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Abstract—Masked speech modeling (MSM) methods such as
wav2vec2 or w2v-BERT learn representations over speech frames
which are randomly masked within an utterance. While these meth-
ods improve performance of Automatic Speech Recognition (ASR)
systems, they have one major limitation. They treat all unsuper-
vised speech samples with equal weight, which hinders learning as
not all samples have relevant information to learn meaningful rep-
resentations. In this work, we address this limitation. We propose
ask2mask (ATM), a novel approach to focus on specific samples
during MSM pre-training. ATM employs an external ASR model
or scorer to weight unsupervised input samples in two different
ways: 1) A fine-grained data selection is performed by masking
over the highly confident input frames as chosen by the scorer.
This allows the model to learn meaningful representations. 2) ATM
is further extended to focus at utterance-level by weighting the
final MSM loss with the utterance-level confidence score. We con-
duct fine-tuning experiments on two well-benchmarked corpora:
LibriSpeech (matching the pre-training data) and Commonvoice,
TED-LIUM, AMI and CHiME-6 (not matching the pre-training
data). The results substantiate the efficacy of ATM on signifi-
cantly improving the recognition performance under mismatched
conditions (up to 11.6% relative over published results and upto
4.46% relative over our internal baseline) while still yielding modest
improvements under matched conditions.

Index Terms—Self-supervision, Wav2vec2, Data selection,
Domain mismatch.

I. INTRODUCTION

S ELF-TRAINING and self-supervised training techniques
rely on huge amounts of unlabeled speech or text data

for better generalization. The self-training techniques such as
pseudo-labeling [1], [2] and student-teacher training [3] have
shown promising improvements by incorporating the data selec-
tion process. This data selection step removes pseudo-labels with
less confidence as denoted by the teacher model before feeding
the input to a student model. [4] shows that self-training and
self-supervised training are complementary to each other and
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also show that self-supervised models act as good initialization
for self-training techniques. Self-supervised training [5] is a rep-
resentation learning approach which implicitly learns patterns
in the data without relying on explicit labels. Masked speech
modeling (MSM) is the recent and successful self-supervised
learning technique, thanks to the advent of BERT [6] in NLP
which inspired learning speech representations from masked
inputs. MSM techniques such as wav2vec2 [7], HuBERT [8] and
w2v-BERT [9] have shown considerable gains across various
down-stream speech tasks and have become the go-to models
for ASR.

Unfortunately, MSM does not have a data selection scheme to
discard the irrelevant input samples and instead imposes burden
on the training criterion to learn the relevance of the input
samples in learning meaningful representations. [10] noticed
the impact of not selecting relevant data from the huge amounts
of unsupervised data during pre-training by showing degrada-
tion in ASR performance when fine-tuned to a target dataset
with limited data. To mitigate this constraint, [11] introduced
substantially more fine-tuning data related to the target dataset
but did not achieve satisfactory results. [10] attempted to solve
this issue by heuristically selecting the data from a closed set
of unsupervised speech databases or by pooling in data relevant
to target dataset along with the existing pre-training dataset.
However, this data selection approach is not done within the
existing pre-training dataset and it is not completely empirically
motivated.

In this study, in order to break the above limitation of the
MSM techniques, we propose a simple strategy named ask2mask
(ATM) to incorporate data selection within a chosen pretraining
dataset.
� In ATM, the masking is done over the input samples or

speech frames with higher confidence as determined by the
scorer. This is contrary to the random selection of frames to
be masked in conventional MSM models. We hypothesize
that this guided selection of frames to be masked allows the
model to focus on the frames which can provide meaningful
representations. The scoring model used in this work is
necessarily a speech recognition model trained on small
amount of data and provides frame-level confidence for
each input.

� The ATM technique is further extended to exploit the
confidence values provided by the scorer by directly using
them to re-weight the MSM loss. We denote this approach
as ATM with loss scaling (ATM+S). It allows the model
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training to focus on certain utterances by down scaling the
utterances with low-confidences.

Similar to our work based on masking with external guidance,
there is work in NLP that also benefit by incorporating masking
with knowledge. In [12], masking is done at phrase-level seg-
ments in BERT and has shown to learn semantic dependencies.
In [13], phonetic knowledge is injected to mask over phonetic
segments to perform spectral augmentation. Phonetically moti-
vated masking scheme is proposed in [14] to improve multiple
downstream speech tasks. PEGASUS [15] model masks the
input text based on their ROUGE score provides better self-
supervised representations for text summarization and is more
closer to the idea behind our work.

Our ATM approach is primarily motivated based on the re-
cent work by [16] on semi-supervised learning of conventional
ASR systems which shows that performing data selection at
frame-level or token-level on unsupervised data provides better
performance. The importance of pruning out the input sam-
ples at frame-level has been studied in [17] to improve both
classification and regression tasks. Few works on unsupervised
learning also highlight the importance of weighting the data
based on its confidence [18]–[20]. We hypothesize that ATM can
leverage the effect of data selection within a particular training
corpus to further enhance the recognition performance of MSM
techniques.

To summarize, our contributions are listed as follows:
� Novelty: To the extent of our knowledge, ATM is the first

approach to incorporate a within-corpus data selection
strategy in MSM. We also show that data selection can
be simply performed inside MSM by guided selection of
frames to be masked using a scorer model.

� Technical contributions: We provide two simple strategies
to incorporate data selection into MSM pretraining by
applying the confidence of the scorer: 1) choosing the
data at frame-level by applying guided masking 2) soft
weighting the data at utterance level by scaling the MSM
loss of each utterance with its corresponding confidence
score. ATM is designed to be compatible to all MSM based
pre-training techniques.

� Empirical study: Analysis is done to find an optimal mask-
ing percentage for ATM and we highlight the effective-
ness of ATM across varying masking percentages. The
importance of masking frames with high confidence is
substantiated by empirically comparing it with masking
low confident frames and random frames respectively.
Experiments are performed on AMI data which is from a
distinct condition compared to Libri-light corpus used for
MSM based pretraining. The results confirm the impor-
tance of ATM by improving the recognition performance
on evaluation sets of AMI by a significant margin.

II. MASKED SPEECH MODELS (MSM)

In this section, we formally define the masked speech model-
ing (MSM) technique and brief primary instantiations including
wav2vec2 and w2v-BERT. The technique can be formulated
by defining input speech sequenceX = [x1, x2, . . ., xT ′ ], where

Fig. 1. Working procedure of Wav2vec2-conformer model as described in
section II-C. The encoded representations are masked and passed to context
network Ω and the resulting output cj is learnt to be closer to quantized output.

xt is the log Mel-filterbank feature vector at time t. X is sent
to the feature encoder Φ to obtain the encoded representations
E = Φ(X). The feature encoder contains convolutional lay-
ers performing subsampling at a factor of 4 and reducing the
total number of frames of an utterance from T ′ to T to get
E = [e1, e2, . . ., eT ]. E is then sent to two parallel modules:
1) masking component, and 2) quantizer.

A. Masking

The idea behind masking input samples and predicting
them was initially proposed in BERT [6] and later adopted
to speech [7] with modifications to suit the characteristics of
speech input. The masking is done over sets of frames or blocks
b1, b2, . . ., bK and accommodates overlap between blocks. Here
K is the number of masked blocks in a randomly masked
encoded sequence Ẽ. The importance of block masking is moti-
vated by the improvements observed in Span-BERT by [21] and
ERNIE [12]. The block bk = [ik, c], where ik is the starting index
of the masked block and c is the corresponding right context
size denoting the number of consecutive speech frames. Here
ik are randomly sampled from a uniform distribution. It has
been empirically observed by [7] that 49% of the frames are
masked and c = 10 is chosen as the golden ratio to attain best
representation during pre-training.

B. Quantizer

Gumbel-softmax quantizer component Ψ is used to get quan-
tized representations which act as targets for wav2vec2 and
w2v-BERT models. These quantized representations align to
phonetic units as described in [7]. Each quantized vector is of L
dimensions which denote the number of targets or codes used in
a codebook. Each incoming inputE is projected toL dimensions
within the quantizer before applying the Gumbel-softmax.

C. Context Network and MSM Loss

Wav2vec2-conformer (w2v2-cfr): In this model type, as in
Fig.1, the unmasked sequence E is sent to Ψ to get Q = Ψ(E),
where Q = [q1, q2, .., qT ] as described in [7].

The masked sequence Ẽ is fed to the context networkΩwhich
contains conformer blocks to learn contextual representations
from the input. C = Ω(E) denotes the output of the context
network. The contrastive lossLctr(cj , qj) objective is computed
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Fig. 2. Working procedure of HuBERT-conformer model as described in
section II-C. The k-means cluster ids act as labels and they are refined using
the bottleneck features extracted from the context network itself.

Fig. 3. Working procedure of W2V-BERT model as described in section II-C.
Cross-entropy loss is computed between predictions of context network Λ and
the quantized labels yj . Contrastive loss is computed in parallel as in wav2vec2.

between the quantized representation qj and context network
output cj ∈ C for all masked time instances j ∈ J . Diversity
loss Ldiv is computed as an auxiliary objective in wav2vec2
to force the model to choose diverse codes in the quantization
codebook. Detailed description of Ldiv is in [7]. The final
training objective is denoted as:

Lwv = Lctr + 0.1 · Ldiv, (1)

where Lctr =
∑J

j=1 Lctr(cj , qj).
HuBERT-conformer: Figure 2 is another variant of wav2vec2-

conformer model with two major differences: 1) Targets are
k-means cluster ids which are computed over a small portion
of input 2) Cross-entropy loss Lce(ŷj , yj) is computed between
the prediction of the context network ŷj and the k-means cluster
id target yj .

W2V-BERT: Figure 3This model marries the concept of
wav2vec2 and BERT model by including an additional context
network Λ containing conformer blocks in addition to Ω as in
wav2vec2. The Λ receives the output of the Ω and strives to
further learn refined contextual information to get H = Λ(C).
The targets of w2v-BERT yj is computed by taking an argmax
over the codebook dimensions L of quantized representations
qj,l as:

yj = arg max
l

qj, l, l ∈ L (2)

Finally, the cross-entropy loss Lce(ŷj , yj) is computed between
the prediction ŷj = softmax(hj) and the target yj over the
masked time instances J . The final training objective Lwb =

Lce + Lwv is a combination of cross-entropy loss and wav2vec2
loss.

III. ASK2MASK (ATM)

The primary reason to employ pre-training models is to exploit
the abundantly available unsupervised data for improving ASR
under limited availability of supervised data. While the MSM
models such as wav2vec2 and w2v-BERT described in Section II
exploit the unsupervised data, they treat each data with equal
weight for computing the final objective. Instead, we generate a
score st for each encoded frame et. This is used to select relevant
data in a fine-grained manner during masking for computing
the loss objective. Here, we hypothesize that pre-training with
data that closely resembles the target domain leads to better
recognition performance after fine-tuning.

A. Methodology

For each encoded feature frame et ∈ E, the scorer emits prob-
abilities p(vt = l |E); l ∈ L of the frame belonging to a partic-
ular label. The scorer model is a CTC based frame-synchronous
ASR model separately trained with a limited amount of data.
Our initial intuition was to chose the scorer’s training data to
match the target data condition, however our empirical analysis
in (cf. Section VI-C) shows that the performance is agnostic to
the scorer model’s training data. Finally, the confidence score st
of the frame is defined as the maximum probability across all
labels:

st = max
l

p(vt = l |E). (3)

We sample K masking start indices {i1, .., ik} with probabili-
ties:

p(ik = t) =
st∑
sv

v/∈{i1,..,ik−1}

· δt/∈{i1.,,ik−1}, (4)

That is, we sample beginning frames with probability pro-
portional to the scores of each frame. The indicator function
δt/∈{i1.,,ik−1} ensures that we sample without replacement. This
is the key difference between ATM and the random masking in
prior works as described in Section II-A. Prior works uniformly
sample the start indices of each masking block b1:K , while the
ATM uses the probability distribution induced by the scorer. K
is determined by the percentage of frames to be masked. In ATM,
we choose to also include the neighboring frames in the right
from each selected frame.

We hypothesize that frames with maximum confidence from
an external scoring model will be 1) easiest to learn using an
MSM training criteria and 2) most informative in for pretrain-
ing to facilitate fine-tuning. Conversely, the lowest confidence
frames, those more confusable to an external scoring model, will
be the least reliably learned by MSM and least informative for
pretraining.

The resulting frames are sent as input to the MSM architecture
and the final loss objectiveL is determined by either of the MSM
objectivesLwv orLwb described in Sections II-C. This modified
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training objective allows the model to focus on learning from
gradients calculated from the frames with high confidences.

B. ATM With MSM Loss Scaling (ATM+S)

The ATM loss is computed over the frames with high con-
fidence performing a fine-grained data selection within a uth

speech sequence Xu. Utterances with higher average frame
confidence as measured by the scorer are accorded higher value
than those with more confused frames. To perform data selection
at a coarser utterance level, confidence scores su are computed
as:

su =
1

T

T∑

t=1

st,u. (5)

For simplicity, we denote s = su and the MSM loss computed
over each masked frame is scaled by s to impose the importance
of a particular utterance u. The final training objective L′

atm of
a particular speech sequence is denoted as:

L′
atm = s · Latm. (6)

C. Probability as Confidence Measure in ATM

The ATM uses probability as a simple form of confidence
measure to each frame. The analysis of confidence measures for
semi-supervision in ASR has been done in [16] and they show
that posterior probability acts as a reliable confidence measure
for frame, word and sentence based data selection. They also
perform an extensive analysis on using the posteriors for hybrid
ASR systems. Based on the motivation from this work we chose
to use softmax probability directly as our confidence score. A
similar observation has been noted in [17], where the usage
of softmax probability directly as a confidence measure has
been applied to select relevant data samples during training. We
also experimented with Entropy and exponential scaling or log
scaling on softmax probabilities as confidence measure, but it
did not fetch advantage over simple usage of probability.

IV. RELATED WORKS

Masking input has been widely explored to improve the ASR
performance. Random masking is a simple yet effective strategy
and has shown benefits across MSM models such as wav2vec2,
HuBERT and w2v-BERT.

ATM manipulates the masking strategy in MSM to perform
data selection on unsupervised pretraining data. However, this is
not applicable to all pseudo-label based data selection. Several
works have been performed to smartly perform filtering of unsu-
pervised data where the pseudo-label acts as targets and is trained
using supervised objectives. Unsupervised domain adaptation
via uncertainty driven self-training [22] extracts hypotheses
(Hd) from multiple ASR models by enabling dropout layers
and changing the random seed. A reference hypothesis (Hr)
is compared with Hd and if the maximum of all the scores
is above a threshold, the reference hypothesis is selected as
the pseudo-label and the corresponding utterance participates
in training. In MSM, the pseudo-label sequences are not used
and the targets are simple quantized representations. Another

main difference between self-training and MSM is that they
don’t involve decoder during pretraining which restricts the
use of sequence as targets. Moreover, the MSM training and
self-training are complementary as in [bigSSL] and ask2mask
based MSM can serve as a better initialization for the encoder
model used in self-training.

ATM involves a deterministic masking scheme and target
domain focused MSM pretraining. REALM [23] is a MLM
based target domain focused pretraining. A knowledge retriever
and knowledge augmented encoder is used in REALM to retrieve
the target knowledge representation and directly integrate in
during pretraining and finetuning. ATM is a simplified approach
and doesn’t include scorer during finetuning unlike REALM
where the knowledge network and retriever is used during
finetuning and hence doesn’t increase model complexity. PMI
Masking [24] is another work which shows the importance
of deterministic masking as in ask2mask. Here PMI selects
n-grams based on their PMI score and masks them during
MLM pretraining. The motivation of PMI is to learn whole
words and ask2mask uses confidence scores from probability
distribution of the scorer to select indomain samples from the
huge unsupervised data.

V. EXPERIMENTAL SETUP

All experiments including pre-training and fine-tuning are
performed using 80 dimensional log Mel-filterbank features
computed over the sampled 16 kHz audio. Datasets (such as
AMI) contains wideband audio and are downsampled to 16 kHz.
We evaluate with the test-other (LibriSpeech partition) to show
the importance of ATM on matched data conditions, while
IHM-eval and SDM-eval (AMI partitions) is used to validate
the model under mismatched conditions.

A. Datasets Used

Pretraining (PT): Libri-light (LL-60 k) dataset contains 60 k
hours of unlabeled speech and is used to pre-train all MSM mod-
els. LL-60 k is the most widely used large unsupervised speech
corpus for various PT techniques. Each input speech sequence is
constructed by first randomly selecting 32-64 seconds segments
from the original utterance. From these segments, a contiguous
32 s region is extracted from a random starting point on-the-fly
during MSM PT as described in [25].

Finetuning (FT): Different target datasets including 1) 100 &
960 hours of Librispeech (LS-100 & LS-960) [26]. 2) 100 hours
of AMI and 3) speechstew (approx. 5 k hours) [11] are used to
perform our FT experiments. Each dataset used is specific to
a certain target data condition, for instance LS-960 is closely
matches the LL-60 k, AMI dataset is distinct from the LL-60 k
condition and it contains speech from two kinds of microphones
(i) Independent head microphone (IHM). (ii) single distant mi-
crophone (SDM). SpeechStew is composed of datasets chosen
from multiple conditions to create a mixed domain aggregate
corpus. Processing details are described in [11].

Evaluation: We hypothesize that evaluation over AMI using
IHM-eval and SDM-eval reveals the effectiveness of ATM in
providing informative samples for better representation learning.
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We also evaluate using evaluation sets from Tedlium and Com-
mon voice as their training counter parts are used in SpeechStew
based FT. Finally, we also evaluate using CHiME-6 [27] without
using any FT data from CHiME-6 training set to compare the
performance of ATM on completely unseen target dataset.

Scorer training data: A CTC [28] based conformer model
with 100 M parameters is trained on LS-100 (“LS-scorer”). A
similar model is also trained on AMI (“AMI-scorer”). Word-
piece model (WPM) with 1024 tokens are used as labels for
training the scorer models. All the results in this paper use “LS-
scorer” besides the comparison Section VI-C.

B. MSM Architecture

W2v2-cfr: This is a wav2vec2 with conformer based context
network which first encodes the filterbank features using two 2D
convolutional layers with strides (2,2). Model has 100 M/600 M
parameters and is denoted as “w2v2-cfr-L/XL”. HuBERT-cfr-
L/XL is similar to w2v2-cfr-L/XL - it differs in using the
k-means based quantizer with 1024 targets and computes the
cross-entropy loss as described in [8]. The “L/XL” size models
contains context network Ω 12/24 conformer layers with 8
attention heads and 1024 hidden dimensions.

W2v-BERT: W2v-BERT is explored using two model sizes:
one with 100 M parameters denoted as “w2v-BERT-L” and
containing 2 conformer layers in context net Ω and 4 conformer
layers inΛ. A 600 M parameter model is denoted as “w2v-BERT-
XL” contains 8 conformer layers in Ω and 24 conformer layers
in Λ. Each conformer block contains 1024 hidden dimensions
with 8 attention heads, kernel size of 5 with local context of
128. The remaining architecture is identical to the configuration
defined in [9].

C. PT and FT Configuration

The models L/XL are trained with a global batch size of
512/2048 on 64/256 Google TPU V3 cores for 2-4 days respec-
tively. Adam optimizer is used with a learning rate schedule
(Section 5.3 of [29]) with 2e-3 as peak learning rate and 25 k
warmup steps. The model training configuration follows similar
procedure as described in [25].

The FT is done by employing the context network from the
PT model by adding a final layer with 1024 WPM units learnt
using the RNN-T objective function [30]. The FT is done on
w2v-BERT-XL, w2v2-cfr-XL and HuBERT-cfr-XL after 400 k
PT model updates. The w2v-BERT-L model is FT after 900 k PT
model updates. w2v-BERT-L is used to initially perform wide
range of analysis and hyper-parameter optimization on ATM.
w2v-BERT-XL is finally used to compare the results of ATM
across existing works in literature. w2v2-cfr-XL and HuBERT-
cfr-XL are also used in our experiments. All these models are
trained with the same configuration as in [25].

VI. ATM ANALYSIS

The empirical study on ATM is done primarily using w2v-
BERT-L since this generates the best WER performance across
similarly sized models (cf. Fig. 5). The pre-trained models are

Fig. 4. Recognition performance of w2v-BERT with ATM and random mask-
ing on IHM-eval and test-other sets by varying the masking percentage during
pre-training. The FT is performed on LS-100 for evaluating test-other, while
IHM-eval is evaluated with model FT with AMI. Random masking shows a
substantial shift in performance when varying the masking from 30% to 40%,
while the ATM remains robust to changes in masking percentage.

fine-tuned with either LS-100 or AMI. The resulting finetuned
models are evaluated on IHM and SDM evaluation sets to un-
derstand the domain generalization aspect of ATM. Librispeech
evaluation sets are used in unison to study how ATM behaves
under matching domain condition. These experiments are per-
formed with using the loss scaling (it will be discussed in
Section VI-F).

A. Masking Percentages

The number of masked frames within an utterance plays a
key role in masked input learning and in this study, we vary the
masking percentages from 30% to 50% to determine the best
percentage for ATM approach. Previous works on wav2vec2
([7]) showed that masking 49% of the frames is ideal for 30 s
utterance and this has been followed subsequent works such
as HuBERT and w2v-BERT. In case of ATM, this can differ
as the frames selected are of higher confidences. Fig. 4 shows
that ATM achieves its “sweet spot” with 40% masking for both
IHM-eval and test-other set. Interestingly ATM’s performance
is stable across large variations in masking rates with relatively
good performance with masking rate as low as 30%. This is a
significant difference from the uniform sampling of prior work
which suffers significant drop in performance as the masking rate
goes below 40%. The result indicates that masking the right set of
frames, which ATM aims to do, is able to promote more stable
performance. For instance, ATM achieves a %WER of 12.65
with 33% masking and 12.52 with 40% masking on IHM-eval
respectively as shown in Fig. 4. The recognition performance on
test-other and IHM-eval improves over baseline from 8.86% to
8.79% and 13.38% to 12.52% respectively by using ATM.

B. ATM Masking Strategies

The default setting of ATM is chosen based on a hypothesis
that those frames that are scored with high-confidence from
an external scoring model will be most useful as candidates

Authorized licensed use limited to: Brno University of Technology. Downloaded on February 07,2023 at 18:07:41 UTC from IEEE Xplore.  Restrictions apply. 



1362 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 16, NO. 6, OCTOBER 2022

TABLE I
PERFORMANCE COMPARISON (IN %WER) ON AMI EVALUATION SETS USING

W2-BERT WITH RANDOM MASKING (BASELINE) AND WITH ATM USING

HIGH, LOW AND MIXED CONFIDENCE SCORES FROM THE SCORER. THE FT IS

DONE WITH AMI.

for MSM pretraining. This hypothesis is interrogated in this
section by analysing the impact of choosing the frames with
low confidences or equal mix of both high and low confidence
frames (Mixed). For masking low confident frames, we modify
the score in (3) as:

st = 1−max
l

p(vt = l |E). (7)

We evaluated these three masking strategies of ATM on both
IHM and SDM evaluation sets. Table I shows the comparison
between these sampling strategies. We observe that masking
high confident frames are consistently better than masking the
low confidence counterparts. In fact, “Low” confident frames
perform worse than the baseline with random masking. Finally,
we observe that performance of “Mixed” falls between that of
“High” and “Low”. The “Mixed” strategy is similar to random
masking, as both high and low confidence frames are selected.
This similarity is also reflected in comparable performance
between “Mixed” and random masking. These results provide
support for our initial hypothesis that masking frames with high
confidence leads to better pre-training.

C. How to Choose the Scoring Model

The scorer used in this work is a speech recognition model
(100 M parameters) trained in a supervised fashion. The scorer
is chosen based on the target downstream task and in addition
to this, the scorer needs to be frame-synchronous to provide
confidence for every frame in a speech sequence. In this work,
we use a frame-synchronous ASR system as the scorer by
employing the connectionist temporal classification (CTC) ob-
jective. The CTC is preferred over the RNN-T by analysing
the reliability of the frame-level predictions. To analyse the
importance of the supervised data used to train the scorer, we
trained two scorer models: LS-scorer and AMI-scorer are CTC
models trained with LS-100 and AMI dataset respectively. The
AMI-scorer outperforms on SDM-eval by improving the %WER
from 27.34 to 27.00. Surprisingly, our results on Table II, shows
that the results on IHM-eval using an LS-scorer are comparable
to the AMI-scorer. Evaluation on test and test-other shows that
LS-scorer is better than AMI-scorer on both sets. Based on these
observations, we choose the LS-scorer as the universal scoring
model for all ATM based pre-trained models regardless of the
target domain (eg: AMI) used in our experiments. Table II shows
that although matching the scorer to the target domain improves
the performance, the difference is not significant.

TABLE II
CROSS ANALYSIS OF ATM PERFORMANCE (IN %WER) USING AMI AND LS

SCORERS. THE FT IS DONE ON LS-100 TO EVALUATE THE TEST AND

TEST-OTHER, WHILE THE FT IS DONE ON AMI TO EVALUATE USING

IHM-EVAL AND SDM-EVAL

Fig. 5. Performance comparison of different MSM architectures with and
without applying ATM on IHM-eval and SDM-eval in AMI. All these models
are FT using AMI. Here “cfr” refers to conformer.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MSM ARCHITECTURES WITH

AND WITHOUT APPLYING ATM ON ALL EVALUATION SETS ON LIBRISPEECH.

D. Consistency Across Different Architectures

Fig. 5 shows that ATM consistently outperforms on both
IHM-eval and SDM-eval across multiple MSM architectures
including wav2vec2 and HuBERT. In the case of IHM-eval,
ATM attains a relative improvement of 9% over w2v2-cfr-L, 4%
relative improvement over HuBERT-cfr-L and 5% relative gain
over w2v-BERT-L baseline models respectively. W2v2-cfr-L
using ATM obtained 6.2% relative improvement over its baseline
counterpart and HuBERT-cfr-L with ATM attained 7.9% rel. im-
provement over HuBERT-L baseline on SDM-eval respectively.
On the other hand w2v-BERT-L baseline is better compared to
w2v2-cfr-L and HuBERT-cfr-L on both IHM-eval and SDM-
eval by achieving 12.52% and 27.34% WER respectively.

E. Analysis of ATM on Librispeech

Experimental analysis is conducted using different model
architectures to validate the effect ATM on LS-100 and are
present in Table III. To study the impact of increasing the model
parameters from “L” size to “XL” size, we FT on LS-100 using
MSM models with XL size and the results are in Table III.
We did not find any consistency in the performance across the
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TABLE IV
%WER OF ATM+S BY FINE-TUNING ON AMI USING W2V-BERT-L MODEL

Fig. 6. Validating baseline, ATM and ATM+S using contrastive loss, number
of unique codes used from the codebook and the MSM accuracy on dev-other
during pre-training. A small bump is observed at around 0.1 million training
iteration due to the change in learning rate and is ignored during analysis. .

evaluation sets using any of the MSM architectures. Slight gains
are observed on test or dev or dev-other using w2v2-cfr-XL.
Once the baseline in w2v-BERT-XL gets better, ATM did not
achieve gains on test-other. This scenario can be explained due to
effectiveness of MSM pre-training under matched condition and
can perform well without any necessary data selection approach.

F. ATM With Loss Scaling (ATM+S) Analysis

ATM training can incorporate utterance-level weighting by
scaling the MSM loss obtained using w2v-BERT-L models with
the utterance-level confidence score according to Equation 6.

We evaluate the value of utterance-level loss scaling by
re-weighting utterances in the context of both baseline MSM
(i.e., without ATM frame selection) and ATM (ATM+S). These
results are in Table IV. Re-weighting utterances by scaling
the MSM loss with the confidence score on baseline model is
denoted as “Baseline+S” and on ATM is labeled as “ATM+S”.
MSM loss scaling is effective even without ATM; baseline+S
improves over baseline on both IHM-eval and SDM-eval. More-
over, ATM+S improves over ATM on SDM-eval by attaining
27.19% WER while showing degradation on IHM-eval. This
shows that ATM+S is effective on very hard evaluation task
such as SDM-eval compared to IHM-eval. On the IHM-eval
test set, the impact of MSM loss scaling is observed over the
Baseline MSM without ATM. We hypothesize that ATM+S may
not able to provide improvement on IHM-eval as ATM already
incorporates optimally incorporates scorer information on this
task.

G. ATM+S Analysis on Validation Data During PT

The effect of ATM and ATM+S is analysed by plotting the
validation scores on dev-other during pre-training. The first plot
in Fig. 6 shows that the contrastive loss improves over the
baseline with the aid of ATM and is further enhanced with

TABLE V
%WER ON LIBRISPEECH EVALUATION SETS USING ATM WITH UTTERANCE

SCALING AND FRAME SCALING. THE FRAME SCALING IS ANALYSED WITH

CHOOSING THE BEST PERCENTAGE OF UTTERANCES THAT PARTICIPATE IN

SCALING.

TABLE VI
#WORD RECOVERED ON LIBRISPEECH EVALUATION SETS UWITH 0.1%

ABSOLUTE IMPROVEMENT

ATM+S. The second plot shows the number of unique codes
used from the quantizer codebook. Analysing this plot helps us to
understand if the validation loss or accuracy is improved by just
using less % of unique codes which will affect the performance
at FT. Among the 1024 codes, 94%-95% are used by both ATM
and ATM+S. This is similar to the % unique codes used by
the baseline model and confirms that improvement of ATM and
ATM+S is not by choosing smaller set of unique codes. The
third plot shows that the MSM accuracy of ATM and ATM+S
improves over baseline model. ATM+S shows that re-weighting
each utterance is complementary to the ATM.

H. Comparison Between Frame-Level and Utterance-Level
Loss Scaling

ATM+S performs MSM loss scaling using the utterance-level
confidences which performs focus on each utterance at a coarse
level. We also experimented with scaling with frame-level confi-
dence scores. Our experiments showed that scaling all utterances
with frame-level confidence hurts the model performance. To
solve this issue, we randomly selected utterances which partici-
pate in frame scaling. Scaling 10% utterances resulted in better
performance and the results are shown in Table V.

I. Statistical Significance Analysis on %WER Performance for
Multiple Evaluation Sets

The Table VII results are on Librispeech and obtaining 0.1%
improvement in Librispeech testsets is statistically signficant.
For instance, the dev-clean test set contains 54402 words and
0.1% gains denotes a recovery of 54 words. Also, the recent
works on self-supervised training such as HuBERT shows
improvement between wav2vec2-XL and HuBERT-XL only on
dev-clean with 0.1% gain in Table III.

Authorized licensed use limited to: Brno University of Technology. Downloaded on February 07,2023 at 18:07:41 UTC from IEEE Xplore.  Restrictions apply. 



1364 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 16, NO. 6, OCTOBER 2022

TABLE VII
%WER OBTAINED BY FT WITH LS-960 USING W2V-BERT-XL MODEL USING

BASELINE, ATM AND ATM+S. THE RESULTS SHOW THE IMPACT OF OUR

PROPOSED APPROACH ON MATCHED CONDITION SINCE LIBRISPEECH

EVALUATION SETS ARE TREATED AS CLOSER TO LIBRI-LIGHT PT DOMAIN

TABLE VIII
%WER OBTAINED BY FT WITH AMI USING W2V-BERT-XL MODEL USING

BASELINE, ATM AND ATM+S. EVALUATION IS DONE ON AMI TEST SETS TO

HIGHLIGHT THE EFFECT ON MISMATCHED CONDITION.

VII. RESULTS

In this Section, XL models are used to compare the importance
of ATM on LS-960, AMI and SpeechStew. These three datasets
show the effect of ATM on diverse conditions with a much larger
model. Results are compared with appropriate prior work.

Table VII shows that ATM and ATM+S improves over dev-
other while on dev set there was improvement only using ATM
and not ATM+S. Although the ATM and ATM+S does not show
improvement on test and test-other, matches the very strong
baseline. Considering the similarity between LS-960 and PT
data, ATM manages to provide gains without hurting the perfor-
mance across all Librispeech evaluation sets. This validates our
argument that MSM models are better without any data selection
when trained under matched data condition but can benefit under
mismatched conditions.

Table VIII presents the results of ATM on AMI by compar-
ing it with w2v2-conformer-XL baseline and w2v-BERT-XL
baselines. We include w2v2-conformer-XL to further test the
consistency of ATM on XL models when evaluated on harder
tasks. ATM+S and ATM observes consistent gains over baseline
on both IHM-eval and SDM-eval when trained with XL models.
However, ATM+S did not demonstrate improvement on IHM-
eval using w2v-BERT-XL.

Table IX analyses the effect of ATM and ATM+S on multi-
ple evaluation sets such as Commonvoice, Tedlium, AMI and
CHiME-6. These four sets are chosen based on the mismatch
range from minimum to maximum and for instance, Common-
voice has the minimum mismatch with Libri-light data, while
CHiME-6 has the maximum mismatch. The state-of-the-art
results published in [11] are obtained by choosing the best
Conformer model supervisedly trained with multiple datasets
such as AMI, CommonVoice, Broadcast News, Librispeech,
Switchboard/Fischer, TED-LIUM and Wall Street Journal. Note
that the training data did not include the CHiME-6 data. The
authors in [11] show that simply training an ASR with lots of

TABLE IX
COMPARISON WITH STATE-OF-THE-ART RESULTS ON SPEECHSTEW. THE FT IS

DONE ON SPEECHSTEW AND THE RESULTS ARE EVALUATED USING KALDI

SCORING TO MATCH PUBLISHED RESULTS. NOTE THAT THE MODEL HAS

NEVER SEEN ANY CHIME-6 DATA, AND WE USE IT AS AN EXAMPLE FOR

ZERO-SHOT LEARNING MODE.

data leads to best results compared to the wav2vec2 finetuned
model. Their best results are denoted in Table IX and will be
used to compare with our best ATM results.

Our baseline w2v-BERT-XL attained better results over
the published w2v2-conformer-XL and Speechstew results. In
Commonvoice and CHiME-6, the baseline attained 7.4% and
2.9% relative improvement over Speechstew respectively. How-
ever, by including our ATM and ATM+S with w2v-BERT-XL,
there was consistent improvement across all range of mis-
matched domains. For instance, ATM+S attains 5.76% relative
improvement on CHiME-6 over the Speechstew. This result
clearly justifies that selection of reasonable input samples during
pre-training reduces the necessity of having finetuning data
from the same domain to improve performance. To further
substantiate this, the results on AMI show a 4.6% relative im-
provement on AMI-SDM over Speechstew which is of different
domain compared to pre-training domain. In case of minimal
mismatch domain such as Commonvoice, the ATM attained
11.6% relative improvement over Speechstew. These observa-
tions show that ATM and ATM+S demonstrate their effective-
ness to generalize to unseen and challenging speech recognition
conditions.

VIII. CONCLUSION

In this work, we introduce ask2mask (ATM) to perform
data selection over unsupervised samples for MSM based pre-
training to focus on relevant information and learn meaningful
representations. ATM achieves 21.0% WER on mismatched
AMI SDM set with guided masking and a 20.7% WER is
obtained by including loss scaling (ATM+S). We empirically
show that ATM is more robust to changes in masking percent-
age compared to random masking. as typically used in MSM.
Our results substantiate the importance of learning from high
confident frames by attaining improvements across multiple
evaluation sets. An important aspect of ATM approach is its
flexibility to incorporate into any MSM pretraining techniques
and ATM+S can also be easily adopted into self-supervised pre-
training methods. In our future work, we wish to apply ATM over
pretraining data containing data from multiple domains [10],
[31] to achieve further improvements. We also consider two
future enhancements to ATM: (1) Joint training of the scorer
model with MSM model by simultaneous training on supervised
and unsupervised data. (2) Perform active learning by sharing
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TABLE X
COMPARISON BETWEEN SCORERS TRAINED WITH DIFFERENT AMOUNT OF

SUPERVISED DATA (1 H, 10, 100 H OF LIBRISPEECH). THE SCORER IS

EVALUATED ON 1 H OF LIBRI-LIGHT DATA.

TABLE XI
%WER BETWEEN THREE ATM MODELS PRETRAINED WITH LL-60 K DATA

AND CORRESPONDING THREE SCORERS (1 H, 10 AND 100 H). THE ABOVE

THREE MODELS ARE FT WITH 100 HOURS OF AMI AND EVALUATED WITH

IHM-EVAL AND SDM-EVAL.

TABLE XII
%WER COMPARISON BETWEEN ATM MODEL TRAINED WITH SCORER WITH

AND WITHOUT DECODER. THE FT IS DONE WITH AMI USING ATM

the parameters of MSM with the scorer once the MSM is well
trained.

APPENDIX

A. Analysis of Amount of Supervised Data for Scorer

We build three different scorers using 1 h, 10 hours and 100
hours of Librispeech data. The scorers are evaluated using 1 h
of Libri-light data and the results are in Table X. We chose 1 h
of Libri-light data since the pretraining data is from the same
domain (Libri-light).

Table XI shows that the amount of supervised data used to
train the scorer has negligible impact on ATM performance after
10 hours of supervision. Scorer trained with 1 h of supervised
data performed relatively poor compared to 10 hours and 100
hours scorer. The pattern is similar to the performance improve-
ments evaluated on 1 h of Libri-light data.

B. Unsupervised Scorer Analysis

In this work, we chose to use the target domain data used
during finetuning to train the scorer model without increasing the
amount of supervised data. Our later experiments with scorer is
to use the unsupervisedly available target domain data and com-
pare its performance with supervised scorer. We performed two
sets of experiments to study the impact of unsupervised scorer.
First, we removed the CTC decoder from the supervised scorer
and softmax over the encoder representations to understand the
importance of decoder in scorer model. Table XII shows that
removing the CTC layer from the scorer led to better selection
of acoustic frames without depending on the text sequence
information from decoder.

TABLE XIII
%WER COMPARISON BETWEEN ATM MODEL TRAINED WITH DIFFERENT

RANDOM SEEDS DUEING PRETRAINING. THE RESULTING MODELS ARE

FINETUNED WITH AMI

With this motivation, we trained an encoder only model
(100 M parameters) using w2v-BERT objective with 100 hours
of AMI training data. The encoder output has 256 dimensions
and are fed to softmax layer to obtain confidence scorer. This acts
as an unuspervised scorer in Table XII and shows comparable
performance to supervised scorer. This finding highlights that
the latent representations from the unsupervised scorer is helpful
to perform better data selection.

C. ATM Pretraining With Random Seeds

The ATM pretraining is cricitically analysed by changing the
seed set for weight initialization. The random seeds are selected
by sampling from random number generator. The results in
Table XIII shows that performance of ATM remains similar
across different initializations on both IHM-eval and SDM-eval
test sets.
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