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Spelling-Aware Word-Based End-to-End ASR
Ekaterina Egorova, Hari Krishna Vydana, Lukáš Burget and Jan “Honza” Černocký

Abstract—We propose a new end-to-end architecture for au-
tomatic speech recognition that expands the “listen, attend and
spell” (LAS) paradigm. While the main word-predicting network
is trained to predict words, the secondary, speller network, is
optimized to predict word spellings from inner representations
of the main network (e.g. word embeddings or context vectors
from the attention module). We show that this joint training
improves the word error rate of a word-based system and enables
solving additional tasks, such as out-of-vocabulary word detection
and recovery. The tests are conducted on LibriSpeech dataset
consisting of 1000h of read speech.

Index Terms—end-to-end, ASR, OOV, Listen Attend and Spell
architecture

I. INTRODUCTION

End-to-end (e2e) techniques [1], [2], [3], [4] have taken
over hybrid approaches [5] to automatic speech recognition
(ASR). While it is possible to predict characters or phonemes
as their output [1], longer units such as words [6] and byte pair
encoding units (BPEs) [7] are also widely used to preserve
the wider context information. One issue that a hybrid ap-
proach struggles with is dealing with out-of-vocabulary words
(OOVs): if a word was not seen during the language model
(LM) training or has an unknown pronunciation, it is not
possible to recognize it. An e2e system can avoid the OOV
issue by choosing characters or BPEs as targets, but if longer
units like words [6] are predicted, the problem is back.

The most common way of approaching OOV recovery is by
using two levels of granularities (words and subwords) [8]. In
the classic GMM/HMM-based ASR system, the system backs-
off to the subword level and produces the corresponding letter-
based output whenever the word-based ASR emits the OOV
token (e.g. [9]). This backing-off has also been successfully
applied in an e2e setup, for example in the context of connec-
tionist temporal classification (CTC) [10]. Sometimes, instead
of two granularities, a mix of word and sub-word units is used
at the same level, for example, as LM units [11] or the neural
network (NN) output for CTC [12].

In the field of natural language processing (NLP), a two-
level word plus speller generative LM [13] has proven to work
well for tasks involving OOVs. In [13], the open-vocabulary
LM consists of two recurrent neural networks (RNNs): the
first one captures the sentence structure, and the second one,
called the speller, captures the word structure. The speller
can generate new word types following the spelling style of
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in-vocabulary words (IVs). The novel words generated by
this model fit the grammatical sentence structure well, but
otherwise the model can produce a range of possible spellings
that fit the language in question.

We propose to extend this approach to ASR and implement
word-predicting e2e ASR training with a speller-like network.
While the speller trained for LM tasks in [13] had only a text
input to train on, ASR has the benefit of providing the speller
with acoustic information too. This approach can potentially
recover OOVs that are not only plausible from the LM point of
view, but also acoustically correct. This training should also
benefit IV representations by forcing the word embeddings
within the ASR system to learn character representations as
the second objective.

Our motivation for devising a more complex joint word-
subword training architecture instead of continuing within the
prevailing trend of using BPEs is the following:

1) Words and characters are linguistically motivated units
of speech unlike rather ad-hoc BPEs, and a system
predicting words and characters has the benefit of ex-
plainability.

2) A word-based system allows for direct application of
external word-based LMs.

3) Pronunciation-aware representations (e.g. embeddings)
of both IVs and OOVs obtained during the training can
be used in other downstream (e.g. NLP) tasks that work
with word-specific representations. One of such tasks is
recovery of OOVs.

The novelty of the paper lies in jointly training the word
predicting network (WPN) and the speller instead of working
with two separate ASRs with outputs of different granularity.
The benefit of this approach is training spelling-aware word
embeddings that are better both for the ASR task and for OOV
recovery.

II. DATA

The experiments have been conducted on the well-know
LibriSpeech dataset [14] of read speech. The training data
contains two sets of clean speech, 100 hours and 360 hours,
and a set of “other” of 500 hours. There are four separate sets
for evaluation: “clean” and “other” development and test sets.
Each of the four evaluation sets is about 5 hours long.

LibriSpeech data is widely used for ASR experiments and
numerous improvements have been reported on it recently.
They often come from using external data (such as Libri-
Light dataset, external LMs, etc.), more complex architectures
(Conformers [15] etc.), significantly bigger models (1B pa-
rameters for w2v-BERT XXL [16] and SpeechStew [17]) or a
combination of the above. To keep our model manageable, we
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system d clean d other t clean t other

5000BPE [18] no LM 4.87 14.37 4.87 15.39
5000BPE WER1 4.99 15.18 5.02 15.65
5000BPE rOOVs 63.8% 36.5% 62.0% 33.2%

5000BPE rIVs 95.7% 85.0% 95.6% 84.7%
5000w WER1 15.38 26.75 16.05 27.24
5000w WER2 6.47 19.12 6.92 19.43
10000w WER1 14.21 26.61 14.58 27.19
10000w WER2 8.66 21.78 8.79 22.36

TABLE I: Baselines of the 5000 BPE system and WPN systems
with different numbers of word targets: 5000 and 10000.

have chosen to compare our baselines to the results in [18],
as it uses a similar architecture (LAS) and model size (90M
parameters) and does not use external data.

III. E2E ARCHITECTURE AND BASELINES

The baseline e2e ASR system used in this work is a LAS
encoder-decoder model [4]. LAS provides complex and well-
interpretable inner representations useful for joint training of
tasks that benefit from sharing information. The input is log
Mel-filterbank features of size 83. As for the outputs, we
trained a system to predict 5000 BPE targets just to compare
our architecture performance with that in [18]. In all the
speller experiments, we work with word-predicting networks
(WPN). The target vocabulary sizes that we experiment with
are 5000 words (11.3% OOV rate) or 10000 words (6.6% OOV
rate). We use SentencePiece toolkit [19] to obtain different
tokenizations. In the word systems, OOVs have a special label
and thus are represented by a dedicated embedding.

The input feature sequence X is transformed into the
encoded hidden representation H by the encoder. The en-
coder consists of six layers, each containing a bi-directional
long short-term memory (biLSTM) layer [1st 83×800, oth-
ers 800×(800+800)] followed by a linear projection layer
[1600×800]. The input sequence is sub-sampled in the time
dimension by a factor of 2 in the first two encoder layers; the
sub-sampling is done by maxpooling with the kernel size 3 and
stride 2. Encoder layers have residual connections, and dropout
is applied to the outputs of the biLSTM networks. Dropout is
0.1 in the subsampling layers and 0.3 in other layers.

The task of the decoder is to predict word labels from the
hidden representation H [800×(frames/4)]. Let wi and wi−1

be the present and the past predicted word labels, while si
[vector of size 800] is the state/output of the decoder LSTM:

si = LSTM(si−1, ci−1,yi−1), (1)

and ci [vector of size 800] is the context vector from the
attention module:

ci = Attention(si,H). (2)

Then, the current output label wi is predicted by the LAS
decoder as follows:

P (wi|X;w1, .., wi−1) =

argmax(softmax(Linear([si, ci]))).
(3)

One of the decoder LSTM inputs yi−1 [vector of size 1600]
is the embedding vector of word label wi−1. Embedding box
in Fig.1 denotes a linear layer that projects word label into
its embedding of size 1600. Note that the weights of this
layer are tied [20] to the weights of the linear layer from
(3): Embedding = LinearT . Thus, for each word label wi,
the embedding yi is the corresponding row from the linear
predicting layer weight matrix. OOV label is also represented
by an embedding.

The model is trained using the ADAM [21] optimizer
with the initial learning rate of 0.001, which is halved upon
encountering an increase in the validation error rate. We do
early stopping when observing an increase in the validation
accuracy for three epochs. In the beginning of the training,
30000 steps of gradual warmup [22] are used. We perform
scheduled sampling [23] where the correct label (teacher
forcing) is selected with the probability 0.6 and the rest of the
time the predicted (most likely) label is selected. This selected
label wi is then used for retrieving its embedding yi to serve
as the decoder LSTM input for the next time step.

The performances of our systems with different target
vocabularies are presented in Table I. Our BPE-generating
system WER (5000BPE WER1) comes close to that of our
chosen reference system (5000BPE [18] no LM), which is
a reasonable baseline for our conditions. It is impossible
for a WPN to generate words that were not in the training
vocabulary. Thus, predicting the OOV label always causes an
error in the classical word error rate (WER) calculation that we
call WER1. We want to isolate the errors that happen due to
the appearance of OOVs in a WPN and therefore we introduce
WER2 scoring that treats the OOV label as a word. In terms of
WER2, when a system predicts the OOV label for a reference
word that is an OOV with the current vocabulary, there is no
error. The differences between WER1 and WER2 for different
vocabularies in Table I show that many of WER1 errors are
due to vocabulary limitation. With bigger vocabularies, this
difference is smaller, as the OOV rate is smaller as well.

As we will be comparing our OOV recovery with the BPE-
predicting system, we provide an analysis of BPE recovery
potential. Lines named “BPE rOOVs” and “BPE rIVs” show
percentages of correctly recovered rare (OOVs) and common
(IVs) words. There are no OOVs in a BPE system, so we
count the most frequent 10000 words (same as in the 10000w
system) as common words, and report their recovery rate in
line “BPE rIVs”. Rare words are words which are OOVs in
the 10000w system and their recovery rate is reported in line
“BPE rOOVs”. The analysis shows that there is potential for
improvement in the task of recovering rare words in a BPE
system.

IV. SPELLER ARCHITECTURES

The speller consists of a single layer LSTM and a linear
output layer, and it is optimized for predicting a string of
characters that constitute a word. It solves a simpler problem,
and so is much smaller than the WPN model: our baseline
WPN model with 5000 outputs contains 90M trainable pa-
rameters; the same model with the addition of the speller has
98M trainable parameters.
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Fig. 1: Baseline LAS-like word-predicting network (WPN) (in black) and speller network trained on different inputs (in red).
Weights of layers in blue are tied.

A. Embedding Speller

Inspired by the LM-speller in [13], the first speller archi-
tecture we trained takes word embeddings yi as an input and
generates letters as an output. The limitation of this approach
is that a number of diverse OOVs are assigned a single OOV
label and thus a single embedding. This single embedding
cannot learn all the spellings of OOVs, and therefore the OOV
embedding is not updated through the speller. To spell an IV
word, its embedding is repeated as a constant input for every
output letter (one-to-many RNN). There is interaction between
the WPN and the speller as the word embeddings are shared
by both networks and are updated by backpropagating from
both objectives during the training.

To accommodate updates from both networks, the training
iterates between updating the WPN and the speller network.
We have found it sufficient to update the speller once for
each word in the vocabulary after every 500 mini-batches of
20 utterances of WPN training. Thus, each word contributes
with an equal weight to updating the speller weights and also
its embedding (WPN weights are not affected by the updates
from the speller training step). There is a separate learning rate
scheduling for speller updates, also with halving and warmup.

This training ensures that the word embeddings are trained
to represent not only the information useful for word predic-
tion but also the information useful for the speller task, i.e.
it makes word embeddings spelling-aware. Such embeddings
are beneficial for WPN training, but this approach does not
allow for OOV recovery.

B. Context- and Acoustics-Aware Speller

To give the speller more information about the OOVs that
we want it to spell, several other speller inputs have been tested
(see dashed red lines in Fig. 1):

1) concatenation of word embedding yi and context vector
si from decoder LSTM,

2) concatenation of word embedding yi and attention out-
put ci,

3) concatenation of yi, ci, and si.
Concatenating the word embedding with si gives the speller

context information, as decoder LSTM preserves label history,

while concatenating the word embedding with ci gives the
speller knowledge about acoustic information relevant for the
currently decoded word.

As the speller needs current inner representations from
the WPN, the training cannot proceed iteratively as for the
embedding-only architecture. This is why the speller is up-
dated simultaneously with the WPN during the training. After
every word hypothesis is generated by the WPN, the speller
is given the embedding yi of the current label together with
the current ci and/or si. Unlike during the embedding speller
training described in subsection IV-A, here each embedding
is not updated equal number of times during training, but the
amount of times it appears in the training data, so the speller
is better attuned to more frequent words.

The speller is trained using cross-entropy loss to predict
the correct sequence of characters (spelling) given the speller
input. The reference character sequence is obtained by tokeniz-
ing the correct word label into characters. The overall loss
for joint training of the WPN and the speller is a weighted
combination of the two cross entropy losses (one for predicting
words and one for spellings). For the experiments presented
in Table II, equal cost weights are given to the speller and the
WPN updates.

In the test time, the WPN predicts a word label first, and
if the predicted word label happens to be the OOV label, the
speller network predicts the spelling of the current OOV from
the current input. This cascade is thus able to both recognize
IVs as well as recover OOVs. The output is a string of words:
part of them are IVs and part are speller-generated.

V. RESULTS AND ANALYSIS

Table II summarizes the results of the experiments with
different speller architectures for a system with the vocabulary
size 10000. The first two lines repeat baseline results in terms
of WER1 and WER2 for the convenience of comparison (see
section III for the explanation of WER1 and WER2). The rest
of the systems are trained with a speller. The speller inputs of
these systems are specified in the column “system”.

A. Embedding Speller Results
The second section of Table II shows the results for the

architecture and the training described in subsection IV-A, in

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2022.3192199

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Brno University of Technology. Downloaded on July 25,2022 at 16:55:01 UTC from IEEE Xplore.  Restrictions apply. 



4

system metric d clean d other t clean t other

baseline WER1 14.21 26.61 14.58 27.19
WER2 8.66 21.78 8.79 22.36

yi

WER1 11.56 23.53 11.80 24.05
WER2 8.05 20.82 8.61 21.10

spell IV 12.84 24.75 13.33 25.13

[yi,si]

WER1 10.79 21.56 10.98 22.07
WER2 5.69 17.50 5.98 17.74
WERr 11.39 22.39 11.36 22.76
rOOVs 12% 5.2% 12.2% 5.1%

[yi,ci]

WER1 10.94 21.53 10.85 22.40
WER2 5.82 17.39 5.80 18.07
WERr 8.84 20.59 8.79 21.42
rOOVs 32% 14.8% 32.3% 13.3%

[yi,si,ci]

WER1 10.65 21.23 10.95 21.89
WER2 5.49 17.15 5.95 17.54
WERr 8.77 20.90 8.75 20.93
rOOVs 32.4% 15.4% 34.6% 13.5%

TABLE II: Experiments with different speller architectures
on the 10000 word system. WER1 and WER2 show the
performance of the WPN without speller participation. WERr
shows results with OOVs recovered through the speller, and
rOOVs shows the percentage of OOVs that were recovered.

which the speller gets only the word embedding yi as an
input. Note that this system uses only a single embedding
representing any OOV and therefore it cannot recover spelling
for OOVs. It can be seen that spelling-aware embeddings
improve both WER1 and WER2. As the speller is not used in
the decoding, the improvement in WER1 and WER2 does not
come from the slight increase of the number of parameters,
but solely from the fact that word embeddings are forced to
be aware of the spelling.

The third metric (“spell IV”) shows the performance of
the speller. First, the word label is predicted, and if it is an
IV label, it is passed through the speller to obtain character
representation. Only if the spelling is correct, the word is
not considered an error. The “spell IV” WER increases only
slightly in comparison to WER1, which shows that the speller
part learns to spell in-vocabulary embeddings almost perfectly.

B. Context- and Acoustics-Aware Speller Results

The last three sections of Table II show performances of
the speller architectures with different inputs introduced in
subsection IV-B. As before, WER1 and WER2 are scored on
the output of the WPN and do not use the speller network
during decoding. Any improvements happening with WER1
and WER2 in comparison with the previous system come due
to the regularizing effect that the speller has on the word
embeddings. The best improvement is reached with the speller
input being the concatenation of yi, ci, and si.

The two new metrics introduced for the speller systems
show the capacity of these systems to recover OOVs through
spelling. First, the word label is predicted, and if it is the OOV
label, the inputs from the current decoding step are passed
through the speller to obtain the character representation. The
resulting output is then a sequence of words, some of them

predicted IV words, and some recovered OOVs. This output
is then scored against the reference transcription to obtain
recovery WER – “WERr” metric. Meanwhile, “rOOVs” shows
the percentage of OOVs that were ideally recovered through
this process.

Concatenating word embedding yi with si as the speller
input makes the speller context-aware. This architecture has
the drawback of not being able to spell an OOV if it happens to
be the first word in a sentence: the input to the decoder LSTM
is a vector of zeros. Table II clearly shows that the addition of
the context information is not as helpful for WERr as the other
architectures. However, this training still improves WER1 and
WER2, and it is sometimes better at improving WER1 and
WER2 than the [yi,ci] speller architecture.

As ci contains representation of the acoustics relevant to the
current word, concatenating the word embedding yi with ci
makes the speller acoustics-aware. This information proves to
be vital for OOV recovery, as is illustrated by the dramatically
improved WERr and rOOVs scores. The speller system that
takes the concatenation of yi, si and ci as an input seems
to take the best from both worlds and shows improvements
across all metrics.

C. OOV Recovery Results
For every speller system, rOOVs shows the percentage

of reference OOVs that were ideally recovered after speller
decoding. We are able to reach 32-34% rOOVs for clean data
and 13-15% on other. This can be directly compared to the
system with BPE targets. Although the BPE system does not
have OOVs per se, we score rOOVs on the words that are
OOVs in the 10000 word vocabulary system. Table I shows
62-64% rOOVs in a BPE system for clean data and 33-36%
on other.

While our numbers do not reach the recovery rates of the
BPE system, our double-granularity system provides addi-
tional information about the word being an OOV and also its
useful internal representation in the form of the speller input.
Speller output does also better than BPEs for words that are not
easily reproducible from common morphemes. For example,
the speller correctly recovered the words “amputation” and
“adventuring” whereas the BPE suggested “amutaion” and
“adventureing”. However, in general, BPE recovery perfor-
mance is still better if one only cares about improving WER.

VI. CONCLUSION

In our work, we have proposed a new neural architecture
for the ASR task that jointly trains two networks predicting
both words and characters using shared inner representations.
We have shown that forcing embeddings of a word-predicting
system to also be spelling-aware improves WER of the word
predicting task. Different inputs to the speller network have
been tested, and we have shown their capability of recovering
OOVs through spelling.

In the future, we would like to experiment with different
training schedules and optimization metrics, to explore the
benefits of having multiple embeddings to represent OOVs,
and ultimately to reach and surpass the performance of BPE
systems.
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