
CNIL Privacy Research Day 2022 ; ():1–14

Libor Polčák*, Martin Bednář, Marek Saloň, Giorgio Maone, and Radek Hranický

JShelter: Give Me My Browser Back
Abstract: Please put abstract here.

Keywords: keywords, keywords

1 Introduction
Most of the people interact with web pages on daily
basis. Nowadays, many activities are often carried via
a web browser including shopping, searching for travel
information, doing business and office work, perform-
ing leisure activities such as gaming. For several years,
browser vendors keep adding new JavaScript APIs to
enable development of richer web apllications [?].

Some of the recently added APIs influence the pri-
vacy of the users. For example, the geolocation API1 is
useful when a user searches maps or navigates in the real
world. In this cases, the user is willing to share the lo-
cation. However, the users might not be willing to share
the location with all sites they are visiting. In the case of
geolocation APIs, browsers ask users for permission but
not all APIs asks users for permissions. Moreover, even
in the geolocation API case, the users can grant perma-
nent access to a preferred map service but sometimes
they want to share more precise location (e.g. during
navigation) and other times they want to share the lo-
cation with a limited precision (e.g. they are searching
for a location not related to their current position).

This paper presents a web browser extension called
JShelter that provides the opportunity to tweak the

*Corresponding Author: Libor Polčák: Faculty of
Information Technology, Brno University of Technology,
Božetěchova 2, 612 66 Brno, Czech Republic, E-mail: pol-
cak@fit.vut.cz
Martin Bednář: Faculty of Information Technology, Brno
University of Technology, Božetěchova 2, 612 66 Brno, Czech
Republic, E-mail: ibednar@fit.vut.cz
Marek Saloň: Faculty of Information Technology, Brno Uni-
versity of Technology, Božetěchova 2, 612 66 Brno
Giorgio Maone: InformAction, Palermo, Italy, E-mail: gior-
gio@maone.net
Radek Hranický: Faculty of Information Technology, Brno
University of Technology, Božetěchova 2, 612 66 Brno, E-mail:
ihranicky@fit.vut.cz

1 https://developer.mozilla.org/en-US/docs/Web/API/
Geolocation

APIs that the browser provides to the web pages. To
do so, we study the JavaScipt code constructs that can
be leveraged to tweak the APIs according to the user
current needs. We implemented JShelter for Firefox,
and Chromium-based browsers like Chrome, Opera, and
Edge.

Evaluation ...
This paper is organized as follows. Section 2

presents the threats that the users face during web
browsing. Section 3 compares the extension described
in this paper to other security and privacy related ex-
tensions. Section 4 provides the design decisions that
we faced during the development of JShelter. Section 5
reports on the success of the extension. Section 6 dis-
cusses the impact of this work and Section 7 concludes
this paper.

2 Threats
This section presents threats that every web user faces
everytime they load and execute unknown JavaScript
code. Although modern browsers JavaScript engines
employ security measures, such as same-origin policy2,
there are still threats that are not mitigated.

2.1 T1: Detail user behaviour monitoring

In theory, law like GDPR and ePrivacy Regulation give
each person control over their personal data and devices.
In practise, there is a significant lack of control of per-
sonal data on web [7, 22, 32, 33, 42]. The advertisement
technologies are under a big scrutiny in Europe [? ?]
but tracking scripts are omnipresent on the web. Users
risk complete revelation of their browsing history.

Web content providers want detail information on
user interaction with the web pages. JavaScript event
listeners and handlers can track user activities such as
mouse movement, typing, clicking etc. [11]. The web
site operator can replay the user session in real time
or later. Customer services provide chat windows pro-
viding information in real time. However, some libraries

2 https://developer.mozilla.org/en-US/docs/Web/Security/
Same-origin_policy

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

JShelter 2

for the chat interaction transfers the question as it is
typed instead of waiting for the user to press the send
button [21].

2.2 T2: Browser and computer
fingerprinting

Historically, T1 tracking was performed using third
party cookies. However, browser vendors limit third
party cookies. Hence trackers move to alternative ways
of identifying users. Browser and computer fingerprint-
ing is a stateless tracking method that tries to find a set
of features that make (almost) every browser uniquely
identifiable. [8, 10, 28, 29]. For example, the content
of HTTP headers including user agent string, screen
size, language, time zone, and system fonts together
with hardware-dependant characteristics such as canvas
image rendering [8, 36], audio processing [12], installed
fonts [14], installed browser extensions [19, 44, 45, 50],
the sites that the user is currently logged in [19], clock
skew [26, 41] and other techniques [28]. The goal of the
fingerprinter is to provide stable identifier of a user so
that the user is identifiable on different sites. Computer
fingerprint is the same in every browser on the same
computer, while browser fingerprint differs for different
browsers running on the same computer. Recent stud-
ies shown that user tracking is becoming more preve-
lant and complex [31]. Note that the leaking information
may uncover vulnerabilities of the fingerprinted systems
and a fingerprinting database can be a valuable source
of information for an adversary wanting to misuse the
data.

A fingerprint is considered passive when it con-
tains natively accessible information from HTTP head-
ers or network traffic. On the other hand, active finger-
print runs JavaScript code to retrieve data from browser
APIs. One of the goals of JShelter extension is to pre-
vent active fingerprinting.

Several studies monitored the deployed fingerprint-
ing techniques on the Internet [2, 3, 12, 15, 39]. Results
indicate that evercookies, shared cookies, font enumera-
tion, and canvas are commonly used to identify browsers
and consequently their users.

Fortunately, Mozilla is working on integrating some
fingerprinting resisting techniques from Tor browser3,
however, the counter-meassures were found to be insuf-
ficient [44, 57].

3 https://bugzilla.mozilla.org/show_bug.cgi?id=1329996

Current research distinguish targeted and not tar-
geted fingerprinting [28]. Not targeted fingerprinting fo-
cuses on observing visiting browsers or computer fin-
gerprints and trying to link their identity to a previous
visitor. Targeted fingerprinting tries to detect a tailored
fingerprint of an individual, for example for law enforce-
ment investigations [44].

Browser fingerprinting can be also used for benign
use cases like multifactor authentication — if a web-
site detects that a user connects from the same device
as previously seen, it is not necessary to perform addi-
tional authentication steps. A website can recommend
installing critical security updates based on your system
properties, like the version of the browser. Some web-
sites collect browser fingerprints to distinguish human
users and bots to prevent fraud.

2.3 T3: Sensors

Modern (especially portable) devices contain various
sensors4 for reading information about the device posi-
tion, state, and environment. While the benefits of hav-
ing sensors are undisputed, allowing websites to access
their readings represents a considerable danger.

Sensor APIs are currently implemented, or par-
tially implemented, in Chromium-based browsers like
Chrome, Edge, and Opera. For Android devices, the
support exists in Chrome for Android, Opera for
Android, and various Chromium-based browsers like
Samsung Mobile or Kiwi Browser. The concrete sup-
port for individual classes depends on the browser
type and version. Some features are considered ex-
perimental and do only work when browser flags like
#enable-experimental-web-platform-features or
#enable-generic-sensor-extra-classes are enabled.

Both Generic Sensor W3C Candidate Recommen-
dation Draft5 and literature mentions several risks like
location tracking [20], eavesdropping, keystroke mon-
itoring, device fingerprinting [56], and user identifica-
tion [4].

2.4 T4: Hostile third party scripts

Whenever a user visit a web page, it can include exter-
nal scripts using the script element (for example the

4 https://w3c.github.io/sensors/
5 https://www.w3.org/TR/2021/CRD-generic-sensor-
20210729/#main-privacy-security-threats

https://bugzilla.mozilla.org/show_bug.cgi?id=1329996
https://w3c.github.io/sensors/
https://www.w3.org/TR/2021/CRD-generic-sensor-20210729/#main-privacy-security-threats
https://www.w3.org/TR/2021/CRD-generic-sensor-20210729/#main-privacy-security-threats

JShelter 3

script provided by an advertisement provider or the
script performing visitor analysis, see T1). All scripts,
including the external scripts, can access the document
object model (DOM) of the web page and have the same
capabilities as scripts hosted on the same domain. Con-
sequently, if a first party can access sensor data (T3),
a third party script can access the same data. Note
that tracking (T1) is typically performed by third party
scripts.

DOM dynamically reflects changes of the page, in-
cluding password and credit card strings. Several re-
searchers [1, 47, 53] warn that the autofill functionality
of password managers can be tricked by hostile scripts
to leak user credentials without their awareness. Other
research focused on contact forms that leak personal
data to unintended recipients [51]. Some packages aim
at money stealing [43].

Modern web development includes many libraries.
Decan et al. [9] studied the npm ecosystem — package
vulnerabilities and the time needed to fix a vulnera-
bility. They observed that it often takes a long time to
discover vulnerabilities. It is very common that websites
use libraries with known security vulnerabilities [30].
Lauinger et al. [30] observed that web sites use un-
patched libraries for years. Additionally, they observed
that libraries included transitively or via ad tracking
code are more likely to be vulnerable as the ecosystem
is complex, unorganized and it is often hard to identify
the vulnerable package versions. Sometimes, multiple
versions of the same library are included simultaneously.
Mush et al. [37] explored that 25% of all sites affected
by client-side cross-site scripting are only vulnerable due
to a flaw in the included third party code.

Figure 1 shows the trend in the number of
pages with detected vulnerabilities created by HTTP
Archive6. It seems that in the last years the pages are
becoming less vulnerable but more 58.9% of pages are
vulnerable to at least one known and detected vulnera-
bility.

Fig. 1. Web pages with detected vulnerabilities by HTTP archive.

6 https://httparchive.org/reports/state-of-the-web#pctVuln

2.5 T5: Local network scanning

Devices browsing web are typically connected behind
NAT that does not allow external hosts to open con-
nections to devices in local network (e.g. printers). Al-
though the same-origin policy does not allow a web page
to access arbitrary resource on any site, there are side-
channels that might provide enough information about
an existence of a resource, including resources in the
local network [5]. The web browser is used as a proxy
between the remote web site and resources in local net-
work. Bergbom [5] demonstrated that it possible to ex-
ecute arbitrary command on a local machine under cer-
tain circumstances (in this case it was an insecure Jenk-
ins configuration).

2.6 T6: Microarchitectural attacks

Previous research also focused on side channels that
can reveal what is the user doing with the computer
at the moment or was the computer doing recently. For
example, content-based page deduplication performed
by operating system or a virtual machine hypervisor
can reveal if specific images or web sites are currently
opened [17] on the same computer (HW) possibly on
another virtual machine. The reply time for a specific
request depends on the cache content, so the reply time
reveals if the content was recently visited [13]. More-
over, even uncached content leaks information on the
server state [6]. Bortz and Boneh [6] studied server
reply times influenced by different code paths taken
by the server and were able to reveal private informa-
tion. The requestAnimationFrame API can be used to
time browser rendering operations and reveal informa-
tion on browser history and read pixels from cross-origin
iframes [54].

Operating systems isolate processes from each other
and the kernel. However, deficiencies in hardware can
provide possibilities to circumvent the isolation. Gruss
et al [18] exploited JavaScript to modify memory cells
belonging to different processes (the attack is called
Rowhammer). Hence, they gained unrestricted access
to systems of website visitors. They exploited operating
systems optimizations and high-precision timings [18].
Later, Gruss et al. [16] showed that industry counter-
measures against Rowhammer attacks are ineffective.
Recently, Spectre attacks was proven to be executed
from JavaScript code [25] and for example leak data
in the memory of other processes running on the same
system.

https://httparchive.org/reports/state-of-the-web#pctVuln

JShelter 4

Van Goethem et al. [55] employed timing attacks to
reveal data about users, for example by measuring the
size of the reply for resources with different contents
based on users age, gender and location.

Smith et al. [48] determined browser history by the
visited link pseudoclass and timining redrawing of the
links based on the target URL.

3 Countermeasures
Many popular security and privacy enhancing browser
extensions already exists. Let us focus on existing tools
addressing the threats raised in Sect. 2.

3.1 Browser extensions

Adblockers and other tracker blockers typically address
threats T1 and T2 but can also address T5 and T6.
The blockers employ lists of URLs or parts of URLs
that are considered harmful to user privacy or secu-
rity. The advantage for the user is that there are many
tools focusing on blocking (for example uBlock Ori-
gin, EFF Privacy Badger, Ghostery) and also block-
lists that are usually compatible with several blockers.
Browser like Firefox [27] and Brave include tracking pre-
vention by default. The downside is that it is easy to
evade blockers [34]. The malicious web server needs to
change the name of the script. For example, one of the
Czech bank is currently being investigated for including
tracker scripts in their internet banking, the scripts were
not matched by the default uBlock Origin block lists.
Hence, block lists are very useful as a first line defence
and to improve web performance [27]. But blockers are
not enough as the niche cases evade the blockers [34].

Extensions like NoScript Suite and uMatrix Ori-
gin allow users to block JavaScript or other content ei-
ther completely or per domain. Hence, they can address
all six threats raised in Sect. 2. But the user needs to
evaluate what scripts to allow. HTTP Archive reports7

that an average page includes 22 external requests (21
requests for mobile devices). Many pages depend on
JavaScript. Users must select what content to trust.
A typical page content resources from many external
sources so such user would need to have a very good
knowledge. Moreover, a malicious code may be only a

7 https://httparchive.org/reports/page-weight?start=
earliest&end=latest&view=list#reqJs

part of a resources, the rest of the resource can be nec-
essary for correct page functionality. So we believe that
extensions like NoScript Suite and uMatrix Origin are
good but do not protect the user from accidentally al-
lowing a malicious code.

JavaScript Zero [35] (also known as Chrome Zero8)
expects that a user lets the browser run the vulnerable
code and focuses on mitigating T6. Even most skillful
users can run malicious code if the script URL evades
blocklists and other parts of the code are needed for the
page to display correctly. However, the practical imple-
mentation supports only Chromium-based browsers, is
not maintained since 2017, and Shusterman et al. [46]
have shown that the webpage can obtain access to the
original API calls.

Web API Manager [49] classifies JavaScript APIs
into 81 standards9. The user of the Web API Manager
extension can disable all functionality defined by any
of the standards. Authors prepared three configurations
with standards blocked depending of their benefits and
costs [49]. Web API Manager is most effective against
T3 and not targeted T2 but it can be useful in miti-
gating other threats. Unfortunately, Web API Manager
does not allow a user to allow only a part of the stan-
dard, e.g. it is not possible to allow Canvas API for
drawing but disallow reading that is used for finger-
printing [36]. Additionally, the extension is no longer
maintained10, it is not compatible with Firefox Multi-
Account Containers11, and it suffers from the Firefox
bug related to CSP [?]. AWeb API Manager user with a
tailored configuration can potentially be uniquely iden-
tified with the JavaScript enumerating code developed
by Schwarz et al. [44].

Other vital extensions are cookie managers (threat
T1) or local CDN cachers (threats T1 and T4).

3.2 Privacy-focused browsers

Tor is a network of onion routers that allow relaying
TCP connections so that the server does not learn the
IP address of a clients but an IP address of a Tor exit
node. Torbrowser is a Firefox fork that tries to make ev-

8 https://github.com/IAIK/ChromeZero
9 https://github.com/snyderp/web-api-manager/tree/master/
sources/standards
10 See the message on the GitHub page https://github.com/
snyderp/web-api-manager/blob/master/README.md
11 See https://github.com/snyderp/web-api-manager/issues/
53 for more details

https://httparchive.org/reports/page-weight?start=earliest&end=latest&view=list#reqJs
https://httparchive.org/reports/page-weight?start=earliest&end=latest&view=list#reqJs
https://github.com/IAIK/ChromeZero
https://github.com/snyderp/web-api-manager/tree/master/sources/standards
https://github.com/snyderp/web-api-manager/tree/master/sources/standards
https://github.com/snyderp/web-api-manager/blob/master/README.md
https://github.com/snyderp/web-api-manager/blob/master/README.md
https://github.com/snyderp/web-api-manager/issues/53
https://github.com/snyderp/web-api-manager/issues/53

JShelter 5

ery instance as uniform as possible. For example, every
user should browse with the same window size. But a
fingerprinter can still learn some information like the un-
derlying operating system [28]. Torbrowser also disables
several APIs like WebGL. Consequently, Torbrowser is
a very good solution to tackle threats T1, T2, T3, T5,
and T6. Nevertheless, Torbrowser user should not in-
stall additional extensions to prevent fingerprinting, re-
size window. As the communication is relayed multiple
times by relays spread around the world, both latency
and throughput is limited. The list of Tor exit node IP
addresses is public. Moreover, Tor is often misused by
malicious actors. Some services block Tor traffic, either
to prevent frequent attacks or as a temporary measure
to block an attack.

Brave browser is a Chromium fork that focuses on
privacy. For example, it has a built-in blocker and anti-
fingerprinting solution. Using Brave is a good option to
tackle T1, T2, T5, and T6. A disadvantage is the long
build time, often, it is not available in Linux distribution
repositories.

3.3 Current browser fingerprinting
countermeasures

Let us summarise the anti-fingerprinting protections of
the tools covered in this section. Modifying the content
of fingerprints is a valid choice to resist a fingerprinting
attempt. However, each modification may create an in-
consistency that may improve the fingerprintability of
the browser [28]. Currently, three sensible approaches to
modify fingerprintable values exist.

(1) Create homogeneous fingerprints. If the com-
monly used fingerprinting APIs returned the same val-
ues in every browser, a fingerprinter would not be able
to construct a fingerprint and tell the users behind the
browsers apart. The leading representative of this ap-
proach is Torbrowser. Unfortunately, homogeneous fin-
gerprints have an inherent downside of following specific
rules to be effective. Most importantly, the effectiveness
of the approach depends on the broad coverage of the
blocked APIs and the size of the population employ-
ing the counter-measures. All browsers with the same
fingerprint form an anonymity set [40]. An observer
cannot distinguish between browsers in the anonymity
set. With every missed fingerprintable attribute, the
anonymity set breaks into smaller sets. For example,
Torbrowser strongly recommends using a specific win-
dow size. Suppose a user changing a window size to a
value different from all other Torbrowser users. In that

case, a fingerprinter can identify the user solely by this
attribute. Moreover, Torbrowser hides the IP address of
the user. A webextension cannot hide or mask the IP
address.

(2) Change the fingerprints on different domains to
disable cross-domain linkage. Brave browser also modi-
fies the results of APIs commonly used for fingerprint-
ing. Its goal is to create a unique fingerprint for each
domain and session. As the output of APIs commonly
used for fingerprinting changes for every visited domain,
its cannot be used for cross-domain linking of the same
browser.

(3) Detect and block fingerprint attemps. As previ-
ous approaches targeted mainly fingerprinting mitiga-
tion, other countermeasures may take radical steps to
provide more definitive protection. An likelihood of on-
going fingerprinting can be detected based on various
factors. One of which can be access to APIs that pro-
vide sensitive information about browser environment.
In case of effective real-time fingerprinting detection,
there is an opportunity to deploy anti-fingerprinting
measures in time. It is essential to successfully defy any
misuse of the gathered fingerprint. First of all, tracking
server should not have access to the fingerprint by any
means necessary. To reliably prevent sharing the finger-
prints with trackers, any network traffic to the tracking
server should be blocked. Secondly, it is wise to remove
any trace of the fingerprint from a browser to prevent
later use. Mechanisms like browser cache, cookies or lo-
cal storage can be misused to store the fingerprint and
should be cleared preventively. As much as these mea-
sures can be effective against fingerprinting, they also
impose serious restrictions on web applications, limit
overall usability, and decrease user experience. Finger-
printing detection can also be problematic and have
questionable precision. In practice, it takes time to de-
tect that a fingerprint is indeed being computed. As a
page can immediately send the values being used for
fingerprinting to the server, the page can learn a partial
fingerprint before it is detected and blocked.

4 JShelter Design Decisions
As the current state-of-the-art covered in Sect. 3 sug-
gests, there is no simple and perfect solution for the
threats raised in Sect. 2. This section covers the design
decisions of JShelter and the countermeasures we de-
cided to implement.

JShelter 6

JShelter does not aim on providing a perfect solu-
tion either. Our goals are as follow:
1. Create an webextension because webextensions

work across multiple browsers and consequently can
be easily installed into any browser that support we-
bextension including Firefox and all browsers based
on Chromium.

2. Do not create a perfect solution, rather focus on
what other webextension lack: consistent approach
to the threat T2 and a protection from T3, T412,
T5, and T6.

3. Make the webextension friendly for people without
technical knowledge.

Chrome Zero [35] and Web API Manager [49] were the
inspiration for JShelter. Chrome Zero provides exam-
ples of protections like closures and Proxy objects. It
focuses on microarchitectural attacks. Web API Man-
ager provides a way to selectively disable browser APIs.

Currently, JShelter offers three types of protections.
(1) JavaScript Shield modifies or disables JavaScript
APIs, it aims on threats T2, T3, and T6. (2) Finger-
print Detector provides heuristic analysis of fingerprint-
ing behaviour and tackles T2

Fingerprint detector report, figure
A slightest mismatch between results of two APIs

can make user more visible to fingerprinters [28, 38].
Hence, all protections are considered from the point
of fingerprintability and the threat to leak information
about the browser or user and other threats presented in
Sect. 2. When it does not require to much work, JShel-
ter tries to mimic a stationary device with consistent
and plausible readings.

4.1 Fingerprinting protection

JShelter offers two predefined profiles that we expect
that users should use. One profile focuses on making
the browser appear differently to distinct fingerprinting
origins by slightly modifying the results of API calls in
different way on different domains so that the cross-site
fingerprint is not stable [?]. The focus is on applying
security counter-measures that are likely not to break
web pages.

The other profile focuses on limiting the information
provided by the browser by returning fake values from

12 Currently, JShelter does not provide any protection for T4
but we plan to add such support in the future

the protected APIs. Some are blocked completely, some
provide meaningful but rare values, other return mean-
ingless values. This level makes the user fingerprintable
because the results of API calls are generally modified
in the same way on all webistes and in each session.

In addition we offer a fingeprinting detector that
monitors the protected APIs and other APIs that are
commonly used by fingerprinters similarly to previous
researchers [28?]. When a fingerprinting attempt is de-
tected, the user is notified and optionally can block fur-
ther HTTP requests by the page and delete all storage.
The goal is to prevent computing the full fingerprint
and uploading it to the server. Should the fingerprinter
collect all values and compute the fingerprint before any
upload, the aggressive mode completely prevents the
fingerprinting. However, the fingerprinter can gradually
upload detected values and a partial fingerprint can leak
the browser.

4.2 Sensors

JShelter tries to simulate a stationary device and conse-
quently completely spoofs the readings of Geolocation
API and AmbientLight, AbsoluteOrientation, Relative-
Orientation, Accelerometer, LinearAcceleration, Grav-
ity, Gyroscope, and Magnetometer sensors.

Instead of using the original data, JShelter returns
artificially generated values that look like actual sensor
readings. Hence the spoofed readings fluctuate around a
value that is unique per origin and session. The readings
are performed consistently in the same origin tabs, so
the same sensor produces the same value in each tab.

We observed sensor readings from several devices
to learn the fluctuations of stationary devices in differ-
ent environments. Most of the sensors have small de-
viations but, for example, magnetometer readings have
big fluctuations. Magnetometer fluctuation is simulated
by using a series of sines for each axis. Each sine has a
unique amplitude, phase shift, and period. The number
of sines per axis is chosen pseudorandomly. JShelter cur-
rently employs 20 to 30 sines for each axis. Nevertheless,
the optimal configuration is subject to future research.
More sines give less predictable results but also increase
the computing complexity that could negatively impact
the browser’s performance.

The readings of the acceleration and orientation sen-
sors are generated consistently between each other from
an initial device orientation that JSheltergenerates for
each origin and session.

JShelter 7

4.3 Network Boundary Shield

Network Boundary Shield prevents web pages to use
the browser as a proxy between local network and the
public Internet. [?] for examples of attacks handled by
the Network Boundary Shield. The protection encapsu-
lates the WebRequest API, so it captures all outgoing
requests.

4.4 Code ported from Chrome Zero

4.5 Farbling-like prevention of browser
fingerprinting

We decided to borrow the protection implemented in
Brave13 and apply the same or very similar protection in
JShelter. Farbling uses generated session and eTLD+1
keys to deterministically change outputs of APIs com-
monly used for browser fingerprinting. These little lies
result in different websites calculating different finger-
prints. Moreover, a previously visited website calculates
a different fingerprint in a new browsing session. Con-
sequently cross-site tracking is more complicated. But

2 iterations, significant performance hit

4.6 Fingerprint detector

We developed a JShelter module dedicated to browser
fingerprinting detection called FingerPrint Detector
(FPD). FPD applies a heuristic approach to detect fin-
gerprinting behaviour in real-time. FPD counts calls
to JavaScript APIs often employed by fingerprinting
scripts. When FPD detects fingerprinting attempt, it
will (1) inform the user, (2) prevent uploading of the
fingerprint to the server, (3) prevent storing the finger-
print for later usage. The heuristic approach was chosen
as many prior studies [2, 12] proved it to be a viable
approach with a very low false-positive rate. The most
challenging part of this approach is a careful selection
of detection conditions.

Nevertheless, we expect that the APIs for finger-
printing will change in time so that we designed the
heuristics as flexible as possible. We expect to run pe-
riodic web crawls based on the tools initially developed
by Snyder et al. [?]. The heuristics contain two basic

13 See https://github.com/brave/brave-browser/issues/8787
and https://github.com/brave/brave-browser/issues/11770

types of entries: (1) JavaScript API endpoints, which
are relevant for fingerprinting detection and (2) a hier-
archy of groups of related endpoints. For example, we
group endpoints according to their semantic properties.
Imagine that there are two different endpoints. Both
provide hardware information about the device. We can
assign both endpoints to a group that covers access to
the same hardware properties. The heuristics allow clus-
tering groups to other groups and creating a hierarchy
of groups. Ultimately, the heuristics are a tree-like struc-
ture that computes the threat that a webpage tried to
obtain enough information to compute a unique finger-
print.

Our heuristics are based on knowledge and rules
that originated from previous studies. Iqbal et al.
[24] measured the relative prevalence of API keywords
in fingerprinting scripts and created a list of APIs
using this metric. We extracted selected APIs from
the list into groups in our heuristics. We also build
upon heuristics proposed by Englehardt and Narayanan
[12] to detect additional fingerprinting techniques. We
looked through the source code of fingerprinting tools
like FingerprintJS14, Am I Unique15 and Cover Your
Tracks16. Furthermore, we analyzed existing detection
tools, namely A Fingerprinting Monitor For Chrome
(FPMON)17 and Don’t FingerPrint Me (DFPM)18.

The whole evaluation process dynamically observes
the API calls performed by a web page. We analyse
the calls themselves. Hence, the dynamic analysis over-
comes any obfuscation of fingerprinting scripts. Once
a fingerprint attempt is detected, JShelter informs the
user. The user can configure JShelter to reactively block
subsequent asynchronous HTTP requests initiated by
the fingerprinting page and clear the storage facilities
where the page could have stored a (partial) fingerprint.
However, this behaviour may brake the page.

4.7 Early modification of JavaScript
environment

The core functionality of the extension lays in modify-
ing the results of the built-in JavaScript APIs and built-
in object behaviour. JShelter employs the same mecha-

14 https://github.com/fingerprintjs
15 https://amiunique.org/
16 https://coveryourtracks.eff.org/
17 https://fpmon.github.io/fingerprinting-monitor/
18 https://github.com/freethenation/DFPM

https://github.com/brave/brave-browser/issues/8787
https://github.com/brave/brave-browser/issues/11770
https://github.com/fingerprintjs
https://amiunique.org/
https://coveryourtracks.eff.org/
https://fpmon.github.io/fingerprinting-monitor/
https://github.com/freethenation/DFPM

JShelter 8

nism proposed by Schwarz et al. [35] in Chrome Zero.
However, Chrome Zero was a proof-of-concept without
any modification in the last 4 years. As Shusterman et
al. [46] note, there are several problems with the Chrome
Zero: original implementation available through proto-
type chain, ...

Moreover, current webextension APIs lack a reliable
way to inject scripts modifying the JavaScript environ-
ment before page scripts starts running and have the
opportunity to store the original API calls. Firefox suf-
fers from a long-standing unfixed bug 126702719 that
possibly prevents 10% of Firefox extensions from work-
ing correctly on pages with Content-Security-Policy pro-
hibiting inline scripts [23]. A significant effort of the
JShelter development went into developing a reliable
cross-browser early script injection.

FIXME Giorgio, describe our approach, Chrome
debug interface, Firefox shielding and the related prob-
lems — we need to make extension objects available for
page scripts and vice-versa, this is costly, needs a lot of
code for compound objects. iframes, nested iframes, etc.
Possibly introduce NSCL

5 Results

5.1 Crawl study

We have developed web crawler20 that collects
JavaScript calls made by each visited website. The
crawler is based on OpenWPM21 and a modified web
browser extension Web API Manager22 that collects
statistics of called JavaScript APIs.

The crawler visits the most visited website from the
Tranco lists and observes the difference in calls without
a privacy preserving extension like uBlock Origin. The
goal is to identifiy the APIs that are called by the page
without the privacy preserving extension and blocked by
the extension. As the blocked content usually perform
fingerprinting, analytics, or other activities that are not
necessary, such data would train the fingerprint detector
not only for fingerprinting but also for other blocked be-
haviour. It is an open research question if this is desired
or not.

19 https://bugzilla.mozilla.org/show_bug.cgi?id=1267027
20 https://github.com/martinbednar/web_crawler/
21 https://github.com/openwpm/OpenWPM
22 https://github.com/pes10k/web-api-manager

For now, we only visited the homepages because we
wanted to visit as many different websites as possible. In
the future, we plan to launch long-term crawling, which
will include subpages. In particular, we want to focus on
visiting login pages, where we expect fingerprint scripts
to be prevalent. Then, we can compare API calls on
login pages and other pages.

We tried to visit the first 250 000 websites from the
Tranco list23). 211 843 homepages of websites from the
Tranco list were successfully visited in both modes -
with and without uBlock Origin. More than 4 000 000
000 JS calls were intercepted and stored into SQLite
databases24.

The crawl identified JavaScript endpoints, often
used to create a browser fingerprint. The observed data
allow assigning weights for each endpoint and future im-
provements of Fingerprint Detector.

5.2 FPD study

It is a great challenge to differentiate between benign
and fingerprinting usage of a JavaScript APIs. Hence,
the heuristics approach needs careful fine-tuning. We
focused on targeting mainly excessive fingerprints and
keeping a number of false positives as low as possible.
As FPD strictly blocks all subsequent requests, we must
ensure that this blocking occurs only in the necessary
cases when there is a high likelihood of fingerprinting.
We conducted real-world testing of FPD and refined its
detection heuristics accordingly.

In terms of testing methodology, we manually vis-
ited homepages and login pages of the top 100 web-
sites from the Tranco list25. Inaccessible websites were
randomly replaced by ones from the top 200 list. For
each page visit, we wiped browser settings to ensure
determinism of initial access. As the erasure removed
any previously-stored identifier, the visited pages may
have deployed fingerprinting scripts more aggressively
to identify the user and reinstall the identifier.

To boost the probability of fingerprinting even
more, we switched off all protection mechanisms offered
by the browser. However, we blocked third-party cookies
because our previous experience suggests that the miss-
ing possibility to store a permanent identifier tempts
trackers to start fingerprinting. To see an impact of a

23 X79N, https://tranco-list.eu/list/X79N/1000000
24 https://nextcloud.fit.vutbr.cz/s/XKm3PCZnr2xkPH9
25 https://tranco-list.eu/list/23W9/1000000

https://bugzilla.mozilla.org/show_bug.cgi?id=1267027
https://github.com/martinbednar/web_crawler/
https://github.com/openwpm/OpenWPM
https://github.com/pes10k/web-api-manager
https://tranco-list.eu/list/X79N/1000000
https://nextcloud.fit.vutbr.cz/s/XKm3PCZnr2xkPH9
https://tranco-list.eu/list/23W9/1000000

JShelter 9

Ground truth (FPMON + DFPM) JShelter (FPD) False positives (FPD) False negatives (FPD)
Homepages 20 20 1 0
Login pages 34 30 1 7

Table 1. Results of FPD study from manual crawl of the top 100 web pages according to the Tranco list.

browser on the detection process, we used both Google
Chrome26 and Mozzila Firefox27.

We needed the ground truth for web pages employ-
ing fingerprinting. We used both FPMON and DFPM
extensions to create the ground truth. We selected these
two extensions because they are the only ones capable
of real-time fingerprinting detection. FPMON reports
fingerprinting pages with colour. We assigned Yellow
colour 1 point and red colour 3 points. DFPM reports
danger warnings. If DFPM reports one danger warning,
we assign 1 point to the page. For a higher number of
danger warnings, we assign 3 points to the page. There-
fore, each page gets a fingerprinting score from 0 to 6.

(1) The score of 6. FPD successfully detects such
pages. The only exception was Google login page. FPD
does not detect excessive fingerprinting there as other
extensions did. Google login occurred six times in to-
tal during testing and we count them as false nega-
tives. Nevertheless, the final fingerprint is not aggres-
sive enough to provide enough entropy to identify most
users uniquely.

(2) The score of 4. We still classify these web pages
as deploying fingerprinting. FPD managed to detect all
web pages with two exceptions, Facebook login page and
yandex.ru. Both are border-line cases that do not ob-
tain enough entropy.

(3) The score of 3. FPMON and DFPM treat
browser fingerprinting differently, so we observed a few
web pages with this score. It is questionable how to clas-
sify these pages when the reference extensions conflict.
FPD detected fingerprinting only on one of these pages,
Paypal login page. We consider this detection justified
as we found clear tracks of canvas fingerprinting.

(4) The score of 2. We assume that web pages with
this score may or may not be fingerprinting and the
fingerprint is likely short on entropy. Moreover, these
web pages are prone to misclassification because they
may be close to the heuristic threshold. FPD detected
two web pages with this score, namely Cloudflare login
page and Washington Post login page. A closer analysis
revealed that both pages use canvas fingerprinting in
conjunction with other fingerprinting methods.

26 https://www.google.com/chrome/
27 https://www.mozilla.org/en-US/firefox/

(5) The score of 1 or 0. FPD should not detect such
web pages as fingerprinting. However, FPD detected
fingerprinting on ebay.com. Manual inspection showed
that ebay.com did indeed fingerprint using canvas fin-
gerprinting, audio fingerprinting and other techniques.

In conclusion, we classify a page to be fingerprinting
when its score is above or equal to 4. We did not count
pages with the score of 3 or 2 as fingerprinting because
they may not be engaged in fingerprinting in reality. It
means that FPD may or may not detect such pages;
we do not count such classification as an error in both
cases. As discussed above, we manually inspected FPD
in these situations. Finally, we consider anything below
the score of 2 as not fingerprinting.

Study results are shown in table 1. Different heuris-
tic thresholds of the extensions caused the main dif-
ference during testing. However, as we found out, the
ground truth is far from being flawless. We encountered
many exceptions during testing and examined them in
detail. In many cases, FPD detects fingerprinting, but
the reference extensions do not. For ebay.com, neither
FPMON nor DPFM identified the ongoing fingerprint-
ing. We got a very low false positive rate and an accept-
able false negative rate in terms of methodology.

We also observed other notable behaviour during
the testing. The asymmetry between detection on dif-
ferent browsers was minor and had minimal impact
on detection. Moreover, FPD automatically recalculates
heuristics to compensate for unsupported APIs. Finally,
note that blocking tools like adblockers can significantly
reduce the number of positive detections. These tools
use filter lists to block tracking scripts before their exe-
cution. Using FPD with a filter-based blocking tool can
significantly improve user experience and privacy.

5.3 Sensors

We discovered a loophole in the Sensor.timestamp
attribute28. The value describes when the last
Sensor.onreading event occurred, in millisecond pre-

28 Tested with Samsung Galaxy S21 Ultra; An-
droid 11, kernel 5.4.6-215566388-abG99BXXU3AUE1,
Build/RP1A.200720.012.G998BXXU3AUE1, Chrome
94.0.4606.71 and Kiwi (Chromium) 94.0.4606.56 and Xi-

https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/

JShelter 10

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 100000 200000 300000 400000 500000 600000

x

y

y

M

Magnetometer data from a stationary device

(a) Stationary device

-60

-40

-20

 0

 20

 40

 60

 80

 0 100000 200000 300000 400000 500000 600000

x

y

y

M

Magnetometer data from a moving device

(b) Moving device

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 100000 200000 300000 400000 500000 600000

x

y

y

M

Data from a device with the fake magnetometer

(c) Fake readings

Fig. 2. Magnetometer readings.

cision. We observed the time origin is not the time of
browsing context creation but the last boot time of the
device. Exposing such information is dangerous as it al-
lows to fingerprint the user easily. It is unlikely that two
different devices will boot at exactly the same time.

JShelter protects device by provisioning the time
since the browser created the page context (the same
value as performance.now(). Such timestamp uniquely
identify the reading without leaking anything about a
device. A future work can determine if such behaviour
appear in the wild. If all devices and browsers will incor-
porate the loophole, we should provide a random time
of boot.

Figure 2 shows readings from a real and fake mag-
netometer. The left part (a) shows a stationary device,
the magnetic field is not stable due to small changes in
Earch magnetic field and other noise. The middle part
of the figure (b) shows a device that changed its posi-
tion several times during the measurement. We analysed
traces of sensors readings collected in various locations
and environment. Fig. 2 (c) shows readings generated
by JShelter fake magnetometer. The values look like ac-
tual sensor readings. Nevertheless, the generator uses a
series of constants, whose optimal values should be a
subject of future research and improvements.

5.4 Feedback from users

JShelter users also reported increased number of false
positives when using DNS-based filtering programs. If
you use one, make sure that DNS returns 0.0.0.0 for the
blocked domains.

aomi Redmi Note 5; Android 9, kernel 4.4.156-perf+, Build/9
PKQ1.180901.001, Chrome 94.0.4606.71

5.5 eBay, block the page

Some web pages, like ebay.com, scan (some users) for
opened local TCP ports to detect bots having opened
remote desktop access or possibly to create a fingerprint.
The web page instructs the browser to connect to the
localhost (127.0.0.1) and monitors the errors to detect
if the port is opened or closed. See Fig. 3 for an example.

Fig. 3. eBay webpage scanning the local computer for open ports.

Although it could be that the underlying intentions
are benign and users actually do benefit from the scan-
ning, the scanning raises some ethical issues.

Very often, security and privacy are interconnected.
But sometimes, one might increase security by revealing
something private. In this case, the script information
about the running device that is not obvious to the de-
vice owner (a user or a company). Typically, the owner
of the device does not even know that such information
can leak. If the information stays with ThreatMetrix,
then the benefits could appear to be greater than the
disadvantages. However, adversaries could stole infor-
mation from ThreatMetrix. As the Article 29 Working
Party clarified [? , use case 7.5], user-centric security

ebay.com

JShelter 11

can be viewed as strictly necessary to provide the ser-
vice. So it seems likely that port scanning for security
reasons would trigger the ePrivacy exception and user
consent is not necessary.

As the port scanning is a part of the login mecha-
nism, open ports are personal data without doubts. So
GDPR also applies. GDPR also list security as a possi-
ble legitimate interest of a data controller (e.g. eBay),
see recital 49. Nevertheless, if such a scan is proportion-
ate is an open question; it is possible that the legitimate
interests of data controllers (such as eBay) are overriden
by the interests or fundamental rights and freedoms of
the data subject (you), see Article(6)(1)(f). The Court
of Justice of EU (CJEU) decided several issues that con-
cerned legitimate interests and the necessity of process-
ing, e.g. C-13/16, C-708/18.

Nevertheless, Article 12-14 of GDPR lists require-
ments on the information that a data controller should
reveal to each data subject before the data processing
starts or in a reasonable time afterwards. Hence, each
controller employing such port scanning should reveal,
for example, in the privacy policy, what categories of
data it is using and for which purposes. Several web ar-
ticles covering the eBay case29 suggests that eBay and
its processor ThreatMetrix are secretive about data be-
ing collected.

Another GDPR issue might be data transfers to
third countries. Data transfers of open ports may not
be compatible with GDPR in the light of the CJEU
C-311/18 decision if the information leaves EEA.

When we developed the Network Boundary Shield
we did not anticipated localhost port scanning. When
we first encountered the eBay port scanning case,
we knew that this behaviour should trigger Network
Boundary Shield. The tests revealed that Network
Boundary Shield indeed works and our users are pro-
tected from this behaviour.

5.6 clockskew

6 Discussion and future work
[52]

JShelter should not be considered a single bullet
proof solution

29 https://blog.avast.com/why-is-ebay-port-scanning-my-
computer-avast, https://www.theregister.com/2020/05/26/
ebay_port_scans_your_pc/

First level: NoScript+ublock+decentraleyes+FPD+NBS
Web API Manager?
Final level: API finetuning by JShelter
[38]: cloakX [45]
The research question concerning farbling measures

is if the little changes are enough for a determined fin-
gerprinter that can, for example, approximate color val-
ues of several pixels or repeat an effect multiple times.

FPD downside: gradually sent fingerprint, security
reasons on login pages, strict thresholds, page breakage.

JShelter currently support only a device positioned
on a flat surface. We consider improvements like a mov-
ing device for a future work.

Magnetometer: Nevertheless, the generator uses a
series of constants, whose optimal values should be a
subject of future research and improvements. Perhaps,
a correlation analysis with real mesurements could help
in the future.

7 Conclusion

8 Acknowledgement
NLNET, IGA

References
[1] Gunes Acar, Steven Englehardt, and Arvind Narayanan. No

boundaries for user identities: Web trackers exploit browser
login manager, 2017. Available online at https://freedom-
to-tinker.com/2017/12/27/no-boundaries-for-user-
identities-web-trackers-exploit-browser-login-managers/.

[2] Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juarez, Arvind Narayanan, and Claudia Diaz. The web never
forgets: Persistent tracking mechanisms in the wild. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14, pages 674–689.
ACM, New York, NY, USA, 2014. ISBN 978-1-4503-2957-6.

[3] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz,
Seda Gürses, Frank Piessens, and Bart Preneel. Fpdetective:
Dusting the web for fingerprinters. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Commu-
nications Security, CCS ’13, pages 1129–1140. ACM, New
York, NY, USA, 2013. ISBN 978-1-4503-2477-9.

[4] Akram Bayat, Amirhossein Bayat, and Sina Amir. Classify-
ing human walking patterns using accelerometer data from
smartphone. 12 2017.

[5] John Bergbom. Attacking the internal network from the
public internet using a browser as a proxy, 2019. Forcepoint
research report available at https://www.forcepoint.com/
sites/default/files/resources/files/report-attacking-internal-

https://blog.avast.com/why-is-ebay-port-scanning-my-computer-avast
https://blog.avast.com/why-is-ebay-port-scanning-my-computer-avast
https://www.theregister.com/2020/05/26/ebay_port_scans_your_pc/
https://www.theregister.com/2020/05/26/ebay_port_scans_your_pc/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://freedom-to-tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-exploit-browser-login-managers/
https://www.forcepoint.com/sites/default/files/resources/files/report-attacking-internal-network-en_0.pdf
https://www.forcepoint.com/sites/default/files/resources/files/report-attacking-internal-network-en_0.pdf

JShelter 12

network-en_0.pdf.
[6] Andrew Bortz and Dan Boneh. Exposing private information

by timing web applications. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
pages 621–628. ACM, New York, NY, USA, 2007. ISBN
978-1-59593-654-7. URL http://doi.acm.org/10.1145/
1242572.1242656.

[7] Brave. Updates & timeline for brave’s work to fix "rtb"
adtech, 2019. URL https://brave.com/rtb-updates/.
Visited 2019-12-16.

[8] Yinzhi Cao, Song Li, and Erik Wijmans. (Cross-)Browser
Fingerprinting via OS and Hardware Level Features. In
Proceedings of Network & Distributed System Security Sym-
posium (NDSS), 2017.

[9] A. Decan, T. Mens, and E. Constantinou. On the impact
of security vulnerabilities in the npm package dependency
network. In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), pages 181–191,
2018. ISSN 2574-3864.

[10] Peter Eckersley. How unique is your web browser? In Privacy
Enhancing Technologies, volume 6205 of Lecture Notes in
Computer Science, pages 1–18. Springer Berlin Heidelberg,
DE, 2010. ISBN 978-3-642-14526-1.

[11] Steven Englehardt, Gunes Acar, and Arvind Narayanan. No
boundaries: data exfiltration by third parties embedded on
web pages. Proceedings on Privacy Enhancing Technologies,
2020:220–238, 2020.

[12] Steven Englehardt and Arvind Narayanan. Online tracking:
A 1-million-site measurement and analysis. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1388–1401. ACM,
New York, NY, USA, 2016. ISBN 978-1-4503-4139-4.

[13] Edward W. Felten and Michael A. Schneider. Timing at-
tacks on web privacy. In Proceedings of the 7th ACM
Conference on Computer and Communications Security,
CCS ’00, pages 25–32. ACM, New York, NY, USA, 2000.
ISBN 1-58113-203-4. URL http://doi.acm.org/10.1145/
352600.352606.

[14] David Fifield and Serge Egelman. Fingerprinting web users
through font metrics. In Rainer Böhme and Tatsuaki
Okamoto, editors, Financial Cryptography and Data Se-
curity, pages 107–124. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015. ISBN 978-3-662-47854-7.

[15] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit
Baudry. Hiding in the crowd: An analysis of the effec-
tiveness of browser fingerprinting at large scale. In Pro-
ceedings of the 2018 World Wide Web Conference, WWW
’18, pages 309–318. International World Wide Web Con-
ferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 2018. ISBN 978-1-4503-5639-8. URL
https://doi.org/10.1145/3178876.3186097.

[16] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom. Another flip in
the wall of rowhammer defenses. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 245–261, 2018. ISSN
2375-1207.

[17] Daniel Gruss, David Bidner, and Stefan Mangard. Practi-
cal memory deduplication attacks in sandboxed javascript.
In Computer Security – ESORICS 2015, pages 108–122.
Springer International Publishing, Cham, 2015. ISBN 978-3-

319-24174-6.
[18] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.

Rowhammer.js: A remote software-induced fault attack in
javascript. In Detection of Intrusions and Malware, and Vul-
nerability Assessment, pages 300–321. Springer International
Publishing, Cham, 2016. ISBN 978-3-319-40667-1.

[19] Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia
Bielova, and Claude Castelluccia. To extend or not to ex-
tend: On the uniqueness of browser extensions and web
logins. In Proceedings of the 2018 Workshop on Privacy in
the Electronic Society, WPES’18, pages 14–27. ACM, New
York, NY, USA, 2018. ISBN 978-1-4503-5989-4.

[20] Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian Perrig,
and Joy Zhang. Accomplice: Location inference using ac-
celerometers on smartphones. pages 1–9, 01 2012.

[21] Kashmir Hill. Be warned: Customer service agents can see
what you’re typing in real time, 2018. Available online at
https://gizmodo.com/be-warned-customer-service-agents-
can-see-what-youre-t-1830688119.

[22] ICO — Information Commissioner’s Office. Update report
into adtech and real time bidding, 2019. URL https://
ico.org.uk/media/about-the-ico/documents/2615156/
adtech-real-time-bidding-report-201906.pdf. visited
2019-12-16.

[23] Bohdan Inhliziian. Impact of the application of the content-
security-policy header on firefox webextensions, 2020. URL
https://www.fit.vut.cz/study/thesis/22483/. Bache-
lor’s thesis, Brno University of Technology, Faculty of Infor-
mation Technology.

[24] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fin-
gerprinting the fingerprinters: Learning to detect browser
fingerprinting behaviors. In IEEE Symposium on Security &
Privacy, 2021.

[25] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spec-
tre attacks: Exploiting speculative execution. CoRR,
abs/1801.01203, 2018.

[26] Tadayoshi Kohno, Andre Broido, and Kimberly C. Claffy.
Remote physical device fingerprinting. IEEE Transactions
on Dependable and Secure Computing, 2(2):93–108, 2005.
ISSN 1545-5971.

[27] Georgios Kontaxis and Monica Chew. Tracking protection in
firefox for privacy and performance. In Web 2.0 Security &
Privacy Workshop, 2015.

[28] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and
Gildas Avoine. Browser fingerprinting: A survey. vol-
ume 14. Association for Computing Machinery, New York,
NY, USA, apr 2020. ISSN 1559-1131. URL https:
//doi.org/10.1145/3386040.

[29] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.
Beauty and the beast: Diverting modern web browsers to
build unique browser fingerprints. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 878–894, 2016.

[30] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad,
William K. Robertson, Christo Wilson, and Engin Kirda.
Thou shalt not depend on me: Analysing the use of out-
dated javascript libraries on the web. CoRR, 2018.

[31] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno,
and Franziska Roesner. Internet jones and the raiders of

https://www.forcepoint.com/sites/default/files/resources/files/report-attacking-internal-network-en_0.pdf
https://gizmodo.com/be-warned-customer-service-agents-can-see-what-youre-t-1830688119
https://gizmodo.com/be-warned-customer-service-agents-can-see-what-youre-t-1830688119

JShelter 13

the lost trackers: An archaeological study of web tracking
from 1996 to 2016. In 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, Austin, TX,
2016.

[32] Célestin Matte, Nataliia Bielova, and Cristiana Santos. Do
cookie banners respect my choice? measuring legal compli-
ance of banners from iab europe’s transparency and consent
framework, 2019. ArXiv eprint 1911.09964, available at
https://arxiv.org/abs/1911.09964, last access 2019-12-13.

[33] J. R. Mayer and J. C. Mitchell. Third-party web tracking:
Policy and technology. In 2012 IEEE Symposium on Security
and Privacy, pages 413–427, 2012. ISSN 1081-6011.

[34] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick
Nikiforakis, Sebastian Neuner, Martin Schmiedecker, and
Edgar Weippl. Block me if you can: A large-scale study of
tracker-blocking tools. In 2017 IEEE European Symposium
on Security and Privacy (EuroS P), pages 319–333, 2017.

[35] Moritz Lipp Michael Schwarz and Daniel Gruss. Javascript
zero: Real javascript and zero side-channel attacks. In Net-
work and Distributed Systems Security Symposium 2018,
2018. ISBN 1-1891562-49-5.

[36] Keaton Mowery and Hovav Shacham. Pixel Perfect: Fin-
gerprinting Canvas in HTML5. In Proceedings of W2SP,
2012.

[37] Marius Musch, Marius Steffens, Sebastian Roth, Ben Stock,
and Martin Johns. ScriptProtect: Mitigating unsafe third-
party javascript practices. In Proceedings of the 2019
ACM Asia Conference on Computer and Communications
Security, Asia CCS ’19, page 391–402. Association for
Computing Machinery, New York, NY, USA, 2019. ISBN
9781450367523.

[38] Erik Trickela nad Oleksii Starov, Alexandros Kapravelos,
Nick Nikiforakis, and Adam Doupé. Everyone is different:
Client-side diversification for defending against extension
fingerprinting.

[39] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting. In 2013 IEEE Symposium on Security
and Privacy, pages 541–555, 2013. ISSN 1081-6011.

[40] Andreas Pfitzmann and Marit Hansen. A terminology for
talking about privacy by data minimization: Anonymity,
unlinkability, undetectability, unobservability, pseudonymity,
and identity management. Technical report, 2010. Version
0.34, Available online at https://dud.inf.tu-dresden.de/
literatur/Anon_Terminology_v0.34.pdf.

[41] Libor Polčák and Barbora Franková. Clock-skew-based com-
puter identification: Traps and pitfalls. Journal of Universal
Computer Science, 21(9):1210–1233, 2015. ISSN 0948-6968.

[42] Johnny Ryan. Report from Dr Johnny Ryan – be-
havioural advertising and personal data, 2018. URL https:
//brave.com/wp-content/uploads/2018/09/Behavioural-
advertising-and-personal-data.pdf.

[43] Zach Schneider. event-stream vulnerability explained,
2018. Available online at https://schneider.dev/blog/event-
stream-vulnerability-explained/.

[44] Michael Schwarz, Florian Lackner, and Daniel Gruss.
Javascript template attacks: Automatically inferring host in-
formation for targeted exploits. In Network and Distributed
Systems Security (NDSS) Symposium, 2019.

[45] Michael Schwarz, Florian Lackner, and Daniel Gruss. Latex
gloves: Protecting browser extensions from probing and reve-
lation attacks. In Network and Distributed Systems Security
(NDSS) Symposium, 2019.

[46] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel
Genkin, Yossi Oren, and Yuval Yarom. Prime+Probe 1,
JavaScript 0: Overcoming browser-based Side-Channel de-
fenses. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2863–2880. USENIX Association,
August 2021. ISBN 978-1-939133-24-3. URL https:
//www.usenix.org/conference/usenixsecurity21/
presentation/shusterman.

[47] David Silver, Suman Jana, Dan Boneh, Eric Chen, and
Collin Jackson. Password managers: Attacks and defenses.
In 23rd USENIX Security Symposium (USENIX Security 14),
pages 449–464. USENIX Association, San Diego, CA, 2014.
ISBN 978-1-931971-15-7.

[48] Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser
Brown, and Deian Stefan. Browser history re:visited. In 12th
USENIX Workshop on Offensive Technologies (WOOT 18).
USENIX Association, Baltimore, MD, 2018. URL https://
www.usenix.org/conference/woot18/presentation/smith.

[49] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most
websites don’t need to vibrate: A cost-benefit approach to
improving browser security. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, pages 179–194. ACM, New
York, NY, USA, 2017. ISBN 978-1-4503-4946-8. URL
http://doi.acm.org/10.1145/3133956.3133966.

[50] O. Starov and N. Nikiforakis. Xhound: Quantifying the
fingerprintability of browser extensions. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 941–956, 2017.
ISSN 2375-1207.

[51] Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. Are you
sure you want to contact us? quantifying the leakage of pii
via website contact forms. volume 2016, pages 20–33, 2016.

[52] Oleksii Starov and Nick Nikiforakis. Privacymeter: Designing
and developing a privacy-preserving browser extension. In
Mathias Payer, Awais Rashid, and Jose M. Such, editors,
Engineering Secure Software and Systems, pages 77–95.
Springer International Publishing, Cham, 2018. ISBN 978-3-
319-94496-8.

[53] Ben Stock and Martin Johns. Protecting users against xss-
based password manager abuse. In Proceedings of the 9th
ACM Symposium on Information, Computer and Commu-
nications Security, ASIA CCS ’14, pages 183–194. ACM,
New York, NY, USA, 2014. ISBN 978-1-4503-2800-5. URL
http://doi.acm.org/10.1145/2590296.2590336.

[54] Paul Stone. Pixel perfect timing attacks with HTML5, 2013.
Black Hat 2013. Context Information Security whitepa-
per available online at https://www.contextis.com/en/
resources/white-papers/pixel-perfect-timing-attacks-with-
html5.

[55] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis.
The clock is still ticking: Timing attacks in the modern web.
In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pages
1382–1393. ACM, New York, NY, USA, 2015. ISBN 978-1-
4503-3832-5. URL http://doi.acm.org/10.1145/2810103.
2813632.

https://arxiv.org/abs/1911.09964
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://schneider.dev/blog/event-stream-vulnerability-explained/
https://schneider.dev/blog/event-stream-vulnerability-explained/
https://www.contextis.com/en/resources/white-papers/pixel-perfect-timing-attacks-with-html5
https://www.contextis.com/en/resources/white-papers/pixel-perfect-timing-attacks-with-html5
https://www.contextis.com/en/resources/white-papers/pixel-perfect-timing-attacks-with-html5

JShelter 14

[56] Tom Van Goethem, Wout Scheepers, Davy Preuveneers, and
Wouter Joosen. Accelerometer-based device fingerprinting
for multi-factor mobile authentication. In Juan Caballero,
Eric Bodden, and Elias Athanasopoulos, editors, Engineer-
ing Secure Software and Systems, pages 106–121. Springer
International Publishing, Cham, 2016. ISBN 978-3-319-
30806-7.

[57] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and
Romain Rouvoy. FP-Scanner: The Privacy Implications
of Browser Fingerprint Inconsistencies. In Proceedings of
the 27th USENIX Security Symposium. Baltimore, United
States, August 2018. URL https://hal.inria.fr/hal-
01820197.

	JShelter: Give Me My Browser Back
	1 Introduction
	2 Threats
	2.1 T1: Detail user behaviour monitoring
	2.2 T2: Browser and computer fingerprinting
	2.3 T3: Sensors
	2.4 T4: Hostile third party scripts
	2.5 T5: Local network scanning
	2.6 T6: Microarchitectural attacks

	3 Countermeasures
	3.1 Browser extensions
	3.2 Privacy-focused browsers
	3.3 Current browser fingerprinting countermeasures

	4 JShelter Design Decisions
	4.1 Fingerprinting protection
	4.2 Sensors
	4.3 Network Boundary Shield
	4.4 Code ported from Chrome Zero
	4.5 Farbling-like prevention of browser fingerprinting
	4.6 Fingerprint detector
	4.7 Early modification of JavaScript environment

	5 Results
	5.1 Crawl study
	5.2 FPD study
	5.3 Sensors
	5.4 Feedback from users
	5.5 eBay, block the page
	5.6 clockskew

	6 Discussion and future work
	7 Conclusion
	8 Acknowledgement

