-Flops BRAMs

8 9 10 11
Encoding tree depth

0

25

50

75

100

C) L7 Classification

Fig. 3. Accuracy and resources used for tree encoding optimisation

Bucket-16 Tree-2
0

25

50

75

100
DoH

Bucket-24 Tree-7
0

25

50

75

100
HTTPS Bruteforce

Accuracy LUTs Flip-Flops BRAMs
Bucket-24 Tree-10

0

25

50

75

100
L7 Classification

Fig. 4. Comparison of optimisations to the reference classifier

REFERENCES

[1] Blake Anderson and David McGrew. Identifying encrypted malware
traffic with contextual flow data. In Proceedings of the 2016 ACM
Workshop on Artificial Intelligence and Security, AISec ’16, page 35–46,
New York, NY, USA, 2016. Association for Computing Machinery.

[2] Karel Hynek, Tomáš Beneš, Tomáš Čejka, and Hana Kubátová. Refined
detection of ssh brute-force attackers using machine learning. In Marko
Hölbl, Kai Rannenberg, and Tatjana Welzer, editors, ICT Systems Security
and Privacy Protection, pages 49–63, Cham, 2020. Springer International
Publishing.

[3] Xiang Lin, R.D. Shawn Blanton, and Donald E. Thomas. Random forest
architectures on fpga for multiple applications. In Proceedings of the on
Great Lakes Symposium on VLSI 2017, GLSVLSI ’17, page 415–418,
New York, NY, USA, 2017. Association for Computing Machinery.

[4] D. Tong, Y. R. Qu, and V. K. Prasanna. Accelerating decision tree based
traffic classification on fpga and multicore platforms. IEEE Transactions
on Parallel and Distributed Systems, 28(11):3046–3059, 2017.

[5] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger. Accelerating a
random forest classifier: Multi-core, gp-gpu, or fpga? In 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing
Machines, pages 232–239, 2012.

[6] Dmitrii Vekshin, Karel Hynek, and Tomas Cejka. Doh insight: Detecting
dns over https by machine learning. In Proceedings of the 15th
International Conference on Availability, Reliability and Security, ARES
’20, New York, NY, USA, 2020. Association for Computing Machinery.

[7] Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. A survey
of methods for encrypted traffic classification and analysis. Netw.,
25(5):355–374, September 2015.

118

118

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 21,2022 at 11:49:15 UTC from IEEE Xplore. Restrictions apply.

