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Abstract
In the recent years - like in many other domains - deep learning models have found their place in the domain of precipitation
nowcasting. Many of these models are based on the UNet architecture, which was originally developed for biomedical
segmentation, but is also useful for the generation of short-term forecasts and therefore applicable in weather nowcasting
domain. The existing UNet-based models use sequential radar data mapped into a 2-dimensional Cartesian grid as input
and output. We propose to incorporate a third - vertical - dimension to better predict precipitation phenomena such as
convective rainfall and present our results. We compare the nowcasting performance of two comparable UNet models trained
on two-dimensional and three-dimensional radar observation data. We show that using volumetric data results in a small, but
significant reduction in prediction error.
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1. Introduction
Accurate precipitation nowcasting is important for plan-
ning various human activities and tasks such as agri-
culture, construction building or winter road mainte-
nance. Nowcasting is defined by the World Meteoro-
logical Agency as forecasting with local detail, by any
method, over a period from the present to six hours
ahead, including a detailed description of the present
weather [1].

In practice, simpler - and therefore faster - models out-
perform complex Numerical Weather Prediction (NWP)
models at the task of precipitation nowcasting because
NWP models cannot consider the latest observations due
to their long inference time. The highly sophisticated
NWP models usually need hours to produce their fore-
casts and so they are not able to take into consideration
the latest data observations. Even a simple model that
can quickly output a prediction will outperform the NWP
models at the task of precipitation nowcasting simply by
the fact that it can consider the present data. Nowcast-
ing models can work in conjunction with NWP models
and use their long-term forecasts as additional inputs to
further refine their nowcasts [1].

Precipitation nowcasting is usually performed using
temporal extrapolation of past data from weather radar
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systems because it requires highly accurate and con-
stantly updated data about precipitation fields, i.e. the
location of storms, wind, fog, snow etc. Weather radar
systems are essential for nowcasting because they di-
rectly observe precipitation particles with an update rate
of a few minutes [1]. See Figure 1 for an example of a
radar precipitation map.

In the last years, deep learning precipitation nowcast-
ing approaches, such as convolutional neural networks
(CNN), started to gain attention. From the initial Con-
vLSTM model [2], through encoder-decoder UNet ar-
chitectures [3, 4], to the recently-introduced GAN-based
approaches [5, 6], the CNNmodels proved to consistently
outperform the operational state-of-the-art methods in
the domain [6].

Most precipitation nowcasting models only use the
radar data mapped to a 2D Cartesian grid, aggregating
the vertical dimension, even though the raw output of
weather radar systems consists of multiple measurements
at different elevation angles and polar coordinates that
capture the precipitation phenomena in 3-dimensional
space around the radar.

We propose using volumetric data from multiple alti-
tudes to give the model as much data about the observa-
tion as possible. Providing information about the vertical
motion of precipitation particles, as well as their vertical
extension, could potentially be valuable for the model, as
they are an important factor in predicting the behavior
of convective storms [7].

We compare two models - a reference UNet architec-
ture based on existing research [3, 4] and an alternative
with 2D convolutional layers replaced by 3D convolution.
We evaluate their performance in the task of predicting
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Figure 1: A single radar echo observation. The shown re-
flectivity values represent reflectivity captured at 2 km above
radar (CAPPI). The reflectivity map is overlaid over a satellite
image of the appropriate area centered on the Malý Javorník
radar station generated using Google Earth Engine [8].

a single constant-altitude radar reflectivity observation
30 minutes into the future.

Our experiments show that providing volumetric data
from multiple altitude levels results in small, but statisti-
cally significant reduction of prediction error.

2. Related Work
Many automated nowcasting systems that employ var-
ious inputs and computation approaches are in use to-
day [9, 10, 11, 12, 13]. These systems are generally based
on extrapolating past observed rainfall data forwards in
time. They typically estimate the future advection based
on motion observed in the most recent radar images us-
ing cross-correlation or optical flow techniques [1].

Some nowcasting systems use the cell tracking ap-
proach. They firstly identify storms in the radar scan
and then locate the corresponding object in the consecu-
tive scans to track its motion. Cell tracking is useful for
tracking severe storms and is useful for generating early
warnings [1].

The shortcoming of these advection nowcasting meth-
ods is the assumption that the observed precipitation
field will not change, only move elsewhere. Therefore,
they lack the capability to predict beginning of new pre-
cipitation phenomena such as convective initiation (start
of a storm triggered by rising moist warm air) or the
decaying of the storm at the end of its lifecycle [1, 14].

In the past years, data-driven approaches using deep
learning to construct precipitation nowcasting models

to mitigate these limitations have started to gain atten-
tion [2, 3, 6].

The first deep learning approach applied to the task of
precipitation nowcasting was a ConvLSTM model pre-
sented in [2] that outperformed the operational optical-
flow-based ROVER nowcasting system. Experiments
with other CNN architectures started, such as a Con-
vGRU model from [15] or a UNet-based architecture in-
troduced in [16]. The Unet architectures, originally de-
veloped for segmentation of medical images [17], proved
to be quite popular with models such as RainNet[3] and
SmaAt-Unet[4] further exploring this approach.

The previously mentioned neural network regression
models trying to nowcast the future state of precipita-
tion fields were affected by blurring. When using tra-
ditional gridpoint-based verification statistics such as
Mean Squared Error (MSE) as the training loss function,
we face the so-called “double penalty problem”. A fore-
cast of a precipitation feature that is correct in terms of
intensity, size, and timing, but incorrect concerning loca-
tion, results in very large mean square error [18]. This
causes the model to produce blurry outputs to mitigate
the penalisation caused by spatially incorrect precipita-
tion features.

The blurry predictions pose one of the biggest chal-
lenges for anyone trying to develop a nowcasting model
based on machine learning as such predictions have diffi-
culties predicting extreme events due to the smoothing.
Recently, this problem started to be addressed by training
models using the Generative Adversarial Network (GAN)
approach, the most prominent being DGMR[6]. They
introduced a GAN framework[19] to solve the problem
of blurry predictions present in other deep learning pre-
cipitation nowcasting models such as RainNet. Model
is trained using a combination of two discriminators in-
spired by existing research in video generation and a
regularization term that comprise the loss function. The
first discriminator, spatial, discourages blurry predictions
while the second one, temporal, discourages jumpy pre-
dictions. The regularization term penalizes deviations
between the observed radar sequences and the model
prediction. The DGMR model can be currently consid-
ered the state-of-the-art in the precipitation nowcasting
domain.

2.1. Motivation for Volumetric
Nowcasting

The application of deep learning models for precipitation
nowcasting is the focus of many research works. How-
ever, the vast majority of the models use 2-dimensional
aggregate radar products and thus throw away any infor-
mation which can be gained from processing the vertical
structure of precipitation objects captured by the radar.



When reviewing the existing works in the precipi-
tation nowcasting domain, we identified a need to ex-
plore the effect of workingwith 3-dimensional volumetric
radar data. By processing the data into a 2D aggregated
map, we lose all information about the vertical structure
of the precipitation particles detected by the radar. The
model trained in this way cannot consider the vertical
movement of particles caused by updraft or downdraft
and predict the future precipitation accordingly.

Compared to 2-dimensional precipitation nowcasting,
volumetric models are much less prevalent. One such
model was presented in [20], where a ConvLSTM model
was used to predict future radar reflectivity. The model
input shape is 18×18×20 (18×18 kmwith 1 km resolution,
10 km above at 500 m resolution) provided at multiple
time steps, each one is processed by a 3D-CNN first,
then passed on to ConvLSTM sequential network. The
output is a classification for the central region of 6 ×
6 km predicting whether the reflectivity in the next 30
and 60 minutes will exceed 35 dBZ. The final result is a
binary map with resolution of 6 × 6 km. The problems
with this approach is that the model cannot consider any
fast moving precipitation particles, since it cannot see
more than 6 km past its target region. Also, the target
region size of 6 × 6 km can hardly be considered a high
spatial resolution, which is one of the defining traits of
nowcasting.

One other work worth mentioning is a 3D-CNN+GAN
hybrid model from [5]. This model is quite sophisticated.
It uses the GAN-based approach to predict plausible data
and a weighted MSE loss function to give more impor-
tance to high reflectivity values, resulting in better ability
to predict extreme precipitation events and reduce out-
put blurring. However, the third data dimension is not
actually the altitude above radar we want to consider,
but time - i.e. the past observations are not as separate
channels, but form a 3D volume. Nevertheless, the model
drives the development of 3D-CNN models for precipita-
tion nowcasting.

3. Radar Reflectivity Dataset
To explore the effect of volumetric precipitation nowcast-
ing, we collaborated with Slovak Meteorological Institute
that provided us a dataset of roughly 3.5 years of reflectiv-
ity data from Malý Javorník weather radar station. The
data is captured in 5 minute intervals. The dataset con-
sists of 355 761 separate observations in the ODIM HDF5
format.

The radar captures the precipitation particles in the
air by measuring returned radar wave power (echo) after
hitting precipitation particles. This value is called reflec-
tivity, measured in logarithmic dimensionless units called
decibels (dBZ). The data consists of reflectivity values
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Figure 2: Vertical slice of a single radar reflectivity observa-
tion at a set azimuth. The separate ”rays” at different elevation
angles are identifiable.

at the so-called reflectivity gates in multiple elevation
angles distributed around radar station and encoded in
polar coordinates. See Figure 2 for a vertical slice of a
single radar observation.

Since the convolutional neural network models cannot
process the data in polar coordinates, we need to convert
them into Cartesian maps. We processed the data using
the Py-ART Python library [21]. The radar echo obser-
vations are typically aggregated into precipitation maps
in two forms. The first one is Constant Altitude Plan
Position Indicator (CAPPI), which displays reflectivity
gate values at certain altitude slice above radar. The other
is CMAX, which aggregates the vertical dimension and
displays the maximum value in the vertical column for
each data point. If a 3D volume is created from multiple
CAPPI maps at different altitude levels, the product is
called MCAPPI.

The reflectivity maps can be converted to rainfall rate
maps using the Marshall-Palmer Z-R relationship[22]:

𝑍 = 200𝑅1.6 (1)

where 𝑍 is the reflectivity factor and 𝑅 is the rainfall
rate in 𝑚𝑚/ℎ.

3.1. Training data selection
The dataset requires filtering before training since ma-
jority of the observations are of clear skies with nothing
to learn from. Most of the observations from the dataset
therefore have no value for training the model and could
even negatively affect the training by biasing the outputs
toward clear sky prediction, while we are mostly inter-
ested in non-trivial cases with high precipitation. We
filtered the images as follows:

1. Create a CAPPI radar reflectivity map at 2 km
altitude above radar at 1 × 1 km resolution and
select a center slice of size 336 × 336 km.



2. Convert reflectivity to rainfall rate according to
Marshall-Palmer Z-R relationship 1.

3. Compute the ratio of rainy to clear pixels (thresh-
old 0.05 mm/5 min or 0.6 mm/h - corresponds to
slight rain).

4. If rainfall map contains at least 20% of rainy pixels
and 11 previous observations are available, add it
to the target observation set.

Each selected target observation was included in the
training dataset, along with a set number of previous ob-
servations to serve as inputs and non-target intermediary
outputs. For our models, we decided to use 6 observa-
tions as input and 6 as output, effectively predicting the
precipitation half an hour in advance based on the last
half hour of data. This means that for each target obser-
vation, we also needed to include 11 leading observations
in the dataset. This process returned 9 018 suitable tar-
get images which together with the necessary leading
images represent 2.53% of the original dataset.

It should be noted that the data converted to rainfall
described above was not used for training, only for fil-
tering the target observations based on ration of rainy
pixels. The actual training data used reflectivity directly
for both 2D images and 3D volumes. 2D dataset was
a collection of CAPPI radar reflectivity maps at 2 km
altitude above radar. A 3D dataset was a collection of
CAPPI radar reflectivity maps at 8 altitude levels above
radar, from 500 m.a.r to 4000 m.a.r. The extent of the data
was set to 336 × 336 km centered on the radar station
with spatial resolution of 1 × 1 km for both 2D and 3D
data, resulting in 2D images of size 336 × 336 pixels and
8 × 336 × 336 voxels respectively for a single observation.

4. Model Architectures
To compare the impact of adding a vertical dimension as
fairly as possible, we chose a basic UNet architecture in-
spired by models developed in [3, 4] as a reference model.
As UNet is a fully convolutional neural network, convert-
ing it to process volumetric data is a trivial task - mostly
just a matter of replacing 2D convolutional layers with
3D convolutions. Besides this, the model only required
replacing 2D max-pooling layers in the encoder for 3D
max-pooling and bilinear upsample in the decoder for
trilinear. See Figure 3 for specific number of channels
and kernel sizes at each layer of the model.

The conversion of the model from 2D to 3D convo-
lutions was mostly straightforward and resulted in in-
creasing the number of trainable parameters 3-fold from
roughly 17 to 52 million. The three-fold increase is based
on the fact that the model uses convolution kernels of
size 3 at every convolutional layer, therefore each kernel
has 27 (3 × 3 × 3) instead of 9 (3 × 3) weights (disregarding

Set No. of obs. % of original

Full Dataset 355761 100
Target Observations 9018 2.53
Target + Lead Obs. 11310 3.18
Training Set Targets 6515 1.83
Validation Set Targets 1150 0.32
Test Set Targets 1353 0.38

Table 1
The observation count of the full dataset, the subset selected
for training according to the training data selection described
in Section 3.1 and the sizes of train, test, validation splits.

bias and multiple channels). Other architectural parame-
ters of the model such as number of kernels at each layer
were kept the same for the comparison between these
models to be fair and dependent solely on the provided
data as much as possible.

4.1. Training and Evaluation
To train and evaluate the models, the training dataset was
split into testing, validation and test subsets in chrono-
logical order. The last 15% of target observations were
selected for test set, the rest was chosen for training. Out
of these, the last 15% of target observations were again
selected for validation and the rest was used as training
samples. See Table 1 for the exact number of observations
in each set.

Adam optimizer was used for training the model. To
find the optimal training model hyperparameters - start-
ing learning rate, optimizer learning rate scheduler pa-
rameters and gradient clipping threshold - we utilized the
Bayesian sweep search provided byWeights & Biases[23].
We trained 20 models with 2D CNN architecture and 5
with 3D CNN architecture. The best performing model of
each architecture variant was selected for performance
evaluation. See Table 2 for all the possible hyperparam-
eter values and the best performing ones for both 2D
and 3D models. Early stopping after 15 non-improving
epochs was utilized.

Choosing the right metric to evaluate the performance
of precipitation nowcasting models is not simple. The
correct method depends on a model’s use-case and no
single composite measure is currently able to objectively
evaluate performance of precipitation nowcasting mod-
els [1]. While we outlined the shortcomings of using
MSE to evaluate precipitation nowcasting models above
in Section 2, we will be using MSE as the loss function
and the primary evaluation metric despite the double
penalization effect that occurs since it is still the most
commonly used metric in this domain. Additionally, to
provide more insight into model performance, we are
also computing mean model accuracy, precision, recall
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Hyperparameter 2D UNet 3D Unet

Batch size 32 4
Learning rate 5 × 10−5, 7.5 × 10−5, 1 × 10−4, 2.5 × 10−4, 5 × 10−4 5 × 10−5, 7.5 × 10−5, 1 × 10−4, 2.5 × 10−4, 5 × 10−4
Opt. LRS Factor 0.5, 0.7, 0.9 0.5, 0.7, 0.9
Opt. LRS Patience 3, 5, 7 3, 5, 7
Grad. Clip. Thres. 0.2, 1, 5 0.2, 1, 5

Table 2
The hyperparameters values searched through during the training of the models using the Weights & Biases bayesian search.
The values used for training the best performing models are in bold. The batch size used was the highest possible based on our
GPU memory limit. The optimizer learning rate scheduler parameters are functionally meaningless, as both of the models
achieved the best performance before the optimizer was triggered to lower the learning rate. Gradient clipping was added to
prevent exploding gradient behavior occurring sometimes when large starting learning rate was selected.

and F1 scores on binarized precipitation maps using a
threshold value of 20 dBZ (corresponding to light rain)
to differentiate between rain and no rain areas. This way,
we can evaluate only the shape of precipitation features
and disregard the intensity, which can serve as another
valuable metric.

5. 2D vs. 3D: A Comparison
The impact of providing a vertical dimension to themodel
was evaluated by comparing the error rate when predict-
ing a single reflectivity map at constant altitude above
radar. We trained the 2D model to output the next CAPPI
radar reflectivity maps at 2 km above radar 30 minutes
into the future based on past radar reflectivity maps at
the same altitude. Subsequently, we trained a 3D model
to predict equivalent 3D reflectivity maps at 8 altitude



Model MSE ↓ MAE ↓ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑

Persistence 55.4110 4.7534 0.8307 0.6529 0.6426 0.6457
2D UNet 22.6510 3.2623 0.8969 0.8257 0.7282 0.7696
3D UNet 22.0340 3.2124 0.9000 0.8022 0.7833 0.7894

Table 3
Comparison of model results on the test set for each of the chosen metric scores. The ↓ symbol means it is a lower-is-better
score, while the ↑ symbolizes a higher-is-better score. The best result for each score is bolded.

levels based on recent volumetric observation data. To
evaluate which model is better at precipitation nowcast-
ing, we evaluate the prediction error on a single CAPPI
map at 2 km above radar from the target observation
(nowcast 30 minutes in the future). This can be done
because one slice of the output volume of the 3D model
matches the altitude level the 2D model was trained on
(2000 m.a.r.).

A simple euclidean persistence was used as a bench-
mark. This benchmark method simply copies the last
input observation as the prediction output. Despite the
method being trivial, the precipitation data is highly de-
pendent on previous observations and so it provides a
good performance benchmark. Using this benchmark,
we can also evaluate the rate of change in the data and
therefore see how ”difficult” it is to make the accurate
prediction for each sample.

The results in Table 3 show that the best 3D-CNNUNet
model slightly outperformed the best 2D-CNN counter-
part. On average, the 3Dmodel achieved lower prediction
error on the test set, in both MSE and MAE metrics. The
improvement is small, but statistically significant. The
area-based metrics also show small improvements, with
accuracy and F1 scores being slightly higher. Based on
considerably higher recall and lower precision, we can
assume the 3D model predicts larger precipitation bodies
on average.

6. Conclusion
Our research shows that providing additional informa-
tion from multiple altitude levels has the potential to
increase the nowcasting precision, as compared to the
currently standard approach of using only 2-dimensional
precipitation maps. The improvements in error metrics,
while not groundbreaking, were statistically significant
and show that providing more data is worth it, if we can
afford the increase in model complexity and training time.
Even a small reduction in prediction error can be bene-
ficial in many applications and our preliminary results
show volumetric nowcasting can have a positive impact.

Additionally, volumetric nowcasts undoubtedly pro-
vide more value to the operators of these nowcasting
systems. Reflectivity at different altitudes affects the ac-

tual rainfall rate on the ground in different ways, which
cannot be taken into account from simple 2-dimensional
precipitation nowcasts. 3-dimensional predictions of fu-
ture reflectivity observations can serve as amore valuable
input to the consecutive models mapping the observed
reflectivity to actual the rainfall rate on the ground.

While the field of precipitation nowcasting using neu-
ral networks is not new, there are still more uncertainties
regarding best practices that should be comprehensively
explored and compared. There are several open questions
to answer, e.g.: Is it better to train the model directly on
the captured reflectivity data or the data converted to
rainfall rate? How many previous observations should
be provided to the model? How to convert radar obser-
vations to actual rainfall on the ground as accurately as
possible? These are just some of the interesting problems
that need to be explored in the future.
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