
Scraping Data from Web Pages using SPARQL
Queries

Radek Burget1[0000−0001−5233−0456]

Brno University of Technology, Faculty of Information Technology, Bozetechova 2,
61266 Brno, Czechia
burgetr@fit.vut.cz

Abstract. Despite the increasing use of semantic data, plain old HTML
web pages often provide a unique interface for accessing data from many
domains. To use this data in computer applications or to integrate it
with other data sources, it must be extracted from the HTML code. Cur-
rently, this is typically done by single-purpose programs called scrapers.
For each data source, specific scrapers must be created, which requires
a thorough analysis of the source page’s implementation in HTML. This
makes writing and maintaining a set of scrapers a complex and time-
consuming task. In this paper, we present an alternative approach that
allows defining scrapers based on visual properties of the presented con-
tent instead of the HTML code structure. First, we render the source
page and create an RDF graph that describes the visual properties of
every piece of the displayed content. Next, we use SPARQL to query the
model and extract the data. As we demonstrate with real-world exam-
ples, this approach allows us to easily define more robust scrapers that
can be used across multiple web sites and that that better cope with
changes in the source documents.

Keywords: Web scraping · Page rendering · Data extraction · RDF ·
SPARQL.

1 Introduction

Web pages often provide a unique interface for accessing data from many do-
mains, such as e-commerce, news, movies, real estate, and a vast number of
others. Data presented in this way is easily accessible to human readers, but due
to the semi-structured nature of the HTML language used, integrating web data
sources with computer applications or other data sets is a challenging task.

In recent years, we have seen an increase in the use of structured data an-
notations created using JSON-LD, Microdata, or RDFa along with semantic
vocabularies such as schema.org. According to Web Data Commons statistics,
structured data was available in 42 % of the 33.8 million domains included in the
Common Crawl corpus [3]. However, the use of structured data is growing slowly
and is limited to certain domains. A large part of the annotated documents come
from the major content providers such as Google, while there remains a large set

2 R. Burget

of diverse “long tail” data sources whose providers are less motivated to provide
the structured data.

Therefore, it is a common practice in web data integration today to use
special programs called scrappers that extract the required data directly from
the HTML code of the source pages. Currently, scrappers are typically tailored
for a specific web site and identify the required data fields based on rules that
have been designed by an analyst based on an examination of the HTML code.
Creating scrapers requires considerable website implementation expertise, they
are limited to very narrow sets of web pages, and they are very sensitive to
changes in the source web pages, which can occur at any time.

In this paper, we present an alternative approach that allows defining scrap-
ers based on visual properties of the presented content instead of the HTML
code structure. Key advantages of this approach are (1) There is no need to
analyze the details of the HTML code as the extraction rules are specified by
the visual and textual properties of the content, and (2) the rules can be made
more general, making scrapers more resistant to anomalies and changes in the
source documents, and even making it possible to define scrapers that can be
applied across multiple web sites.

The proposed solution is built on top of existing, widely available technolo-
gies. We use the Resource Description Framework (RDF) to represent all the
details of the source page content, including its visual representation, and later
SPARQL is used to query the models and extract the data. Due to the growing
popularity of the semantic web, many developers are already familiar with these
technologies, which we consider another advantage of the presented solution.

2 Related Work

The extraction of data from HTML documents has been the subject of research
for more than 25 years. Despite this long history of research, ranging from the
early string-based wrappers [1], through the most common DOM-oriented meth-
ods [2, 6], to the sophisticated applications of machine learning methods [9, 11],
it is still a widely accepted practice in the industry to create procedural scrapers
to perform this task. By a scraper we understand a single-purpose program (or
procedure) that takes HTML code as its input and produces the extracted struc-
tured values as its output. Typically, scrapers are written in general-purpose lan-
guages (most often Python, JavaScript, and Ruby are mentioned in this context
[4]), often combined with the use of CSS selectors or XPath to select important
DOM nodes from the source page model.

The vulnerability to errors caused by changes and variations in the source
documents has been a well-known feature of traditional scrapers for a long time
[10]. Several approaches have been proposed that aim to provide a more robust
solution. For example, in [13], the initial DOM node selection phase (based on
node classification) is followed by an additional visual validation phase to elim-
inate incorrectly extracted nodes. In [7], robustness is improved by not strictly

Scraping Data from Web Pages using SPARQL Queries 3

applying the XPath expressions, but by evaluating the similarity of the potential
paths.

With the development of machine learning algorithms, their application to
web data extraction has received increasing attention. A number of methods
have been developed that use different neural network architectures for this task
[8, 9, 11]. The results show that such approach is usable for extracting data from
large sets of diverse web sites. On the other hand, such extractors are quite
complex and require the preparation of large annotated data sets for training
the neural networks.

Although Semantic Web technologies such as RDF and SPARQL are closely
related to web development and are often used for the definition of structured
data, their use for the scraping of web content has been very rare. In [5], the
authors propose an RDF-based framework for mapping web content fragments
to RDF resources, and the visual selectors can be used in addition to XPath and
CSS selectors to address DOM nodes. However, the visual properties considered
include only the basic font and color properties of the node itself, which does
not allow, for example, taking advantage of the mutual positions of different
elements on the page. In [12], we proposed an ontological model that allows to
capture different aspects of web page content at different levels of abstraction,
and we used it to extract domain-specific content from the web using a set of ad
hoc heuristic rules. In this paper, we generalize this approach by using general
SPARQL queries to define scrapers for an arbitrary application.

As we will show in the next sections, the proposed approach allows to build
web scrapers in a straightforward way, without the need to manually examine
the source HTML code. The use of a generic query language allows to abstract
from implementation details and to create robust scrapers applicable to variable
source pages, while avoiding the complexity and other drawbacks of advanced
machine learning methods.

3 Method Overview

Our method operates on a page rendered by a standard web browser (we use
Chromium in our implementation, as we describe in section 5). When rendering a
page, the browser generates a tree of boxes, where a box represents a rectangular
area in the rendered page with some content. The browsers generate the boxes
from DOM elements in a manner defined by the CSS Visual Formatting Model1.

The page processing workflow is shown in Figure 1. It assumes a central RDF
repository that stores the complete information about the page being processed
and its content and on which SPARQL queries are subsequently executed. The
RDF representation of this information makes use of the Box Model Ontology2

and the Visual Area Ontology3 that we published in [12]. The former defines
(among other things) the concept of a Box, which corresponds to a box generated
1 https://www.w3.org/TR/CSS22/visuren.html
2 http://fitlayout.github.io/ontology/render.owl#
3 http://fitlayout.github.io/ontology/segmentation.owl#

4 R. Burget

Page
rendering

Input web
pages

RDF model preprocessing

RDF
repository

Extracted
data

SPARQL
queries

Boxes

Tagged text chunksBoxes

Fig. 1. Overall workflow of data extraction from source web pages using SPARQL
queries.

by a web browser during page rendering, and its properties. Similarly, the latter
ontology defines the concept of a Text Chunk, which represents a part of a
box text that has some interpretation (e.g. a product price), with the same
properties as the box itself. The relevant properties of boxes and text chunks are
summarized in Table 1.

Table 1. Properties of boxes and text chunk used in their RDF description. The bounds
property assigns an object with the positionX, positionY, width, and height prop-
erties to a box or text chunk. The values of these properties are given in pixels with
the origin of the coordinate system at the top left corner of the rendered page.

Property name Description
backgroundColor Background color in hex notation
color Text color in hex notation
fontFamily Font family name
fontSize Font size in pt units
fontStyle Average font style (0.0 for normal font, 1.0 for italic)
fontWeight Average font weight (0.0 for normal font, 1.0 for bold)
lineThrough Line-through text decoration
underline Underline text decoration
bounds Box or visual area position and size within the page.
text Contained text
contentLength Contained text length in characters
containsObject Description of a contained object such as image

After the page is rendered, we describe the generated boxes (including the
values of all their properties) by RDF statements using the Box Model Ontology,
and we store the statements in the RDF repository. Next, we preprocess the RDF
model. This consists of the following tasks:

Tagged text chunk extraction We select all the boxes that have the text prop-
erty set, create the text chunk instances with the same properties as the original
boxes, and add their descriptions to the RDF repository. Optionally, we can

Scraping Data from Web Pages using SPARQL Queries 5

specify a regular expression for each extracted data field that specifies its ex-
pected text format (for example, for product price). This allows us to pre-select
the boxes that potentially correspond to the expected data, and possibly select a
relevant substring of the box text for creating the text chunk. Then, the created
chunks are assigned a tag that indicates the data field to which they poten-
tially correspond. Note that this is only a rough pre-selection of the boxes and
the regular expressions can be very general in this phase; the final extraction is
performed later in the query phase.

Discovery of spatial relationships among areas We go through the list of created
text chunks and we look for the pairs of text chunks that are located below
each other while their x-coordinates overlap at least partially. For each such
pair (c1, c2) we add new statements c1 below c2 and c2 above c1 to our RDF
model. Similarly, we add statements with the predicates before and after,
which represent a similar relationship in the x-axis direction. For convenience,
we also define the equivalent functions isAbove(), isBelow(), isBefore(), and
isAfter() that can be used in SPARQL predicates.

4 Querying the RDF Model

After preprocessing, the RDF repository contains a complete RDF graph that
can be queried using SPARQL. In the queries, both the visual properties of the
boxes (as listed in Table 1) and their spatial relationships can be used for iden-
tifying the text chunks that contain the required data. The query may include
multiple boxes whose properties can be compared arbitrarily.

We demonstrate the use of SPARQL for this task on two typical scenarios:
extracting multiple records from a single input page and extracting single records
from a large set of pages from different web sites.

4.1 Extraction of Multiple Records

To demonstrate the extraction of multiple repeating records from a single web-
site, we use the cast tables on IMDb (Figure 2). For preprocessing, we defined
taggers (regular expressions) that roughly recognize the names and the episode
strings and assign the tags name and credit to the corresponding text chunks.
We then extract the records using the query shown in Figure 3.

In the query, we first identify the header text chunk (hbox) that contains the
“Series Cast” text. Below this header, we look for triplets of boxes that match
the actor name, character name, and episodes and are arranged on one line after
each other.

We chose this particular table for the demonstration because its HTML code
is very complex and creating a DOM-based scraper for it is a non-trivial task.
On the other hand, the visual presentation is straightforward, which makes the
SPARQL code quite simple.

6 R. Burget

Fig. 2. Top of the source table on
IMDb

SELECT ?name ?character ?episodes WHERE {
?hbox rdf:type segm:TextChunk .
?hbox segm:text ?header .
Actor names
?nbox segm:hasTag r:tag -generic --name .
?nbox segm:text ?name .
Character names after the header
?cbox r:rel -after ?nbox .
?cbox segm:hasTag r:tag -generic --name .
?cbox segm:text ?character .
Episodes after the character
?ebox r:rel -after ?cbox .
?ebox segm:hasTag r:tag -generic --credit .
?ebox segm:text ?episodes .
Names are below the header
FILTER (regex(?header , ’Series␣Cast␣’)

&& flfn:isBelow (?nbox , ?hbox))
}

Fig. 3. SPARQL query to scrape series
cast tables from IMDb

SELECT ?tbox ?pbox ?tfsize ?pfsize ?ty ?py WHERE {
FILTER (?ty < ?py)
{ SELECT ?tbox ?tfsize ?ty ?tw ?th ?ttag WHERE {

?tbox segm:hasTag r:tag -generic --title .
?tbox box:fontSize ?tfsize . ?tbox box:contentLength ?tlen .
?tbox box:bounds ?tb . ?tb box:positionY ?ty . ?tb box:width ?tw . ?tb box:height ?th
FILTER (?ty <= 500 && ?tlen > 10)

} ORDER BY DESC (? tfsize) LIMIT 10 }
{ SELECT ?pbox ?pfsize ?py ?pw ?ph ?ptag WHERE {

?pbox segm:hasTag r:tag -generic --price .
?pbox box:fontSize ?pfsize . ?pbox box:bounds ?pb .
?pb box:positionY ?py . ?pb box:width ?pw . ?pb box:height ?ph
FILTER (?py <= 1200)

} ORDER BY DESC (? pfsize) LIMIT 10 }
} ORDER BY DESC (? tfsize) DESC (? pfsize) DESC(?th) DESC(?ph) DESC(?tw) DESC(?pw) ?ty ?py LIMIT 1

Fig. 4. SPARQL query to extract product title and price from e-commerce product
pages

4.2 Extraction from Diverse Web Sites

In this scenario, the task is to extract single (title, price) pairs from e-commerce
web pages. Again, we have prepared taggers that assign the corresponding tags
to the extracted pieces of text. The corresponding query in Figure 4 is based on
the simple observation that the product title is typically placed at the top of the
page (at most 500 px from the top) and the price is always lower than the title
(we allow up to 1200 px from the top). Both are written in a larger font than the
rest of the content. We look for instances of two different text chunks (?tbox for
product title and ?pbox for price). We use a separate subquery for each of these
boxes, each of which retrieves up to 10 candidate boxes that match the given
condition, ordered by font size, starting with the largest font size.

In the main query, we combine the results of both subqueries, considering
only the combinations where the title box is above the price box (?ty < ?py).
The final order ensures that we favor the boxes with the largest font sizes, the
largest width and height, and the smallest Y-positions. We use the first result
in the resulting list.

Scraping Data from Web Pages using SPARQL Queries 7

5 Implementation and Experimental Results

To test the queries in a practical setting, we have implemented an experimental
application4 that allows to process any input page and execute the given query on
the created RDF model. The implementation is based on our generic FitLayout
framework5, which uses the Playwright library6 and Chromium for rendering
the pages, creates the RDF models, and uses RDF4J7 as the RDF repository.

We tested the Cast table extraction on 100 IMDb tables, from which we
correctly extracted 43624 records. Another 2060 records were omitted because
their visual appearance did not match the SPARQL query (overlapping columns
in the table). This problem can be solved at the cost of making the query more
complex. The product/price extraction was tested on a total of 1898 product
pages from 5 different e-commerce sites that use different visual presentation of
products (and very different HTML code). Both title and price were correctly
extracted in all cases. The extraction results for both scenarios, including anno-
tated screenshots of the pages, are available in a separate git repository8.

The visual presentation-based approach using a full-featured web browser
in the background implies an increased complexity of the solution. Rendering
and processing a single page took from 9 seconds9 for the e-commerce pages
and short Cast tables up to 6 minutes for an extremely long page10. However,
we believe that the time complexity can be reduced by a more precise selection
of the target area of the page, as we have demonstrated for e-commerce sites,
where we strictly limit the analyzed area. The browser-based solutions such as
Playwright or Selenium are already being used for web scraping for a variety of
other reasons, making it easy to integrate the SPARQL approach.

6 Conclusions

In this paper, we have presented an approach to define web scrapers using
SPARQL queries over an RDF model of the rendered page. As we show through
our experimental implementation and results, scrapers defined in this way are
general enough to be applied in different scenarios including a set of different
web sources with similar visual presentation. This also implies the robustness of
the scrapers with respect to changes and deviations in the source documents. In
addition, no knowledge of the HTML code is required to create the scrapers. We
consider these features to be an advantage over traditional scrapers, which are
tailored to a specific page code. The implemented solution is based on the tech-
nology already used in this area, which allows its integration into the existing
infrastructure.
4 https://github.com/FitLayout/sparql-web-scraping
5 https://github.com/FitLayout/FitLayout
6 https://playwright.dev/
7 https://rdf4j.org/
8 https://github.com/FitLayout/sparql-web-scraping-results
9 On Intel(R) Core(TM) i5-9500 CPU 3.00GHz, 16 GB RAM

10 The rendered page height was 183,294 pixels.

8 R. Burget

Acknowledgements The work is supported by the Brno University of Technol-
ogy project “Application of AI methods to cyber security and control systems”,
no. FIT-S-20-6293.

References
1. Ashish, N., Knoblock, C.A.: Wrapper generation for semi-

structured internet sources. SIGMOD Rec. 26(4), 8–15 (Dec 1997).
https://doi.org/10.1145/271074.271078

2. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with
Lixto. In: VLDB ’01. pp. 119–128. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (2001)

3. Bizer, C., Meusel, R., Primpeli, A., Brinkmann, A.: Web data com-
mons - microdata, RDFa, JSON-LD, and microformat data sets - ex-
traction results from the october 2022 common crawl corpus (2022),
http://webdatacommons.org/structureddata/2022-12/stats/stats.html, accessed
on 2023-01-29

4. Dilmegani, C.: Best web scraping programming languages in 2023 with stats (2023),
https://research.aimultiple.com/web-scraping-programming-languages/, accessed
on 2023-02-05

5. Fernández-Villamor, J.I., Blasco-García, J., Iglesias, C.A., Garijo, M.: A seman-
tic scraping model for web resources - applying linked data to web page screen
scraping. In: Proceedings of ICAART 2011. Roma, Italia (2011)

6. Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.: OXPath: A language
for scalable data extraction, automation, and crawling on the deep web. The VLDB
Journal 22(1), 47–72 (Feb 2013). https://doi.org/10.1007/s00778-012-0286-6

7. Gao, P., Han, H.: Robust web data extraction based on weighted path-layer
similarity. Journal of Computer Information Systems 62(3), 536–546 (2022).
https://doi.org/10.1080/08874417.2020.1861571

8. Gogar, T., Hubacek, O., Sedivy, J.: Deep Neural Networks for Web Page Informa-
tion Extraction. In: 12th IFIP International Conference on Artificial Intelligence
Applications and Innovations (AIAI). vol. AICT-475, pp. 154–163. Thessaloniki,
Greece (Sep 2016). https://doi.org/10.1007/978-3-319-44944-9_14

9. Hotti, A., Risuleo, R.S., Magureanu, S., Moradi, A., Lagergren, J.: Graph neu-
ral networks for nomination and representation learning of web elements (2021).
https://doi.org/10.48550/ARXIV.2111.02168

10. Kushmerick, N.: Wrapper verification. World Wide Web 3(2), 79–94 (2000).
https://doi.org/10.1023/A:1019229612909

11. Lin, B.Y., Sheng, Y., Vo, N., Tata, S.: FreeDOM: A transferable neu-
ral architecture for structured information extraction on web docu-
ments. In: KDD ’20. p. 1092–1102. ACM, New York, NY, USA (2020).
https://doi.org/10.1145/3394486.3403153

12. Milička, M., Burget, R.: Information extraction from web sources based on multi-
aspect content analysis. In: Semantic Web Evaluation Challenges, SemWebEval
2015 at ESWC 2015. pp. 81–92. No. 548 in Communications in Computer and
Information Science, Springer International Publishing, Portorož, SI (2015)

13. Potvin, B., Villemaire, R.: Robust web data extraction based on unsupervised
visual validation. In: Intelligent Information and Database Systems. pp. 77–89.
Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-
030-14799-0_7

