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Accurate Automata-Based Detection of Cyber
Threats in Smart Grid Communication

Vojtěch Havlena, Petr Matoušek, Ondřej Ryšavý, Lukáš Holík

Abstract—Several industry sectors, including critical infras-
tructure, have experienced severe cyber attacks against their
Industrial Control Systems (ICS) due to the malware that
masqueraded itself as a legitimate ICS process and communicated
with valid ICS messages. Such behavior is difficult to detect by
standard techniques. Intrusion Detection Systems (IDS) usually
filter illegitimate communication using pre-defined patterns while
statistical-based Anomaly Detection Systems (ADS) mostly ob-
serve selected attributes of transmitted packets without deeper
analysis of ICS messages. We propose a new detection approach
based on Deterministic Probabilistic Automata (DPAs) that cap-
ture the intended semantics of the ICS message exchange. The
method models normal ICS message sequences using a set of
DPAs representing expected traffic patterns. Then the detection
system applies reasoning about the model to reveal a malicious
activity in the ICS traffic expressed by unexpected ICS messages.
In this paper, we significantly improve the performance of the
automata-based detection method and reduce its false-positive
rate. We also present a technique that produces additional details
about detected anomalies, which is important for real-world
deployment. The approach is demonstrated on IEC 104 or MMS
communication from different ICS systems.

Index Terms—Smart grid, cyber security, anomaly detection,
probabilistic automata, network flows, MITRE ATT&CK

I. INTRODUCTION

SMART grid communication includes control and moni-
toring transmissions that are exchanged between Intelli-

gent Electronic Devices (IEDs), Human-Machine Interfaces
(HMIs), control stations, and gateways. Connected devices
typically communicate using standardized ICS protocols like
IEC 104, MMS, GOOSE, DNP3, or DLMS [1]. The com-
munication is often not secured which makes it an easy
target for cyber attacks. Cyber security of industrial systems,
including smart grids, has thus become a huge challenge due to
devastating attacks on critical infrastructure around the world
[2]–[5]. Notable cases include disruption of Ukrainian energy
distribution by malware BlackEnergy3 in 2015 and Indus-
troyer/CrashOverride in 2016 [6]–[8], disconnection of safety
instrumented system by malware Triton in 2017 and 2019 [9],
[10], enumeration of Open Platform Communication servers
by cyber espionage malware Dragonfly/Havex [11], [12], or
the PLC-Blaster malware attacking Siemens S7 Programmable
Logical Controllers (PLCs) [13].

Such attacks were driven by malware installed on an in-
ternal device or control station infected by social engineering

The authors are with the Faculty of Information Technology, Brno Univer-
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techniques, supply chain compromise, or replication through
removable media1. An ICS-capable malware usually employs
industrial communications to discover ICS network resources,
requests execution of unauthorized commands, collects sensi-
tive data, or even manipulates ICS processes, see Fig. 1, that
is not easy to detect using traditional techniques.

Fig. 1: Industroyer Attack on Power Grid in 2016 [8].

Widely deployed Intrusion Detection Systems (IDS) or
firewalls detect anomalies (i) by checking protocol headers and
applying white lists or black lists filtering based on observed
values, or (ii) by searching individual ICS packet content for
known patterns. Statistical-based Anomaly Detection Systems
(ADS) compute quantitative characteristics of ICS traffic and
create a probabilistic model of the normal behavior. Significant
deviations in the observed characteristics from the model
are then reported. However, malware often sends crafted but
otherwise valid ICS messages which are difficult to distinguish
from legitimate communication. Also, an attacker can adjust
communication in such a way that it looks normal in terms
of statistical properties by modifying the timing of transmitted
messages. Detection of such attacks requires techniques that
are sensitive both to the content of ICS messages and the
context of the entire communication.

We have laid the foundation of a content and context
sensitive detection in our previous work [14], [15]. Charac-

1See MITRE ATT&CK Tactics at https://attack.mitre.org/
tactics/TA0001/ [Jan 2022].
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teristics of a normal traffic are learned from long-term traffic
samples in the form of deterministic probabilistic automata
(DPAs) and then compared against DPAs synthesised from
short-term windows of the traffic currently under scrutiny.
The DPA captures probabilistic distribution of conversations
among industrial devices. Typical conversations consist of
a small number of commands related to a specific-purpose
device and arranged in some of a few simple regular patterns
[16]–[19]. Our previous work [15] demonstrates that the DPA-
based approach is feasible and is able to detect various network
attacks on ICS systems.

A. Scope and Motivation

The scope of this paper is to present an automata-based
anomaly detection method that models ICS communication
and is suitable for practical deployment in a smart grid
environment. The ICS traffic is modelled using Deterministic
Probabilistic Automata (DPAs) [20] that capture ICS conver-
sations together with their relative occurrences in the overall
communication. This approach relies on network monitoring
and requires information extracted from industrial protocols. In
particular, packet headers containing message types and other
attributes are processed. We do not deal with a payload; thus,
it is not necessary to interpret system-specific values in our
model. Even without knowing the payload, it is possible to
detect various types of attacks, e.g., injection attacks, scanning
attacks, switching attacks, etc., as demonstrated in the paper.

Two major issues related to the practical deployment of
industrial anomaly detection systems are addressed in this
work: the higher rate of false positives and interpretation of
detection results. Our main motivation is to provide a solution
that precisely detects anomalies, decreases the number of false
positives, and gives an operator additional hints on how to
easily interpret raised alarms.

Our original approach [15] suffered from a large number
of false positives that—depending on the size of the system—
may be hundreds or even thousands per day. False positives
can hardly be entirely removed, but their number must be kept
low to be acceptable in practice. The anomaly reports are often
difficult to interpret, because the AD methods usually indicate
a numerical distance of the analysed event from the normal
one. The operator then have to manually inspect anomalous
communication consisting of thousands of messages, thus, the
analysis relies on his/her expert knowledge and experience.
These two aspects put excessive demands on the operator and
would likely render the method practically unattractive. In this
paper, we provide a solution for both of these issues.

B. Contribution

This paper presents two main contributions: (i) elimination
of false positives and (ii) providing diagnostic traces, accom-
panied by two additional results that include (iii) extension of
our original detection approach tailored for the protocol IEC
104 to other ICS protocols, such as MMS, and (iv) mapping
of the capabilities of our detection method to common MITRE
adversarial tactics [21].

Concerning contribution (i): False positives and general
imprecision of the detection are caused by the fact that the

traffic is variable over time, depending on factors such as time
of the day, a particular task given to the industrial system,
etc. Since all the variability is summarised in a single DPA
model, the particular traffic windows taken under different
conditions, even though perfectly normal, would likely differ
from the learned summary DPA, resulting in the large false
positive rate. Our solution has two parts: (i) in the learning
phase, we split the large learning traffic sample into multiple
small parts and learn a separate DPA from each part; (ii)
in the detection phase, the traffic window under scrutiny is
compared against the most similar learned DPA. This solution
dramatically improves precision of the method and eliminates
almost all false positives.

However, a naïve implementation of this techniques has a
practical limitation. During the learning we obtain hundreds
of DPAs representing a normal traffic. Comparing the testing
traffic against each of them in the detection phase, in order to
find the most similar DPA, is very expensive. To address this
issue, we came up with a method for reducing the number of
learned DPAs. To this end, we represent a cluster of similar
DPAs by a single representative. The traffic under scrutiny is
then compared only against the representatives of clusters. Our
method allows to define a level of DPA similarity which in
turn gives a control over the detection error caused by cluster-
ing. Consequently, we can prevent any notable deterioration
of the detection precision. The representatives can be pre-
computed and hence there is no additional cost during real-
time detection. The clustering reduces the number of DPAs
from hundreds to small units that can be handled in run-time
perfectly well.

Concerning contribution (ii): To facilitate the analysis of
the anomaly reports, the proposed improvement generates di-
agnostic traces. Namely, we demonstrate how to find examples
of conversations from the tested traffic that was not expected
to occur according to the normal traffic model, and how to
synthesise examples of conversations that were expected to
occur but did not. The work of the operator hence reduces
from a blind analysis of the entire traffic window into the
inspection of a few samples of conversations.

The proposed improvements are non-trivial and indeed turn
the proof of concept published in [15] into a practical method
(currently being implemented into a commercial solution).
We present an empirical evidence of the effectiveness of the
proposed techniques based on a prototype implementation. We
also provide testing datasets.

C. Structure of the paper

Section II reviews related work and presents used nomen-
clature. Section III stands for the paper’s core and explains
the detection method. After recalling the basics of DPA-based
anomaly detection, it includes our contributions: multiple-
model detection, model reduction, and generating diagnostic
traces. Section IV presents the experimental evaluation of the
method using implemented prototype. Based on the results
from experiments, the comparison to other work is presented
in Section V. Section VI concludes the paper by summarizing
results and providing notes on real-world deployments.
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NOMENCLATURE

Abbreviations
AD Anomaly Detection
ADS Anomaly Detection System
APT Advanced Persistent Threats
ASDU Application Service Data Unit
ATT&CK Adversarial Tactics, Techniques, and Common

Knowledge
CoT Cause of Transmission
DLMS Device Language Message Specification protocol
DNP3 Distributed Network Protocol 3
DoS Denial of Service attack
DPA Deterministic Probabilistic Automaton
FDIA False Data Injection Attack
FPR False Positive Rate
GOOSE Generic Object Oriented Substation Events
HMI Human-Machine Interface
ICS Industrial Control System
IDS Intrusion Detection System
IEC 104 International Electrotechnical Commission (IEC)

104 protocol, standard IEC 60870-5-104
IED Intelligent Electronic Device
IPFIX IP Flow Information Export protocol
MITM Man in the Middle attack
MITRE Massachusetts Institute of Technology Research &

Engineering, a non-profit organization
MMS Manufacturing Message Specification protocol
Modbus Modicon Communication Bus protocol
OBIS Object Identification System
PCAP Packet Capturing data format
PDU Protocol Data Unit
PLC Programmable Logical Controller
RTU Remote Terminal Unit

Algebraic Symbols
A Deterministic Probabilistic Automaton (DPA)
Ap a DPA corresponding to a pair of devices p
A set of probabilistic automata
Ap set of probabilistic automata corresponding to a

pair of devices p
Cp multiset of conversations between a pair of de-

vices p
D all pairs of devices communicating within the

network
ϵ model reduction threshold
G product automaton
L language (set of strings)
PA probabilistic distribution generated by DPA A
Σ alphabet, i.e., a set of characters
θ anomaly threshold
p pair of devices, p ∈ D
u, v, w strings/conversations

II. RELATED WORK

According to Rakas [22], anomaly detection systems
are statistical-based (univariate, multivariate, time series),
knowledge-based (finite automata, expert systems), or machine

learning-based (applying Bayesian networks, Markov models,
neural network, fuzzy logic). Anomaly detection methods
mainly work with statistical features obtained from ICS traffic,
or they build a communication model using attributes extracted
from IP or TCP headers.

Many recent works related to smart grid security focus
on detecting false data injection attacks (FDIA) [23]–[25]
where a detection system monitors electrical quantities on
synchrophasors, models their behavior, and estimates typical
energy consumption. Other approaches observe anomalies on
controllers [26], [27], or model probability distribution of
transmitted packets (inter-arrival time, size, occurrence of
specific packets) [28]–[30].

Our research deals with network monitoring of ICS packets
transmitted over smart grid links rather than observing electri-
cal quantities on the process bus or monitoring end devices. As
demonstrated in our previous work [31], real-time visibility of
ICS data exchange helps revealing unexpected ICS commands,
unusual command frequency, or suspicious command order
that would stay unnoticed by common detection techniques.
Thus, we limit the overview of related works to those ap-
proaches that work on network layer and observe ICS packets.

In their work, Lin and Nadjm-Tehrani [32], [33] model
inter-arrival times of IEC 104 spontaneous events using a
probabilistic suffix tree and categorize the traffic into five
different groups based on the periodicity and stability. Using
probabilistic suffix trees they predict the future behavior of
the IEC 104 communication and detect possible deviations.
The method is computationally intensive and sensitive to
network delays. In our work we do not consider time but
model semantics of ICS commands by DPAs, which makes
the system more robust.

The representation of Modbus communication using finite
state machines was introduced by Goldenberg and Wool [34].
The authors extract key fields from Modbus packets and
encode them as alphabet symbols. Automata transitions ex-
press the behavior of the system in terms of the sequence of
expected message exchanges. Like our approach, their model
can recognize invalid and unexpected messages. Our model
is able to accommodate more aspects of communication,
especially the expected frequency of exchanged messages.

Caselli et al. in [35], [36] employ discrete-time Markov
chains to represent various industrial communication. The
messages with the same semantics, e.g., read coils from
address 0 for Modbus, are grouped to states. Transitions
represent a sequence of messages, which is in principle similar
to our model. Instead of clustering, we learn the probabilistic
automaton from all message sequences representing a normal
behavior. Our approach is fully automated, not requiring to
specify the semantics of each command.

The idea of deriving a communication model from network
traces was also discussed by Wang et al. [37] even if it was
not used for industrial communication. The authors create a
probabilistic protocol state machine to represent application
protocols such as SMTP. During the learning process, mes-
sages are extracted from network traces and grouped according
to the calculated similarity. The idea of their automata model
is close to the deterministic probability automata introduced
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IPFIX probe data extraction
+ DPA learning

models
selection detection

data extraction
+ DPA learning

ICS packets
ICS flows
(window) p,Bp Ap,Bp

{Ap}p∈D

anomaly
valid

threshold θ

ICS flows
(learning)

model
learning

1 2 3 4

A

Fig. 2: A high-level overview of the proposed detection approach, with offline model learning part the highlighted.

by de la Higuera [20]. However, their goal is different—they
try to extract specifications for possibly unknown protocols.

To detect attacks, Kreuger et al. [38] developed a method
for protocol inspection and state machine analysis that infers
a state machine and protocol message format from network
traffic. They create a Hidden Markov Model from protocol
messages represented as n-grams and their probability of
occurrence in communication. The model is employed to
simulate the behavior of honeypots. Unlike us, their Markov
models are large (hundred of states) even when minimization
is applied. In addition, our model is easier to compute.

III. EXTENDED AUTOMATA-BASED ANOMALY DETECTION

In this section, we present our method of detecting anoma-
lies in ICS communication. Sections III-A to III-D recall the
basics of the method published in our previous papers [31],
[39]. Sections III-E to III-G describe our novel contributions.
The section is structured as follows:

• Section III-A recalls how input data are obtained from
an IPFIX monitoring probe that collects IPFIX flows
and partitioned them into conversations, i.e., sequences
of messages exchanged between pairs of devices within
a single communication session.

• Section III-B explains how to interpret input conversa-
tions as multisets of words over a finite alphabet and
how to model these multisets using a probabilistic model
in the form of DPAs.

• Section III-C overviews the general architecture of the
diagnostic system, including the DPA learning from a
valid traffic samples and the detection which is thor-
oughly described in two subsequent sections.

• Section III-D recalls the technical basis of the detection
with a single DPA model representing the valid traffic, as
used in [31], [39].

• Section III-E describes our novel multiple-model detec-
tion that improves precision and reduces false positives.
Unlike a single DPA model, it is composed of multiple
DPAs representing behavior of the normal traffic.

• Section III-F presents a novel technique of model reduc-
tion that keeps the run-time computational resources of
the multiple-model reduction practically manageable.

• Section III-G finally describes a novel method of gener-
ating diagnostic traces that help to identify the cause of
a reported anomaly.

A high-level overview of the presented method is graphically
expressed in Fig. 2.

A. Application-level Monitoring of ICS Communication

In [31], [39], we implemented an extension to IPFIX
monitoring probe ( 1 in Fig. 2) that collects IPFIX flows
enriched with domain-specific attributes from ICS packets.
In [14] we analyzed semantics of common smart grid protocols
and identified a sufficient set of attributes for application-level
monitoring: ASDU type (AsduType) and Cause of Transmis-
sion (CoT) for IEC 104, MMS Type and Service for MMS
packets, Application ID, and Control Block Reference for
GOOSE, and Type, Class ID and OBIS code for DLMS. Based
on flows, we define ICS conversations as logical sequences of
ICS messages exchanged between pairs of devices, see Fig. 3.

A
interrog (100), act (6)

interrog (100),actcon (7)

single point (1), inrogen (20)

B

single point (1), inrogen (20)

single point (1), inrogen (20)

double point (3), inrogen (20)

step position (5), periodic (1)

interrog (100),actterm (10)

A

double cmd (46), act (6)

double cmd (46), actcon (7)

B

double cmd (46), actterm (10)

A

 call dir (122), file (13)

B

(a) reading values (b) requesting a command (c) loading a file

file ready (120), file (13)

 call dir (122), file (13)

 segment (125), file (13)

 segment (125), file (13)

 last seg. (123), file (13)

 ack file (124), file (13)

Fig. 3: Examples of IEC 104 conversations.

Example 1: Consider three IEC 104 conversations ex-
changed between stations A and B as depicted in Fig. 3.
Conversation (a) reads a set of values, conversation (b)
requests a command execution, and conversation (c) trans-
mits a file. Notice that each IEC 104 message is repre-
sented by a pair ⟨AsduType, CoT⟩. Thus, IEC 104 conver-
sations between stations A and B form three command se-
quences u = ⟨100, 6⟩⟨100, 7⟩⟨1, 20⟩⟨1, 20⟩⟨1, 20⟩⟨3, 20⟩⟨5, 1⟩
⟨100, 10⟩, v = ⟨46, 6⟩⟨46, 7⟩⟨46, 10⟩, w = ⟨122, 13⟩⟨120,
13⟩⟨122, 13⟩⟨125, 13⟩⟨125, 13⟩⟨123, 13⟩⟨124, 13⟩.

B. Modeling ICS Conversations by Probabilistic Automata

We will now discuss the general method we use to learn a
model of a normal ICS traffic. Namely, we learn DPA from
a sample of ICS conversations that represent a normal system
communication (see A in Fig. 2).

We adopt the theory of DPA of [20]. The ICS messages
play the role of symbols and form a finite alphabet Σ, with
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Σ∗ denoting all finite strings over Σ (i.e., all possible ICS
conversations). A deterministic probabilistic automaton (DPA)
is then a tuple A = (Q, δ, q0,F) where Q is a finite set
of states, δ : Q × Σ × Q → [0, 1] is a (total) transi-
tion function assigning probabilities from the interval [0, 1]
of rational numbers to transitions, q0 ∈ Q is the initial
state, and F : Q → [0, 1] is a mapping that assigns the
acceptance probabilities to states. The automaton must be
consistent, meaning that for each state q ∈ Q, the sum of
probabilities of the outgoing transitions plus the probability
of acceptance is 1, formally, F(q)+

∑
a∈Σ,r∈Q δ(q, a, r) = 1.

The automaton is implicitly deterministic, hence every state
q ∈ Q has a unique successor via every symbol a ∈ Σ, i.e.,
| {r | δ(q, a, r) > 0} | = 1. The automaton defines a probabil-
ity distribution PA : Σ∗ → [0, 1] over Σ∗ as follows. Each
string w = a1 . . . an ∈ Σ∗ has its unique trace, the sequence
π = (q0, a1, q1) · · · (qn−1, an, qn) where δ(qi−1, ai, qi) > 0
for 1 ≤ i ≤ n, and its probability is defined based on the
trace as PA(w) = F(qn) ·

∏
1≤i≤n δ(qi−1, ai, qi). Informally,

PA(w) is a probability of the random walk through the
automaton that respects symbols of w and is accepted by the
end state.

A sample of typical communication between ICS devices,
in the form of a multiset of ICS conversations, is given to the
algorithm Alergia [20] extended with an automated estimation
of parameters (see [15] for details). Alergia then learns a DPA
that represents a generalisation of the probabilistic distribution
of conversations in the sample. This is a general method that
can be used to learn the behavior of any system that uses any
smart grid communication protocol.

Example 2: Fig. 4 shows a DPA A learned from IEC
104 conversations that include a file transfer (AsduType ∈
{120, . . . , 125}, CoT = 13) and spontaneous events
(AsduType = 36, CoT = 3). The automaton A represents the
language by which two IEC 104 devices talk. The conversation
w = ⟨122, 13⟩⟨120, 13⟩⟨122, 13⟩⟨125, 13⟩ ⟨123, 13⟩⟨124, 13⟩
has the probability PA(w) = 0.54 · 1 · 1 · 0.5 · 0.06 · 1 ·
0.5 = 0.0081. Its proper prefixes have probability 0 since
they reach states with 0 acceptance probability. Any IEC 104
conversation w that is not a part of the specified device-to-
device language would not be accepted by A and receives
probability PA(w) = 0.

C. Architecture of the Diagnostic System

The schema of the system is shown in Fig. 2. Let D denote
the set of all pairs of devices that communicate within the
network. DPAs representing valid traffic for each communica-
tion pair p ∈ D in the system are created during the learning
phase ( A ). In the detection phase, the incoming traffic is
split into time windows with a fixed-length but configurable
duration (default is 5 min). The traffic in form of flow records
is provided by the IPFIX probe ( 1 ). Conversations for each
communication pair p (identified by IP addresses and ports) are
selected, and DPA Bp representing the conversations for p is
computed ( 2 ). In the following step, models Ap representing
valid traffic of a communication pair p are selected ( 3 ). In the
last step, the detection mechanism is applied on Ap and Bp. By

q0 : 0

q1 : 1

q2 : 0 q3 : 0 q4 : 0 q5 : 0

q6 : 0

q3 : 0.5

⟨36, 3⟩ : 0.46

⟨122, 13⟩ : 0.54
⟨120, 13⟩ : 1 ⟨122, 13⟩ : 1

⟨121, 13⟩ : 0.5

⟨125, 13⟩ : 0.5

⟨125, 13⟩ : 0.94

⟨123, 13⟩ : 0.06

⟨124, 13⟩ : 1 ⟨123, 13⟩ : 0.5

Fig. 4: DPA A representing IEC 104 communication. Here
and in all the other figures of DPAs, we depict the accept-
ing probability inside each state and highlight states with
nonzero acceptance probability. We label transitions in the
form symbol : probability . In case of IEC 104 communication,
symbol includes two IEC 104 packet header values, namely
ASDU type and Cause of Transmission.

evaluating probability of tested conversations it either approves
their validity or returns a diagnostic trace of an anomaly ( 4 ).

D. Single-Model Anomaly Detection
Our starting point is the detection procedure of [39] that

receives as input a single DPA Ap representing valid traffic
for a given communication pair p and a DPA Bp describing
an incoming traffic captured within a fixed-size time window
under scrutiny. The detection stands for measuring the dif-
ference between Bp and the single model Ap ∈ Ap. Since
DPAs express probability (frequency) of strings, it is natural
to compare PAp

(w) and PBp
(w) for each w ∈ Σ∗. We use

the 2-Euclid distance (or just Euclid distance) defined as

L2(Ap,Bp) =

√ ∑
w∈Σ∗

(
PAp

(w)− PBp
(w)

)2
(1)

Intuitively, the Euclid distance sums the differences of prob-
abilities assigned to strings by Ap and Bp. A threshold
parameter θ controls how different the two automata must be
to get an anomaly, i.e., L2(Ap,Bp) > θ. Low value of θ causes
higher possibility of false alarms (false positives), high value
of θ can let some anomalies be undetected (false negatives).
We experimentally found (see Sec. IV) suitable values of θ in
range 0.1 and 0.252.

Example 3: Consider the DPA Ap representing a desired
IEC 104 behaviour given in Fig. 5. The automaton expresses
the usual traffic that includes conversations differing on the
number of messages ⟨5, 20⟩, i.e., the valid traffic contains
conversations {un | un = ⟨100, 6⟩⟨5, 20⟩n⟨100, 10⟩, n>1}.
Longer conversations have smaller probability.

Further consider the DPA Bp given in Fig. 6 created from
a time window with the testing IEC 104 traffic that includes
a set of conversations w1 = u1 = ⟨100, 6⟩⟨5, 20⟩⟨100, 10⟩
and w2 = ⟨100, 6⟩⟨7, 20⟩⟨100, 10⟩ that occur with the same
probability 50%.

2This range is a trade-off between the accuracy and the false positivity rate.
Since we assume stable communication, the value 0.1 provides enough space
to cover possible short-term disturbances in the traffic. On the other hand,
threshold above 0.25 could possibly miss some crucial anomalies.

Page 5 of 14 IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. XX, MONTH YEAR

q0 : 0 q1 : 0 q2 : 0 q3 : 1
⟨100, 6⟩ : 1 ⟨5, 20⟩ : 1

⟨5, 20⟩ : 1
2

⟨100, 10⟩ : 1
2

Fig. 5: A DPA Ap representing a valid IEC 104 traffic
(simplified for the purpose of Example 3, see Fig. 4 for a
realistic example of a traffic model).

q0 : 0 q1 : 0 q2 : 0 q3 : 1
⟨100, 6⟩ : 1

⟨5, 20⟩ : 1
2

⟨7, 20⟩ : 1
2

⟨100, 10⟩ : 1

Fig. 6: A DPA Bp representing a time window.

The L2 distance between these two DPAs is given as

L2
2(Ap,Bp) = (PAp(u1)− PBp(u1))

2

+ (PAp
(w2)− PBp

(w2))
2

+ (PAp
(u2)− PBp

(u2))
2

+ (PAp
(u3)− PBp

(u3))
2 + · · ·

= 02 +

(
1

2

)2

+

(
1

4

)2

+

(
1

8

)2

+ · · ·

Hence, L2(Ap,Bp) =
√

1
4 + 1

12 ≈ 0.57. Intuitively, Ap and
Bp describe a different behaviour, because Bp represents a
traffic where half of the conversations are w2, which has zero
probability in the model Ap. The L2 distance confirms the
intuition, since 0.57 indicates an anomaly.

By definition, the sum of Euclid distances is over all strings,
however, the distance L2 can be computed in a polynomial
time. The algorithm uses a matrix representation of proba-
bilistic automata and expresses the infinite sum in a closed
form, see [40].

E. Multiple-Model Anomaly Detection

The single-model detection suffers from an excessive num-
ber of false positives (hundreds or thousands daily in our
experiments). Their source is a long term variability of ICS
communication—its characteristics may depend on factors
such as the time of the day, mode of use of the system, etc.
Since the scrutinised communication windows are short-term,
they vary depending on the current conditions. The single-
model approach however summarises all the variability into a
single DPA Ap. Even a perfectly normal short time window
may hence differ from the learned DPA significantly, i.e., their
distance L2(Ap,Bp) may be large, in which case the detection
generates a false positive.

To overcome this drawback, we improve our method by
learning multiple models ( A ) that consist of a set of DPAs
Ap = {Ap

i }i∈I . In our experiments, we divide the training
traffic into fixed-length-duration subparts (where the duration
corresponds to the size and double size of the time window
used during the detection). Each such created part is an input
of learning yielding a DPA from Ap. A detection algorithm

( 4 ) first finds the closest model Ap
ℓ ∈ Ap to the window

under scrutiny according to its Euclidian distance. Anomaly
alert is raised if the distance of the closest model Ap

ℓ from Bp

is greater than the defined anomaly threshold θ, formally:

min
Ap∈Ap

L2(Ap,Bp) > θ. (2)

For a better illustration, the proposed detection method is
visualized in Fig. 7 and the effect of multiple models is
demonstrated in the following example.
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Fig. 7: Visualization of the proposed anomaly detection.

Example 4: Assume that the first part of a simple valid
IEC 104 traffic related to a single device consists of sponta-
neous conversations ⟨36, 3⟩ and ⟨37, 3⟩ with a dominance of
the first mentioned conversations. In the second part, the ratio
changes in favor to the conversations of the second type. If
we represent the traffic using a single model only, we get the
automaton Ap given in Fig. 8.

q0 : 0 q1 : 1

⟨36, 3⟩ : 1
2

⟨37, 3⟩ : 1
2

Fig. 8: A single DPA Ap representing the valid IEC 104 traffic.

On the other hand, if we apply learning on each part
separately, we obtain the DPAs Ap

1 and Ap
2 given in Fig. 9

assigning different probabilities for each conversation. As you
can see, the second representation captures subtle difference
in the learning traffic, in this case the change of occurrence
of different spontaneous events.

q0 : 0Ap
1

q1 : 1 q2 : 0Ap
2

q3 : 1

⟨36, 3⟩ : 9
10

⟨37, 3⟩ : 1
10

⟨36, 3⟩ : 1
10

⟨37, 3⟩ : 9
10

Fig. 9: A set of DPAs {Ap
1,A

p
2} representing the valid traffic.

Further assume that the incoming traffic window contains
one conversation ⟨36, 3⟩ and seven conversations ⟨37, 3⟩. A
DPA Bp learned for this traffic is shown in Fig. 10.

If we apply the single-model anomaly detection according
to A = {Ap}, we obtain the value L2(Ap,Bp) ≈ 0.53. If we
apply the multiple-model detection with A = {Ap

1,A
p
2}, we
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q0 : 0 q1 : 1

⟨36, 3⟩ : 1
8

⟨37, 3⟩ : 7
8

Fig. 10: DPA Bp representing the incoming window.

get the value min{L2(Ap
1,Bp), L2(Ap

2,Bp)} ≈ 0.035. Hence,
by applying the single-model detection according to the whole
traffic (represented by Ap) with the threshold θ = 0.2, we get
an anomaly alert, which is not desirable in this case.

F. Model Reduction

According to Eq. (2), the inspection of a each scrutinised
window requires evaluating the distance from every automaton
in Ap. Since the number of automata in Ap easily reaches
hundreds, this task becomes impractically expensive. We hence
need a method of reducing the number of models, preferably
while preserving precision of the detection.

To this end, we utilise the fact that conversations between
two ICS devices are mostly the same or very similar. This
means that also automata representing such ICS traffic are
equal or at least similar, e.g., they only have slightly different
probabilities of certain strings. Thus, we can reduce redundant
computation by removing similar automata from a set of
models Ap. To decide which automaton is to be removed
we define the error function that measures how good is the
resulting set of DPAs. The function that computes the detection
error introduced by reducing the model from A to A′ is defined
as follows:

error(A,A′) = max
A1∈A\A′

{
min
A2∈A′

L2(A1,A2)

}
. (3)

The goal is to find a subset A′ ⊆ A such that the error
of error(A,A′) is below a given threshold ϵ3. The error
function has the property that if we use A′

p ⊆ Ap as a
model for the anomaly detection, the value, based on the
procedure decides whether the window contains anomaly or
not, differs by error(Ap,A′

p) in the worst case. In particular,
assume that Ap ∈ A is the closest model to an automaton Bp

representing the input traffic window. Moreover, based on the
error function, there is some A′

p ∈ A′ s.t. L2(Ap,A′
p) ≤

ϵ. From the triangle inequality (L2 is a distance), we get
L2(A′

p,Bp) ≤ L2(Ap,Bp) + L2(Ap,A′
p) ≤ L2(Ap,Bp) + ϵ,

which defines the upper bound.
The reduction procedure is described by Alg. 1. Since

the optimal computation of A′ is computationally infeasible,
we use a greedy algorithm iteratively saturating a set of
automata that can be removed. In each iteration the algorithm
selects an automaton A having the smallest distance from
another automaton that has not been removed yet. If the error
caused by removing this automaton is below ϵ the removal is
approved. Note that for ϵ = 0 we remove from Ap automata
that are equivalent. The model reduction is a part of the
offline learning ( A ) without any negative impact on real-time
anomaly detection.

3Note that similarity threshold ϵ is different from detection threshold θ.

Algorithm 1: Model Reduction
Input:
A – set of DPAs representing the original model
ϵ – threshold value for reduction
Result: A′ ⊆ A s.t. error(A,A′) ≤ ϵ

1 R := R′ := ∅ ; ▷ sets of DPAs to be removed

2 while error(A,A\R′) ≤ ϵ do
3 R := R′;
4 Select A ∈ A\R s.t. min

B∈A\R,B̸=A
L2(A,B) is minimal;

5 R′ := R ∪ {A} ; ▷ update R′ with the DPA A
6 return A′ := A\R;

G. Generating Diagnostic Traces

The anomaly report of the original method of [15] includes
only the scrutinised window and its L2 distance from the
learned DPA. It would be a task of the operator to inspect the
window and decide whether or not it is indeed anomalous and
why. This would require a high level of expertise as well as
time. Therefore, we developed a method of generating succinct
diagnostic traces that capture a reason of anomaly.

Assume a particular window consisting of a multiset of con-
versations Cp and triggering the anomaly alert. The reasoning
is then performed on the level of conversations Cp, DPA Bp

obtained from Cp, and the most accurate learned model Ap,
which is given using the following formula (cf. Sec. III-E):

Ap ∈ Ap s.t. L2(Ap,Bp) is minimal. (4)

The first output of the detection method is a set of conver-
sations Ebad occurring within the suspicious window that do
not occur in the model:

Ebad = {w ∈ Cp | PAp
(w) = 0}. (5)

Since our approach is even able to detect anomalies based
on missing communication, we provide also an example of a
conversation that was not present in the window but it should
be because Ap assigns to the conversation nonzero probability.
As the number of such conversations may be infinite, we pick
conversations with the highest probability only. In particular,
we first compute the set

L = {w ∈ Σ∗ | PAp
(w) > 0,PBp

(w) = 0}. (6)

The set is regular, and hence it can be effectively represented
by a finite automaton. Based on this set, we find the most
probable strings from L in Ap, which is an example of a
missing conversation. Formally,

Emiss =
{
w ∈ L | PAp

(w) = max
u∈L

PAp
(u)

}
. (7)

Roughly speaking, to compute Emiss we first need to repre-
sent the language L using a deterministic finite automaton AL.
Note that the number of states of AL is bounded by |Ap|·|Bp|.
In the second step, we restrict Ap to words from L only. This
can be done using a product of Ap and AL with keeping the
probabilities from Ap. In this case, the product need not to be
a DPA, because the consistency condition might be violated.
We denote the product as G = (Q, δ, q0,F). In order to obtain
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Emiss we iteratively compute the least fixpoint of the system
representing a most probable path in the automaton:

ℓq = F(q), (8)
ℓq = max

p∈Q,a∈Σ
{ℓq, δ(q, a, p) · ℓp} (9)

Together with computation of the most probable path, we also
store information about the concrete most probable strings
labelling the paths. In particular, at the beginning we set
Wq = ∅ for F(q) = 0 and Wq = {ϵ} otherwise. Then, every
time ℓq is improved by a transition (q, a, p) and moreover
ℓq = δ(q, a, p) · ℓp holds before the assignment, we set
Wq = Wq ∪ a.Wp. If ℓq < δ(q, a, p) · ℓp holds before the
assignment, we set Wq = a.Wp. We have Emiss = Wq0 in the
fixpoint.

Example 5: Consider two DPAs Ap and Bp from Exam-
ple 3. Then, the language L can be described by the regular
expression ⟨100, 6⟩⟨5, 20⟩⟨5, 20⟩+⟨100, 10⟩. The product G
restricting Ap to L is then given in Fig. 11. After the fixpoint
computation, we obtain ℓq0 = 1

4 and Wq0 = {⟨100, 6⟩⟨5, 20⟩
⟨5, 20⟩⟨100, 10⟩} where q0 is the initial state of G.

q0 : 0

q1 : 0 q2 : 0 q3 : 0 q4 : 1

⟨100, 6⟩ : 1
⟨5, 20⟩ : 1 ⟨5, 20⟩ : 1

2

⟨5, 20⟩ : 1
2

⟨100, 10⟩ : 1
2

Fig. 11: Product automaton G

IV. EXPERIMENTAL EVALUATION

This section aims at the experimental evaluation of the
method using various available datasets for (i) evaluation of the
accuracy and efficiency of the detection and (ii) measuring the
effect of the proposed extensions in terms of false positives.
First, we introduce our datasets and evaluation method. Then
we show experimental results of automata reduction. The we
present our experiments with IEC 104 and MMS communi-
cation, respectively. Finally, we discuss the potential of our
method for real-world deployment.

A. Used Tools and Benchmarks

The presented anomaly detection approach was imple-
mented as the PYTHON tool DETANO4, which is an ex-
tended implementation of our previous tool, here denoted
as AUTANOM [15]. Our experiments were conducted on
benchmarks containing datasets provided by various sources:
(i) IEC 104 traffic generated by Brno University of Technology
and containing various attack scenarios [15] (this benchmark
is denoted as BUT and is available at IEEE Dataport [41]),
(ii) IEC 104 traffic provided by RTSLab, Linköping University,
Sweden [42] (denoted as RTS), (iii) IEC 104 traffic generated
in a virtual ICS network (denoted as VRT and also available
at [41]), (iv) MMS traffic provided by European Network
for Cyber Security5 (denoted as ENCS), and (v) MMS traffic

4Available at https://github.com/vhavlena/detano [Feb 2022].
5See https://encs.eu/ [Feb 2022].

TABLE I: Overview of the VRT benchmark [41].

Dataset Duration Packets MITRE Technique ID

HMI-to-IEC104 1 day 21 hours 195,424 normal traffic
IEC104 1 day 21 hours 135,298 normal traffic
Scada-to-Sub 1 day 21 hours 60,126 normal traffic
RTU-MITM 3 days 3 hours 258,582 T0830,T0831
HMI-MITM 3 days 3 hours 557,215 T0830,T0831
HMI-report-block 1 day 37 min 184,334 T0803,T0804
HMI-replay 1 day 5 hours 248,394 T0831,T0856
HMI-value-change 1 day 10 hours 261,967 T0831,T0832,T0836
HMI-masquerading 22 hours 164,760 T0831,T0856

TABLE II: Overview of the ENCS and GICS benchmarks.

Dataset Duration Packets MITRE Technique ID

inside-substation 15 min 1,558 T0802,T0831,T0840
gics-lost-connection 1 hour 35 min 2,581 outage
gics-modified 1 hour 35 min 2,706 T0831,T0855,T0856
gics-scanning 1 hour 35 min 2,778 T0801,T0802,T0856
gics-interrupt 1 hour 35 min 2,722 T0855,T0858,T0881

provided by G-ICS labs, Université Grenoble Alpes France
[43] that was further enhanced by various attack scenarios, as
described below (denoted as GICS).

Attacks occurring within the VRT benchmark, in particular
HMI-* datasets, were created at our University by penetration
tools that inserted spoofed or modified IEC 104 messages
on the communication link. Attacks on MMS communication
within the GICS benchmark were created manually by insert-
ing spoofed MMS packets into generated traces. These attack
traces were inspired by published attack scenarios. For our
experiments we used traces obtained by the Flowmon IPFIX
probe6 from the captured PCAP files.

Overview of the datasets occurring within the VRT bench-
mark is shown in Table I. These datasets contain up to 3 days
of traffic with hundred thousands ICS packets.

Datasets included in the ENCS and GICS benchmarks are
listed in Table II. These datasets contain up to 1.5 hours of
the traffic with thousands of ICS packets.

The datasets from the BUT benchmark contain up to 3 days
of traffic with more than one million of ICS packets7. The
datasets occurring within the RTS benchmark contain up to
12 days of traffic with more than 3 million packets, see Table
III. More detailed description of of these datasets is in [15].

TABLE III: Overview of the BUT and RTS benchmarks.

Dataset Duration Packets Technique ID

10122018-104Mega 4 hours 53 min 76,865 normal traffic
13122018-mega104 2 days 23 hours 1.073,732 normal traffic
mega104-14-12-18 15 hours 38 min 14,429 normal traffic
mega104-17-12-18 2 days 19 hours 58,929 normal traffic
injection-attack 2 days 19 hours 58,930 T0805-6,T0881
rogue-device 2 days 19 hours 58,893 T0848
dos-attack 2 days 19 hours 58,932 T0814
scanning-attack 2 days 19 hours 58,927 T0801-2,T0840
switching-attack 2 days 19 hours 59,002 T0838,T0858
connection-loss 2 days 19 hours 57,863 –

10days2 12 days 21 hours 882,854 normal traffic
repaired-rtu8novlan 6 days 18 hours 3.117,663 normal traffic
repaired-rtu11novlan 6 hour 18 min 1.828,733 normal traffic

6See https://www.flowmon.com/en/products/appliances/probe.
7BUT traces are available at https://github.com/matousp/datasets [Jun 2022].

Page 8 of 14IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/vhavlena/detano
https://encs.eu/
https://www.flowmon.com/en/products/appliances/probe
https://github.com/matousp/datasets/tree/master/scada-iec104


HAVLENA et al.: ACCURATE AUTOMATA-BASED DETECTION OF CYBER THREATS IN SMART GRID COMMUNICATION 9

TABLE IV: MITRE tactics observable by ICS flow monitor-
ing. The techniques with (*) are a subject of our experiments.

Tactics Technique Technique ID

Initial Access Internet Accessible Device T0883
Initial Access Rogue Master T0848*
Execution Change Operating Mode T0858*
Evasion Spoof Reporting Message T0856*
Discovery Network Connection Enum. T0840*
Discovery Remote System Discovery T0846*
Discovery Remote System Info Discovery T0888*
Collection Automated Collection T0802*
Collection Detect Operating Mode T0868*
Collection Man in the Middle T0830*
Collection Monitor Process State T0801*
Collection Point & Tag Identification T0861
Collection Program Upload T0845
Command and Control Commonly Used Port T0885
Command and Control Connection Proxy T0884
Command and Control Standard App Layer Protocol T0869
Inhibit Resp. Function Activate Firmware Update Mode T0800
Inhibit Resp. Function Alarm Suppression T0878*
Inhibit Resp. Function Block Command Message T0803*
Inhibit Resp. Function Block Reporting Message T0804*
Inhibit Resp. Function Denial of Service T0814*
Inhibit Resp. Function Modify Alarm Settings T0838*
Inhibit Resp. Function Service Stop T0881*
Impair Process Control Modify Parameter T0836*
Impair Process Control Spoof Reporting Message T0856*
Impair Process Control Unauthorized Command Message T0855*
Impact Manipulation of Control T0831*
Impact Manipulation of View T0832*

The present anomalies are classified wrt. MITRE Adversar-
ial Tactics, Techniques, and Common Knowledge framework
for ICS (ATT&CK for ICS) [21], which deals with levels
1 and 2 of the Purdue model (PLC, RTU, HMI, etc.) [44].
The complete MITRE Matrix for ICS lists 12 tactics and 78
techniques (May 2022).

We identified 28 attacker’s techniques according to MITRE
ATT&CK for ICS that are observable in network communi-
cation and thus can be detected by the proposed automata-
based method, see Table IV. Most of these techniques were
implemented in our datasets (marked by ∗). This list clearly
shows the scope of application of the proposed automata-based
detection which depends on the visibility of an attack in the
network communication. The selected techniques may occur
in various stages of the Advanced Persistent Threats (APT)
Kill Chain [45] which include Reconnaissance (Discovery),
Weaponization (Initial Access), Exploitation (Collection), In-
stall/Modify (Evasion, Inhibit Response Function), Command
& Control, and Execute (Execution, Impair Process Control,
Impact), see the first column of the table.

Obviously, the automata-based anomaly detection capability
covers the attacker’s activities related to sending unexpected
commands, blocking ICS messages, scanning network re-
sources, manipulating packets, etc. Since our model represents
ICS commands, it can detect attacker’s activities that cannot
be recognized by statistical-based methods.

B. Focus of the Experiments
In the experiments, we are particularly interested in the

number of detected anomalies/attacks (true positives, denoted
by “Hit”), the number of undetected anomalies (false neg-
atives, denoted by “Miss”), the number of detected anoma-
lies/attacks that are not true anomalies (false positives, denoted

TABLE V: Number of models used for various datasets.

Dataset Original Model red. Model red.
(ϵ = 0.0) (ϵ = 0.1)

HMI-MITM 120 23 (19.1 %) 8 (6.6 %)
RTU-MITM 133 16 (12.03 %) 7 (5.2 %)
HMI-to-IEC104 163 13 (7.9 %) 4 (2.4 %)
HM-replay 917 27 (2.9 %) 14 (1.5 %)

by “FP”), and the time required for processing a single
window for a single communication pair.

An anomaly is detected if at least one window is reported
as an anomaly during the anomaly occurrence. The number
of false positives is then given as the number of windows
wrongly marked as an anomaly. On the contrary, an anomaly
is undetected (false negative) if no window is marked as a
suspicious during the anomaly occurrence.

In the evaluation, we also measure the total number of DPAs
representing all communication pairs p ∈ D in the smart grid
network, given as |A| =

∑
p∈D |Ap|.

C. Effect of Model Reduction

Before we move to the main part of experimental evaluation
targeting efficiency and accuracy, we conduct experiments
showing the effect of the proposed model reduction.

Table V shows the number of DPAs obtained during
the DPA learning ( A ) for a particular dataset. The column
“Original” denotes the total number of DPAs learned from
a particular dataset for each communication pair of devices.
The column “Model red. (ϵ = 0.0)” denotes the number
of automata after removing the identical ones. Finally, the
column “Model red. (ϵ = 0.1)” denotes the number of
automata left after the model reduction with the error bound
ϵ = 0.1. Removing identical automata has the biggest impact
on the number of automata. However, the model reduction with
ϵ = 0.1 further notably decreases the number of automata, e.g.,
in the case of HMI-to-IEC104 we could use for the detection
only four DPAs instead of 13 (reduction by 69%). This
experiment shows how important is to apply the automata-
based reduction on the learned model.

D. Protocol IEC 104

The first experiment evaluates the accuracy and perfor-
mance of the proposed automata-based approach on IEC 104
communication. We compare the results of DETANO with
the original approach implemented in tool AUTANOM. The
summary results are shown in Table VI.

In the first part of table, all datasets except HMI-MITM and
RTU-MITM contain a normal traffic, so these datasets are used
for method validation. We therefore learned the model from
the initial part of the dataset traffic (∼10 % of the packets).
Such learning sample is not as comprehensive as the one used
in the second part of the table. Representatives of some kinds
of normal traffic may be missing, which can lead to a higher
number of false positives. To compensate for this, we selected
a slightly higher threshold θ = 0.2.
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TABLE VI: Summary results comparing DETANO and AUTANOM on IEC 104 benchmarks. The column “Windows” denotes
the total number of processed five-minutes time windows across all communication pairs. The column “Hit” denotes the
number of detected attacks, “Miss” the number of attacks that were not detected, “FP” denotes the number of windows that
were wrongly marked as an attack, and “|A|” denotes the total number of model DPAs for all communication pairs.

Dataset Windows θ Benchmark DETANO AUTANOM
Hit Miss FP |A| Hit Miss FP |A|

10122018-104Mega 10 0.2 BUT 0 0 1 8 0 0 5 2
13122018-mega104 259 0.2 BUT 0 0 0 123 0 0 132 3
mega104-14-12-18 187 0.2 BUT 0 0 0 3 0 0 1 1
mega104-17-12-18 815 0.2 BUT 0 0 0 4 0 0 0 1
10days2 3,716 0.2 RTS 0 0 0 1 0 0 0 1
repaired-rtu8novlan 1,953 0.2 RTS 0 0 0 6 0 0 0 4
repaired-rtu11novlan 1,950 0.2 RTS 0 0 0 3 0 0 0 1
HMI-MITM 904 0.2 VRT 1 2∗ 0 23 3 0 75 1
HMI-to-IEC104 1,096 0.2 VRT 0 0 1 13 0 0 548 2
IEC104 548 0.2 VRT 0 0 0 9 0 0 0 1
RTU-MITM 904 0.2 VRT 1 2∗ 0 16 3 0 76 1
Scada-to-Sub 547 0.2 VRT 0 0 1 5 0 0 547 1

connection-loss 815 0.13 BUT 2 0 0 4 2 0 0 1
dos-attack 815 0.13 BUT 0 1 0 4 0 1 0 1
injection-attack 815 0.13 BUT 2 0 0 4 2 0 0 1
raw-device 827 0.13 BUT 1 0 0 4 1 0 0 1
scanning-attack 815 0.13 BUT 2 0 0 4 2 0 0 1
switching-attack 815 0.13 BUT 1 0 0 4 1 0 0 1
HMI-replay 350 0.13 VRT 2 0 0 27 2 0 304 1
HMI-masquerading 263 0.13 VRT 1 0 0 27 1 0 202 1
HMI-report-block 293 0.13 VRT 2 0 0 27 2 0 262 1
HMI-value-change 419 0.13 VRT 0 2∗ 0 27 2 0 369 1

For the datasets in the second part of the table where each
dataset contains some anomaly, a special traffic sample was
used for the model learning, created with the learning in mind.
In particular, for datasets from the VRT benchmark, we used a
learning (normal) traffic consisting of 381,666 packets with a
duration ∼2 days and for datasets from BUT we used a learning
traffic consisting of 58,930 packets with a duration ∼3 days.
For these datasets, we selected detection threshold θ = 0.13.

In all experiments from both parts of the table, removing
identical model DPAs (model reduction with the threshold
ϵ = 0.0) was sufficient to keep the number of model DPAs
small. The detection phase did not suffer from any perfor-
mance issues and the model reduction was not needed.

a) Improved Precision: Table VI shows that the tool
DETANO eliminates almost all false positives introduced by
AUTANOM. Namely, 2,521 FPs in all datasets of AUTANOM
were cut down to 3 FPs of DETANO. False positives were
hence reduced by 99.9 %. An example of Euclid distance ob-
tained from Eq. (2) for selected datasets comparing DETANO
and AUTANOM is depicted in Fig. 12. It is apparent that
DETANO smoothed most of the values corresponding to false
positives while keeping peaks with anomalies, see, e.g., win-
dows 118–132 in Fig. 12 (a) and (d).

Despite this FP reduction, the detection stays very precise.
In particular, we missed only one attack, dos-attack, that
could not be detected by our automata-based approach. All
other missed attacks (marked by ∗) are beyond the scope of
our approach because these attacks aim at features that are
not trackable by DPA models. In particular, changes in IOA
objects are not considered for the monitoring, thus, they are
not represented by DPAs (cf. Sec. III-A).

The fact that AUTANOM detects these attacks is rather a
side effect of its unacceptable high number of FPs, among
which it accidentally hits the right windows with attacks. For
instance, in case of HMI-MITM, AUTANOM marks 11 % of
incoming windows as an anomaly, however, most of them
are FPs. This number of FPs would require an administrator
to resolve a false alarm approximately every hour which is
not feasible. This is even more pronounced in the case of
HMI-value-change, where almost every incoming window
is marked as an anomaly.

The high precision is not paid for by a performance decline.
On all datasets (except of 10122018-104Mega having the
lowest number of windows where the processing of a single
window takes 1 sec) we keep the time for processing a single
window for a communication pair below 0.1 sec.

b) Diagnostic Traces: Our approach is able to provide
useful diagnostic traces for detected anomalies allowing to
track possible sources of problems. Below, we discuss a couple
of interesting cases.

• connection-loss: For anomalies occurring within this
dataset, we provide additional information about the most
probable missing conversations Emiss = {⟨36, 3⟩}. In this
case the device stopped responding and hence the absence
of this message was indeed marked as an anomaly.

• HMI-report-block: In this scenario, the attacker blocks
and re-sends messages which yields into duplicated mes-
sages ⟨3, 20⟩. We provide additional diagnostic traces
containing Ebad = {⟨100, 6⟩⟨100, 7⟩⟨3, 20⟩⟨3, 20⟩⟨5, 20⟩
· · · ⟨100, 10⟩, . . . } and Emiss = {⟨100, 6⟩⟨100, 7⟩⟨3, 20⟩
⟨5, 20⟩ · · · ⟨100, 10⟩}, based on which the administrator
can reveal the problem.
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Fig. 12: Comparison of the Euclid distance values obtained from Eq. (2) for DETANO (a), (b), (c) and AUTANOM (d), (e), (f).

• HMI-masquerating: In this scenario, the attacker
generates cyclic requests yielding to a duplication of
⟨100, 7⟩ messages. From our diagnostic trace Ebad =
{⟨100, 6⟩⟨100, 7⟩⟨100, 7⟩⟨1, 20⟩ · · · ⟨100, 10⟩, . . . } we
are able to see duplicated messages ⟨100, 7⟩.

It is evident from the scenarios above that the diagnostic
traces generated by the detection system provide a valuable
information for revealing the essence of an anomaly. Based
on these traces, an administrator may quickly find an effective
measure against a device failure or cyber attack.

E. Protocol MMS

In the second experiment, we evaluated the accuracy and
performance of DETANO on MMS benchmarks. We did not
include AUTANOM as it was tailored for IEC 104 only. Since
the MMS benchmarks contain separate learning parts, we set
the same detection threshold θ = 0.13 as for IEC 104 with
the learning part. For the ENCS benchmark, the learning traffic
had 13,043 packets with a duration ∼15 minutes, and for
the GICS benchmark the learning traffic had 2,706 packets
with a duration ∼ 1.5 hours. Regarding the model reduction,
we again removed only identical DPAs. Since the MMS
benchmarks capture only a shorter-term communication (less
than 2 hours), we set the incoming window duration to 60 sec.

a) Improved Precisions: From Table VII we can see
results concerning the anomaly detection in MMS com-
munication involving a couple of scenarios. First ob-
serve, that DETANO is able to detect all anomalies except
gics-interrupt. We are able to detect the anomalies oc-
curring within this dataset with a smaller detection threshold
θ = 0.09. Further, we emphasize that our detection technique
introduces no false positives. As well as in the case of the
IEC 104 traffic, the processing of a single window for a
communication pair took less than 0.1 sec.

TABLE VII: Results of DETANO on MMS benchmarks.

Dataset Windows Benchmark DETANO

Hit Miss FP |A|

inside-substation 114 ENCS 1 0 0 13
gics-lost-connection 94 GICS 2 0 0 36
gics-modified 94 GICS 2 0 0 36
gics-scanning 94 GICS 1 0 0 36
gics-interrupt 94 GICS 0 1 0 36

b) Diagnostic Traces: Below, we discuss some interest-
ing cases of providing diagnostic traces for MMS anomalies.

• gics-lost-connection: In this scenario, a pair of
devices stops responding. Regarding a diagnostic trace,
we report Emiss = {⟨0, 4⟩⟨1, 4⟩} (i.e, confirmed-
request/response PDUs with read service), which is in-
deed a key missing conversation in the communication.

• gics-scanning: In this scenario, a malicious device
starts scanning resources. Together, with an anomaly
alert, we provide a diagnostic trace containing Ebad =
{⟨0, 12⟩⟨1, 12⟩, . . . }, i.e., the confirmed-req/resp PDUs
with GetNamedVariableListAttributes service.

The diagnostic traces provide beneficial information about the
anomalies. Operators can immediately infer the anomaly by
inspecting a few provided conversations. For selected attacks
(e.g., gics-scanning), the diagnostic traces directly reveal
the intentions of an intruder.

F. Discussion

From the experimental evaluation it is evident that extended
functionality implemented in DETANO removes virtually all
false positives while keeping the detection still very precise,
which is a crucial objective for a real-world deployment.
Another important outcome of the experiments is that the
newly proposed multiple-model detection does not negatively
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TABLE VIII: Overview and comparison of selected AD methods.
Attack codes: CL - connection loss, DA - DoS attack, IA - injection attack, SA - scanning attack, WA - switching attack, MM
- message modification

Properties DETANO [17] [34] [46] [47] [35] [48] [33]
Model Automata Periodogram Automata Bayesian Autoregression DTMC Specification Mean and Range
Construction Auto Auto Auto Auto Auto Auto Manual Auto
Protocols IEC104, MMS Modbus, DNP3 Modbus Modbus Modbus Modbus, IEC104 Modbus Modbus, IEC104, S7
System Real+Virtual None Real Testbed Real+Testbed Real Real Real+Virtual
Datasets Public+Private None Private Private Private Private Private Public+Private
Evaluation FPR None FPR FPR FPR FPR None FPR
Attacks CL, IA, SA, WA IG, DA None IA MM IA None DA, IA

affect the performance of the detection system. The number of
models (automata) ranges from 1 to 123 (after model reduction
with parameter ϵ = 0.0). Moreover in the real-world deploy-
ment, if the number of models becomes too high, it is possible
to apply more radical reductions for the price of detection
precision. We also showed that the provided diagnostic traces
are a very useful tool for a precise localization of the anomaly.

In the real-world setting may occur packet delays or retrans-
missions in the network. If this happens during the learning
phase, we build a model with delayed or retransmitted packets
and hence in the detection, our model is able to cope with such
events without an anomaly alert. If the learning traffic does
not contain this kind of messages, the detection system marks
such conversations as suspicious since they are anomalous
according to the model. (In fact, it depends on the frequency
of such incidents. If their frequency is low, the retransmitted
or delayed communication does not affect much a distribution
describing overall communication and this small difference
can be hidden behind the threshold.)

V. COMPARISON TO OTHER WORK

In this section, properties of the proposed method are
compared with selected ICS anomaly detection techniques.
Due to the fact that the details of implementations and datasets
are not commonly available, the presented comparison is based
solely on the information provided by the authors in their
articles. The criteria take into account the representation of the
model, the learning and detection process and the approach to
assessment. Table VIII presents anomaly detection methods
with respect to the following categories:

• Model: All considered methods propose a model of ICS
communication that is based on characterizing a baseline.
Different types of models are employed, most often
statistical, automata, and probabilistic.

• Construction: Usually, the model is computed automati-
cally from the sample data, but there are also methods that
require a user to manually provide a system specification.
The detection methods are specific to the model used.
For simple statistical models, they determine if a tested
value lies within the specified boundaries. In the case of
automata, the acceptance of an input string is evaluated
or the distance between automata is computed.

• Protocols: A method is applicable to a number of ICS
protocols or is specific to a single one. Also, the authors
present the method for various protocols depending on

the availability of datasets and experimental environment.
The most common are Modbus, IEC 104, DNP3, or S7.

• System: To evaluate the performance of detection meth-
ods the availability of datasets is essential. Many works
use datasets acquired from either a real-world ICS system
or emulated/virtual environment. A few of the presented
works claim to use several ICS systems during the
demonstration and evaluation.

• Datasets: Many methods were demonstrated and eval-
uated using private datasets. There are not so many
publicly available datasets and if so most of them are
generated in an experimental testbed rather than obtained
from a real system. Most of available datasets are in form
of CSV traces, some datasets contain full captured data.

• Evaluation: Most of the works evaluate the performance
in terms of false-positive rate (FPR). Some of them
discuss capabilities of the proposed method without pro-
viding quantitative evaluation.

• Attacks: Some authors also present the capabilities of
the methods to detect various attacks. The types of
attacks differ, but the most common are DoS attacks and
injection attacks as these significantly modify the traffic
characteristics.

The mainstream techniques employed for ICS anomaly
detection found in the literature are statistical methods, au-
tomata, and probabilistic models. The presented experiments
demonstrate that our DFA approach can detect most of the
network attack types considered in the related works (see Table
VIII, row Attacks). One exception is the message modification
(MM) attack that is detectable by the autoregression method
[47]. This limitation is because we do not analyze message
payloads. If message modification does not modify the mes-
sage type nor introduces new messages in the communication,
it is not detectable by our method. Also, the DoS attack,
easily detectable by statistical methods, is not identified if
the individual requests obey the expected communication
pattern. The overview of attacks detectable by our system with
corresponding MITRE classification is given in Table IX.

As mentioned above, DoS attack is not detectable by
the automata-detection because a DPA models only relative
frequency of the learned conversations, thus, the same DPA is
created for an ICS sequence that occurs ten times in the time
window (normal behavior) or thousand times (DoS attack).
Nevertheless, DoS attack can be easily detected by a simple
statistical analysis. Table IX also lists a few partial results
marked with (◦) for the MITM attack and message modifi-
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TABLE IX: Summary of Anomaly Detection Results.
(✓successful detection, ✗ not detected, ◦ partially detected)

.

Anomaly Result MITRE Technique Classification

Connection loss ✓ –
DoS attack ✗ T0814
Injection attack ✓ T0855,T0856,T0881
Rogue device ✓ T0848
Scanning attack ✓ T0801,T0802,T0840,T0846,T0888
Switching attack ✓ T0838,T0858
Replay attack ✓ T0856
MITM attack ◦ T0830
Masquerading attack ✓ T0831,T0856
Message blocking ✓ T0803,T0804,T0878
Message modification ◦ T0831,T0832,T0836

cation. Since our system does not analyze packet payload,
it is not able to detect packets with modified values in the
payload. However, such values usually invoke a new reaction
of the ICS system that is trackable by our detection tool. This
was demonstrated by our experiments with IEC 104 (Table
VI, datasets HMI-MITM, RTU-MITM) and with MMS (Table
VII, dataset gics-modified) where unexpected IEC 104 or
MMS response message were detected. We denote this result
as partial (◦) which means that we did not capture the original
attack but a response for the attack.

VI. CONCLUSION

Industrial control networks use segmentation and perimeter
protection for the critical parts of the system, which was
rendered insufficient due to new attack vectors identified
and successfully exploited by an intruder. Once the intruder
gets into a protected Operation Technology (OT) segment,
he/she may cause a serious damage to the controlled physical
environment. This paper described a method for monitoring
smart grid networks and automatic detection of deviations
from the normal communication. A detected anomaly either
corresponds to an attack or malfunctioning device, both of
which require immediate operator’s attention.

The proposed method constructs probabilistic automata
from the observed ICS communication that represent a lan-
guage by which ICS devices in the smart grid network usually
talk. The method employs application-level information in
order to model the ICS communication accurately. Poten-
tial attackers need to follow the exact steps of the system
communication to go undetected, which significantly limits
their movements. Compared to other approaches commonly
based on statistical, automata, and probabilistic models, the
method detects a wider range of attack types (see Table IX).
In addition, our method provides a trace for the identified
anomaly, which is difficult to obtain by machine learning
approaches, for example. These diagnostic traces help an
administrator further investigate an incident and determine the
root cause of a system failure.

An essential requirement for practical deployment of
anomaly detection is an almost zero false-positives rate.
The previous experiments demonstrated that the FP rate of
the proposed method is very low or, in many cases, even
zero. Another practical requirement is overall complexity and
conservative resource demands. Using large datasets of ICS

communication, we proved that the computed model is very
compact even for millions of observed communication flows.
Also, model computation and anomaly detection algorithms
are computationally feasible but this task is done offline during
the training phase only.

The presented method was implemented and integrated in
the network monitoring and anomaly detection tool8 for further
testing in real-world environments.
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