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Abstract

Approximate computing is an emerging computing paradigm for improving the
efficiency of error-tolerant applications. It allows designers to trade a negligible
amount of accuracy for significant efficiency gains. This chapter provides an
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overview of approximate computing and how it can be exploited to offer
improved efficiency while satisfying the user-defined accuracy/quality con-
straints. First, an overview of techniques for approximating arithmetic hardware
modules is presented. Then, methodologies for efficient design space exploration
of approximate modules and for building approximate accelerators are covered.
Apart from hardware-level approximations, the chapter also discusses different
software-level approximations and how they can be integrated with hardware
approximations in a cross-layer design flow for building efficient systems.
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Approximate Computing

Emerging applications in the fields of cyber-physical systems (CPS) and Internet of
things (IoT) have brought various challenges for the system design community. The
major challenges include increases in the computational and memory requirements
of applications, the growth in the number of computing devices, and the emergence
of use cases with stringent energy/power constraints. All these challenges push for
designing highly energy-efficient systems. Conventional techniques such as power
gating and dynamic voltage and frequency scaling (DVFS) help in improving the
energy efficiency of systems. However, they are insufficient to meet the growing
demands of modern computing systems.

Studies by renowned research groups in the domain of energy-efficient comput-
ing systems have shown that a number of modern applications fall into the category
of recognition, mining, and synthesis (RMS) applications that are (to some extent)
resilient to errors (Nair 2014; Mishra et al. 2014; Esmaeilzadeh et al. 2012; Chippa
et al. 2013). This error resilience is usually associated with one or more of the
following factors:

1. Noise in real-world data
2. Inherent error masking characteristics of applications
3. Perceptual limitations of the users, e.g., a slight variation in the quality of an

image/video (or audio) is usually unnoticeable by humans due to their psycho-
visual/psychoacoustic limits

4. Absence of a unique nontrivial solution, e.g., web searches that result in slightly
different but relevant links are usually equally acceptable

These factors can be exploited to relax the accuracy bounds of applications in
order to achieve significant efficiency gains at the cost of minor accuracy/output
quality loss.
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Approximate computing (Xu et al. 2016; Shafique et al. 2016) is a computing
paradigm that offers the opportunity to trade accuracy for improving the perfor-
mance/efficiency of a system. This is mainly possible due to the extended design
space that enables the designer to select designs having better efficiency compared
to conventional designs while still meeting the user-defined accuracy constraints.
Typical applications of approximate computing are in the areas of audio-visual
data processing and machine learning, as slight variations in the output of these
applications can be tolerated due to the intrinsic characteristics of the applications
or perceptual limitations of the users.

Approximations can be applied at different layers of the HW/SW computing
stack. At the software level, techniques like loop perforation (Sidiroglou-Douskos
et al. 2011) and code simplification (Mohapatra et al. 2011) are commonly used,
while, at hardware level, techniques like circuit approximation through voltage/fre-
quency scaling (Chang et al. 2011) and functional approximations (Gupta et al.
2011) are widely used. Voltage/frequency scaling techniques can induce timing
errors in the system, as in such cases the circuit operates at a lower voltage than
the nominal value (Srinivasan et al. 2016). In functional approximation, the original
circuit is replaced with a less complex substitute that exhibits almost the same
functionality but improves nonfunctional circuit parameters such as power/energy
consumption, latency, and area (Gupta et al. 2011).

This chapter provides an overview of approximate computing and how it
can improve efficiency while satisfying the user-defined accuracy constraints.
Figure 1 presents the overview of the chapter. First, section “Approximate Arith-
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metic Components” covers techniques for designing approximate arithmetic mod-
ules (e.g., adders and multipliers). Then section “Design Methods for Building
Approximate Hardware Accelerators: Case Studies for Error-Tolerant Applications”
presents design methodologies for automatically generating approximate datapaths
for application-specific systems. Section “Cross-Layer Approximations for Error–
Tolerant Applications” presents a cross-layer design flow that integrates software-
level and hardware-level approximations. Toward the end, section “Case Studies for
Improving the Energy and Performance Efficiency of DNN Inference” highlights
the effectiveness of cross-layer approximations for deep learning applications, and
section “Conclusions” concludes the chapter.

Approximate Arithmetic Components

The use of approximate computing techniques introduces an error, called approx-
imation error, which is a measure of the difference between the exact computing
solution and the approximate one. This error should allow the designers to reduce
the power consumption of the circuits. The approximation error can be introduced
on various levels. This section covers various techniques for designing approximate
arithmetic components such as adders or multipliers. These components may be
used as basic building blocks in high-level approximation methods introduced in
the following sections.

Design Methodologies for Approximate Components

This work focuses on approximate arithmetic circuits because they are frequently
used in the key applications relevant for approximate computing. The methods for
functional approximations can be divided into two categories: (1) manual and (2)
automated.

The manual (ad hoc) methods are developed for a specific circuit component.
In this chapter, examples of manual approximation of two key arithmetic circuits
– adders and multipliers – are described. These circuits are widely approximated
because they realize key operations in applications requiring low-power processing.
MACs, although widely employed, are typically approximated by using separate
multiplier and adder units instead of introducing an error to the complex MAC
circuit, and thus these circuits are not discussed in the chapter. Designers of
manually approximated circuits found some regularities in the design and modified
the structure or the truth table of the circuit (Fig. 2a). On the other hand, automated
methods use general-purpose circuit resynthesis and approximation techniques and
enable approximation of arbitrary circuits. These methods start with an original
(exact) circuit and, typically iteratively, modify its structure as shown in Fig. 2.
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Fig. 2 Examples of two possible approaches for approximation of multiplier: (a) manual, where
a designer found the rules for effectively omitting cells (Mahdiani et al. 2010), and (b) automated
iterative approximation of a multiplier having the best area (A) and worst-case error (WCE)
below 5%

Manual Approximation Methods

Adders: An adder performs the addition of two binary numbers. Two basic
implementations are (1) ripple-carry adder (RCA), where the carry of each full
adder is propagated to the next full adder, and (2) carry-lookahead adder (CLA),
where several units working in parallel generate three signals (“sum,” “propagate,”
and “generate”) that are employed to quickly generate the carry-in signals. The
CLA has significantly shorter delay than RCA. However, the area and power
dissipation of CLA is larger than RCA. Many approximation principles for the
adders implemented using one of these two schemes have been proposed in the
literature (Jiang et al. 2017). The approximations can be classified into the following
classes:

• Speculative adders were proposed by Lu (2004). In this architecture, the CLA
structure is approximated using prediction of the carry for each sum bit.

• Segmented adders, where the addition is divided into n smaller subadders
operating in parallel. These subadders have a fixed carry, and their delay is
n-times shorter (Mohapatra et al. 2011). An advanced version divides the
addition to the carry generation and sum generation, where each summation
utilizes the information from the previous carry generation (Zhu et al. 2009).

• Approximate carry select adders consist of several subadders. Each subadder is
made of two speculative adders – one with carry-in “0” and another with carry-in
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“1”. The carryout of the first adder is connected to a multiplexor in the next block
selecting the output of one of two speculative adders (Du et al. 2012).

• Approximate full adders are implemented in LSBs of the adder. For example, the
simple use of OR gates instead of full adders and ignoring carries in the LSB part
can lead to enormous power and time savings (Mahdiani et al. 2010).

Multipliers: Compared to addition, multiplication is a more complex operation.
Generally, it consists of stages of partial product generation, accumulation, and
final addition. There are several accurate multiplier architectures. The manually
approximated n-bit multipliers are usually derived from one of the following
schemes: (1) an array multiplier, where the sum and carry signals are generated by
n-bit adders in each of n rows and they are passed to the adders in the next row, and
(2) Wallace (or Dadda) tree multipliers dividing the multiplication into layers, where
the adders work in parallel without any carry propagation within the layer. The array
multiplier is smaller than the tree multiplier but slower. The approximations can be
implemented in the following parts of the multipliers (Jiang et al. 2017):

• Approximation in generating partial products modifies the submultipliers, which
the multiplier is composed of. For example, Kulkarni et al. proposed an approx-
imate 2 × 2-bit multiplier where only one single entry is altered (3 × 3 = 7
and the remaining ones are correct) (Kulkarni et al. 2011). Larger multipliers are
designed using this 2-bit multiplier as a building block.

• Approximation in the partial product tree modifies the structure of the multi-
plies. This approach is utilized in the broken-array multiplier (Mahdiani et al.
2010). This multiplier omits some rows and columns in the array multiplier.
A straightforward truncation of LSBs in operands (e.g., the usage of accurate
6-bit multiplier instead of the 8-bit one) also modifies the partial product tree
by omitting some partial product cells. The omitting approach can be done in
an adaptive way. In the multiplier proposed by Kyaw et al. (2010), the LSB cell
function is controlled by the MSBs of operands.

• Approximation in counters or compressors in the partial product tree utilizes the
tree structure of the multiplier. The key operations in each level are compressions,
where 3 bits or 4 bits are compressed to 2 bits (3:2 or 4:2 compressors). These
circuits can be approximated, for example, by a substitution of full adders by
approximate ones (Momeni et al. 2015).

Automated Approximation Methods

SALSA: The Systematic methodology for Automatic Logic Synthesis of Approx-
imate circuits (SALSA) is an automated approach that turns the approximation
synthesis to the standard synthesis task (Venkataramani et al. 2012). A virtual circuit
containing an accurate solution, a candidate circuit, and decision circuit (with one
output) is constructed. The output is active when the error bound constraint is
violated. The don’t care states are iteratively applied to the approximate solution.
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These states are accepted if the output of the virtual circuit remains zero for all input
combinations. Thereafter, a traditional don’t care-based optimization technique is
applied.

SASIMI: Another systematic approach, Substitute-And-SIMplIfy (SASIMI)
(Venkataramani et al. 2013), tries to identify signal pairs in the circuit that show
the same value with high probability and substitutes one for the other. These
substitutions result in some logic to be eliminated from the circuit. In addition
to that, the downsizing of gates on critical paths (simplification) may be enabled.
Moreover, the connection of the signal pairs using a configurable substitution
circuit provides a kind of quality configurable circuit that can dynamically operate
at different accuracy levels depending on the application requirements.

ABACUS: In contrast with previous automated methods, Automated Behavioral
Approximate CircUit Synthesis operates on the HDL level. It automatically gen-
erates approximate circuits directly from the behavioral-level description. In order
to perform desired approximations, the method modifies the abstract synthesis tree
(AST) using the following operators: (1) simplification of data types, (2) substitution
of arithmetic operations by approximate operations, (3) transformation of arithmetic
expressions, (4) substitution of variables with constants, and (5) loop transforma-
tions. In each iteration of the algorithm, the operations are randomly applied to the
accurate circuits, while the error bound is checked after the application (Nepal et al.
2014). The search algorithm is based on a simple hill-climbing algorithm or multi-
objective NSGA-II algorithm (Nepal et al. 2017).

AIG-Rewriting: Another automatic synthesis approach uses And-Inverter Graph
(AIG)-based rewriting. The AIG is a widely employed representation in logic
synthesis. The algorithm identifies the longest paths in the circuit. Then cuts are
selected by performing cut enumeration on the selected paths. In a logic circuit
represented by an acyclic graph, a cut of node n is a set of nodes of the network,
called leaves, such that each path from primary inputs to n passes through at least
one leaf (Mishchenko et al. 2006). Each cut is replaced by an approximate cut
(typically by zero constant) to generate a new candidate circuit. If the candidate
meets the error constraints, it is accepted to the next iteration (Chandrasekharan
et al. 2016).

ASLAN: Automatic methodology for Sequential Logic ApproximatioN (ASLAN)
performs synthesis of approximate sequential circuits. The algorithm tries to iden-
tify combinational blocks in a sequential circuit that are amenable to approxima-
tions. Then, existing combinational approximation techniques are utilized to obtain
a series of approximate versions having different quality levels. A gradient/descent
approach is used to iteratively approximate the entire sequential circuit, while the
overall error bound is checked using a formal verification approach (Ranjan et al.
2014).
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BLASYS: Another methodology for approximate circuit synthesis based on
Boolean matrix factorization (BMF) is BLASYS (BMF-based Logic Approximate
SYnthesiS). A heuristic algorithm cuts the original circuits to small subcircuits. The
truth table of a subcircuit of the design is approximated using BMF to a controllable
approximation degree. The results of the factorization are used to synthesize a
less complex subcircuit. A subcircuit design-space exploration technique helps
to identify the best order for subcircuit approximations. The first version of this
methodology (Hashemi et al. 2018) targeted Hamming distance only. However, in
the most recent version (Ma et al. 2019), different error metrics are available. This
tool is available as an open source at https://github.com/scale-lab/BLASYS.

Evolutionary Algorithm-Based Methods: The logic synthesis is based on small
iterative changes of the initial circuit and optimizing the so-called fitness value.
Vasicek and Sekanina successfully employed this idea for approximate circuit
design by introducing the error metric to the fitness function (Vasicek and Sekanina
2015).

The main advantage of evolutionary approximation is that the heuristic searching
algorithm can easily handle arbitrary constraints by giving penalties to the fitness
function. Some penalties can be introduced for exceeding error metric (e.g., worst-
case arithmetic error, mean relative error [MRE], etc.). Moreover, the evolutionary
approximation can handle any application-specific constraint like accurate multipli-
cation by zero (Mrazek et al. 2016) or nonuniform input distribution (Vasicek et al.
2019) as well.

The evolutionary approximation was also used in the context of FPGAs.
GRATER tool (Lotfi et al. 2016) employs a genetic algorithm to determine the
precision of variables within an OpenCL kernel. By selectively reducing the
precision, the number of parallel approximate kernels that can be mapped in the
fixed area budget of an FPGA can be increased with respect to the original kernel
implementations.

Error Metrics and Evaluation Analysis for Approximate Components

The quality of approximate combinational circuits is typically expressed using one
or several error metrics. In addition to the error rate, the average-case as well as
the worst-case situation can be analyzed. Among others, the mean absolute error
(MAE) and the MRE are the most useful metrics that are based on the average-
case analysis. Selection of the right metrics is a key step of the whole design.
When an arithmetic circuit is approximated, for example, it is necessary to base the
error quantification on an arithmetic error metric. For general logic circuits, where
no additional knowledge is available and where there is not a well-accepted error
model, Hamming distance or error rate is typically employed.

The following paragraphs summarize the error metrics that have been employed
in literature to quantify the deviation between the outputs produced by a functionally

https://github.com/scale-lab/BLASYS
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correct design and an approximate design. These metrics are divided into two
categories. The category of arithmetic errors consists of metrics that compare integer
values of the circuit outputs. The Boolean error metrics are classified as general
errors.

Arithmetic Error Metrics
Let f : B

n → B
m be an n-input m-output Boolean function that describes the

correct functionality (the accurate function) and f ′ : Bn → B
m be an approximation

of it, both implemented by two circuits, namely, F and F ′.
The worst-case arithmetic error, sometimes denoted as error magnitude or error

significance (Chan et al. 2013), is defined as

ewce(f, f ′) = max
∀x∈Bn

|int (f (x)) − int (f ′(x))|, (1)

where int (x) represents a function int : B
m → Z returning an integer value

of the m-bit binary vector x. Typically, a natural unsigned binary representation
is considered, i.e., int (x) = ∑m

i=1 2i · xi . The worst-case error represents the
fundamental metric that is useful to guarantee that the approximate output differs
from the correct output by at most error bound e.

In the literature, the relative worst-case error

ewcre(f, f ′) = max
∀x∈Bn

|int (f (x)) − int (f ′(x))|
int (f ′(x))

(2)

is frequently employed to constrain the approximate circuit to differ from the correct
one by at most a certain margin. Note that a special care must be devoted to the cases
for which the output value of the original circuit is equal to zero, i.e., the cases when
the denominator approaches zero. This issue can be addressed by either omitting test
cases when int (f (x)) = 0 or biasing the denominator by 1. The first approach is
usually employed in the manual approximation methods where the zero results are
accurate (Jiang et al. 2017).

The average-case arithmetic error (also known as MAE) is defined as the sum
of absolute differences in magnitude between the original and approximate circuit,
averaged over all inputs:

emae(f, f ′) = 2−n
∑

∀x∈Bn

|int (f (x)) − int (f ′(x))|. (3)

If the expression in the sum is replaced by the equation for relative error distance,
the mean relative error is calculated:

emre(f, f ′) = 2−n
∑

∀x∈Bn

|int (f (x)) − int (f ′(x))|
int (f ′(x))

. (4)
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Note that the values produced by absolute error metrics emae and ewce can be
very large. Hence, these values can be expressed as a part of the output range using
division by 2m − 1, i.e., the maximal output value. For example, the worst-case
arithmetic error of 64 for an 8-bit output circuit (e.g., 4-bit multiplier) is equal to
25% error.

General Error Metrics
In addition to the arithmetic error metrics, there are metrics that are not related
to the magnitude of the output of the correct or approximate circuit. These errors
are typically used in approximation of general combinational circuits, where the
weight of the output bits is unknown. In these circuits such as coders, decoders, and
widely used benchmark circuits (e.g., ISCAS-89, ITC-99, etc.), the output value
is not an arithmetic number, and arithmetic errors cannot be calculated (Vasicek
and Sekanina 2014, 2015). However, the error probability is widely employed in
arithmetic circuits as well.

The error rate, referred to as the error probability, represents the basic measure
that is defined as the ratio of input vectors for which the output value differs from
the original one:

eprob(f, f ′) = 2−n · ∣
∣{∀x ∈ B

n : f (x) �= f ′(x)}∣∣ (5)

In many cases, it is also worth to consider the Hamming distance between f (x)

and f ′(x). The worst-case Hamming distance, denoted also as bit-flip error (Chen
et al. 2014), is defined as

ebf (f, f ′) = max
∀x∈Bn

m∑

i=1

(f (x) ⊕ f ′(x))i (6)

and gives the maximum number of output bits that simultaneously output a wrong
value. The average number of changed output bits, denoted as the average Hamming
distance, can be expressed as follows:

emhd(f, f ′) = 2−n
∑

∀x∈Bn

m∑

i=0

(f (x) ⊕ f ′(x))i . (7)

Quality Evaluation
In the error-metric formulas, the enumeration of all possible input vectors is
employed. For a larger number of inputs n, it is not feasible to enumerate B

n. This
issue can be solved by (a) enumerating a subset of Bn or (b) obtaining the exact
value using a formal verification approach. The formal verification can be performed
by exhaustive simulation (with maximal instruction level of SIMD paralleliza-
tion) (Hrbacek and Sekanina 2014; Mrazek et al. 2018) or some formal verification
technique. These techniques typically construct a virtual miter circuit (consisting
of candidate circuit, golden solution, and comparison circuit). Reduced Ordered
Binary Decision Diagrams (ROBDD) or SAT conjunctive normal form (CNF)
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representation was employed in the area of approximate circuits. The ROBDDs
can help the users to determine various error metrics (Hamming distance (Vasicek
and Sekanina 2014) or mean or worst-case arithmetic error (Soeken et al. 2016;
Vasicek et al. 2017)). However, SAT solving is more effective for complex circuits
like multipliers. These solvers allow only to determine if the worst-case error is
below some given threshold, but very complex circuits such as 32-bit multipliers or
128-bit adders can be approximated (Češka et al. 2017).

Design Methods for Building Approximate Hardware
Accelerators: Case Studies for Error-Tolerant Applications

Approaches for creating approximate components were presented in sec-
tion “Design Methodologies for Approximate Components”. The components
are typically organized in libraries (e.g., Shafique et al. 2015; Hanif et al. 2017;
Mrazek et al. 2017). These libraries contain from tens to thousands of approximate
implementations for each arithmetic operation (e.g., 8-bit multiplication, 16-bit
addition, etc.); the user is provided with a broad set of implementation options to
reach the best possible trade-off between QoR (quality of results) and energy (or
other hardware parameters) at the accelerator level.

If the user wants to use the components in his application, they start with some
accurate accelerator, where the accurate operations are replaced by corresponding
approximate components. However, it is intractable to find an optimal combination
of approximate circuits, even for an accelerator consisting of a few operations.
Identifying the most suitable replacements of the arithmetic operations of the
target accelerator with the approximate circuit is a complex task. In this chapter,
two approaches to this task are presented. As it is a multi-objective optimization
problem, there is no single optimal solution; rather, multiple ones typically exist.

The designers are primarily interested in approximate circuits belonging to the
Pareto frontier that contains the so-called non-dominated solutions. Consider two
objectives to be minimized, for example, the mean error and energy. Circuit C1
(Pareto) dominates another circuit C2 if (1) C1 is no worse than C2 in all objectives
and (2) C1 is strictly better than C2 in at least one objective.

This problem resembles the binding step of high-level synthesis (HLS), whose
objective is to (i) map elementary operations of the algorithm to specific instances
of components that are available in the component library and (ii) optimize
hardware parameters such as latency, area, and power consumption. In the context
of approximate circuits, the principal difference and difficulty lie in the QoR
evaluation at the accelerator level. Except for some particular cases (e.g., Mazahir
et al. 2017a,b), it is in general unknown how the errors propagate if two or more
approximate circuits are connected in a more complex circuit. A common approach
is to estimate the resulting error using either analytic or statistical techniques, but it
usually is a very unreliable approach as seen in Li et al. (2015). If the problem is
simplified in such a way that the only approximation technique is truncation, then
an optimal number of bits to be approximated can be determined (Sengupta et al.
2017).
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Fig. 3 Two types of accelerators: (a) with the irregular structure of fixed Gaussian filter having
ten adders and one subtractor with different levels of approximation and (b) PE array for inference
of neural network having PE employing the same adder and multiplier

Two major types of accelerators are discussed in the following sections. The first
one maps every operation on every single hardware component (Fig. 3a). Typical
examples of such irregular accelerators are image, video, or signal processing filter
pipelines. The automated methodology shown in section “Image and Video Process-
ing Applications” maps the approximate components to the operations. The second
type of accelerator shares the hardware component for multiple operations (Fig. 3b).
The sharing occurs, for example, in neural network inference acceleration. The
layer operations are executed on a PE array where each processing element handles
multiple different convolutions. In this case, additional constraints (e.g., only a few
approximate PE arrays, order of the layers) must be satisfied. However, the structure
of the neural network may be modified simultaneously. The approximation of neural
networks is discussed in section “Deep Neural Networks (DNNs)”.

Image and Video Processing Applications

Many different operations are employed in a typical image processing pipeline.
In this section, three accelerators of different complexities that are typically used
as benchmarks in image processing will be considered. In particular, Sobel edge
detector (Sobel ED) (five operations), Gaussian filter with fixed coefficients (fixed
GF) (11 operations), and generic Gaussian filter (generic GF) (17 operations)
working on the 3 × 3 filter kernel were chosen.

Since there are hundreds to thousands of different approximate components for
each operation and the complexity is exponential, the number is enormous. While
the approximation of the five-operation accelerator is solvable by an exhaustive enu-
meration of all possible configurations, the accelerator consisting of 17 operations
represents a nontrivial problem.

AutoAx Methodology
To address the approximate component binding problem, the authors proposed the
AutoAx methodology (Mrazek et al. 2019a) that enables fast QoR and hardware cost
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evaluation by means of machine learning algorithms and heuristic multi-objective
searching algorithm.

The methodology requires the following inputs from the user: a hardware
description of the chosen accelerator, corresponding software model, and training
(benchmark) data. Hierarchical hardware as well as software models are expected
in order to be able to replace relevant operations with their approximate versions
and to evaluate how this change affects the QoR. Approximate circuits are taken
from a library, in which each of them is fully characterized and many approximate
implementations exist for each operation.

Let the accelerator contain n operations that can be implemented using some
approximate circuits for the library. A configuration is referred to as a particular
assignment of approximate circuits from the library to n operations of the accelera-
tor. The goal of the methodology is to find a Pareto set of configurations where the
design objectives to be optimized are QoR (e.g., SSIM, PSNR, etc.) and hardware
cost (e.g., area, delay, power, or energy).

The whole process consists of three steps as illustrated in Fig. 4.

Fig. 4 Overview of the proposed autoAx methodology
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Step 1: The library of the approximate circuits is preprocessed in such a way
that clearly irrelevant circuits are removed. Irrelevant circuits are identified on
the basis of their quality (measured with respect to a particular application) and
hardware cost.

Step 2: Computational models enabling to estimate QoR and hardware cost are
constructed by means of some machine learning algorithm. A small (randomly
selected) subset of possible configurations is used for learning of the computa-
tional models.

Step 3: The Pareto frontier reflecting QoR and HW cost is constructed. To quickly
remove as many low-quality solutions as possible, the construction algorithm
employs the values estimated by the proposed models. The final Pareto front
is then constructed using precisely computed QoR and hardware parameters by
means of simulation and synthesis.

Library Preprocessing For each operation of the accelerator, a suitable subset of
approximate circuits is separately identified in the library by means of benchmark
data. For example, if the kth operation of the accelerator is 8-bit addition, then
the objective of this step is to identify approximate 8-bit adders that form the
Pareto front with respect to a suitable error metric (score) and hardware cost. The
authors propose to base the selection on probability mass function (PMF) of the
given operation which can be easily determined by simulation of the accelerator on
benchmark data.

This process can be formalized as follows. Let I denote a set of all possible
combination of values from the benchmark dataset that can occur on the input of
kth operation M(x1, x2, . . . ), x ∈ I , k = 1 . . . n. Then, Dk : I → R denoting
the PMF of this operation is defined as Dk(i1, i2, . . . ) = Pr(x1 = i1 ∧ x2 =
i2 ∧ . . . ). This function is used to determine a score (weighted mean error distance)
of an approximate circuit M̃ implementing kth operation as follows: WMEDk(M̃) =∑

∀i∈I Dk(i)·|M(i)−M̃(i)|. For each operation of the accelerator, this score is then
used together with hardware cost to identify only those approximate circuits (i.e.,
8-bit adders in our example) that are lying on a Pareto frontier.

Model Construction Since the synthesis and simulation are typically very time-
consuming processes, it is intractable to use them to perform the analysis of
hardware cost and QoR for every possible configuration of the accelerator. To
address this issue, construction of two independent computational models is pro-
posed – one for estimating QoR and a second for estimating hardware parameters.
The estimation is based on the parameters of approximate circuits belonging to one
selected configuration.

The models are constructed independently using a suitable supervised machine
learning algorithm (regression problem). The learning process is based on providing
example input–output pairs. In our case, each input–output pair corresponds with a
particular configuration as shown in Fig. 5. One input is represented by a vector X,
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Fig. 5 Construction of training/testing set for ML model of hardware cost. The X-vector is
extracted from the library (e.g., power, PDP [power–delay product] for HW cost, emae, ewce for
QoR), and the y-value is calculated using synthesis chain

which contains a subset of hardware or quality parameters of each approximate
circuit realizing one of the operations as defined by the configuration. The output
is a single scalar value y of QoR or hardware cost that is obtained by simulation
and synthesis of the concrete accelerator with the given configuration. A training set
typically containing from hundreds to thousands of configurations is generated for
learning.

The goal of this step is to obtain high-quality models. A set of configurations
different from the training set is used to determine the quality of the model and avoid
overfitting, when the estimated values correspond too closely or exactly to training
output values, and the model may, therefore, fail in fitting additional data. Typically,
the accuracy is optimized by the machine learning algorithms. However, as the
models are used for determining a relation between two different configurations,
it is not necessary to focus on the accuracy. Fidelity (aka monotonicity (Bailey et al.
2007)) is considered as the optimization criterion that maximizes the fidelity of the
model. The fidelity describes how often the estimated values are in the same relation
(<,= or >) as the real values for each pair of configurations. If the fidelity of the
constructed model is insufficient, the parameters of the chosen learning algorithm
should be tuned, or a different learning engine should be selected.

Model-Based Design Space Exploration In this step, the Pareto frontier contain-
ing those configurations that show the best trade-offs between QoR and hardware
cost is constructed. In order to avoid time-consuming simulation and synthesis, the
construction is divided into two stages. In the first stage, the computational models
that were developed in the previous step are used to build a pseudo-Pareto set of
potentially good configurations. In the second stage, based on the configurations
forming the pseudo-Pareto set, a set of approximate accelerators is determined, fully
synthesized, and analyzed by means of a simulator and benchmark data. A real QoR
and real hardware cost is assigned to each configuration. Finally, these real values
are used to construct the final Pareto set.
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Algorithm 1 Pareto set construction
INPUT: RL – set of libraries, RL = {RL1, RL2, · · · , RLn},

MHW – HW costs model, MQoR – quality model
OUTPUT: Pareto set P ⊆ RL1 × RL2 × · · · × RLn

function HEURISTICPARETOCONSTRUCTION(RL, MQoR , MC )
Parent ← PICKRANDOMLYFROM(RL1 × RL2 × · · · × RLn)

P ← ∅
while ¬T erminationCondition do

C ← GETNEIGHBOUR(Parent)

eQoR ← MQoR(C) � Estimate the quality of C
eHW ← MHW (C) � Estimate the HW costs of C
if PARETOINSERT(P, (eQoR, eHW ), C) then

Parent ← C

else if StagnationDetected then � Parent not changed in last k iterations
Parent ← PICKRANDOMLYFROM(P )

end if
end while
return P

end function

Although the first step reduced the number of possible configurations, the
number of combinations may still be enormous especially for complex problems
consisting of tens of operations. Therefore, the authors proposed an iterative
heuristic algorithm (Algorithm 1) to construct the pseudo-Pareto set. The algorithm
is a variant of stochastic hill climbing which starts with a random configuration
(denoted as Parent), selects a neighbor at random (denoted as C), and decides
whether to move to that neighbor or to examine another. The neighbor configuration
is derived from Parent by modifying a randomly chosen item of the configuration
(i.e., another circuit is picked from the library for a randomly chosen operation). The
quality and hardware cost parameters of C (eQoR and eHW ) are estimated by means
of appropriate estimation models. If the estimated values dominate those already
present in Pareto set P , configuration C is inserted to the set, the set is updated
(operation PARETOINSERT), and the candidate is used as the Parent in the next
iteration. In order to avoid getting stuck in a local optimum, restarts are used. If
the Parent remains unchanged for k successive iterations, the Parent is replaced
by a randomly chosen configuration from P . The quality of the resulting Pareto
set depends on the fidelity of the estimation models and on the number of allowed
iterations. The higher fidelity, the better results. The number of iterations depends on
the chosen termination condition. It can be determined by the size of P , execution
time, or the maximum allowed number of iterations.

Results
The results are divided into two parts. Firstly, a detailed analysis of the results for
the Sobel ED is provided to illustrate the principle of the proposed methodology. In
the second part, only the final results are discussed due to the complexity of these
problems and a limited space.
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Fig. 6 PMF of operations in the Sobel ED

Sobel Edge Detector To eliminate irrelevant circuits from the library, a score is
calculated for each circuit in the library. Firstly, the target accelerator is profiled with
a profiler which calculates the PMF Dk for all operations (Fig. 6). Note that add3
(resp. add4) has almost identical PMF with add1 (resp. add2). Figure 6 shows that
operand values (neighbor pixels) are typically very close. In the plot dealing with
Dadd2 , one can see regular white stripes caused by shifting of the second operand.

Using the obtained probabilities, the WMEDk errors are calculated for all
approximate circuits implementing kth operation. Then the components are filtered
out. The process is guided by area and WMEDk parameters of the isolated
circuits and keeps only Pareto-optimal implementations. At the end of this process,
the number of circuits in reduced libraries is |RLadd1 | = 35, |RLadd2 | = 32,

|RLadd3 | = 37, |RLadd4 | = 33, and |RLsub| = 36.
The next step in the methodology is to construct models estimating SSIM and

hardware parameters using parameters of the circuits belonging to one selected
configuration. The WMED of all employed circuits is employed as the input vector
for the QoR model. For the hardware model, the input vector is power, area,
and delay of all circuits. Several learning engines are compared to identify the
most suitable one for our methodology (1500 configurations for learning and 1500
configurations for testing were randomly generated using the reduced libraries).

The considered learning engines are the regression algorithms from scikit-learn
tool for Python. Additionally, a naïve models are constructed for area (Ma(C) =∑

∀c∈C area(c)) and for SSIM (MSSIM(C) = −∑
∀c∈C WMEDk(c)) to test if

SSIM correlates with the cumulative arithmetic error and if the area correlates with
the sum of areas of all employed circuits. These simple models are also considered
in the comparisons.

Table 1 shows the fidelities for all constructed models when evaluated on the
training and testing datasets. The best result for the testing datasets is provided by a
random forest consisting of 100 different trees. The correlation between estimated
and real area is shown in Fig. 7. The naïve models exhibit unsatisfactory results
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Table 1 The fidelity of
models for Sobel edge
detector constructed by
different learning engines

Learning algorithm
SSIM Area

Train Test Train Test

Random forest 99% 96% 97% 92%
Decision tree 100% 95% 100% 86%

K-neighbors 94% 94% 91% 89%

Bayesian ridge 90% 90% 91% 91%

Partial least squares 90% 90% 91% 90%

Lasso 90% 90% 91% 90%

Naïve model – 90% – 88%

AdaBoost 90% 90% 90% 88%

Least-angle 90% 90% 71% 72%

Gradient boosting 89% 89% 92% 91%

MLP neural network 86% 83% 92% 91%

Gaussian process 100% 71% 100% 55%

Kernel ridge 41% 42% 90% 90%

Stochastic gradient descent 24% 25% 75% 74%

Fig. 7 Correlation of estimated area and real area obtained by synthesis tool for the selected
learning engines used in Sobel ED experiment

especially for small resulting approximate accelerators. In the analysis of some of
these cases in detail, the authors observe that the inaccuracy was typically caused
by the last operation in the application (i.e., sub). As this operation shows a big
error, it is significantly simplified by the synthesis tool, and as a consequence
of that, many other circuits are removed from the circuit because their outputs
are no longer connected to any component. Hence, the real area of these circuits
was significantly smaller than the area calculated using the library. Due to this
elimination, machine learning methods based on conditional structures (e.g., trees)
exhibit better performance than methods primarily utilizing algebraic approaches
(e.g., MLP NN).

The impact of input parameters on the model quality was analyzed. Including
different error metrics such as the error variance did not improve the fidelity of QoR
models. In contrast, omitting power and delay in hardware modeling led to 2% lower
fidelities of these models on average.
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The quality of the proposed heuristic algorithm that was used for Pareto frontier
construction is evaluated now. Because of a low number of operations in Sobel ED,
all possible configurations derivable from the reduced libraries RLk (i.e., 4.92 · 107

configurations in total) can be evaluated. The proposed algorithm with a reasonable
number of evaluations (105) could find the suboptimal solutions that are very close
to the optimal ones. The proposed algorithm found solutions in three orders of
magnitude closer to the optimal than the standard random search.

More Complex Pipelines The methodology was also applied to obtain approx-
imate implementations of two versions of Gaussian image filter (fixed GF and
generic GF). After profiling this accelerator and reducing the library of approximate
circuits accordingly, random forest-based models of QoR and hardware parameters
were created using 4000 training and 1000 testing randomly generated configura-
tions. In the case of fixed GF, the fidelity of the area estimation model is 87% for
hardware parameters and 92% for QoR. The fidelity of both models of generic GF
is 89%. If the synthesis and simulations run in parallel, the detailed analysis of
one configuration takes 10 s on average, and the model-based estimation of one
configuration takes 0.01 s on average.

The Pareto construction algorithm evaluated 106 candidate solutions. On aver-
age, 39 iterations were undertaken to find a new candidate suitable for the Pareto
front.

Table 2 shows the size of the design space after performing particular steps of
the proposed methodology. For example, there are 7.15 · 1063 configurations in
the generic GF design space. The elimination of irrelevant circuits in the library
reduced the number of configurations to 3.75 ·1023. The number of configurations is
enormous, and it would take 1017 years to analyze them. In contrast, the construction
of 4000 random solutions for training of the models takes approximately 11 h,
106 iterations of the proposed Pareto construction algorithm employing the models
takes 3 h, and the remaining 1000 configurations are analyzed in 3 h. Finally,
approximately 100 configurations that are Pareto optimal in terms of area, SSIM,
and energy are selected. In total, the proposed approach takes 17 h on a common
desktop. Hypothetically, if the analysis would be used instead of the estimation
model in the Pareto front construction, the analysis of 106 configurations would
take 115 days.

Figure 8 compares resulting Pareto fronts obtained using the proposed method-
ology (orange line), the RS-based Pareto front construction algorithm (blue line),

Table 2 Size of the design space after performing particular steps of the proposed methodology

Application
# configurations

All possible Lib.
preprocessing

Pseudo-Pareto Final Pareto

Sobel ED 1.96 · 1015 4.92 · 107 335 62

Fixed GF 7.35 · 1034 1.73 · 1016 1166 132

Generic GF 7.15 · 1063 3.75 · 1023 946 102
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Fig. 8 Pareto fronts showing best trade-offs between SSIM, area, and energy obtained using three
methods (orange, the proposed method; blue, random search; black, uniform selection) for three
approximate accelerators

and the uniform selection approach (black line). The uniform selection approach
is a manual selection method which one would probably take if no automated
design methodology is available. In this method, particular approximate circuits
are deterministically selected to exhibit the same error WMED (relatively to the
output range). Figure 8 shows that this method provides relevant results only for
accelerators containing a few operations. The randomly generated configurations
(blue points) were obtained from a 3-h run of the random configuration generation-
and-evaluation procedure. They are included in these plots in order to emphasize
high-quality solutions obtained by the proposed method.

Deep Neural Networks (DNNs)

The neural networks have come to be an important part not only of supercomputers
but even small embedded systems realizing machine learning on the edge. The
structure of hardware accelerators is different in contrast to the typical signal
processing pipeline introduced in the previous section. The accelerator is organized
as an array of processing elements. An arbitrary approximate component cannot be
assigned to any layer of DNN because the number of the tiles (parts of the PE array)
is limited. A significant proportion of energy is consumed by the computational path
consisting primarily of multiplications (25–50% (Judd et al. 2018)).
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The energy cost of the computational path can be reduced using approximate
computing because the DNNs exhibit error resilience property. The standard
approach is to assign the approximate components to the layers while considering
PE array construction constraints. The promising alternative approach is to construct
the architecture with approximate components (neural architecture search) (Pinos
et al. 2021), but this approach is computationally intensive. Therefore, the authors
proposed ALWANN methodology (Mrazek et al. 2019b) that assigns the approxi-
mate components with the help of a multi-objective evolutionary algorithm.

ALWANN Methodology
ALWANN requires the following inputs from the user: already trained NN being
subject of the approximation, a library of basic approximate components (adders,
multipliers), and knowledge of the architecture of the final HW accelerator. Two
HW-based architectures (as discussed in the previous section) are considered
in this work: pipelined and power-gated arrays. For simplicity, the MAC units
will be implemented using accurate addition and approximate multiplication, but
approximate addition can be introduced as well in general. Let L = {L1, L2, . . .}
be a set of indexes of convolutional layers of NN and M be a set of available
approximate w-bit multipliers. The user should specify the number of different tiles
|T | the accelerator will consist of. Typically, |T | < |L| and w = 8 is sufficient. Each
tile’s NFU consists of the array of the same MAC units. Each layer Li is supposed
to be executed on a single tile Tj .

The method outputs a set of AxNNs (modified original NN together with the
corresponding configuration of the HW accelerator tiles) that are Pareto optimal
with respect to the energy consumption and classification accuracy. The approxima-
tions are introduced to the original NN by replacement of the accurate convolutional
layers by approximate ones together with weight tuning. Considering the structure
of the HW-based accelerator, two tasks are solved simultaneously. The methodology
looks for the assignment of the approximate multipliers to MACs in SA tiles
T = {T1, T2, . . .}, i.e., mapping mapT M : T → M, and for the assignment of
the convolutional layers to SA tiles, i.e., mapping mapLT : L → T. The weights in
each layer are updated according to the properties of a particular multiplier assigned
to the tile which computes the output of the layer.

The overall architecture of the proposed framework is shown in Fig. 9. The
framework expects that a fully specified NN is available (typically in protobuf
format). If not already done, the NN is firstly quantized to avoid floating point MAC
operations. The protobuf specification of the quantized NN is then edited, and all
convolutional layers are replaced by approximate ones. This step is necessary to
have the ability to specify which multiplier should be used to calculate the output
of the MACs separately for each layer. To obtain a Pareto set of various AxNNs,
the authors propose to use multi-objective genetic algorithm (NSGA-II) (Deb et al.
2002). The algorithm maintains a population of |P | candidate solutions represented
as a pair (mapT M,mapLT ). The search starts from an initial population which
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Fig. 9 Overall architecture of ALWANN framework

is generated either deterministically or randomly. The candidate solutions are
iteratively optimized with respect to the accuracy of AxNN and energy required
to perform one inference. For each candidate solution, a corresponding protobuf is
created. This step includes the assignments of the multipliers to each approximate
layer according to the mapT M and mapLT and refinements of the weights in each
approximate layer depending on the chosen multiplier. Then, energy as well as
quality of the obtained AxNN is evaluated on a subset of training data. The usage
of the subset of training data reduces the testing time, and it simultaneously avoids
overfitting. At the end of the optimization process when a terminating condition is
met (typically the maximum number of allowed iterations is exceeded), the quality
of the candidate solutions is evaluated using the complete training set. Solutions
whose parameters are dominated by at least one other solution are filtered out.

In contrast to the AutoAx methodology for a generic pipeline, the introduced
ALWANN approach does not employ ML models. The HW cost is estimated as a
sum of energies because the chained approximation does not affect the overall HW
cost in direct result sharing. Similarly, a fast evaluation of quality (classification
accuracy) has been proposed. Since many approximate units work in parallel, this
task can be performed on a GPU in a reasonable time. The common part of both
methodologies is that they use a multi-objective genetic heuristic algorithm (a
variant of NSGA-II).

Representation of Candidate AxNNs Each candidate solution is uniquely defined
by a pair (mapT M,mapLT ). The authors propose to use an integer-based encoding.
The first part mapT M is encoded using |T | integers where each integer corresponds
with index i of multiplier Mi ∈ M . Similarly, the second part is encoded using
|L| integers where each integer determines index i of a tile Ti ∈ T that will be
used to compute the output of the corresponding layer. Depending on the structure
of the chosen HW accelerator, additional restrictions may be applied. For example,
for pipelined architecture, a rule that the tiles are assigned consequently can be
constrained.
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Evaluation and Experiments
To evaluate ALWANN, TensorFlow framework was extended to support approxi-
mate quantized layers. The extension has been published as open source at https://
github.com/ehw-fit/tf-approximate. The tool flow is shown in Fig. 10. At the begin-
ning, the common QuantizedConv2D layers are replaced with newly introduced
AxConv2D layers. The remaining part follows the scheme already described in
section “ALWANN Methodology”. For the evaluation, ResNet networks (v1 with
non-bottleneck blocks) (He et al. 2015) were chosen and trained to recognize images
from CIFAR-10 dataset. The library of approximate multipliers consists of all 36
eight-bit fully characterized multipliers from the publicly available EvoApproxLib
library (Mrazek et al. 2017).

Figure 11 shows the quality of AxNNs obtained using ALWANN from the
original ResNet-8. The results are compared with three configurations of AxNNs
mentioned in the previous section, especially to uniform structures widely used
in the recent literature. The proposed method delivers significantly better AxNNs
compared to the manually created AxNNs. The uniform structure (all layers
approximated) widely used in the literature (see, e.g., Sarwar et al. 2018; Mrazek

Fig. 10 Our tool flow for retraining-less approximation of ResNet neural network

Fig. 11 Comparison of AxResNet-8 approximate neural networks constructed by means of
proposed algorithm and NNs having a regular structure

https://github.com/ehw-fit/tf-approximate
https://github.com/ehw-fit/tf-approximate
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et al. 2016) achieves results comparable to AxNNs with all but one approximated
layers. In contrast to that, AxNN with one approximate layer leads to significantly
worse results because of small energy saving. The proposed method provides better
trade-offs between the accuracy and energy consumption in comparison with the
uniform NN architectures reported in the state-of-the-art works.

A bottleneck of the algorithm was the expensive simulation of approximate
multipliers on CPU. Although the multipliers were cached, our single core applica-
tion has 10× lower performance than vectorized accurate multiplication. Since one
inference of full dataset took 54.5 min, 7.5 days were needed for the construction
of the approximate neural network. This problem was addressed in Vaverka et al.
(2020) by employing approximate operations on a GPU. The speed was improved
more than 200×, and the most complex 50-layer NN can be approximated in less
than 2 h on a single GPU.

Overall Results Table 3 gives some parameters of the best AxNNs constructed
using the proposed tool. The following parameters are reported for each network:
relative accuracy and total and relative energy of convolutional operations. The
relative values are calculated with respect to the original quantized (8-bit) ResNet.
The quality of the obtained AxNNs for ResNet-50 is very promising. If a target
application is able to tolerate 1% accuracy drop (from 89.15% to 88.1%), for
example, more than 30% of energy can be saved. The evaluation across different

Table 3 Parameters of selected AxNNs implementing dataset CIFAR-10. The relative values are
compared to accurate 8-bit neural network, and total energy is related to the energy of one accurate
multiplication EM

AxNN Accuracy Relative
accuracy

Relative energy Total energy
[×EM ]

A
xR

es
N

et
-5

0

89.15% 100.00% 100.00% 120.27 M

89.30% 100.17% 83.29% 100.17 M

89.08% 99.92% 78.47% 94.37 M

88.69% 99.48% 77.97% 93.77 M

88.58% 99.36% 70.02% 84.21 M

88.10% 98.82% 69.12% 83.13 M

87.77% 98.45% 67.36% 81.02 M

85.00% 95.34% 57.74% 69.45 M

A
xR

es
N

et
-1

4 85.55% 100.00% 100.00% 35.33 M

85.87% 100.37% 80.32% 28.38 M

85.42% 99.85% 74.34% 26.27 M

84.77% 99.09% 70.85% 25.04 M

83.82% 97.98% 64.64% 22.84 M

A
xR

es
N

et
-8

83.26% 100.00% 100.00% 21.18 M

83.16% 99.88% 84.31% 17.86 M

81.79% 98.23% 70.23% 14.87 M

79.11% 95.02% 59.95% 12.70 M

75.71% 90.93% 56.04% 11.87 M
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Fig. 12 Comparison of proposed AxNNs (crosses) with accurate quantized NNs (points) – the
energy reports the energy of multiplications in the convolutional layers, while Em is energy of one
multiplication. Gray points represent quantized networks that were not approximated (complexity
reduction)

architectures shows that it is not advantageous to use AxNNs having more than
4% (2% for AxResNet-14) degradation of accuracy for AxResNet-50, because
AxResNet-14 (AxResNet-8) exhibit the same quality but lower energy.

Complete overview of the best obtained AxNNs having accuracy higher than
65% is provided in Fig. 12. In addition to the parameters of the AxNNs for
three ResNet architectures discussed so far, the parameters of all possible ResNet
architectures up to 62 layers (see the dots) are included, namely, ResNet-20, ResNet-
44, ResNet-56, and ResNet-62, that have been trained in the same way as the
remaining ResNet NNs. These NNs have been obtained by reducing the number of
layers by multiples of six, i.e., at block boundaries. In total, seven different ResNet
architectures are included. As evident, our method is able to produce significantly
more design points; more than 40 points are produced from a single ResNet.
Moreover, majority of the design points are unreachable by simple reduction of
the number of layers (see the blue crosses vs. dot symbols). Considering the
computational complexity, each ResNet instance must be trained separately. For
complex structures, training of a new structure can take several days or weeks on
computer clusters.

Comparison with State of the Art (SoA) Table 4 compares the proposed approach
with the state-of-the-art approaches for reducing the energy of NNs that have been
evaluated on CIFAR-10 dataset. Table 4 includes reported energy reduction and
accuracy degradation. The requirement for retraining, uniformity of the architecture,
and complexity of NN are also provided. In contrast with multiplier-less multiplica-
tion where only four different architectures were proposed (Sarwar et al. 2018), our
approach allows to find a new design points with high granularity without retraining.
Besides that, our approach enabled the authors to find AxNNs with low energy
exhibiting low accuracy, e.g., <80%. Even these solutions can be beneficial, for
example, as one of initial stages of some progressive chain classifier (Choi and
Venkataramani 2019).
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Table 4 Comparison of automated NN approximation methods: architectural parameters, energy
and accuracy reduction reported on CIFAR-10

Approach Retrain./Unif./Depth Energy/Accuracy

Venkataramani (Venkataramani et al. 2014) Yes/no/low
−22%/−0.5%

−26%/−2.5%

Sarwar (Sarwar et al. 2018) Yes/yes/high −33%/−1.8%

−12%/−1.2% 50→44

He (He et al. 2015) Yes/yes/high −71%/−4.0% 50→14

−48%/−2.7% 14→8

−30%/−0.6% AxRN-50

ALWANN (Mrazek et al. 2019b) No/no/high −30%/−0.9% AxRN-14

−30%/−1.7% AxRN-8

Cross-Layer Approximations for Error-Tolerant Applications

Section covered effective techniques for hardware-level approximations. How-
ever, improvements can be achieved through software-level approximations as
well. Therefore, this section presents a methodology for combining software-
and hardware-level approximations to achieve significant improvements in the
performance of a system by leveraging the error resilience characteristics of the
application. After presenting a generic methodology for cross-layer approximation
in section “Methodology for Combining Hardware- and Software-Level Approx-
imations”, section “Cross-Layer Methodology for Optimizing DNNs” covers a
methodology specifically designed for optimizing DNN-based systems.

Methodology for Combining Hardware- and Software-Level
Approximations

To design highly resource-efficient systems by exploiting the error resilience of the
applications, it is necessary to employ approximations at both the software and the
hardware levels. Figure 13 presents a cross-layer methodology for designing such
systems where approximations are systematically employed across the hardware
and the software stacks (Shafique et al. 2016). First, different approximation
possibilities are explored at individual levels to short-list a set of Pareto-optimal
points. This set can be a result of only a single type of approximation (e.g., func-
tional approximation of computational modules) or multiple types (e.g., functional
approximation of computational modules and voltage-scaling in on-chip memory)
from the same level. In case of multiple types, efficient design space exploration
methodologies are required to find the configurations that offer the best quality-
efficiency trade-off. Once the points at individual levels are selected, they are
forwarded for a cross-layer design space exploration to select a combination that
offers the best efficiency while meeting the user-defined quality constraints. The
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Fig. 13 A cross-layer approximation methodology for designing highly efficient sys-
tems (Shafique et al. 2016)

joint exploration is supported by fast error estimation methodologies that take
into consideration error masking and propagation properties of approximations to
estimate the joint effect of different approximations on the output quality. Low-cost
error compensation modules can be employed to compensate for a portion of the
quality loss. A set of points are then forwarded to the characterization stage for
estimating the performance characteristics of the designs, e.g., power/energy and
area. These characteristics are then used together with quality estimates to identify
the optimal configurations that offer the best quality-efficiency trade-off. The system
can also be equipped with an online approximation management module that can
configure the system based on the user requirements and/or run-time conditions to
maximize efficiency gains.

Note that most of the works in the domain of approximate computing are focused
toward designing techniques for a specific layer of the computing stack, and only
a limited amount of research has been carried out on cross-layer methodologies
that systematically employ approximations at all the abstraction layers to achieve
optimal quality-efficiency trade-off. This is mainly because there are several critical
challenges in realizing an effective cross-layer methodology such as the one shown
in Fig. 13. A few of these challenges are listed below:

• Designing methodologies/analytical models for evaluating the error masking and
propagation characteristics of approximations, specifically for projecting them
across layers of the computing stack.

• Designing techniques for efficiently estimating the overall performance charac-
teristics of an approximated system that has different types of approximations
deployed at different layers.

• Developing methods for low-cost consolidated error detection and correction for
cross-layer approximations.

• Developing low-cost systems for online quality assessment and resource manage-
ment. Such systems are mainly for applications that have high run-time variations
and require modules for dynamically orchestrating the approximation knobs to
achieve best efficiency while meeting the user-defined quality constraints.
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Cross-Layer Methodology for Optimizing DNNs

DNNs are widely being used in many applications due to their state-of-the-art
performance (LeCun et al. 2015). Studies have shown that they are (to some
extent) resilient to errors in intermediate computations. This property of DNNs can
be exploited through different types of approximations to reduce their execution
cost and enable their deployment on resource-constrained devices. Toward this,
various software-level and hardware-level approximation/optimization techniques
have been proposed. At the software level, pruning and quantization are employed
to reduce the complexity of the network and computations (respectively), and at
the hardware level, customized hardware accelerators and approximate arithmetic
modules are employed (as also shown in section “Deep Neural Networks (DNNs)”).
These techniques can be combined in a systematic manner to achieve high efficiency
gains. Figure 14 presents a cross-layer methodology that combines pruning and
quantization techniques with hardware-level optimizations (Hanif and Shafique
2021). The methodology consists of the following steps:

• Pruning: At the software level, the most effective technique for optimizing
DNNs is pruning. It involves removing the ineffectual weights from the network
to reduce the complexity of DNNs. Based on its effectiveness, the cross-layer
methodology employs pruning as Step 1. An iterative pruning technique is
mainly employed that reduces the number of parameters in multiple iterations,
where each iteration is (optionally) followed by partial retraining to compensate
for the accuracy loss. The weights to be removed are selected based on their
saliency, which can be estimated using L1-norm/L2-norm or by using a complex
back-propagation algorithm. The number of weights removed in each iteration
and the amount of retraining after each iteration are two key hyper-parameters
that can impact the compression and/or accuracy of the resultant network and,
therefore, have to be selected carefully. The iterations are performed till the
accuracy of the network drops below the user-defined accuracy constraint, and
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the network from the second to the last iteration is forwarded to the next step for
further optimization.

• Quantization: The precision of DNN data structures impacts the memory
requirements and the complexity of the computational modules. Quantization
is employed to represent weights and activations using low-precision fixed-point
format. It not only reduces the memory requirements for the inference stage but
also helps in simplifying the hardware modules, e.g., MAC units. Therefore, the
methodology employs quantization in Step 2 to further compress the network and
simplify the logic units at the hardware level. The quantization process can be
coupled with retraining to compensate for the accuracy loss due to quantization
errors in the computations. Moreover, pruning and quantization can also be
combined in a single unified process (Tung and Mori 2018). However, such
methods require sophisticated optimization algorithms to efficiently explore the
combined design space and propose an effective solution.

• Hardware Approximations: Specialized hardware accelerators are used for
energy-efficient processing of data in real-world systems. These accelerators
can be equipped with approximate units to further boost the efficiency gains.
Toward this, Step 3 of the methodology explores the potential of hardware-
level approximations, e.g., functional approximation of adders and multipliers.
This step performs design space exploration of approximate modules to find
the most suitable configurations that offer high efficiency while meeting the
user-defined quality constraints. The step also explores the potential of internal
self-healing modules, as they can offer better error characteristics in case of
vector operations. These approximations can also be coupled with retraining to
partially compensate for the accuracy loss due to approximations.

Case Studies for Improving the Energy and Performance
Efficiency of DNN Inference

Structured Pruning

This section highlights the effectiveness of the pruning step (i.e., Step 1 in Fig. 14)
for improving the efficiency of DNN inference. Figure 15 presents the flow
considered in this study for pruning filters/neurons from a pre-trained DNN. The
main steps of the flow are:

1. Given a pre-trained DNN, first, the methodology computes the saliency of each
filter/neuron of the network using a suitable saliency measure, e.g., L1-norm.

2. Then for each layer of the DNN, it creates a copy of the network and removes
x% of the least significant filters/neurons from the layer while keeping all rest of
the layers intact.

3. The methodology then computes the accuracy and compression ratio of each
model and registers them in θ . Note that for fast execution of the methodology,
only a subset of the validation dataset is used to estimate the accuracy.
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Fig. 15 The considered structured pruning methodology (Hanif and Shafique 2021)

4. A user-defined cost function C is then used to compute the cost of pruning in
each individual layer.

5. The models in θ are then sorted based on their costs, and the one that has the
least cost is selected, and all rest of the models are discarded.

6. The selected model is then fine-tuned for y number of epochs, and its accuracy
is estimated using a subset of the validation dataset.

7. The accuracy is then compared with the user-defined accuracy constraint (Ac).
If the accuracy is greater than the user-defined constraint, the pre-trained model
is replaced with the pruned model, and the complete process is repeated until
the accuracy falls below Ac. Once the accuracy is below Ac, the output of the
previous iteration is passed as the final output of the methodology.

To show the effectiveness of pruning, the above flow is employed to prune filter-
s/neurons from the LeNet5 and the VGG11 networks, both trained on the Cifar10
dataset. For these experiments, C = 100 − (Accuracy + 4 ∗ Pi/

∑
j∈{all layers} Pj )

is used as the cost function, where Accuracy is the estimated accuracy after pruning
the ith layer and Pi is the number of parameters in the ith layer. For pruning, x is
defined equal to 20, and for fine-tuning during the process, y is defined equal to 2.
The results are presented in Figs. 16a and 17a. It can be seen from the figures that
the methodology helps maintain the accuracy close to its baseline till a significant



Approximate Computing Architectures 31

50

55

60

65

70

75

80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Te
st

 A
cc

ur
ac

y 
[%

ag
e]

Model Size Reduction [%age]

a
b

c

0

20

40

60

80

4 5 6 7 8 9 10

Te
st

 A
cc

ur
ac

y 
[%

ag
e]

Bit Width

a b c

(a) (b)

The quantization level after 
which the accuracy starts 

decreasing rapidly regardless 
of the pruning level

Fig. 16 Results of structured pruning when applied to the LeNet5 network trained on the Cifar10
dataset (Hanif and Shafique 2021). (a) Impact of structured pruning on accuracy. (b) Impact of
quantization on the accuracy of the models having different compression ratios. The models are
marked in (a)

70
75
80
85
90
95

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

]ega
%[ ycaruccA tseT

Model Size Reduction [%age]

a b c d
e

0
20
40
60
80

100

4 5 6 7 8 9 10Te
st

 A
cc

ur
ac

y 
[%

ag
e]

Bit Width

a

b

c

d
e

(a) (b)

The quantization level 
after which the accuracy 
starts decreasing rapidly 
regardless of the amount 

of pruning

Fig. 17 Results of structured pruning when applied to the VGG11 network trained on the Cifar10
dataset (Hanif and Shafique 2021). (a) Impact of structured pruning on accuracy. (b) Impact of
quantization on the accuracy of the models having different compression ratios. The models are
marked in (a)

amount of compression, and, after a point, any further compression results in a rapid
decrease in the accuracy. Note that intermediate fine-tuning, i.e., y > 0, is the key
factor for achieving a high compression ratio.

Quantization

To further compress the DNN and to simplify the arithmetic modules in hardware
accelerators, network quantization (i.e., Step 2 in Fig. 14) is applied after pruning.
For this study, post-training quantization approach with uniform bit-width across
the network is considered, for both weights and activations. To quantize the weights
of a layer, the following equations are employed:

ˆW<l>
i = round(W<l>

i × W<l>
scale) (8)

W<l>
scale = 2

f loor(log2(
2n−1 − 1

max(abs(W<l>))
))
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where W<l> is the set of all the weights, W<l>
i is the ith element in W<l>, ˆW<l>

represents the set of quantized weights, W<l>
scale is the scale factor, and n is the bit-

width.
To quantize the activations, first, the activations are profiled using a set of input

samples, and then the scale factor is defined using the following equation:

A<l>
scale = 2

f loor

⎛

⎝log2

⎛

⎝
2n−1 − 1

max(abs(A<l>))

⎞

⎠

⎞

⎠

Here A<l> is the set of all the logged activations from the input of the lth layer, and
A<l>

scale is the scale factor. During the run-time, the activations are scaled with the
help of following equation:

ˆA<l>
i = round(A<l>

i × A<l>
scale) (9)

where ˆA<l> represents the quantized activations. Note that W<l>
scale and A<l>

scale

are intentionally defined to be in the power of two to simplify the intermediate
conversion operations.

Figure 16b shows the accuracies of five DNNs when exposed to different levels
of quantization. All the DNNs are variants of the same LeNet5 model trained on the
Cifar10 dataset but have different pruning ratios. The baseline models are marked
in Fig. 16a with the help of labels. From the figure, it can be observed that the
networks with high compression ratios are more sensitive to quantization. Moreover,
the accuracy of the networks drops sharply after a specific quantization level. The
same trend is observed for the VGG11 network trained on the Cifar10 dataset (see
Fig. 17). From this analysis, it can be concluded that higher pruning levels are
usually more beneficial than post-training quantization for achieving high overall
compression while maintaining close to the baseline accuracy.

Hardware-Level Approximations: Impact of Self-Healing and
Nonself-Healing Designs on DNN Accuracy

This section analyzes the impact of using approximate arithmetic modules for
internal dot product operations of DNNs on their accuracy. This corresponds to
Step 4 in Fig. 14. For this analysis, modules designed using conventional as well as
self-healing methods are employed. The key distinction between these designs can
be observed from Fig. 18. Figure 18a illustrates a system where the computational
modules are replaced with their approximate variants without considering the
overall computational flow. In such designs, the selection can be based on thorough
design space exploration, but the system is not designed in a manner that the
approximation error of one module is compensated by the error of the other
modules. The self-healing designs exploit the fact that most of the real-world
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systems involve accumulation of multiple computations. The accumulation stage
is viewed as the healing stage, while the computational modules are approximated
such that they generate complementary errors (Gillani et al. 2018, 2019). This way
the error generated by one module is compensated by the error in other modules,
and the overall application-level accuracy is not affected. The key advantage of
self-healing is that it allows to apply more aggressive approximations in the system
compared to the conventional methodology. Figure 18b and c show two different
methods for introducing self-healing-based approximations in a system.

The dot product operation is the most common operation involved in DNN execu-
tion. It comprises multiplications followed by the accumulation of the products. As
multiplication is one of the most costly operations, in this work, approximations are
deployed in the multipliers in hardware accelerators. Moreover, conventional as well
as self-healing approximate multipliers are considered to study the effectiveness
of functional approximations in arithmetic circuits. Figure 19a shows the baseline
8 × 8 multiplier design used in this work, constructed using 2 × 2 multipliers. The
design of the accurate 2 × 2 multiplier is shown in Fig. 20a. For approximations,
the designs shown in Fig. 20b–20d are employed, where the designs in Fig. 20b
and d approximate 3 × 3 to 7 and 5, respectively (i.e., negative error), and the
design in Fig. 20c approximates 3 × 3 to 11. The 8 × 8 multiplier configurations
used in the analysis are illustrated in Fig. 19b–19j, and their error characteristics
are presented in Table 5. Note, for this analysis, it is assumed that the same
multiplier design is used for all the multipliers in the hardware accelerator, i.e.,
homogeneous design. The approximate multiplier configurations that are composed
of modules that generate only negative errors represent the conventional multipliers
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(i.e., configurations in Fig. 19b–19f), and the configurations that generate both
positive and negative errors represent the self-healing designs (i.e., configurations in
Fig. 19g–19j). The hardware characteristics of all the configurations are presented
in Table 6. The results are generated for 65 nm technology using Cadence Genus
Synthesis tool with TSMC 65 nm library.

To evaluate the impact of approximations on the accuracy of DNNs, functional
models of these approximate multipliers are integrated in a PyTorch-based simula-
tion framework. Figure 21 shows the results obtained when different approximate
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Fig. 20 The 2 × 2 multiplier designs used for building 8 × 8 approximate multipliers (Hanif and
Shafique 2021). (a) Accurate 2 × 2 multiplier: M<0>. (b) Approximate 2 × 2 multiplier having
3 × 3 → 7: M<1>. (c) Approximate 2 × 2 multiplier having 3 × 3 → 11: M<2>. (d) Approximate
2 × 2 multiplier having 3 × 3 → 5: M<3>. (e) Truth table of M<0>. (f) Truth table of M<1>. (g)
Truth table of M<2>. (h) Truth table of M<3>
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Table 5 Error characteristics of the multiplier configurations presented in Fig. 19 (Hanif and
Shafique 2021)

Multiplier configurations

Ax. 1 Ax. 2 Ax. 3 Ax. 4 Ax. 5 Ax. 6 Ax. 7 Ax. 8 Ax. 9

MSE 0.25 9.75 266.25 3102.30 24806.00 7.50 78.00 2128.00 2547.00

MED 0.13 1.13 7.13 23.13 55.13 0.94 3.38 19.94 21.90

Mean error -0.13 -1.13 -7.13 -23.13 -55.13 0.00 0.00 -0.25 -0.13

Table 6 Hardware characteristics of the multiplier configurations presented in Fig. 19 (Hanif and
Shafique 2021)

Multiplier configurations

Accurate Ax. 1 Ax. 2 Ax. 3 Ax. 4 Ax. 5 Ax. 6 Ax. 7 Ax. 8 Ax. 9

Area [cell area] 753 716 696 616 609 571 726 727 672 670

Power [μW] 46.04 44.98 44.92 40.81 40.98 38.96 45.49 45.05 43.48 42.94

Delay [ns] 1.92 1.86 1.73 1.73 1.73 1.73 1.95 1.87 1.73 1.77

PDP [fJ] 88.40 83.66 77.71 70.60 70.90 67.40 88.71 84.24 75.22 76.00
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multiplier configurations (shown in Fig. 19) are used for the LeNet5 network trained
on the Cifar10 dataset. Note, for this analysis, multiple variants of the network
are considered, each having experienced a different level of pruning. The network
variants are highlighted in Fig. 16a. As can be seen in Fig. 21, with an increase in
the compression ratio, the model becomes increasingly sensitive to approximations.
Similar results are observed for the case of VGG11 network (see Fig. 22).
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Conclusions

Approximations can offer high energy savings while meeting user-defined quality
constraints. Besides the well-known techniques such as quantization (i.e., bit-width
reduction) and code simplification (e.g., reducing the number of iterations of a loop),
it is possible to approximate the functionality of circuits as well. The first part of
the chapter primarily focused on functional approximations, where approaches for
building approximate components such as adders and multipliers using both manual
and automated methods were introduced.

The following section focused on the construction of complex hardware accel-
erators using existing libraries of approximate components (such as EvoApproxLib,
lpAcLib, or GeAR). Two different types of accelerators were presented. For acceler-
ators with irregular structures such as image processing accelerators, an automatic
design space exploration and circuit approximation methodology AutoAx was
presented. This methodology replaces operations in an original accelerator with
approximate variants taken from a library of approximate components/circuits. To
accelerate the approximation process, QoR and hardware parameters are estimated
using computational models created using machine learning methods. It was shown
that AutoAx methodology generates approximate accelerators that offer high-
quality trade-offs between QoR and hardware parameters. The trade-offs are better
than the SoA approaches based on selecting components with the same error or
random selection.

The authors also focused on accelerators with a regular structure of processing
elements. The methodology ALWANN that allows us to approximate hardware accel-
erators of convolutional neural networks and optimize their energy consumption
for inference was introduced. Better energy savings with the same accuracy than
the other algorithms that employ retraining were achieved. The retraining typically
results in (i) approximation of significantly smaller networks due to scalability
issues (Mrazek et al. 2016; Zhang et al. 2015) or (ii) limited set of considered
approximate components (Sarwar et al. 2018).

Functional approximation is not the only approach to trade quality for energy
efficiency. Developers may also use other techniques such as quantization and
pruning. Toward this, a cross-layer optimization for neural networks was presented,
which systematically combines software-level and hardware-level approximation
techniques. The results showed that cross-layer optimization results in better
quality-efficiency trade-off. However, note that cross-layer approximate computing
is still an active area of research that is yet to uncover the ultimate potential of
approximate computing. One of the key hurdles toward achieving that is the lack
of sophisticated methodologies for evaluating the error masking and propagation
characteristics of approximations, which will enable the projection of approxi-
mations across layers and therefore enable fast design space exploration. From
approximations for DNNs’ perspective, as most of the approximate components
have irregular error distribution, there is a need for methodologies to adapt (retrain)
DNNs for such approximations. Apart from that, there is a dire need to explore and
determine the security of approximated DNNs against adversarial attacks.
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