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Preface

This volume contains the papers presented at the 25th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP2022) thatwas held on June 3, 2022, in conjunc-
tion with the 36th IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2022). The proceedings of previous workshops are also available from Springer
as LNCS volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537, 2862, 3277, 3834,
4376, 4942, 5798, 6253, 7698, 8429, 8828, 10353, 10773, 11332, 12326, and 12985.

This year 19 papers were submitted to the workshop, of which we accepted 12. All
submitted papers went through a complete review process, with the full version being
read and evaluated by an average of 3.4 reviewers. Additionally, one invited keynote
paper was included in the workshop. We would like to especially thank to our Program
Committee members and additional reviewers for their willingness to participate in this
effort and their excellent, detailed, and thoughtful reviews.

For the third time in a row the JSSPP workshop was held fully online due to the
worldwide COVID-19 pandemic. Despite the obvious logistic problems, all talks were
presented live, allowing for the participants to interact with the authors of the papers.
We are very thankful to the presenters of accepted papers for their participation in the
live workshop session. Recordings from all talks at the 2022 edition can be found at the
JSSPP’s YouTube channel: https://bit.ly/3mXyT8F.

This year, the workshop was organized into three sessions with 11 technical papers
and one paper discussing open scheduling problem as well as one keynote talk.

The keynote was delivered by Lavanya Ramakrishnan who is a Senior Scientist
and Division Deputy in the Scientific Data Division at Lawrence Berkeley National
Laboratory. Her research interests are in building software tools for computational and
data-intensive science with a focus on workflow, resource, and data management. In her
keynote, Lavanya Ramakrishnan presented her take on the future of workflow schedul-
ing. Workflows are important in scientific ecosystems that capture the relation between
different steps of processing and data.Workflow tools have focused on providing automa-
tion and repeatability but mostly consider HPC resources as blackboxes. In her talk,
Lavanya outlined the evolution of scientific workflow needs over the last 20 years and
its impact on workflow scheduling on HPC systems. She outlined real science use cases
with challenging scheduling problems and presented analyses of workloads on HPC sys-
tems over four different large-scale systems. She also discussed the implications of data,
resources, networks, containers, and interactive notebooks on scheduling. The talk was
concluded by discussing the future challenges of scientific workflow scheduling that
supports autonomous experimentation and observation in concert with a self-driving
infrastructure.

Papers accepted for this year’s JSSPP covered several interesting problems within
the resource management and scheduling domains and included one open scheduling
problem (OSP). This year’s OSP focused on the experience when using Kubernetes con-
tainer orchestrator in an academic environment. Spišaková et al. demonstrated challeng-
ing problems when providing system resources “for free” to the scientific community,

https://bit.ly/3mXyT8F
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including poor resource reclaiming, overestimated resource requirements, and lack of
fairsharing mechanism in current Kubernetes distributions.

The first full technical paper was presented by Tatsuyoshi Ohmura et al. and pro-
posed to virtually reproduce job scheduling and power management choices of compute
systems to determine optimal system parameters and policies. They applied this app-
roach to the supercomputer AOBA, producing scheduling and power saving parameters
that reduced job waiting time by 70% and energy consumption by 1.2%.

Kalogirou et al. proposed a VM allocation and node management system that
increases utilization in active compute nodes through VM consolidation driven by load
estimations based on runtime information and workload interaction models. Their sim-
ulations show that their policies closely match or overperform two state-of-art policies
that combine VM consolidation with VFS.

The third paper by Klusáček et al. presented the real-life experience of deploying
a walltime predictor using the soft walltime feature in PBS Professional. Their results
show a significant increase in walltime accuracy over user-provided estimations and
include a discussion on the effects on the system performance. This paper also included
the publication of collected workload traces to allow other researchers to further study
and extend this work.

Marta Jaros et al. described the use of a genetic algorithms and simulation to define
execution schedules that reduce makespan and computation cost of complex ultrasound
workflows based on moldable parallel tasks. The technique was validated by submitting
the executing schedules to a real PBS job scheduler with a resulting maximum mean
error of interpolation within 10%.

In the fifth paper, Nileshwar et al. proposed a set of deadline-based job-scheduling
algorithms that consider power constraints. Their experiments show that their best app-
roach combines greedy acceptance with a biased load allocation strategy, maximizing
load and increasing energy efficiency.

Vanns et al. shared experiences of developing and running a resource manager that
supports batch workloads for render farms to produce high-quality imagery for major
motion pictures and television. They shared some recent changes to their production
scheduler and discussed how their tooling for trace-based simulation allows them to
gain confidence in production upgrades.

The last section of the workshop started with a paper about encoding schemes to
represent the state of a cluster for reinforcement-learning driven scheduling. Li et al.
argue that by using sparse representation, they can minimize the state vector size and
accelerate training on the data.

In the eighth paper, Halder Lina et al. propose three scheduling algorithms for elastic
message passing applications togetherwith sixmethods to prioritize pending elastic jobs.
The authors evaluated them through simulation and concluded that the suitability of the
algorithms depends on the workload characteristics as well as the range of elasticity in
the workload.

Venkataswamy et al. proposed RARE, a deep reinforcement learning job scheduler
that maximizes the use of renewal energies whose power generation is intermittent. The
experiment data indicate that RARE performs better than existing systems and it can
learn from and improve upon existing heuristic policies using offline learning.
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Mikhail Titov et al. presented a performance evaluation of the implementation of the
ProcessManagement Interface for Exascale integrated into a pilot-based runtime system
called RADICAL-Pilot for the HPC platform Summit. Their experimental results show
that it can run 65,500 tasks on 2,048 nodes while keeping resource utilization at 52%.
At smaller concurrency, the system can achieve even higher utilization, reaching 85%
at with 8,200 tasks over 256 nodes.

Last, but not least, Casanova et al. presented a study on the feasibility of simulation-
driven portfolio scheduling for distributed cyberinfrastructure. They argue that online
simulation can determine which scheduling algorithm will perform better for a given
system state but inaccuracies in the simulations can greatly affect the results. Their
main finding is that, even with large simulation inaccuracies, portfolio scheduling can
outperform the best one-algorithm approach.

We hope you can join us at the next JSSPP workshop, this time in St. Petersburg,
Florida, USA, on May 19, 2023. Enjoy your reading!

August 2022 Dalibor Klusáček
Corbalán Julita

Gonzalo P. Rodrigo
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Jiří Filipovič Masaryk University, Czech Republic
Liana Fong IBM T. J. Watson Research Center, USA
Bogdan Ghit Databricks, Netherlands
Eitan Frachtenberg Facebook, USA
Alfredo Goldman University of Sao Paulo, Brazil
Douglas Jacobsen NERSC, USA
Cristian Klein Umeå University/Elastisys, Sweden
Zhiling Lan Illinois Institute of Technology, USA
Bill Nitzberg Altair, USA
Christine Morin Inria, France
P.-O. Östberg Umeå University, Sweden
Larry Rudolph Two Sigma, USA
Lavanya Ramakrishnan Lawrence Berkeley National Laboratory, USA
Uwe Schwiegelshohn TU Dortmund, Germany
Leonel Sousa Universidade de Lisboa, Portugal
Ramin Yahyapour University of Göttingen, Germany

Additional Reviewers

Matthew Dearing Illinois Institute of Technology, USA
Devarshi Ghoshal Lawrence Berkeley National Laboratory, USA
Boyang Li Illinois Institute of Technology, USA
Diogo Marques Tecnico Lisboa, Portugal
Ricardo Nobre INESC-ID, Portugal



x Organization

Abel Souza Umeå University, Sweden
Xiongxiao Xu Illinois Institute of Technology, USA



Insights and Requirements for Future Workflow
Scheduling (Keynote)

Lavanya Ramakrisshnan

Lawrence Berkeley National Lab
LRamakrishnan@lbl.gov

Abstract.Workflows are an important construct in scientific ecosystems
that capture the relation between different steps of processing and data.
Workflow tools have focused on providing automation and repeatability
but mostly consider HPC resources as black boxes. In the keynote talk, I
outlined the evolution of scientific workflow needs over the last 20 years
and its impact on workflow scheduling on HPC systems. My talk cov-
ered a) real science use cases with challenging scheduling problems, b)
captured our analyses of workloads on HPC systems over four different
large-scale systems, c) discussed the implications of data, resources, net-
works, containers, interactive notebooks on scheduling. I concluded the
talk by discussing the future challenges of scientific workflow schedul-
ing that supports autonomous experimentation and observation in concert
with a self-driving infrastructure. This paper provides a few key details
and pointers to supplement the keynote.

Keywords: Workflow scheduling · User research · Workfload analyses

Research Question and Background

Scientific advances increasingly depend on the ability of researchers to harness the power
of high-performance and other computing infrastructure to operate on the large scientific
data, produced by experiments, observations, and simulations. However, HPC systems
have been designed for large scale tightly couple simulation jobs. The complexity of
the data pipelines requires us to revisit the key research question of How do we enable
researchers to effectively and efficiently manage their computation and data on HPC
and distributed resources?.

Workflows are an important construct in scientific ecosystems that capture the rela-
tion between different steps of processing and data. Workflow scheduling has largely
focused on distributed resource management (i.e., managing jobs across multiple sites)
and job management (i.e., batch queue scheduling at a single site). Experimental data
workflows require us to coordinate across organizations, support real-time data move-
ment and computing, and manage moving data between storage systems. Additionally,
the real-time and interactive nature of theseworkflows requires us to balance productivity
and usability of scientific users with performance and utilization on the systems. Thus,
human factors is a critical factor in addressing next-generation workflow challenges.

https://orcid.org/0000-0003-1761-4132
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A Dual Approach

We need to take a dual approach to addressing the challenges of data in scientific work-
flows that considers both the quantitative andqualitative aspects of the problem.Ourwork
has demonstrated that by using a mix of user research techniques [6, 7, 8] combined with
workload analyses that informs the development of methods and tools results is effective
to address the needs of scientific pipelines. Our work focuses on applying user experi-
ence research techniques to understand and enumerate user behavior, motivations, and
their interactions with scientific data, workflows, and communities to inform the design
of scientific software and infrastructure. Our work has helped us understand and address
important user challenges - providing learnability as hardware and software changes,
compatibility of new technologies with existing complex software stacks especially in
large collaborations, and providing transparency on demand when building abstractions.
We have combined these user insights with our quantitative workload analyses [2, 10]
providing us a deep understanding of the needs of scientific workflows on HPC systems.
Our analyses has informed our work in workflow scheduling [9], workflowmanagement
[3, 5], resource management [1], and data management [4].

Looking Forward

In the future, autonomous discovery and science will be commonplace in scientific
work bringing together experiment/observation, theory, computation, and data together
in ways that were not possible before. Our infrastructure and tools will need to sup-
port the different levels of automation and intelligence where systems can go from
plain automation (where we have technology to assist the scientist), to self-driving, to
autonomous as the system performs more tasks with lesser and lesser intervention from
humans. These workflows need real-time access to resources at scale that need to be
coordinated with the experiment/observation and the network. We have opportunities
to look closely at workflow scheduling to address the challenges of these autonomous
workflows. Coupled with the needs of the science, we have technology innovations with
edge computing that will play a key role in the infrastructure fabric of the future. We will
need to consider where data services (e.g., wrangling, search, storage and retrieval) tie
in with the workflow and HPC systems. We will need to consider the synergy between
data transfer and job scheduling on a programmable infrastructure. Autonomous science
on a programmable distributed and high performance infrastructure provides a rich set
of research challenges for the community.

Acknowledgements. This work has been supported by the U.S. Department of Energy,
Office of Science and Office of Advanced Scientific Computing Research (ASCR) under
Contract No. DE-AC02-05CH11231. This work would not be possible without the
numerous collaborators, staff, postdocs, and students at Berkeley Lab and beyond.
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On the Feasibility of Simulation-Driven
Portfolio Scheduling

for Cyberinfrastructure Runtime Systems

Henri Casanova1(B) , Yick Ching Wong1 , Löıc Pottier2 ,
and Rafael Ferreira da Silva3

1 Information and Computer Sciences Department, University of Hawaii,
Honolulu, HI, USA

{henric,wongy}@hawaii.edu
2 Information Sciences Institute, University of Southern California,

Marina Del Rey, CA, USA
lpottier@isi.edu

3 National Center for Computational Sciences, Oak Ridge National Laboratory,
Oak Ridge, TN, USA
silvarf@ornl.gov

Abstract. Runtime systems that automate the execution of applica-
tions on distributed cyberinfrastructures need to make scheduling deci-
sions. Researchers have proposed many scheduling algorithms, but most
of them are designed based on analytical models and assumptions that
may not hold in practice. The literature is thus rife with algorithms that
have been evaluated only within the scope of their underlying assump-
tions but whose practical effectiveness is unclear. It is thus difficult for
developers to decide which algorithm to implement in their runtime sys-
tems.

To obviate the above difficulty, we propose an approach by which the
runtime system executes, throughout application execution, simulations
of this very execution. Each simulation is for a different algorithm in a
scheduling algorithm portfolio, and the best algorithm is selected based
on simulation results. The main objective of this work is to evaluate
the feasibility and potential merit of this portfolio scheduling approach,
even in the presence of simulation inaccuracy, when compared to the tra-
ditional one-algorithm approach. We perform this evaluation via a case
study in the context of scientific workflows. Our main finding is that port-
folio scheduling can outperform the best one-algorithm approach even in
the presence of relatively large simulation inaccuracies.

Keywords: Portfolio scheduling · On-line simulation · Workflows
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1 Introduction

Data processing and analysis applications that execute on parallel and dis-
tributed computing environments, or CyberInfrastructures (CI), arise in most
fields of science and engineering. A key endeavor has been to develop CI runtime
systems that make it straightforward for users to implement, deploy, and execute
their applications. To this end, all these systems automate application execution,
including the resource management and task scheduling decision making process.
Specifically, decisions must be made along, at least, the following axes:

– Selecting hardware and/or virtualized resources;
– Picking application configuration options (e.g., pick numbers of cores that

should be used by multi-threaded tasks);
– Scheduling application activities in time (when?) and space (which resource?).

Decisions along these axes must be made so as to meet user-level objectives and
constraints, which can encompass notions of performance, monetary cost, energy
consumption, reliability, etc. For simplicity, we call all above decisions scheduling
decisions, which must be made using scheduling algorithms. Scheduling problems
are generally NP-complete, and thus most proposed algorithms employ non-
guaranteed heuristics.

The design of scheduling algorithms has received an enormous amount of effort.
For instance, solely in the context of the popular “scientific workflow” application
model [4], hundreds of research publications propose scheduling algorithms (see
the many surveys on this topic [1,3,16,20,22,25,27]). Most of these proposed algo-
rithms reuse ideas and principles from the age-old and extensive DAG (Directed
Acyclic Graph) scheduling literature [28]. Yet, when examining existing workflow
runtime systems, there is a clear disconnect between research and practice. Given
the complexity of CI platforms and applications, research results are typically
obtained based on simplifying analytical models and assumptions, so that schedul-
ing problems are rendered more formalizable and tractable. For instance, ignoring
network contention greatly simplifies application scheduling problems [13], but the
computed schedules will perform poorly in practice when network contention does
occur. Furthermore, published evaluation results for proposed algorithms cannot
cover the whole range of situations a runtime system could encounter in practice.
The literature is thus rife with scheduling algorithms that have been evaluated
within the scope of their underlying assumptions, but whose potential effective-
ness in practice is unquantified. There is thus little incentive for developers of CI
runtime systems to pay close attention to scheduling research. Based on our own
observation of production systems, it seems that developers often opt for simple
scheduling strategies that are straightforward to implement but that may not lead
to the most desirable application executions.

A way to resolve the above disconnect between scheduling research and prac-
tice is simply to obviate the challenge of picking one particular scheduling algo-
rithm to implement as part of a CI runtime system. To this end, one can use
online simulations for picking which algorithm to use at runtime. In other words,
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one executes fast simulations of the application execution throughout that very
execution so as to “try out” many potential scheduling algorithms and auto-
matically select the most desirable one. Based on simulation results, some of
these algorithms may rarely (or even never) be used at runtime because sim-
ulations show them to be non-competitive. CI runtime system developers can
incrementally add to their set of implemented algorithms, without ever having to
decide at compile time which algorithm should be used. This approach has been
referred to as “portfolio scheduling” [12] in the job scheduling literature, for the
purpose of scheduling user jobs with known runtime estimates on a space-shared
parallel computing platform. In this work, we instead consider a CI runtime sys-
tem that automates the execution of an application workload that performs I/O,
communication, and computation operations. In this context, many scheduling
algorithms have been designed based on models and assumptions that are known
to be not realistic, which are necessary for designing the algorithms, but which
makes their effectiveness unclear in practice. The simulation can implement more
realistic models and assumptions, and thus has the potential to give a more
accurate measure of how these scheduling algorithms would actually perform in
practice. But, conversely, no simulation can be perfectly accurate.

Our objective in this work is to assess the feasibility and potential merit
of simulation-driven portfolio scheduling in CI runtime systems. Although the
approach is general, we perform our experimental evaluations in the specific
context of scientific workflows because they have become widespread as well as
the CI runtime systems available to execute them. More specifically, this work
makes the following contributions:

– We propose to use simulation-driven portfolio scheduling as part of CI runtime
systems that automate the execution of application workloads;

– We evaluate the feasibility and potential merit of this approach via a case
study to answer three main research questions: (i) What is the potential
improvement over the traditional one-algorithm approach? (ii) How much of
the upcoming application execution should be simulated? (iii) What level of
simulation accuracy is needed?

– Our main finding is that, at least in the context of our case study, the portfolio
scheduling approach outperforms the best one-algorithm approach even in the
presence of relatively low simulation accuracy.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 describes our approach, which we evaluate via the case study described
in Sect. 4. Section 5 discusses experimental results. Finally, Sect. 6 summarizes
our contributions and highlights directions for future work.

2 Related Work

The idea of adaptive scheduling at runtime has been explored in many previous
works, typically to determine good values for parameters that define the behavior
of the scheduling algorithm. While a number of techniques can be used to deter-
mine these values, some authors have used online simulation [7,14,15,29,30].
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Some of these works target discrete parameters that drastically change the
behavior of the scheduling algorithm (e.g., a parameter that defines the job
ordering policy), and one could easy consider that these approaches select an
algorithm from a set of possible algorithms. Doing so has generally been called
“portfolio scheduling” and has been investigated in several works [12,31,32]. An
important question is that of the method for selecting a particular algorithm
within the portfolio. While many options are likely possible, such as machine
learning [31], an attractive option used in previous works, and in this work, is
on-line simulation [12,32].

The above works that use on-line simulation for scheduling algorithm adapta-
tion and/or portfolio scheduling have shown that the approach can be effective.
However, these works all target some version of the “job scheduling” problem.
The goal is to allocate compute resources to jobs that request them for a pre-
determined time. As a result, the simulation boils down to merely computing
the deterministic schedule (i.e., a Gantt chart) generated by each algorithm.
The only source of inaccuracy in this computation is the job runtime estimates,
which, notoriously, are overestimated. Some of these works examine the impact
of inaccurate runtime estimates (e.g., [12,15]). Importantly, this inaccuracy does
not correspond to the typical notion of simulation inaccuracy, i.e., that due to
the simulation only approximating the real system. Instead, this is inaccuracy
of the input to the simulation, which is no different than the inaccuracy of the
input to the real-world system. In contexts more general than the job scheduling
problem, sources of simulation inaccuracies arise because the simulation cannot
perfectly capture the behavior of a complex system in which the simulated appli-
cation workload uses and contends for network, I/O, and compute resources.
Furthermore, information on the current state of the execution, on the plat-
form configuration, and on the application’s behavior, which are all needed to
instantiate a simulation, is not perfect. In this work we investigate and quantify
the effect of simulation inaccuracy by assuming that the performance metrics
estimated via simulation are inherently noisy. This investigation is particularly
relevant in this work as our case-study is in the context of workflow applications
that perform communication, I/O, and computation activities in a distributed
computing context. As a result, the sources of simulation inaccuracies are mul-
tiple and the magnitude of the error can be large. To the best of our knowledge,
this is the first work that evaluates the potential merit of portfolio scheduling in
this more general context, both in terms of the application workload and of the
platform on which this workflow is executed.

A challenge for portfolio scheduling based on online simulation is that of the
overhead of simulation. Several approaches to mitigate this overhead are pos-
sible, such as reducing the frequency at which online simulations are executed
and pruning the algorithm portfolio [12]. In this work, we also experiment with
reducing the simulation time horizon. As already mentioned, most of the afore-
mentioned works target job scheduling, for which the simulation overhead is
essentially that of executing the scheduling algorithm. This is because the sim-
ulation merely consists in computing job start and end times in a Gantt chart.
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In our more general setting, the simulation must employ various models (e.g., to
compute communication data transfer rates based on network topology, ongoing
network flows, and network protocol effects), which increase simulation overhead.
We discuss the simulation overhead challenge in more details in Sect. 5.5.

Many simulation frameworks have been developed that target the simulation
of parallel and distributed applications and platforms [5,6,8–10,17,18,21,23,24,
33], and they each achieve different compromises between accuracy and speed.
At one extreme are discrete-event models that capture “microscopic” behav-
iors of hardware/software systems (e.g., packet-level network simulation, block-
level disk simulation, cycle-accurate CPU simulation), which favor accuracy over
speed. At the other extreme are analytical models that capture “macroscopic”
behaviors via mathematical models. While these models lead to fast simulation,
they must be developed carefully if high levels of accuracy are to be achieved [34].
This work is agnostic to the simulation framework used to implement the simu-
lation, but a more accurate and more scalable framework is obviously preferable.
For the case study in Sect. 4, we implement a simulator using the SimGrid [9]
and WRENCH [10] frameworks. SimGrid provides accurate and scalable simu-
lation models and abstractions for simulating distributed applications, systems,
and platforms. To date, it has been used to obtain simulation results for 570+
research publications. One drawback of SimGrid is that its simulation abstrac-
tions are low-level, meaning that implementing simulators of complex systems
can be labor-intensive [19]. WRENCH builds on SimGrid to provide high-level
simulation abstractions that make it possible to implement simulators of complex
CI scenarios in only a few hundred lines of code [10].

3 Problem Statement, Approach, Research Questions

Consider a CI platform with hardware resources (compute, storage, network)
accessible via various software services for starting computations, storing data,
and moving data. Some application workload of interest is to be executed on
this platform. A CI runtime system is used to automate this execution, and as
part of this automation the system must make decisions regarding the allocation
of application activities to the hardware resources in time and space. These
scheduling decisions are made using some algorithm, with the goal of optimizing
some metric such as overall execution time.

In the above context, we propose to use simulation-driven portfolio schedul-
ing. The main caveat of scheduling algorithms in the literature is that they are
developed with simplifying models and assumptions so as to make the scheduling
problem algorithmically more tractable. By contrast, simulation does not need
to make simplifying assumptions. For instance, it can easily capture stochastic
platform and application behaviors, complex network sharing behaviors, or com-
plex overlap behaviors between computation, I/O, and network communication
activities. Although accounting for such behaviors makes the scheduling problem
algorithmically more difficult, simulations merely output relevant application-
level metrics (e.g., execution time, cost, energy consumption, reliability) for all
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candidate scheduling algorithms in a portfolio, and one can simply pick the most
desirable one. All algorithms in the portfolio must be implemented in the runtime
system. At the onset of application execution, a description of the application
and the available hardware resources is constructed based on (likely imperfect)
a-priori knowledge, so as to instantiate a simulator of the upcoming application
execution. Throughout execution, scheduling decisions are made using one of the
implemented algorithms, selected based on simulation results.

Realizing the above approach in practice entails addressing many research
and engineering challenges that are outside the scope of this work. Our objective
here is to determine whether this approach has potential merit in the first place.
To this end, we focus on the following research questions:

How Much of an Improvement can the Online Simulation Approach
Afford? We wish to compare our proposed approach to the traditional one-
algorithm approach in which the runtime system uses a single scheduling algo-
rithm throughout application execution. Assuming that a significant improve-
ment is achieved, intriguing questions arise regarding the usefulness of individual
algorithms (i.e., how many algorithms are never used? how many different algo-
rithms are used throughout application execution?).

How Much of the Upcoming Application Execution Should be Sim-
ulated? In spite of advances in scalable simulation techniques for simulating
distributed applications and platforms, online simulations do not take zero time.
One easy way to reduce simulation overhead is to bound the simulated time
horizon and not simulate the upcoming application execution until completion.
We wish to quantify the impact of making simulations “short-sighted” on the
effectiveness of our proposed approach.

What Level of Simulation Accuracy is needed? Simulations are never
100% accurate, because of inaccuracies inherent to the simulation models or
because model parameters are not instantiated in a way that perfectly matches
real-world settings. We wish to determine what level of simulation accuracy is
needed for our proposed approach to outperform the traditional one-algorithm
approach.

We answer these questions via the case study described in the next section.

4 Case Study

We consider the execution of scientific workflow applications on a multi-cluster
CI deployment, where the goal is to minimize overall execution time, or
makespan. Scientific workflows have been used by computational scientists to
support some of the most significant discoveries of the past several decades [4],
and are executed daily to serve a wealth of scientific domains. Many workflows
have high computational demands and, as such, are executed in production on
HPC clusters. Setting up, orchestrating, monitoring, and optimizing workflow
executions on these platforms is challenging, and the way to address this chal-
lenge is to rely on runtime systems, or Workflow Management Systems (WMSs),
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that can automate workflow execution [26]. The past decade has witnessed a pro-
liferation of WMSs [35], but there is no consensus on which scheduling algorithms
should be implemented in these systems, which is why we picked this context
for this case study.

4.1 Platform Configurations

We consider multi-cluster platforms. Each cluster hosts homogeneous 8-core com-
pute nodes connected via a 100 GbE interconnect, as well as network-attached
storage with I/O read/write bandwidths of 100 MBps. Core speed is measured
in Gflop/sec, but our experiments are agnostic to the particular units since, as
described in Sect. 4.2, workflow task compute times are given in seconds on a
reference 100 Gflops/s core. That is, compute speeds are only used to scale task
compute times based on the reference compute time. Each cluster is connected to
the Internet on a network path with some bottleneck bandwidth. The network-
attached storage is used to cache application data. That is, whenever a compute
node in a cluster needs to write application data, it writes it to the cluster’s
network-attached storage. Whenever a compute node in a cluster needs to read
application data, it does so from the network-attached storage if possible. Oth-
erwise, the data is read from a remote location (the user’s machine, where all
input data is located initially, or another cluster’s network-attached storage) and
cached locally. We assume that storage capacity at each cluster is large enough
to hold all application data.

We conduct experiments with the 9 synthetic 1-, 2-, and 3-cluster platform
configurations listed in Table 1. These configurations do not correspond to par-
ticular real-world platforms and many other configurations could be considered.
Our goal is to span a spectrum of diverse but reasonable platform configurations,
over which different scheduling algorithms would likely make different decisions
(e.g., due to the different ratios of compute speed to Internet bandwidth for the
clusters in configurations P4 to P9).

4.2 Workflow Configurations

We consider 8 real-world scientific workflow instances, as listed in Table 2. These
instances are provided by the WfCommons project1 and were derived based on
logs from actual executions [11]. Each instance defines a set of tasks, each with
particular amounts of computation to perform, and input and output files of
particular sizes. Some output files of a task are input files to other tasks, thus
creating data dependencies between tasks. We selected instances whose work
(i.e., execution time on a single 100Gflop/sec core) are in between 5 and 10 h.
The metrics shown in the table show that the workflow instances correspond to a
diverse set of configurations, with different structures and different computation-
data ratios. As a result, we expect that different scheduling algorithms will fare
differently across these workflow instances.

1 https://wfcommons.org/instances.

https://wfcommons.org/instances
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Table 1. Multi-cluster platform configurations used for experiments. Each cluster is
defined by a number of nodes (“nodes”), a core speed in Gflop/sec (“speed”), and an
Internet bandwidth in MBps (“bdwidth”).

Config Cluster #1 Cluster #2 Cluster #3

Nodes Speed Bdwidth Nodes Speed Bdwidth Nodes Speed Bdwidth

P1 96 100 100 n/a n/a

P2 48 50 100 48 150 100 n/a

P3 48 50 100 48 400 10 n/a

P4 32 100 100 32 200 200 32 300 300

P5 32 100 100 32 200 300 32 300 200

P6 32 100 200 32 200 100 32 300 300

P7 32 100 200 32 200 300 32 300 100

P8 32 100 300 32 200 200 32 300 100

P9 32 100 300 32 200 100 32 300 200

Table 2. Workflow configurations used in our experiments, indicating for each the
application name (“name”), the application domain (“domain”), the number of tasks
(“tasks”), the sequential compute time in hours on a single 100Gflop/sec core (“work”),
the sum of all data file sizes (“footprint”), the number of levels (“depth”), and the size
of the largest level (“max width”).

Config Name Domain Tasks Work Footprint Depth Max width

W1 Montage Astronomy 4,846 8.7 12.15 GB 8 3,411

W2 Epigenomics Bioinformatics 1,095 5.6 8.25 GB 9 271

W3 Bwa Bioinformatics 1004 3.7 56.89 MB 3 1,000

W4 Cycles Agroecosystem 874 5.2 6.17 GB 4 432

W5 1000Genome Bioinformatics 328 6.0 25.96 GB 3 208

W6 Blast Bioinformatics 303 8.7 0.47 MB 3 300

W7 Soykb Bioinformatics 156 6.7 2.82 GB 11 100

W8 Srasearch Bioinformatics 22 5.2 16.50 GB 3 11

The workflow instances available on the WfCommons collection do not
include information about the execution of workflow tasks on multiple cores,
but only give a single execution time t, which is a sequential execution time
on a single core. Due to this lack of information, we assume an Amdahl’s Law
parallel speedup behavior [2]: a task that executes in time t on one core executes
in time αt/n+(1−α)t on n of these cores. For each task, we sample α uniformly
between 0.8 and 1.0. This may not correspond to the actual speedup behaviors of
workflow tasks in a real-world workflow, but in the scope of this case-study has
no impact on simulation inaccuracy (since we use as ground truth the execution
of the workflow assuming these very same task speedup behaviors).
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4.3 Algorithms

We assume that the WMS used to execute workflows employs a typical list-
scheduling approach for deciding, at runtime, which ready task should be exe-
cuted on which compute resources, while enforcing that not two tasks run simul-
taneously on the same core. The scheduling algorithm proceeds in three steps
as follows. While there is at least one ready task and one idle core on which no
task has been scheduled:

1. pick a ready task using some criterion C1;
2. pick a cluster with at least one idle core using some criterion C2;
3. pick a number of cores for the task execution using some criterion C3;
4. schedule the picked task on the picked cluster using the picked number of

cores.

We consider the following options for each of the above criteria:

– Criterion C1:
• 0: Pick the task with the largest bottom-level (i.e., prioritize tasks on the

critical path);
• 1: Pick the task with the largest number of children tasks;
• 2: Pick the task with the largest amount of input and output data;
• 3: Pick the task with the largest amount of computation to perform.

– Criterion C2:
• 0: Pick the cluster that stores the largest amount of task input data in

its network-attached storage;
• 1: Pick the cluster with the most idle cores;
• 2: Pick the cluster with the fastest cores.

– Criterion C3:
• 0: Pick as many cores as possible while ensuring that the task’s parallel

efficiency is above 90%;
• 1: Pick as many cores as possible while ensuring that the task’s parallel

efficiency is above 50%;
• 2: Pick as many cores as possible.

We denote each algorithm as Ax, where x = 9 × C1 + 3 × C2 + C3, which gives
us 36 different algorithms (A0 to A35). All above scheduling criteria have been
proposed in the literature. Although many other options could be considered,
these 36 algorithms provide us with a sufficiently large and diverse sample set
to conduct our investigation.

4.4 Experimental Methodology

An implementation of our online simulation approach in this case study entails
(i) an implementation of a WMS that executes workflows on multi-cluster plat-
forms; and (ii) an implementation of a simulator of these executions that can be
invoked at runtime by the WMS. We face two main technical difficulties. First,
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to answer the third research question in Sect. 3, we need to experiment with
different levels of simulation accuracy to measure the resulting impact on the
effectiveness of our proposed approach, including quantifying the best-case effec-
tiveness when online simulations are 100% accurate. This is not possible with
a real-world implementation since a given simulator is necessarily inaccurate.
Second, we wish to evaluate our approach on a large range of workflows, plat-
forms, and algorithms. For instance, in this particular case study, we evaluate a
total of 9× 8× 36 = 2, 592 experimental scenarios (9 platform configurations, 8
workflows, 36 algorithms). Even if we had access to a large number of different
platform configurations, it would be difficult to obtain all experimental results,
not only in terms of time and energy consumption, but also in terms of ensuring
that these results are repeatable. The need to obtain many diverse and repeat-
able experimental results is, incidentally, the main reason why researchers in the
field resort to simulation.

Given the above, we perform our case study entirely in simulation. We imple-
ment a WMS simulator, with WRENCH2 (v1.10) and SimGrid3 (v3.29), that
simulates a WMS that executes workflows on multi-cluster platforms using any
one of our 36 algorithms. This simulator provides us with an analog of a pro-
duction WMS implementation, which we enhance with our online simulation
approach. That is, during its simulated execution, our simulator runs as many
(online) simulations of its future execution as there are scheduling algorithms
(36 in this case study). This is done simply by having the simulator call the
fork system call to create a child process that is a clone of the simulator, for
each algorithm. Each child then continues the simulated workflow execution and
reports the simulated workflow completion date to its parent process. In this
fashion, the simulator can explore all its possible futures for all algorithms. The
WMS then picks the algorithm that achieved the fastest workflow execution in
those simulations. The simulator outputs the workflow makespan, in seconds,
based on the following input:

– A workflow instance – One of the 8 instances in Sect. 4.2, available as a
JSON file using the WfFormat format4. We use w to denote the total amount
of sequential work, i.e., the sum of the sequential task execution times on a
reference 100 Gflops/sec core (the 4th column in Table 2).

– A platform configuration – One of the 9 configurations in Sect. 4.1.
– A fraction of total work, α – This parameter defines how often our online

simulation approach is applied throughout workflow execution: it is applied at
the onset of the workflow execution and subsequently each time an additional
fraction α of the total work w has been completed. For instance, w = 10, 000
Gflop and α = 0.2, our approach will be invoked 5 times throughout workflow
execution, once at the beginning of the execution, and once each time an
additional 2,000 Gflop of sequential work has been performed. Note that the
amount of work performed so far at any given time is known since the amount

2 https://wrench-project.org.
3 https://simgrid.org.
4 https://wfcommons.org/format.

https://wrench-project.org
https://simgrid.org
https://wfcommons.org/format
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of work of each task in the workflow (i.e., its execution time in seconds on a
single core) is also known.

– A fraction of total work, β – Each online simulation proceeds until exe-
cution of a fraction β of the total sequential work has been simulated and
reports the current simulation date to the parent process. In other terms, β
defines the time horizon of the simulations.

Fig. 1. Percent degradation from best for all algorithms over all experimental scenarios,
sorted by increasing maximum values. Maximum values are shown as a blue solid lines.
Data points for the A8 algorithm are shown as red dots.

– A relative simulation error, e – This parameter denotes the relative range
of an uniformly distributed simulation error. That is, when an online simula-
tion determines that a fraction β of the sequential work was performed in time
t, it reports, instead, a time max(0, t+U(−t×e, t×e)), where U(a, b) denotes
the uniform random distribution on the (a, b) interval. For any experiment
for which e > 0, we run 10 samples.

Simulator code and all simulation data are publicly available5.

5 Results

5.1 Diversity of One-Algorithm Approaches

In Sect. 4, we claimed that our experimental scenarios (workflow and platform
configurations) would lead our different algorithms to exhibit a range of behav-
iors. In this section, we verify this claim quantitatively. Figure 1 shows, for each
experimental scenario (i.e., a workflow and platform combination) the relative

5 https://github.com/wrench-project/jsspp2022 submission data.

https://github.com/wrench-project/jsspp2022_submission_data
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difference, in percentage, between the makespan achieved by each algorithm and
that achieved by the best algorithm for this scenario, which is typically termed
“degradation from best” or dfb. In other terms, assuming a set of n algorithms,
if for a particular experimental scenario each algorithm i achieves a makespan
mi, then the dfb of algorithm j is defined as:

dfb(j) = 100 × mj − mini mi

mini mi
.

If dfb(j) is zero, then algorithm j achieves the best makespan, while if dfb(j) =
100%, then algorithm j achieves a makespan that is twice as long as that achieved
by the best algorithm.

In Fig. 1, the scenarios are sorted by increasing value of the maximum dfb.
Results show that maximum dfb values range from 4.38% to 883.81%. We note
that the experimental scenarios on the horizontal axis are loosely sorted by
the workflow configurations, meaning that scheduling algorithm behaviors are
sensitive to workflow structures. Furthermore, we see that for most experimental
scenarios, many algorithms lead to different dfb values, and thus makespans.
Overall, we conclude that our experimental scenarios are sufficient to highlight
the diversity between our 36 scheduling algorithms.

Although the above results indicate diversity, one may wonder whether some
(or perhaps just one?) algorithm is always best, in which case, one should just use
that algorithm. To this end, for each algorithm, we can compute its average dfb
over all experimental scenarios. We find that algorithm A8 achieves the lowest
average dfb at 6.47%. While this number is relatively low, it does not mean
that algorithm A8 is consistently a good choice. It happens to be the best (or
within 1% of the best) choice for 37 of our 72 scenarios. However, it has a dfb
higher than 10% for 7 of the remaining 35 scenarios, and as high as 159.60%.
This is illustrated in Fig. 1 where the data points for algorithm A8 are shown
as red dots. We conclude that no single algorithm is best, and that although
algorithm A8 is the “best on average” choice, it can be vastly outperformed by
other algorithms for some experimental scenarios.

5.2 Evaluation in the Ideal Case (β = 1, e = 0)

In this section, we compare our simulation-driven portfolio scheduling approach
to the one-algorithm approach under ideal conditions, that is, with the two
following assumptions: (i) each online simulation simulates the application exe-
cution until completion (β = 1); and (ii) simulations are 100% accurate (e = 0).
In upcoming sections, we relax these assumptions. Unless specified otherwise, all
results hereafter are obtained with α = 0.1, i.e., online simulations are invoked
10 times throughout workflow execution.

Because of these two assumptions, given any experimental scenario, our app-
roach is guaranteed to never be outperformed by any one algorithm: at the onset
of the execution it simulates all possible algorithms and necessarily picks the
best one. That is, if we were to plot the degradation from best of our approach
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Fig. 2. Percentage improvement over the one-algorithm approach for each workflow
(each data point is for a different platform configuration).

in Fig. 1, its data points would all be on the y = 0 line. In this and upcom-
ing sections, we compare our approach to the one-algorithm approach that uses
algorithm A8, which, for simplicity, we term the one-algorithm approach. As seen
in the previous section, A8 is the algorithm with the lowest average degradation
from best among all 36 algorithms. It thus corresponds to the best choice that
a runtime system developer could make if asked to pick one algorithm to imple-
ment in their system, at least in the scope of this case study. Picking A8 as our
main competitor allows us to evaluate the effectiveness of our approach in the
worst case. We note that, in practice, the runtime system developer may very
well pick another algorithm, in which case all results hereafter would be more
favorable (and often drastically more favorable) for our approach. Algorithm A8

prioritizes tasks with the highest bottom-level (C1 = 0), selects the cluster with
the fastest cores (C2 = 2), and uses as many cores are possible on a compute
node (C3 = 2).

Figure 2 shows relative makespan improvements over the one-algorithm app-
roach. Results are grouped by workflow, showing 9 data points for each workflow
(for the 9 platform configurations). Horizontal lines show average improvements.
Relative improvement is always positive and can be large, and average improve-
ment is above 5% for 5 of the 8 workflow configurations (Table 2).

Two kinds of data points are shown in Fig. 2. The data points marked with
circles correspond to cases in which A8 is not the best, or close to the best, of
the 36 algorithms for that experimental scenario (i.e., its degradation from best
is larger than 1%). For these data points, we expect our approach to provide
improvement because it will simply use another algorithm. For instance, the
data point above 70% for workflow W1 corresponds to an execution on platform
P3. For this experimental scenario, Fig. 1 shows that algorithm A8 has almost
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the worst degradation from best. Our approach thus eliminates A8 from consid-
eration based on simulation results.

The data points marked with triangles correspond to experimental scenarios
in which A8 has degradation from best below 1%. For some of these scenarios
our approach leads to non-negligible improvement (up to 9.3% improvement for
the W4:P5 scenario). This is because, for these scenarios, it is beneficial to use
more than one scheduling algorithm. In fact, we can compare our approach to
an one-algorithm “oracle” that would always pick the best algorithm to use for
each experimental scenario. We find that our approach outperforms this oracle
for 56 of our 72 experimental scenarios, and outperforms it by more than 5% for
11 of them. The main motivation for this work is that it is difficult to pick one
algorithm to implement as part of a CI runtime system. These results show that
one should, in fact, use more than one algorithm for a single workflow execution.

Fig. 3. Percentage improvement over the one-algorithm approach, for each workflow
and for different β values. Each violin plot shows minimum, maximum, and average
values as well as the overall shape of the distribution of the data points.

An interesting question is that of the number of different algorithms used by
our approach. In these results, this number is at most 10 since α = 0.1. Our
approach uses a single algorithm for only 4 of our 72 experimental scenarios.
Across all scenarios, our approach uses up to 6 different algorithms during a
single workflow execution and 3.08 different algorithms on average. Overall, out
of our 36 different algorithms 25 of them end up being used at least once by
our approach. Algorithm A8 is, unsurprisingly, the algorithm most used by our
approach. But some algorithms that have poor average degradation from best
are also used. For instance, algorithm A0 is used for 12 of our 72 scenarios, but
has the 4th largest average degradation from best at 176.26%.
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5.3 Evaluation with Shorter Simulation Time Horizons (β < 1)

One may wonder whether it is necessary for online simulations to simulate the
execution until completion. The results in the previous section are for β = 1, i.e.,
workflow execution is always simulated until completion. Given a value of β, a
workflow, and a platform configuration, we measure the percentage improvement
(or loss) that our approach achieves over the one-algorithm approach. Figure 3
shows results for several β value and workflow combinations. For each combi-
nation, there are 9 data points, one for each platform configuration. For better
readability, these data points are shown as violin plots, which indicate the min-
imum, maximum, and average values as well as the shape of the distribution.
Each data point below the y = 0 line corresponds to cases in which our approach
loses to the one-algorithm approach.

Fig. 4. Percentage improvement over the one-algorithm approach, for each workflow
and for different e values. Each violin plot shows minimum, maximum, and average
values as well as the overall shape of the distribution of the data points.

As expected, the results in Fig. 3 show that the number of times our app-
roach loses to the one-algorithm approach increases as β decreases, i.e., as the
simulation becomes more shortsighted. But the trends vary depending on the
workflow. At one extreme, e.g. for workflow W1, our approach remains benefi-
cial for β as low as 0.1 (i.e., when only 10% of the total work is simulated). At
the other extreme, for workflow W8, as soon as β is 0.8 or below, our approach
experiences losses. The fact that different workflows exhibit different behaviors
is not surprising. Depending on workflow structures, scheduling decisions made
at the onset of the execution may or may not have a large influence on the later
phases of that execution. Given that, it is likely difficult to determine what level
of shortsightedness is acceptable for a given workflow. We then conclude that
simulating the entire execution of the application until completion (β = 1) is
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the safest option. All results presented hereafter, unless specified otherwise, are
for β = 1. The downside of using β = 1 is that it maximizes simulation times,
the implications of which are discussed in Sect. 5.5.

5.4 Evaluation with Simulation Inaccuracies (e > 0)

There are many sources of simulation inaccuracy, including: imperfect simulation
models; imperfect instantiation of these models based on inaccurate information
about the application, the platform, and the state of the ongoing execution
of the application on that platform; and inherent platform/system noise. We
need to ascertain whether our approach can tolerate a relatively high level of
simulation inaccuracy. To answer this question, we apply uniformly distributed
perturbations to simulated makespans in the interval [−e, e], for various values
of e (see details in Sect. 4.4). Figure 4 is similar to Fig. 3 but shows results for
several values of e. For e > 0, each violin plot in the figure corresponds to 90
data points (9 platform configurations and 10 samples for 10 different seeds of
the random number generator). Results show that our approach is reasonably
tolerant to simulation error. Even when e = 0.2 (i.e., a simulated makespan can
be underestimated or overestimated by up to 20%), our approach remains mostly
beneficial and maintains positive average improvement over the one-algorithm
approach for all workflows. For e = 0.4 and above, our approach begins to be
outperformed by the one-algorithm approach.

Simulators developed using SimGrid and WRENCH, as the one developed in
this work, have been reported to achieve simulation errors well below 20%. For
instance, the WMS simulator in [10] achieves makespan errors below 5%. Other
simulators, however, may experience higher error. In practice, it would then
be useful to perform simulation error forensics and apply corrective measures.
That is, the runtime system could keep track of the simulated execution for the
algorithm that ends up being selected, and then compare this execution to what
actually happened in the real execution. The goal would be to identify sources
of simulation error, and correct for them in the instantiation of the simulator
before the next round of online simulations.

Overall, we conclude that simulation errors with current state-of-the-art sim-
ulation implementations, albeit unavoidable, are sufficiently small or mitigable
for our approach to be feasible.

5.5 Simulation Overhead

On-line simulations for driving portfolio scheduling do not have to hold up the
application execution, but can be done concurrently with that execution, so
that the simulation overhead can be fully hidden. One option, which we do not
consider in this work, is to execute the simulations on the same resources as
that on which the application executes. In this case, the simulation executions
compete with and thus slows down the application execution, having a possibly
large (and difficult to estimate) negative impact on application performance.
Instead, we consider that the simulations execute on the host on which the CI
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runtime system itself executes (typically some multi-core hosts that orchestrates
the application execution on other “remote” resources). Due to the overhead
being hidden by application execution, its only impact is to delay algorithm
selection. Since algorithm selection is performed at arbitrary times throughout
execution, the only strong requirement is that the overhead be small (i.e., by at
least one orders of magnitude) relative to the overall makespan. In what follows,
we verify that this requirement can be achieved in practice.

Some parallel and distributed computing simulation frameworks, such as Sim-
Grid, which we use in this work, have placed a large emphasis on scalability. To
this end, analytical simulation models have been developed that have low com-
putational complexity and that can be implemented efficiently. In Sect. 5.3, we
saw that it is typically useful to simulate the upcoming application execution
to completion. Furthermore, the number of algorithms to simulate could (and
should) be large. Therefore, in spite of these simulations relying on scalable
simulation models, simulation overhead could be large.

Table 3. Simulated makespan, simulation time, ratio thereof, and peak memory foot-
print of the simulation when simulating the execution of each workflow on platform
configuration P4 with algorithm A8. Results obtained on a 2.3 GHz core.

Workflow Simulated
makespan (sec)

Simulation
time (sec)

ratio Peak memory
footprint (MB)

W1 338.77 29.35 11.5 149.95

W2 221.67 2.86 77.5 36.19

W3 170.63 5.58 30.6 65.98

W4 57.62 4.48 12.9 65.58

W5 5,618.07 3.20 1,755.6 16.96

W6 57.21 0.77 74.3 19.32

W7 4,887.52 6.97 701.2 28.96

W8 416.16 0.11 3783.2 5.98

Most simulation frameworks implement discrete-event (as opposed to
discrete-time) simulation. That is, computational complexity depends on the
number of events to simulate and not on the length of time being simulated.
Table 3 shows results obtained when simulating the full execution of each work-
flow on platform configuration P4 using algorithm A8. Simulations were executed
on one core of a 2.3GHz Intel Core i9 and the results in the table are averaged
over 10 trials. Since algorithm A8 generally leads to shorter makespans than
its competitors, the results in the table correspond to a worst case in terms of
ratio of simulated makespan to simulation time. Also note that these results are
for simulating the full workflow execution. As the execution progresses, online
simulations only need to simulate the remaining application execution. That is,
the simulation overhead decreases at each round of online simulation. Thus the
results in the table correspond to the maximum (initial) simulation overhead.
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We find that for most workflows the ratio of simulated makespan to simula-
tion time is large. But for some workflows, such as W1, the ratio is only 11.5x.
This is because this workflow has a high number of tasks relative to its total com-
putational work as well as a high data footprint (see Table 2), which increases
the number of execution events to simulate. This is also the case for workflow
W4, and in this case is also due to the fact that the simulated makespan is low.
As seen in Fig. 3, for these two workflows, it would be possible to reduce the
fraction of work being simulated, so as to reduce the simulation time. In partic-
ular, our approach performs well for W1 even when simulating the execution of
only 10% of the total work.

The results in Table 3 are for the simulation of one algorithm. Our approach
needs to run one simulation for each available algorithm (36, in this case study).
These simulations are independent and can be executed in parallel on multiple
cores, which is feasible due to the relatively low memory footprints reported
in Table 3. For instance, running 36 concurrent simulations for workflow W1,
which causes the largest simulation memory footprint in our case study, only
requires 5.2 GB of RAM. Running these 36 simulations concurrently on a 48-
core Cascadelake 2.8 GHz machine takes only 23% longer than running only
the slowest one of these simulations (simulations take different amounts of time
depending on the scheduling algorithm in use).

Another option for mitigating simulation overhead is to reduce the frequency
at which online simulations are executed [12]. All experiments presented so far
have used α = 0.1, that is, online simulations are invoked each time 10% of the
total work has been completed. It turns out that, at least for the results in this
case study, increasing α does not lead to significant performance degradation. We
conducted experiments with α = 0.2, so that online simulations are invoked only
5 times during the whole execution instead of 10 times with α = 0.1. Comparing
results between our approach and the one-algorithm approach, we find that there
is at most a one-point decrease in effectiveness for 7 of the workflows and at most
a two-point decrease for the remaining workflow. That is, if with α = 0.1 our
approach outperforms the one-algorithm approach by x%, then with α = 0.2
it outperforms it by at least x − 2% and typically by at least x − 1%. In no
instance does our approach lose to the one-algorithm approach with α = 0.2.
These results are obtained assuming that simulations are perfectly accurate. For
a simulation error range at 20% (e = 0.2), then our approach experiences less
than a one-point decrease in effectiveness for 5 workflows (instead of 7) and less
than a two-point decrease for the remaining 3 workflows (instead of 1). Overall,
at least within the scope of this case study, decreasing the frequency at which
online simulations are executed, which reduces simulation overhead, does not
have a large negative impact on the overall effectiveness of our approach.

We recognize that for a large number of candidate scheduling algorithms,
i.e., well beyond the 36 used in our case study, it may also be necessary to
investigate techniques for pruning the set of candidate algorithms (removing
algorithms that tend to perform similarly, removing algorithms that tend to
perform poorly) to avoid prohibitive simulation overhead. This could be done
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using, for instance, the technique proposed in [12] by which algorithms are placed
in different categories depending on their past simulated performance, and a
bounded amount of simulation time is allocated to each category.

6 Conclusion

In this work, we have assessed the potential merit of using simulation-driven
portfolio scheduling in CI runtime systems that automates the execution of
application workloads. The main goal is to obviate the well-known challenge of
selecting a particular scheduling algorithm to implement in a runtime system. In
a case study, we have shown that our portfolio scheduling approach outperforms
the one-algorithm approach, even if this approach happens to use the algorithm
that performs best, on average, across all experimental scenarios considered in
the case study. Although in some cases our approach remain effective when sim-
ulating only a fraction of the upcoming execution, simulating the execution to
completion is the safest option. Crucially, our approach retains its advantage
over the one-algorithm approach even in the presence of relatively large simula-
tion error, i.e., larger than what state-of-the-art simulators have been reported
to achieve. Because simulation executions can be concurrent with the applica-
tion execution, the simulation overhead only needs to be small relative to the
overall application makespan. We have shown that achieving this requirement is
feasible in practice by using simple techniques.

Recall that we have compared our proposed approach to the best possible
rational choice a runtime system developer could make for implementing the
one-algorithm approach in the context of our case study (i.e., pick algorithm
A8). It is not clear how this best choice could be made in practice (besides
by conducting a full experimental case study as done in this work), hence the
main motivation for this work. Were the system developer to pick a middle-
of-the-pack algorithm, say algorithm A22, which has an average degradation
from best at 49.79% (the worst algorithm has average degradation from best
at 179.23%), all results presented in Sect. 5 would be drastically improved. For
instance, our approach would outperform the one-algorithm approach on average
for all workflows for simulation error ranges up to 80% (instead of up to 20%).

The simulation-driven portfolio scheduling approach implemented for our
case study, as described in Sect. 4.4, could likely be enhanced in several ways.
For instance, instead of performing algorithm selection throughout execution
based on amounts of work performed since the last algorithm selection, one
could instead account for the structure of the workflow and perform it each time
a workflow level has completed. This is because often different workflow levels
have different data and computation demands, and thus can be better served by
different scheduling algorithms. The main conclusion from the results presented
in this work is that it is likely worth implementing simulation-driven portfolio
scheduling in a real runtime system. We plan to do so as part of production
Workflow Management Systems, so that we can reproduce in practice some of
the results presented in our case study. A particularly interesting future work
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direction, to be pursued once a prototype implementation is available, is the
investigation of simulation forensics techniques to detect and mitigate simula-
tion error at runtime. Another interesting direction is the optimization of other
metrics of application execution (e.g., energy consumption). Finally, although
workflows are a general model of computation, it would be interesting to investi-
gate whether the results in this work can generalize to other kinds of applications
for which CI runtime systems must be developed that make scheduling decisions.
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Abstract. The proliferation of edge data centers and the application
of exhaustive tuning methods for machine learning with the use of large
training data sets lead to increased power consumption of data centers.
Even when considering improved operational efficiency, the conservative
estimate of the power requirement for data centers in the year 2030 stands
at 900 TWh. To comply with present political requirements, renewable
energy sources must provide most of this power. The high volatility of
these sources produces additional operational constraints for the data
centers. In addition, the share of AI training applications is expected
to increase in the years to come. On the one hand, those applications
often require more data resources than typical interactive applications
while on the other hand, they better tolerate execution delays. To exploit
this tolerance, we represent it by introducing deadlines for the jobs and
present simple scheduling algorithms that use this tolerance to better
consider power constraints.

To examine those scheduling algorithms in a practical environment,
we execute experiments with existing cloud traces. Since there are no
traces available that include a significant portion of AI training jobs with
explicitly specified timing flexibility, we use traces from Google clusters,
extract the available information, and add any missing information sub-
ject to assumptions that are reasonable in practice. We specify in detail
our motives for the extension of the trace data.

Our experimental results show that in practical cases, a greedy accep-
tance approach has a better performance than a threshold based job
acceptance algorithm although the latter has a significantly better worst
case performance. We obtain the best results when combining greedy
acceptance with a biased load allocation strategy instead of using load
balancing. Since some jobs may be highly parallel and rigid, we addition-
ally consider an allocation algorithm that minimizes the intermediate
idle times in order to achieve the best use of the available power. While
the last algorithm achieves a small improvement over the other alloca-
tion schemes, it needs a significantly increased computational effort. The
same is true when allocating jobs with the well known backfilling app-
roach since deadlines require using the conservative variant of backfilling.
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constraints · Evaluation with simulation
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D. Klusáček et al. (Eds.): JSSPP 2022, LNCS 13592, pp. 25–46, 2023.
https://doi.org/10.1007/978-3-031-22698-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22698-4_2&domain=pdf
http://orcid.org/0000-0002-7919-8261
http://orcid.org/0000-0002-3582-4961
https://doi.org/10.1007/978-3-031-22698-4_2


26 G. K. Nileshwar and U. Schwiegelshohn

1 Introduction

Advancements in the area of autonomous driving and smart cities demand an
increase in availability of edge data centers, which is estimated to account for
30% of the total power consumption across data centers [15]. The total power
requirement of data centers is estimated to be around 1% of the global power
consumption: based on the reported data center power consumption of 200 TWh
in 2018, a study by Andrae [1] in 2019 expects requirements up to 2000 TWh
by 2030 whereas Masanet et al. [13] predict around 900 TWh. The latter more
conservative estimate is based on observations from existing power utilization
patterns at data centers and assumes further improvements of operational effi-
ciency. The authors observed an increase in efficiency in the past 10 years due
to better server virtualization, improvements in cooling and power provision-
ing infrastructure, more efficient processors, and reductions in idle power. They
expect this trend to continue. The results of the SPEC power benchmark for
many processors also emphasize the large contribution of idle power to the total
power consumption. A further reduction of idle time in a data center requires a
better scheduling of the computing jobs. Such better scheduling approaches are
limited by the current computing on demand approach. Another restriction is
the high volatility of the main renewable energy sources wind and solar that will
be the dominating power producers in the future according to the plans of most
governments.

As explained by Mastelic et al. [14], the inefficient consumption of energy in
data centers can be mainly allocated to two components - energy loss and energy
waste. Energy loss is the part of power lost during transport and conversion.
It also includes the energy consumed by the cooling and lighting subsystems.
Energy waste, on the other hand, is the energy spent for the main task in data
centers without any useful output, such as the energy consumed during idle run
times. We focus our study on second component, that is, the mentioned main task
in a data center. For an efficient running of a data center, the critical IT load must
be planned in advance. This is achieved by listing and aggregating the nameplate
power rating and voltage rating of all hardware components such as computers,
network devices, and storage devices and adjusting the information to match
the anticipated load. Alternatively, we can define the total power requirement
as the product of the power required for the normal functioning of a single core,
multiplied by the total cores active in the data center.

Additionally, the increasing usage of AI to find solutions to everyday prob-
lems will lead to a change in the application portfolio of data centers. Unfortu-
nately, the power requirement of these applications is expected to explode due to
the availability of better training data sets and tuning processes. Hao [6] states
that training a single AI model with 213 M parameters needs about 201 kWh
compared to 27 kWh for a model with 65 M parameters. The consumed power
increased to 656 MWh when introducing a neural architecture search in first
model. Fortunately, such AI training jobs do not require immediate resource
provision contrary to interactive jobs. In order to address the power consump-
tion challenges of the future, we must exploit such timing flexibility to maximize
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the use of renewable power. To this end, we express this timing flexibility by
using job deadlines and apply online job scheduling under consideration of those
deadlines. In more detail, conventional jobs have rather tight deadlines while
more flexible jobs have rather loose deadlines. We express the tightness of a
deadline by relating the maximum amount of delay of a job to the processing
time of the job. The result is called the slack of the job.

Since present workloads in data centers usually do not include any jobs with
explicit deadlines, we must introduce such deadline to execute a job schedul-
ing study in a practical environment that addresses deadline scheduling in data
centers. This problem does not occur in theoretical studies. In this domain,
Jamalabadi et al. [9] have shown that a threshold based algorithm significantly
outperforms a simple greedy acceptance approach when considering online dead-
line scheduling for load maximization. However, greedy acceptance has practical
advantages since it is better able to address a sudden change of resource avail-
ability and variability in job processing times. Therefore, we are interested in
the performance differences between greedy acceptance and the threshold app-
roach under practical constraints instead of using worst case conditions as in the
theoretical studies.

In addition, we want to determine which kind of allocation approach is best
suited to complement the chosen acceptance algorithm. The straight forward
approaches are either load balancing or load biasing. If the workload includes
highly parallel and rigid jobs then we additionally consider an allocation that
locally minimizes the idle time when placing a parallel job. Finally, we can exploit
such intermediate idle times with the well known backfilling approach.

For our simulation experiments, we must create conditions that represent
scenarios of the expected job workload. As already mentioned, we must adapt
an existing workload. Then we execute extensive experiments. Due to the limited
space available for this paper, we can only present some of the obtained results.
To show that these results are representative for the entire suit of experiments,
we have provided a generally accessible repository that contains all experiments
and additional details of the considered algorithms and the experimental envi-
ronment.

1.1 Our Methods

This section summarizes our methods that belong to three areas:

1. Scheduling algorithms
2. Input data
3. Experiments

Since large data centers are major consumers of electrical power they must pro-
vide in advance an estimate of their power consumption. If they use less power
than this estimate they must pay for the estimated power consumption but may
sell any excess power on the spot market if there is sufficient demand. Unfortu-
nately, a lack of power demand for a data center often coincides with a generally
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reduced demand. If the power usage of a data center exceeds its estimate then
the data center must buy any additionally required power on the spot market.
This situation usually results to high additional costs and must be avoided unless
favorable environmental conditions produce an unexpected increase of available
power.

The results of the SPEC power benchmarks for modern processors indicate
an approximately linear relationship between the power consumption of a rigid
parallel job and its resource consumption (processing time times parallelism).
Since the power consumption of idle processing resources is relatively high, it
is desirable to avoid such idling. Therefore, we use load maximization as our
scheduling objective.

As always in data centers, we are facing an online scheduling problem since
customers typically submit their job requests over time. Note that in our model,
the number of the available active machines in the scheduling problem repre-
sents the power estimate and may deviate from the maximal number of physical
processing resources in the data center. Therefore, the machine number is fixed
within an intermediate time horizon but may be subject to some variation in
the long run. Since the underlying system of a workload trace is typically char-
acterized by the number of cores while scheduling algorithms always refer to
machines, we use cores and machines interchangeably depending on the context.

Any scheduling algorithm for jobs with deadlines comprises an acceptance
and an allocation component. For the acceptance component, we may use a
simple greedy approach that always accepts a new job if there is a schedule
that completes the job and all previously accepted jobs on time. This approach
is flexible and works for any number of machines. Alternatively, we can use a
threshold algorithm that may reject a job although the greedy approach may
accept it. As already mentioned, Jamalabadi et al. [9] have shown that the
threshold algorithm clearly outperforms any greedy approach in the worst case
if the deadlines of the jobs do not allow a large flexibility. We expect that this
property holds for most future jobs with time flexibility. Since the thresholds
depend on the number of machines, the threshold algorithm is not as flexible as
the greedy approach.

Load balancing is the most common allocation approach used by numerous
job scheduling algorithms. Kim and Chwa [10] have provided a worst case anal-
ysis for load balancing with greedy acceptance and load balancing. Jamalabadi
et al. [9] combine the threshold algorithm with an allocation strategy that favors
machines with more load, also known as BestFit strategy [4]. For rigid jobs
with a high degree of parallelism, we consider an allocation approach that pro-
duces the least amount of enclosed idle time for the new job. Many data centers
implement a backfilling variant to use some of the enclosed idle time. However,
the observance of deadlines requires the computationally expensive conservative
backfilling variant instead of EASY backfilling to prevent a deadline violation of
a previously accepted job.

Although preemptive scheduling offers more flexibility than non-preemptive
scheduling, we only address systems without preemption since preemption of AI
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training jobs typically generates a large data footprint that increases the power
consumption significantly. In addition, Bertogna and Barua [2] state that storing
and retrieving the context of the preemptive state contributes significantly to the
runtime overhead. This approach does not prohibit the preemption of individual
jobs if the preemption is clearly beneficial. Since such decision depends on the
characteristic of the preempted job, we do not discuss such modification of the
schedule in this study.

Our input data are based on the workload traces from a Google cluster [20].
For each job j, we extract practically relevant request data: its submission time
rj , its consumed processing time pj , and its degree of parallelism mj . Since
the original workload traces do not include any deadline information, we must
artificially generate this information. Instead of directly selecting the deadline
dj of a job, we use the individual slack value εj = (dj − rj)/pj − 1. We choose
the slack approach since corresponding theoretical evaluations use a minimum
slack as an input value. We pick a target slack value ε for the workload and
randomly select the individual slack for each job using a lognormal distribution
with the geometric mean ε. Then we use the above expression for determining
the individual deadline.

We must also determine the number of available cores in the simulated sys-
tem, that is, the available amount of power. A lower bound of this number is
given by the maximum degree of parallelism of any job in the applied input set
while the upper bound depends on the smallest number of cores that allows the
acceptance of all requests. Therefore, a single input data set is characterized
by the geometric mean ε and the geometric standard deviation σ of the slack
distribution, the original workload, and the total number of available cores.

We apply discrete event simulation to execute our experiments separately for
each input set. Some experiments only consider jobs running on a single core and
support a direct comparison with the theoretical reference studies while other
experiments also allow jobs with different degrees of parallelism.

1.2 Our Results

We have obtained the following main results.

1. The choice of the acceptance method is dominant for small slack values while
the allocation method becomes more important with increasing slack values.

2. Regardless of the allocation method, greedy acceptance outperforms the
threshold algorithm for small slack values.

3. BestFit is a better allocation approach than load balancing unless we allow
highly parallel requests.

4. For rigid jobs with high parallelism, conservative backfilling and the mini-
mization of idle times for rigid jobs with high parallelism produce slightly
better results than the simple allocation methods but require a significantly
larger computational effort.
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1.3 Related Work

We refrain from the discussion of additional theoretical studies and refer to the
corresponding section in the publication by Jamalabadi et al. [9].

For rigid jobs with a high degree of parallel, we can improve the performance
of most simple scheduling algorithms, like First-Come-First-Serve (FCFS), by
using backfilling, that is, allowing an early start of jobs submitted later if these
jobs do not delay previously scheduled jobs, see, for instance, Mu’alem and Fei-
telson [16]. To reduce the resulting significant computational effort, Lifka [12]
proposed a simpler version named EASY backfilling, that only guarantees no
delay for the most restrictive job. N’takpé and Suter [17] designed and evalu-
ated Deadline-Based Backfilling algorithm using highly parallel workloads. Com-
pared to conservative backfilling, their results show a significant improvement in
average weight time.

While result descriptions with 2d-graphs only allow a single independent
parameter, heatmaps help in investigating the difference in performance across
two independent parameters in a single representation. Krakov and Feitelson [11]
employ them as tools to analyze the performance of simulation logs of parallel
job schedulers.

For our experimental evaluation, we use traces from a Google Cluster for a
time period of 29 successive days [20]. Dong et al. [5] used these traces for the
evaluation of a proposed scheme to minimize energy consumed by data centers.
Cavdar et al. [3] studied the task eviction event in these traces and proposed
policies for better inclusion of tasks with low priority. Iglesias et al. [8] introduced
a methodology based on prediction, monitoring, and scheduling that improves
the efficiency of scheduling tasks on machines. Later, the authors supplemented
the study with a focus on an eviction policy [7]. Using these traces, Rampersaud
and Grosu [18] evaluated the performance of their algorithms that allow sharing
of memory pages on same physical server. They also extended their study to
understand how their allocation maximizes revenue [19].

2 Scheduling Algorithms

This section describes the scheduling algorithms of our simulation study. We
present an intuitive description of most algorithms and a theoretical analysis of
greedy acceptance together with BestFit allocation. Detailed descriptions of the
algorithms and of their implementation are provided in our repository1.

For the acceptance of a new job, we distinguish between greedy acceptance
and a threshold algorithm. Greedy acceptance only rejects a new job if there is
no schedule that completes this job on time without changing the allocation of
any previously accepted job. The threshold algorithm uses a deadline threshold
and rejects a new job if its deadline is less than the threshold. The calculation of
the threshold depends on the number of machines and the load on each machine.

1 https://github.com/nileshwar-ganesh/simulation-jsspp2022.

https://github.com/nileshwar-ganesh/simulation-jsspp2022
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For the allocation, the most basic approaches are load balancing and BestFit.
Load balancing allocates the new job to the necessary number of least loaded
machines while BestFit selects a set of machines with the largest possible total
load that still allows a schedule without any deadline violation. For rigid parallel
jobs, we can also use a set of jobs that produces the least amount of additionally
enclosed idle time in a valid schedule. We use the name MinIdle for the latter
algorithm.

We explain the difference between Greedy Balanced, Greedy BestFit and
Greedy MinIdle with help of following example. In Fig. 1, the gray area represents
allocated requests on the machines. Consider a new request J , with pj = 2,
rj = 3, dj = 11 requiring 2 cores. The possible outcomes of all three allocation
policies are illustrated in the figure.

Fig. 1. Allocation pattern of different algorithms

The red area represents idle time on each machine. In our backfilling version
of the algorithms, we consider this area first, when a new job arrives and allocate
it to such holes in the schedule, wherever possible.

We may be able to apply the well known backfilling approach to exploit some
enclosed idle time in the schedule. Since we cannot violate the deadline of any
allocated jobs, EASY backfilling is not applicable and we must use the conser-
vative variant of backfilling although it is computationally more demanding.

In theoretical studies, the competitive ratio is the method of choice to evalu-
ate online algorithms. The competitive ratio is the ratio between the value of the
objective function obtained by an online algorithm to the value of this objective
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function produced by the optimal offline algorithm in the worst case. For our
problem, the competitive ratio of the combination of the threshold algorithm
with BestFit allocation is very close to the best possible competitive ratio for
small individual slacks (ε ≤ 1) and sequential jobs, see Jamalabadi et al. [9] for
details and the analysis of the algorithm. The parameter ε is the minimum indi-
vidual slack of all jobs as defined in Sect. 1.1. Kim and Chwa [10] have combined
greedy acceptance and load balancing. This combination achieves a competitive
ratio of 2 + 1/ε for single-core jobs on any number of machines.

2.1 Greedy Acceptance and BestFit Allocation

Algorithm 1. Greedy BestFit
1: for the next job j do
2: update the remaining load for all cores
3: if the least loaded machine completes j on time then
4: accept j
5: determine the most loaded core that completes j on time
6: start j on this core as early as possible
7: else
8: reject j

In this section, we provide a competitive analysis for Algorithm 1 that combines
greedy acceptance with BestFit for sequential jobs and small slacks. Our proof
techniques are similar to those used by Jamalabadi et al. [9]. For our problem,
the competitive ratio is the ratio between the total processing time of all jobs in
an optimal offline schedule to the total processing time of all jobs accepted by
greedy acceptance together with BestFit allocation.

Lemma 1. If all jobs are submitted at time 0 then greedy acceptance with the
BestFit allocation strategy guarantees a competitive ratio of 1 + 1

m + 1
ε for the

load maximization problem with m machines and slack ε ≤ 1.

Proof. Since all jobs have the same submission time, Algorithm 1 does not gen-
erate any intermediate idle.

The notation li describes the load of machine i. We use decreasing machine
load to index the machines: l1 ≥ l2 ≥ . . . ≥ lm. Without loss of generality, we
assume a submission sequence of the jobs such that BestFit determines the load
on machine i before allocating any job to machine i + 1.

Due to greedy acceptance, Algorithm 1 does not reject any job j with deadline
dj ≥ lm ·(1+ε)/ε. Therefore, we only consider the interval [0, te = lm ·(1+ε)/ε).
The notation P (te) describes the part of the total processing time of all accepted
jobs that any schedule must execute in interval [0, te) if it includes these jobs.



AI-Job Scheduling on Systems with Renewable Power Sources 33

The competitive ratio R is upper bounded by

R ≤
∑m

i=1 li−P (te)+m·te∑m
i=1 li

If Algorithm 1 allocates a job j to machine i with i > 1 then at least load
min{pj , te−li−1} must be executed in interval [0, te) in any schedule that includes
job j.

We obtain the largest competitive ratio if the load on all machines is lm. Since
we may be able to execute the load on machine 1 after time te, the competitive
ratio is less than

R ≤ m·lm−(m−1)·lm+m·lm· 1+ε
ε

m·lm = 1 + 1
m + 1

ε .

��
If jobs can be submitted at any time then Algorithm 1 may allocate some pro-

cessing time to an interval [ts, te) although it is possible to execute this processing
time before time ts, that is, the algorithm may produce a delayed execution of
some processing time. If the algorithm does not reject any jobs in the interval
I preceding interval [ts, te) then the optimal schedule can use the processing
resources in I to execute jobs allocated to [ts, te) and may execute some rejected
jobs with the additionally available resources in interval [ts, te).

Lemma 2. Delayed execution caused by Algorithm 1 can increase the competi-
tive ratio of Lemma 1 by at most 0.3095.

Proof. We assume that delayed execution occurs on d ≤ m machines and deter-
mine the difference Δ(d,m,R) between the competitive ratios of a schedule with
delayed allocation and a reference schedule without delayed execution using the
same value m and generating R. We increase the impact of delayed execution
by also allowing delayed execution on machines 1 and m although delayed exe-
cution on machine 1 is already included in Lemma 1 and Algorithm 1 prevents
such execution on machine l. Since we ignore the restriction of machine 1, the
reference schedule has the reduced competitive ratio 1 + 1/ε, see the proof of
Lemma 1.

We use a continuous extension of the problem and discuss maximization of
Δ(d,m,R). Let intervals [0, ts) and [ts, (1+1/ε) ·(tl −ts)) be the two intervals in
succession with Lemma 1 addressing interval [ts, (1 + 1/ε) · (tl − ts)). Therefore,
time instance tl is the last completion time of any job in interval [ts,R· (tl − ts))
in the online schedule on every machine, see the proof of Lemma 1. Further,
t(x) ∈ [0, ts) with 0 ≤ x ≤ d describes the time instance when machine x
becomes busy. To maximize the impact of delayed execution, we require the
total processing time in time interval [0, tl) and machine interval [0, x) with
x ≤ d to be identical to t(x) · m. Then we obtain

t(x) · m =
∫ x

0
tl − t(z)dz

with the solution t(x) = tl · (1 − e−x/m).
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Then we have

Δ(d,m,R) =
m · R · (tl − ts) + m · ts

m · ts + m · (tl − ts) · m−d
m

− R =
R · e− d

m + 1 − e− d
m

1 − d
m · e− d

m

− R

To obtain the maximum value, we determine the dependence of Δ(m, d,R) on
d and R by derivation. Since Δ(m, d,R) never decreases with decreasing R, we
select R = 2 and obtain

Δ(d,m, 2) =
e− d

m + 1

1 − e− d
m

− 2.

This function has its maximum value in the permitted range for d
m = − ln d

m ≈
0.567. Then we have

Δ(d,m,R) ≤ Δ(0.567 · m,m, 2) ≈ 0.3095.

��
Finally, we must combine the results of Lemmas 1 and 2.

Theorem 1. Algorithm 1 guarantees a competitive ratio of 1 + 1
m + 1

ε + 0.3095
for the load maximization problem with machine number m and slack ε ≤ 1.

Proof. An interval in the schedule is open if it is not possible to reject any job
with a submission time in this interval. Therefore, at any time instance in this
interval, less than m machines are busy. If this property does not hold, we say
the interval is closed.

We partition the schedule into open and closed intervals such that no open
interval directly precedes or succeeds another open interval. Further we cannot
split any closed interval into an open interval and a closed interval.

If there is a chain of closed intervals and no job has a submission time prior to
the beginning of the first of these closed intervals then Lemma 1 applies to this
chain of intervals since it is not possible to execute any job contributing to this
chain of intervals before this chain of intervals. Therefore, it is sufficient to con-
sider an alternating sequence of open and closed intervals. Then the combination
of Lemmas 1 and 2 yields the result. ��

The proof also shows that MinIdle cannot achieve a better competitive ratio
for sequential jobs. It is straight forward to see that the competitive ratio is at
least m · (1 + 1/ε) for any algorithm if we allow parallel jobs.

3 Workload Generation

Since there are no workload traces that we can apply directly for our experi-
ments, we use a hybrid approach: we select published workload traces, apply
some preprocessing steps, and add the missing data using random generation
based on a reasonable distribution.
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First, we partition the published Google traces [20] into 29 separate days
based on the submission times of the recorded jobs. Therefore, we eliminate all
jobs that run for more than a day. For further processing, we categorize the
jobs using their processing times and the cores required for their execution, see
Fig. 2a and Fig. 2b. Figure 2c shows the distribution of jobs based on its resource
consumption or total load, that is the product of its run-time and its required
number of cores.
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Fig. 2. Workload Profile

It is known from other workload traces that many terminations of jobs briefly
after their start-times are caused by programming errors or faulty configurations.
In comparison to their run-time, these jobs have a very large slack. Unfortunately,
we cannot reliably determine such jobs since the workload data do not specify
whether a job has successfully completed. Therefore, we remove all jobs with a
processing time of less than 60 s to avoid a misleading parameter selection.

To establish a reasonably good coverage of the practically relevant problem
space, we use the parameters target slack value or geometric mean of a suitable
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distribution, geometric standard deviation of this distribution, and number of
available cores.

The target slack value indicates the average flexibility of the job requests.
We restrict the target slack value to the range (0, 1). From a practical point of
view, this range is reasonable since an individual slack of 1 requires a user to
wait for the time of the job processing time before the system starts the job.
Since there is no available deadline information from real workloads, we select an
approximately uniform distribution of the target slack values within this range,
see Table 1. In addition, we use the target slack value 0.01 to determine the
algorithm performance for jobs with very little timing flexibility.

The geometric standard deviation of the distribution represents the spread
of the tightness among the jobs of a workload. Again we select an approximately
uniform distribution, see also Table 1. Relating the standard deviation to the
target slack value allows a better comparison for different parameter settings.
The largest value ε/2.0 informally represents a spread of approximately 0.96 · ε,
that is, the additive increase of the individual waiting time is up to 0.71 times
the average waiting time.

Table 1. Geometric mean and geometric standard deviation values of the lognormal
distribution

Statistical parameter Range of values

Geometric mean (target slack) ε 0.1, 0.2, . . . , 0.9

Geometric standard deviation σ ε
3
, ε
2.9

, . . . , ε
2

For each configuration of distribution parameters and each workload trace
of a day, we generate ten separate input data sets. While the target slack value
represents a temporary resource bottleneck, the total number of cores (the power
budget in our model) determines the static resource contention. There is no
resource contention and a significant amount of idle resources if all requests can
start at their submission time. To prevent exclusion of individual requests, the
largest number of cores used by any request of the workload is the lower bound
of the core number. For a single-core data set, we select this lower bound to be
10. Between the lower and upper limit, we increase the number of cores from
one data set to the next by a constant amount.

4 Performance Ratio

To compare the performance of different algorithms for different slack, deviation,
and core parameters, we determine an approximate performance ratio of an
algorithm specified by an acceptance/allocation pair for an input set, that is,
the upper load limit over the total accepted load obtained by the approach. The
use of this performance ratio is inspired by the competitive ratio obtained by the
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competitive analysis of online algorithms. The upper load limit is the minimum
of the total processing time of all submitted jobs and the total processing time
provided by the system in the considered execution time frame.

Example: Consider a scheduling problem with three jobs submitted in the order
J1 − J2 − J3 as described in Table 2.

Table 2. Three job scheduling problem

Job pj rj dj

J1 2 0 2

J2 4 0 4

J3 4 0 4

We consider two different scheduling scenarios based on availability of
resources, a 2-core scenario and a 3-core scenario. We accept jobs on a greedy
basis provided every job ends before its deadline. Visual representation of the
schedules in both scenarios is provided in Fig. 3.
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Fig. 3. Schedules obtained with greedy allocation

Since we accept jobs on a greedy basis, we end up rejecting job J3 when we
have only 2 cores available. However, the optimal schedule would have J3 in it
instead of J1. So, the upper load limit in the optimal scenario is determined by
the total processing time provided by the system and would be c·Cmax = 2·4 = 8,
where as the total load processed by the algorithm is 6.

When 3 cores are available, we end up accepting all three jobs. Even when
processing power of c · Cmax = 3 · 4 = 12 is available, we only have request
for 10. Hence, the upper load limit in this scenario will take the value of total
processing time of all submitted jobs, which is 10.
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The best performance ratio has value 1 while an increase of the performance
ratio denotes a worse performance. Informally, a performance ratio 2 means that
either only 50% of the cores are utilized or only 50% of the submitted job load
is accepted. For Day 11, Fig. 4 shows the upper load limit of a data set and the
load accepted by various algorithms in relation to the total core number. The
vertical bars indicate the range of the results due to executing a simulation with
ten different input sets for each set of parameters, see Sect. 3. The size of these
bars show the small impact of a specific input set.
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Fig. 4. Total processed load for Threshold, Greedy Balanced, Greedy BestFit on Day
11 using target slack ε = 0.8 and deviation σ = ε/2.5. The upper load limit is also
displayed. The vertical bar at each experiment point denotes the range of the results
obtained by using the ten different data sets for each configuration of the parameters.

5 Result Representation

The number of active cores is our primary independent parameter since it rep-
resents the available power. Note that our simulation only produces discrete
values. We use the connecting lines to represent the trends between two neigh-
boring values. Our basic result representation displays the performance ratio
of different algorithms over the number of cores for a specific workload while
the other parameters (target slack and geometric deviation of the slack) remain
constant.

In order to show performance differences between two algorithms depending
on two parameters, we use the heat map concept. The second parameter stretches
along the vertical axis while the number of cores uses the horizontal axis. Then
we obtain a mesh of result values. We use colors to represent the performance
difference between two algorithms and apply linear interpolation to generate a
colored area.
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Fig. 5. Performance ratio of Threshold, Greedy Best Fit, and Greedy Balanced for Days
9, 11, and 18 using the same target slack ε = 0.5 and the same deviation σ = ε/2.5

6 Simulation Experiments

We have implemented the algorithms in Java and used Eclipse IDE 2019-12 for
the simulation. For each configuration of parameters, we execute our algorithms
with each of the ten generated data sets. Then we calculate the mean of the
results that we obtain for each algorithm. This mean is the final result and
depicted in the various representations. As already mentioned, we show the range
of the different results using a vertical bar in Fig. 4. Due to the small impact
of a specific input set, we omit these deviation ranges in further graphs that
represent algorithmic results.
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Fig. 6. Performance ratio against Greedy BestFit for geometric standard deviation σ
and number of cores on Day 11 using target slack ε = 0.8

We have conducted our experiments for all 29 d with the exception of
instances with a parallelism limit of 5000 cores (we have considered only Days
9, 11, and 18 for workloads which include jobs up to 5000 cores) and the time
consuming backfilling experiments (only for Day 11). Although the total load,
the number of jobs, and the relation between load and parallelism differ signif-
icantly among the various days of the workload, we obtain qualitatively similar
experimental results for the different days. We show this effect by displaying the
results of three different days for the same set of parameters. Figure 5 shows the
single-core workload with a medium target slack value ε = 0.5 and deviation
σ = ε/2.5 for the day with the largest number of single-core jobs (Day 18), the
day with the largest total load of single-core jobs (Day 9), and a day with an
average distribution (Day 11). Note that the large load of Day 9 produces a shift
of the peak on this day. Based on these results, we discuss the outcome of the
experiments using the simulations for a single day (Day 11). Further, we have
provided links to the complete results of our simulation in our repository2.

6.1 Single-Core Results

To eliminate the impact of idle time generated by job allocation, we first consider
only workloads with sequential jobs. First we address the impact of deviation
σ and discuss heat maps that display the difference of the performance ratio
between Greedy BestFit and Greedy Balanced depending on the geometric stan-
dard deviation (vertical) and the total number of cores (horizontal), see Fig. 6a
for target slack ε = 0.8 as an example. Heat maps for other target slack val-
ues look similar. Since the heat map shows vertical features stretching over the
whole range of the standard deviation, the standard deviation has no significant
impact on the performance difference between both algorithms. Therefore, we
ignore parameter σ for evaluating the algorithms.
2 https://github.com/nileshwar-ganesh/simulation-jsspp2022.

https://github.com/nileshwar-ganesh/simulation-jsspp2022
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Fig. 7. Performance ratios Threshold, Greedy Balanced, Greedy BestFit on Day 11

Figure 5 shows that Greedy BestFit generally outperforms Threshold and
Greedy Balanced. To determine the dependence of this result on the slack, we
compare the performance ratios of Threshold and Greedy BestFit since both
approaches use the same allocation method. We select a medium value σ = ε/2.5
and generate the heat map for the parameters target slack value ε and number
of cores, see Fig. 6b. The figure shows that Greedy BestFit clearly outperforms
Threshold for small slacks while both algorithms perform similarly for large
slacks. This result even holds for a single workload with very small slack ε = 0.01
and small deviation σ = ε/2.0, see Fig. 7a.

Therefore, we can state as a first result that for small slacks, greedy accep-
tance performs very well for practical workloads.

While Greedy BestFit and Greedy Balanced have almost the same perfor-
mance for small slacks, see Fig. 7a, Greedy BestFit has a better performance
ratio for larger target slack values and a certain range of cores, see Fig. 7b. Note
that the dependence on the number of cores is more pronounced in Fig. 7b than
in Fig. 6b. Both figures combined indicate that for an increasing target slack, the
performance ratio difference between Threshold and Greedy Balanced decreases.
Taking into account the BestFit allocation strategy of Threshold, this observa-
tion supports the claim that the acceptance part of the scheduling algorithm
plays a dominant role for small slacks while the allocation part becomes more
important for larger slacks. Figure 7b shows that the dominance of BestFit over
load balancing disappears for installations with many cores (low resource con-
tention) or for installations with very few cores (very high resource contention).
But since BestFit allocation is never worse than load balancing, it is useful to
generally prefer BestFit over load balancing.



42 G. K. Nileshwar and U. Schwiegelshohn

Fig. 8. Results with parallelism limit of 30 cores on Day 11 using σ = ε/2.5

Next, we discuss the total accepted load in relation to the number of cores.
Based on the result of Fig. 7b, we select ε = 0.8 and σ = ε/2.5, see Fig. 4. The
load gap constantly increases as long as the total number of cores determines
the upper load limit (until about 80 cores). Remember that a large number of
idle cores represents a low energy efficiency.

6.2 Multi-core Results

Typical workloads in large computer installations contain a large number of
parallel jobs. These parallel jobs are usually responsible for most of the system
load, see Fig. 2c in Sect. 3. When trying to allocate a rigid parallel request, we
may not always find sufficient cores that become idle at exactly the same time.
Therefore, we must delay the start of this request and produce some idle time
on some cores. Since this problem does not occur for single-core requests, we
consider a specific allocation method MinIdle that selects the allocation that
generates the minimum amount of this idle time. Our experiments show that
Greedy MinIdle is slightly better than Greedy BestFit for a parallelism limit of
30 cores, see, as an example, Fig. 8a that uses target slack ε = 0.5 and deviation
σ = ε/2.5. For 120 cores, the improvement is a bit larger, see Fig. 10b. However,
Greedy MinIdle generates these better results at the expense of a significantly
larger run time that further increases with the number of cores.

Since an extension of Threshold to a multi-core environment produces a
similar result to that of the single-core simulation, see Fig. 8a, we ignore the
Threshold approach for multi-core requests.

We extend our comparison between Greedy BestFit and Greedy Balanced
for single core jobs to instances with parallelism limits of 30 cores, 120 cores,
and 5000 cores, see Fig. 8b, 9a, and 9b, respectively. We observe that a workload
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Fig. 9. Performance ratio greedy balanced - Greedy BestFit for target slack value ε
and number of cores on Day 11, with deviation σ = ε/2.5

Fig. 10. Performance ratio of Greedy Best Fit and Greedy Balanced with and without
backfilling for Day 11, target slack ε = 0.5, and deviation σ = ε/2.5.

with a parallelism limit of 30 cores qualitatively behaves similar to the single-
core workload in Fig. 7c. Quantitatively, the difference in the performance ratio
is slightly less. For a parallelism limit of 120 cores, we must increase the core
range significantly and observe a qualitatively similar behavior but with again
less differences in the performance ratio. There are also some configurations for
which Greedy Balanced is slightly better than Greedy BestFit. For a parallelism
limit of 5000 cores, Greedy Balanced is almost always better than Greedy Best-
Fit. However, we must note that the large number of cores forces a sequential
execution of all highly parallel requests (almost 5000 cores) roughly dividing the
schedule into several layers. It is not surprising that load balancing is the best
approach for allocating requests within these layers.

The existence of enclosed periods of idleness in cores due to highly paral-
lel requests generally occurs in large computer installations. Most installations
use various forms of backfilling to exploit this idleness for other jobs. Since we
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must guarantee every previous allocation agreement, we must apply conserva-
tive backfilling that only allocates new requests if no allocation of an old request
is violated although conservative backfilling produces a significant management
overhead. In this study, we only want to determine whether conservative back-
filling has a different impact on Greedy BestFit and Greedy Balanced. Since the
time requirement of the simulation is very high, we only determine the impact
of backfilling for two configurations of Day 11. In both cases, we pick target
slack value ε = 0.5 and deviation σ = ε/2.5. In Fig. 10a, we set the parallelism
limit to 30 cores while it is 120 cores in Fig. 10b. We can see that the effect of
backfilling is more pronounced for 120 cores while it has only little impact for
30 cores. Since the larger parallelism limit generates more idle time, there are
more opportunities to find an earlier allocation for jobs with less parallelism.
Informally, this is the same reason that leads to the already stated superiority of
Greedy Balanced over Greedy BestFit for a parallelism limit of 5000 cores. For
a parallelism limit of 120 cores, Greedy BestFit with backfilling is clearly better
than Greedy MinIdle without backfilling.

7 Conclusion

In this study, we used simulation experiments whether a simple greedy accep-
tance approach is well suited for load maximization of workloads with job dead-
lines. We expect that AI training jobs and the dominance of renewable energy
sources will lead to such deadlines in future data centers. Our results show that
in practically relevant environments, greedy acceptance even outperforms other
algorithms with an almost optimal competitive ratio.

For jobs with little parallelism, the BestFit allocation strategy outperforms
load balancing thus confirming the theoretical worst case analysis. The allocation
strategy is particularly relevant if the jobs have more than just a very small
timing flexibility.

For jobs with more parallelism, we can further improve the energy efficiency
of data center by using some intermediate allocation approach that minimizes
the additional idle time of the allocation. Unfortunately, this approach requires
a significant computational overhead and may therefore not be suited for appli-
cation in practice.

Finally, the well known backfilling allocation may also be not suitable for
the load maximization problem. It also produces a better energy efficiency but
due to the need of conservative backfilling, again the computational overhead is
significant.

Altogether, our experiments show that we can exploit timing flexibility of
jobs with very simple job scheduling algorithms that also leaves some room for
additional modifications and extensions of the execution model.
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Abstract. The purpose of this work is to reduce the burden on system
administrators by virtually reproducing job scheduling and power man-
agement of their target systems and thereby helping them properly con-
figure the system parameters and policies. Specifically, this paper focuses
on a real computing system, named Supercomputer AOBA, as an exam-
ple to discuss the importance of accurately reproducing the behaviors of
job scheduling in the simulation. Since AOBA uses some special power
saving features that are not supported by any existing job scheduling
simulators, we have first implemented a component for a job scheduling
simulator to support the special features, and thus to build a“Digital
Twin" of AOBA’s job scheduler. By using the Digital Twin with actual
operation data, a system administrator can check if the system is effi-
ciently used in terms of computational performance and power efficiency.
This paper shows a use case of exploring appropriate scheduling and
power saving parameters. In the use case, we found that there are more
appropriate parameter configurations, which can reduce the job waiting
time by 70% at most and the energy consumption by 1.2% at most when
the system is busy. By exploiting such a Digital Twin, therefore, it is
demonstrated the feasibility that a system administrator can properly
adjust various parameters without disturbing the system operation.

Keywords: Job scheduling · Simulator · Power saving · HPC ·
Parameter survey

1 Introduction

In recent years, large amounts of computing resources have become required for
a diverse range of applications such as emerging Artificial Intelligence applica-
tions, and traditional numerical simulations in the High Performance Comput-
ing (HPC) field. As a result, the operation of a real-world HPC system with a
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large number of users is required to simultaneously satisfy various requirements
such as users’ satisfaction, system utilization, and power consumption. To meet
the requirements, a key component is a job scheduler, such as SLURM [26], LSF
[10], and Open PBS [21].

In general, job schedulers have many scheduling algorithms and functions to
increase users’ satisfaction and system utilization, and hence require the system
administrators to make various decisions usually in advance of system operation.
Typical examples are as follows.

– Backfill Scheduling
Backfill scheduling algorithms such as EASY backfilling [18] have been
studied extensively. A system administrator needs to properly decide
the algorithm, parameters and policy for efficient backfill scheduling
without knowing the statistical information about future job submis-
sions.

– Multi Queue Scheduling
Computing resources are virtually divided into several partitions, each
of which is associated with a different job queue. For example, A queue
can be created for jobs whose sizes are in a certain range. It is not
trivial to decide how much computing resources should be allocated
to each queue. When a queue is busy, a system administrator may
dynamically allocate more computing resource to the queue. However,
such a dynamic adjustment further complicates the resource allocation
problem.

– Power Saving Scheduling
Job schedulers can work together with power management mechanisms
that turn off some computing resources to reduce the power consump-
tion. However, power management always requires some overheads,
and there is a risk of degrading users’ satisfaction and system utiliza-
tion especially if it is inappropriately configured.

System administrators need to understand and use various functions of job
schedulers, to fully exploit their HPC systems. To properly configure a job sched-
uler, they need to analyze a large amount of data, such as user-submitted jobs,
node status, and utilization, and keep monitoring whether their HPC systems
are being operated efficiently. Moreover, even if they find that the system is
being inefficiently used, they cannot easily change the parameters and policies
of job scheduling because it is difficult to predict how the changes affect the sys-
tem operation efficiency, i.e., users’ satisfaction, system utilization, and power
consumption.

The purpose of this work is to reduce the burden on the system administrators
by building a Digital Twin of job scheduling and power management of an HPC
system. Our approach is to compare the simulated results of job scheduling
and power management to the observed ones on a real-world HPC system, and
improve the power-aware job scheduling simulator as the core of the Digital
Twin. By using the Digital Twin, system administrators can check if the system
operation efficiency is as expected. They can also estimate the system operation
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efficiency under different parameter configurations to find a better configuration.
Moreover, since the Digital Twin enables to estimate how parameter adjustment
will affect the system operation efficiency, it will also be helpful to automate
dynamic adjustment of parameters and policies so as to improve the system
operation efficiency.

In this paper, we focus on the AOBA system installed at Tohoku University
Cyberscience Center as an example of real-world HPC systems, and show the
feasibility of building its Digital Twin so as to discuss how such a Digital Twin
is helpful to improve the system operation efficiency. First, we describe the real-
world target HPC system and its operation. Then, we present extensions of
an existing job scheduling simulator to reproduce the behaviors of the AOBA
system. Finally, using the simulator, we perform a parameter survey to find
appropriate parameters that can maximize the system operation efficiency while
minimizing the power consumption of the AOBA system.

The main contributions of this paper are as follows:

– Showing the feasibility of implementing a commercial job scheduler
simulation by extending an existing simulator, SLURM Simulator.

– Discussing how helpful the accurate simulation of job scheduling and
power management, refereed to as a Digital Twin of HPC systems, is
for parameter survey to improve the operation efficiency of a real-world
HPC system.

2 Related Work

The most important part of the Digital Twin discussed in this paper is to fully
simulate the behavior of the HPC system’s job scheduler. Job scheduling simu-
lators have actively been developed, and typical examples of such simulators are
ALENA [11] and GridSim [27]. Among the examples, Batsim [5] is a simulator
suited for comparison among job scheduling algorithm. In general, HPC sys-
tem’s job scheduler has functions that could affect job scheduling, such as Burst
Buffer and heterogeneous jobs. Building a Digital Twin needs to simulate these
functions, and thus a simulator must be extended to support those functions.
More recently, SLURM Simulator [25], a job simulator that reproduces the job
scheduling of a real-world HPC system, has been introduced. SLURM Simulator
is designed based on SLURM [26], which is used in various systems registered
in the Top 500 list [29], and has functions to simulate job operations similar to
those in real systems, such as priority, partition (queue), and scheduling param-
eters. Using SLURM Simulator, it is also possible to estimate Quality of Service
(QoS) such as the average waiting time of jobs and system utilization with a
given parameter configuration. In addition, since the functions that affect job
scheduling are already supported by SLURM, SLRUM Simulator can implement
the functions more easily than other simulators.

Maiterth et al. [15] have reported that real-world HPC systems are operated
with Power Saving Scheduling. Although the power saving features of SLURM
can be simulated in SLURM Simulator, commercial job schedulers often provide
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some other advanced features that are not supported by the simulator. SLURM’s
Power Saving Scheduling is controlled mainly by two parameters. One is the idle
time until turning off a node, and the other is the number of nodes allowed
to start up per minute. On the other hand, other job schedulers could have
more parameters than SLURM. For example, a proprietary job scheduler named
NQSV [19] has an additional parameter that limits the number of times a node
could be turned off in a day to prevent frequent node starts. This could be
effective to alleviate the risk of hardware failures caused by frequently stopping
and starting a node. Moreover, NQSV is capable of scheduling jobs with con-
sidering the startup time of a stopped node. If there is a running job whose
remaining elapsed time is shorter than the startup time, NQSV does not start
up a stopped node and waits for the running job to end. As a result, it can
avoid from excessively starting up a stopped node. System administrators can
control such behaviors by adjusting NQSV’s configuration parameters, based on
the statistical behaviors of recent job requests.

There are many studies for reducing the operational burden of HPC systems.
Recently, scheduling algorithms [2,4,7,16,17,22,24,30] based on reinforcement
learning have been proposed. Fan et al. [7] proposed an automated HPC job
scheduling agent named DRAS (Deep Reinforcement Agent for Scheduling).
DRAS realized HPC job scheduling features such as resource reservation and
backfilling with a hierarchical neural network. DRAS performs 45% better than
the algorithm used in the conventional job scheduler. However, to the best of
our knowledge, there is no practical AI scheduler that can fully support Power
Saving Scheduling.

Several studies such as in [3,9,13,14,23] have discussed the optimization of
job scheduling parameters for maximizing QoS and system utilization. Pow-
ers [23] proposed a tool for exploring system scheduler parameters such as
scheduling intervals. Kondameedi et al. [13] presented that the waiting time
for jobs can be reduced by dynamically changing the queue settings. Chahal
et al. [3] introduced a simulation-based scheduling method for workflow jobs.
However, these studies focus only on Backfill Scheduling or Multi Queue Schedul-
ing, and not on Power Saving Scheduling.

In this work, we develop a simulator of Power Saving Scheduling on a real-
world HPC system, AOBA. Then, we survey scheduling parameters for Power
Saving Scheduling and Multi Queue Scheduling to improve the system operation
efficiency while reducing power consumption.

3 A Real-World HPC System and Its Operation

3.1 Overall System Configuration

In this paper, we show a case study of building a Digtal Twin of an HPC sys-
tem, taking the AOBA system [6] as a concrete example. Therefore, this section
describes the AOBA system and its operation.

AOBA is an HPC system consisting of two subsystems. One is a vector-type
computing system called AOBA-A, which consists of 72 nodes of SX-Aurora
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TSUBASA [12,20]. The other is a scalar computing system called AOBA-B. In
this paper, we target the job simulation of the AOBA-A system.

SX-Aurora TSUBASA is equipped with Vector Engines (VEs) for executing
user applications and Vector Hosts (VHs) for running OS and hosting VEs. A
collection of one or more VHs, VEs hosted by those VHs, and InfiniBand HCAs
is called a Vector Island (VI) [28]. In the case of the AOBA system, one VI has
one VH, eight VEs, and two InfiniBand HCAs. In this paper, a VI is referred to
as a node.

3.2 Queue Configurations

The AOBA-A system provides six job queues listed in Table 1. To maximize job
throughput, job queues are classified into two types. One is for jobs of using only
one VE, and the other is for jobs of using multiple VEs. A job submitted to the
free queue can run for one hour at a maximum. Users are supposed to select a
job queue, considering the expected job execution time and the job size, which
is defined by the number of VEs requested by the job. The system administra-
tor could manually reallocate the resources to each queue. In practice, when a
medium-sized job queue (sx_m in Table 1) is busy, the system administrator will
allocate more resources to that queue by reducing resources of other queues.

Table 1. Queue Configurations

Usage Type Queue name Number of VEs per job Allocated resources

Free sxf 1 VE 4 VHs
Paid use sx1 1 VE

sxmix_s 1 VE 58 VHs
sx_s 2-8 VEs (1 VH)
sx_m 9-64 VEs (2-8 VHs)
sx_l 65-256 VEs (9-32 VHs)

Reserved for
specific users

– – 10 VHs

Urgent – – 4 VHs or 24 VHs.
Shared with paid use queues

3.3 Job Scheduling and Parameters

The AOBA system uses a proprietary scheduler, NQSV [19], developed by NEC.
In this section, we describe the job scheduling and parameters.

Basic Job Scheduling. NQSV’s job scheduling adopts an extended algorithm
of EASY backfilling [18]. Based on the resource information (the number of
CPU cores, the number of VEs, estimated execution time, etc.) specified at
job submission, the algorithm determines where and when to execute each job.
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The nodes for executing a job are selected from the resources allocated to the
queue, to which the job has been submitted. NQSV has some advanced features
to improve system utilization, such as the feature of starting subsequent jobs
when a job finishes earlier than estimated. System administrators can adjust the
following parameters and options to control EASY backfilling (the descriptions
in () indicate the parameter values and options adopted in the AOBA system).

– Map Size: how far ahead in the future a job can be scheduled (one
month).

– Scheduling Interval: the interval at which job scheduling is per-
formed (30 s).

– Reordering Policy: a policy to determine the execution order of jobs in
a queue. The supported policies are First Come First Serve (FCFS),
Smallest Job First, Largest Job First, etc. (the FCFS policy).

– Resource Allocation Policy: a policy to determine how to allocate nodes
to jobs. There are two options; whether jobs are concentrated on as
few nodes as possible, or not (the concentration policy).

Multi Queue Scheduling. NQSV can virtually separate computing resources
by linking each queue with a particular set of resources. NQSV considers the
inter-queue priority and linked resources at job scheduling. Multi Queue Schedul-
ing can be tuned by mainly adjusting the following parameters and options.

– Allocated Resources: the resources on which jobs in the queue are
executed. In the case of the AOBA system, the resource allocation is
as described in Table 1.

– Queue Type: whether a job is urgent or not. An urgent job can be
executed as early as possible on the AOBA system [1].

NQSV also has some other advanced features such as limiting the number of
jobs in each queue that are being executed by one user at the same time.

Power Saving Scheduling. A node of the AOBA system can be in either of
two states, “active state” and “power-saving state.” A job can be assigned only to
nodes in the active state because the power supply to nodes in the power-saving
state is stopped for power saving. If no job is assigned to a node for a certain
period, the power supply to the node is stopped, and the node is transiting to
the power-saving state. The state transition takes a certain time period as the
overhead.

Power Saving Scheduling of NQSV has two functions. The first function is
to detect an idle node and change its state from active state to power-saving
state. The second function is to systematically schedule a job considering the
timing overhead of waking up a power-saving state node. Suppose that a job is
submitted and a node to be allocated is in the power-saving state. Then, NQSV
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Table 2. Configurable parameters for power saving

Item Description Setting value

Min idle time When the idle state continues for a certain
period of time, the node is shutdown

7200 s

Margin for stop host Time needed to stop a node 600 s
Margin for start host Time needed to start a node 1200 s
Dcoff limit Maximum number of times to stop nodes

per day
5

Min operation hosts Number of nodes that should always be
running

0

Estimated dcoff time If the execution start time of
a subsequent job is longer than this parame-
ter,
the node enters the power-saving state

3600 s

Fig. 1. Parameters of power saving scheduling.

can decide the execution start time of a job by estimating how long it takes
for the node to transit to the active state and thus become ready for the job
execution. Power Saving Scheduling can be tuned by adjusting the parameters
shown in Fig. 1 and Table 2.

4 Job Scheduling Simulation of a Real-World HPC
System

In this section, we first show an overview of the job scheduling simulator, which
is an extension of SLURM Simulator to accurately simulate job scheduling and
power management on a real-world HPC system, AOBA-A. Then, we describe
the implementation details of the simulator.



54 T. Ohmura et al.

4.1 Extended SLURM Simulator

SLURM is an extensible job scheduler by using plug-ins. The scheduler used in
SLURM Simulator can be replaced with a custom scheduler that uses the same
scheduling algorithm as NQSV for simulating AOBA-A’s job scheduling. Job
scheduling policies and features of SLURM and NQSV are significantly different.
For example, in SLURM, task based resources (i.e., the number of processors per
task) assigned to a job can be specified at its submission. On the other hand, in
NQSV, logical hosts which are a set of resources virtually divided into execution
hosts can be specified by users, i.e., the number of CPU cores per logical host.
Therefore, a SLURM plug-in needs to be developed with considering all the
differences.

In this work, we develop a SLURM plug-in named NQSV Plug-in, which
implements NQSV’s job scheduling algorithm, and also a translator to convert
the job and partition (queue) information of SLURM to those of NQSV and
vice versa. Examples of data conversion between SLURM and NQSV are shown
in Table 3. Job data for NQSV are converted from their corresponding data in
SLURM.

Table 3. Data conversion examples between SLURM and NQSV.

Definition in NQSV Corresponding data in SLURM

The number of CPU cores per logical host The number of processors per task

The number of logical hosts The number of tasks/the number of
processors per task

The number of Vector Engines per logical host The number of generic resources

The total number of CPU cores The number of sockets * the number
of cores per socket

4.2 Node State Control

SLURM manages the node operation state by a power management thread. At
a certain interval, the thread decides whether a node is turned on or off. On the
other hand, power management of NQSV works together with job scheduling
to determine when a node is turned on or off. Due to the differences above,
SLURM’s power management thread is not able to simulate the power manage-
ment of NQSV. Therefore, we develop Node State Simulator for SLURM Simu-
lator to implement the transition between the active and power-saving states in
NQSV. Node State Simulator can also consider the timing overheads for starting
and stopping a node due to the state transition. The extended SLURM Simulator
developed in this work is called AOBA-A Job Simulator, because it is developed
to be used as a Digital Twin of the AOBA-A system.

Figure 2 shows an overview of our simulator. “Simulator” in the SLURM
daemon (slurmctd) is a component provided by the original SLURM Simulator
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Fig. 2. Overview of AOBA-a job scheduler.

to manage time, nodes, partitions, and jobs of the simulation. Collaborating with
the Simulator component, AOBA-A Job Simulator works as follows.

1. Simulator retrieves jobs from Job Trace File, storing the job information.
2. When the scheduling interval is expired, Simulator calls Backfill Scheduling.
3. Translator in NQSV Plug-in converts the job information for SLURM to

that for NQSV.
4. Translator calls Scheduling Algorithm Library in NQSV Plug-in.
5. Scheduling Algorithm Library schedules each job by determining its execu-

tion start time and nodes which is equipped with VEs to be allocated for
the execution.

6. If an allocated node is in the power-saving state, the startup time of the
node is calculated, and the execution start time is delayed.

7. Scheduling Algorithm Library reports the execution start time and allocated
nodes to Translator.

8. Translator converts and sends the reported information to Simulator.
9. When the startup time of the sleeping node is expired, Node State Simulator

changes the node state to active.
10. Simulator starts each job at its execution start time.

The above steps are repeated to simulate the job scheduling with power man-
agement for the given job traces.

5 Simulation Accuracy of AOBA-A Job Simulator

In this section, we evaluate the accuracy of the job scheduling simulation with
AOBA-A Job Simulator described in Sect. 4. In the evaluation, the simulation is
performed using job traces, i.e., the information about actual jobs executed at the
AOBA-A system. Then, the simulation results are compared with the observed
job scheduling results. Initially, all the job queues are empty in the simulation.
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To start the simulation with the same initial condition as the job traces, we use
the data of 10,000 jobs observed right after the system maintenance period, in
which no job is submitted.

Fig. 3. Simulation with original job traces.

Figure 3 shows the simulation results. Figure 3(a) shows the histogram of dif-
ferences in start time between the observed and simulation results. The vertical
axis shows the frequency, and the horizontal axis shows the class of the difference
in starting time. A negative difference means that the job execution has been
delayed in the simulation. For example, the frequency of class “-1m” means the
number of jobs, for which the time difference between the observation and sim-
ulation is in between one second to one minute. We can see that about 60% of
the jobs are in the classes of “-1m,” “0,” and “1m.” Therefore, the simulator can
accurately simulate the majority of jobs recorded in the job traces. Figure 3(b)
shows the differences between the observed utilization ratio of VEs and the corre-
sponding simulated ratio. The vertical axis indicates the utilization ratio, which
is calculated by subtracting the simulation data from the original data, and the
horizontal axis shows the time sequence. We can see that there is no difference
in the VE utilization rate at first, and the difference gradually becomes visible
for the job scheduling on April 15 and later. In practice, the simulation results
are reasonably accurate except for some cases described below.

The current implementation of AOBA-A Job Simulator supports only the
core scheduling algorithm of NQSV, and does not support some features to
strictly simulate the AOBA-A system operation. One example of unsupported
features is that NQSV allows users to specify the execution start time at job
submission. Another example is the workflow support to guarantee that one job
is executed after another job. The difference in waiting time between observed
and simulated results becomes large for some jobs, and exceeds one day for about
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5% of jobs in Fig. 3(a). This is because the workflow management feature delayed
to start executing the job until the execution of its preceding job is finished. The
information about use of such unsupported features is not recorded in the job
traces. Therefore, we do not implement the features in AOBA-A Job Simulator
at present.

Fig. 4. Simulation with corrected job traces.

For considering the workflow management, job traces are modified. Specif-
ically, the submission time of a job is replaced with the execution start time
recorded in the job traces if the difference between the submission time and
the execution start time is longer than 12 h. The simulation results using the
corrected job trace are shown in Fig. 4. Comparing Fig. 3(a) and Fig. 4(a), the
frequencies of jobs with larger time differences are reduced. The frequency of
the “1d>” class decreased from 0.055 to 0 and the frequency of the “24h” class
decreased from 0.027 to 0.01. Similar results can be seen in Fig. 3 (b) and
Fig. 4 (b). Therefore, these results indicate that data correction under a simple
assumption allows the proposed simulator to simulate the job scheduling more
accurately, even though the workflow management information is not recorded
in the job traces.

In Fig. 4(b), there is a time period in which the differences between the
observed utilization ratio and the simulated one is -0.3%. This is due to the
execution of urgent jobs [1]. The urgent job suspends some running jobs with
a lower priority. However, both regular and urgent jobs are kept running in the
observed results. As a result, the utilization ratio appears to be large in the
observed job traces.

In Fig. 3(a), there are jobs whose simulation results are 10+ minutes faster
than the observed results. This is because another feature of NQSV is not sup-
ported by the proposed simulator. NQSV limits the number of concurrently
running jobs of each user to avoid the computing resource from being occupied
by specific users. The execution of some jobs of a user would be delayed at the
AOBA system if the user has submitted too many jobs. However, the proposed
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simulator does not support this feature, and excessively submitted jobs are not
delayed in the simulation. AOBA is a production system and thus job traces
include actual personal information. However, since it is not allowed to identify
individuals, user information in the job traces is anonymized, and thus we do
not implement the feature that needs to use each user’s activity. As a result,
there is the difference between the observation and simulation.

Although no hardware failure happened during the simulated period, it could
happen in practice. Currently, the proposed simulator does not consider any
hardware failures. Since the failure is recorded in the job traces, it would be
effective to make the simulation more accurate by simulating the failures in the
future.

All the results mentioned above demonstrate that AOBA-A Job Simulator
can reproduce the job scheduling results observed at the AOBA-A system. It
should be emphasized again that the AOBA-A system is in operation with the
power saving mechanism. Therefore, the evaluation results clearly demonstrate
that the proposed simulator can simulate not only the job scheduling but also
the power saving mechanism of a real-world HPC system. With the simulator, we
can explore the optimal configuration of scheduling and power saving parameters
as discussed in Sect. 6.

6 Survey of Scheduling and Power Saving Parameters

6.1 Parameter Settings and Job Submission Behaviors

Scheduling policies and parameters related to scheduling and power saving would
usually be decided at the system design. The same applies to the allocation of
resources to the job queues. When a queue is extremely busy, the system admin-
istrators may manually change the resource allocation to increase the resource
for the busy queue. However, changes in scheduling and power saving parameters
could have a significant impact on the QoS visible from users, and thus the sys-
tem administrators are generally conservative to change the parameters during
the system operation. Those parameters would empirically be configured based
on past operation experience, such as the job submission history, and thus the
parameter configuration is not necessarily optimal for the system. Therefore, a
parameter survey with an accurate job scheduling simulator is helpful to check
whether the current parameter configuration is appropriate for the system oper-
ation that could change dynamically. In this section, we describe a parameter
survey of scheduling and power saving parameters.

First, we describe the statistical analysis of job submissions observed in a
real-world system. Figure 5 shows the job submission times, elapsed times, and
sizes of jobs submitted to the AOBA-A system in April and May, 2021. The
vertical axis indicates the elapsed time of each job, the horizontal axis shows
the time sequence, and the circle size represents the number of VEs requested
by the job. Overall, more jobs were submitted and executed in the second half
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Fig. 5. Submission times, elapsed times and sizes of jobs.

of May. There is a trend that users are likely to submit short-running jobs to
the free queue in the daytime but not on holidays. In addition, some users keep
submitting jobs at a regular interval by probably running a job submission script,
and hence their jobs are constantly executed on the system regardless of the date
and time. Since a single parameter configuration cannot be optimal for all job
submission patterns, we explore an appropriate parameter configuration for each
pattern.

In this paper, the data in Fig. 5 are split into two, off period and busy period
data. The data from April to mid-May can be seen as the off period job sub-
mission data, while the data in late-May are the busy period ones. Since the
system is not so busy in the off period, some of compute nodes could be turned
off for power saving. With the off period job data, hence, we can discuss the
effect of power saving on the system operation efficiency by adjusting relevant
parameters in the simulation. On the other hand, with the busy period data, we
can discuss if the power saving mechanism has a negative effect on the system
operation efficiency when the system is keeping busy.

6.2 Parameter Survey of Job Scheduling in Off Period

Using the data of 10,000 jobs submitted from April 6 to May 17, we investigate
the effects of changing power saving parameters on the system operation effi-
ciency. The parameter configurations used in the evaluation are listed in Table 4.
In the table, Min Idle Time means the minimum idle time, and a node enters
the power-saving state if the node is idle for the minimum idle time. Dcoff limit
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means the maximum number of times for each node to enter the power-saving
state. Nodes and power supply units could be damaged by too frequently turn-
ing on and off the nodes, and thus the number of times for each node to enter
the power-saving state per day is limited at the AOBA system. Est. dcoff time
means the estimated DC off time, which is the minimum sleep time. If a node is
expected to be unused for the estimated DC off time or longer, the node enters
the power-saving state.

Table 4. Configurable settings for power saving

Parameter settings Power saving Min Idle Time(s) Dcoff limit Est. dcoff time(s)

AOBA On 7200 5/day 3600

A Off 7200 5/day 3600

B On 3600 5/day 3600

C On 10800 5/day 3600

D On 7200 200/day 3600

E On 7200 5/day 1800

F On 7200 5/day 7200

The power consumption of a node has been measured during the job execu-
tion, and is not equal to the value shown in the specification sheet of SX-Aurora
TSUBASA. Specifically, the power consumption of an idle node is about 600W,
while the power consumption reaches about 2100W when the node runs a well-
vectorized job. In addition, the startup time and shutdown time of a node are set
to be 60 s and 120 s, respectively. These values are decided based on the actual
measurement, instead of using not the scheduler parameters “Margin for start
host” and “Margin for stop host” in Table 2.

The simulation results with different parameter configurations are shown
in Fig. 6. The left vertical axis indicates the average waiting time of a job, the
right vertical axis indicates the total energy consumption, and the horizontal axis
shows parameter configurations. In the figure, the differences between AOBA and
Condition A shows the effects of enabling the power saving mechanism, mean-
ing that the mechanism can save about 11 MWh without increasing the average
waiting time. The results with Condition B show that if the minimum idle time is
decreased, the energy consumption is further reduced by 1.2 MWh, but the aver-
age waiting time becomes longer, degrading the system operation efficiency. The
results with Condition D show that increasing the maximum number of times for
each node to enter the power-saving state has no effect on the system operation
efficiency including the energy consumption. The results with Condition E show
that decreasing the minimum sleep time by 30min has no effect. On the other
hand, the results with Condition F show that increasing the minimum sleep time
by 1 h makes the average waiting time longer. This is because the nodes that
have a running single-node job and a multi-node job scheduled for subsequent
time periods can enter the power-saving state less frequently. The other jobs
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are scheduled before the multi-node job. If the single-node job finishes earlier
than estimated, the execution of the multi-node job is inhibited by the newly
scheduled jobs. Using these results, the system administrator can estimate the
effectiveness of the power saving function and decide to change the parameters
considering the variations of the energy consumption and the average waiting
time.
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Fig. 6. Results of off-period simulation. The bars indicate the average waiting time of
a job, and the line indicates the total energy consumption.

6.3 Parameter Survey of Job Scheduling in Busy Period

Fig. 7. Job pattern of May 28 to 29.

The job traces from May 28 to 29 are shown in Fig. 7. The meanings of the
vertical axis, the horizontal axis, and the circle size are the same as in Fig. 5.
The figure shows that various jobs were intensively submitted in the daytime
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on May 28. Another characteristic point is that small jobs are submitted to the
sx_s queue continuously the whole day. In addition, long-running jobs of small
and medium sizes were submitted on May 28.

Fig. 8. Transition of the numbers of running and waiting jobs, and the number of nodes
in each power state.

A submitted job can be in either of running or queued state, while a node can
be in either of active or power-saving state. The state changes of jobs and nodes
simulated with AOBA’s parameter configuration are shown in Fig. 8. The vertical
axis indicates the number of jobs or nodes in each state, and the horizontal
axis shows the time sequence. Due to the existence of long-running jobs, a large
number of small jobs are in the queued state and waiting for execution. Although
the number of queued jobs almost reaches 500 in Fig. 8(a), some of the nodes are
always in the power-saving state in Fig. 8(b). This is because resource allocation
is not appropriate for the situation. As shown in Table 1, four nodes are available
for jobs in the sxf and sx1 queues at the AOBA system, while 58 nodes are
allocated to queues of parallel jobs. Since many parallel job are submitted, all
the 58 nodes are in use on May 28. On the other hand, only short-running
jobs are submitted to sx1 and sxf, four nodes allocated for those queues could
sometimes be idle and in the power-saving state. There is room to improve the
utilization ratio by allocating those sleeping nodes to the queues, in which many
jobs are waiting.

Motivated by the above discussion, we improve the system operation effi-
ciency by adjusting the resource balance among queues as shown in Table 5. In
the table, “Move 2 nodes” means that two nodes out of four are moved from
sx1 and sxf to queues of parallel tasks in Table 1. “Share 2 nodes” means that
two nodes out of four are shared by all the queues, and the other two nodes
remain dedicated to sx1 and sxf. “Share all nodes” means that all the four nodes
originally allocated to sx1 and sxf are shared by all queues.
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Table 5. Resource Balancing in the Simulation

Item Description

(1) Move 2 nodes
(2) Move 3 nodes

Move 2 or 3 nodes of sx1 and sxf to sx_s, sx_m and sx_l queue

(3) Share 2 nodes
(4) Share 3 nodes

Share 2 or 3 nodes of sx1 and sxf to all queues

(5) Share all nodes Paid use queue and free queue uses all nodes
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Fig. 9. Results of busy-period simulation.

The results of scheduling parameter tuning are shown in Fig. 9. The left
vertical axis indicates the average waiting time of a job, the right vertical axis
indicates the energy consumption, and the horizontal axis shows the resource
allocation. The average waiting time decreases as the number of nodes increases
by moving nodes from the sx1 and sxf queues to the others. On the other hand,
the average waiting time increases if two or three nodes are shared by multiple
queues, worsening the system operation efficiency. The average waiting time is
minimized if all the nodes are shared by queues. In this simulation, we can see
that the average waiting time is significantly reduced with a little increase in
the energy consumption in 11Move 3 nodes” and “Share all nodes” cases. In
the following discussion, we focus on the “Move 3 nodes” case because system
administrators will likely avoid using “Share all nodes” to ensure the QoS of paid
use by limiting resources for the free queue.

Considering the results in Fig. 6, we simulate the job scheduling by chang-
ing the minimum idle time in the case, as shown in Fig. 10. The vertical and
horizontal axes are the same as those in Fig. 9. We can see that the energy
consumption is smaller than that with the minimum idle time of 7200 s. The
scheduling parameter tuning of the minimum idle time is possible even when the
resource balance is adjusted.

The status changes in jobs and nodes in the case with the minimum idle
time of 1800 s seconds are shown in Fig. 11. The vertical and horizontal axes
are the same as those in Fig. 8. In Fig. 11(a), the number of jobs in the queued
status is decreased compared to that in Fig. 8(a), indicating that this resource
allocation can start jobs earlier than that in the AOBA-A system. In Fig. 11(b),
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Fig. 10. Results of simulation when changing parameters and resource allocation.

Fig. 11. Status transition of jobs and nodes when resource balance and power saving
parameter is changed.

we can see that the number of nodes in the power-saving status has increased
compared to that in Fig. 8(b). Even in the busy period, the average waiting
time can be reduced from 2370 s to 678 s, while reducing the energy consump-
tion from 4.85 MWh to 4.80 MWh in comparison with the parameter settings
adopted by the AOBA-A system in Table 4. These results clearly indicate that
we are able to achieve better efficiency with less energy consumption than the
current parameter settings of the AOBA system in those two days if the resource
balance and parameter configurations can properly be adjusted. In this way, the
proposed simulator is helpful for system administrators to adjust the scheduling
and power saving parameter configuration to achieve better system operation
efficiency and/or less energy consumption. Furthermore, these results show the
effectiveness of a Digital Twin of a real-world HPC system because it predicts
daily, weekly, and monthly data and suggests suitable parameters to system
administrators.
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7 Conclusions

In this paper, we have first implemented a component for a job scheduling sim-
ulator to support the necessary features for building a “Digital Twin” of a real-
world HPC system, named AOBA. By using the Digital Twin with actual job
traces, a system administrator can check whether the system is being efficiently
operated as expected. Although we have implemented only the core algorithm
of NQSV, the simulation results are reasonably accurate except for some cases
such as hardware failures, and hence the proposed simulator is useful to explore
the optimal parameter configurations for individual situations.

This paper has shown a use case of exploring appropriate scheduling and
power saving parameters. In the use case, we found that there are more appro-
priate parameter configurations, which can reduce the job waiting time by 70%
at most and the energy consumption by 1.2% at most when the system is busy.
By exploiting such a Digital Twin, therefore, it is demonstrated the feasibility
that a system administrator can properly adjust various parameters without
disturbing the system operation.

Feitelson [8] has reported on the limitations of simulation with job traces. In
this paper, we assume that every node has the same performance at executing
a job. The execution time of a parallel job could be affected by the physical
placement of parallel tasks. In addition, since AOBA consists of a vector-type
computing system and a scalar computing system, a user can select one of those
two systems suited for each job. To build a “Digital twin” of a real-world HPC sys-
tem more accurately, we will model the execution time and power consumption
of individual jobs, and also predict user behaviors. Moreover, we will consider
how to identify underlying job patterns in a short period of time and find an
appropriate parameter configuration for the patterns by using machine learning.
These will be further discussed in our future work.
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Abstract. Reinforcement learning (RL) is exploited for cluster schedul-
ing in the field of high-performance computing (HPC). One of the key
challenges for RL driven scheduling is state representation for RL agent
(i.e., capturing essential features of dynamic scheduling environment for
decision making). Existing state encoding approaches either lack criti-
cal scheduling information or suffer from poor scalability. In this study,
we present SEM (Scalable and Efficient encoding Model) for general
RL driven scheduling in HPC. It captures system resource and waiting
job state, both being critical information for scheduling. It encodes these
pieces of information into a fixed-sized vector as an input to the agent. A
typical agent is built on deep neural network, and its training/inference
cost grows exponentially with the size of its input. Production HPC
systems contain a large number of computer nodes. As such, a direct
encoding of each of the system resources would lead to poor scalabil-
ity of the RL agent. SEM uses two techniques to transform the system
resource state into a small-sized vector, hence being capable of repre-
senting a large number of system resources in a vector of 100–200. Our
trace-based simulations demonstrate that compared to the existing state
encoding methods, SEM can achieve 9X training speedup and 6X infer-
ence speedup while maintaining comparable scheduling performance.

Keywords: Batch scheduling · Reinforcement learning · Scalability ·
High-performance computing

1 Introduction

Cluster scheduler, also known as batch scheduler, plays a very critical role in
high-performance computing (HPC). It is responsible for determining the order
in which jobs are executed on a HPC system. Heuristic approaches are typically
used for HPC cluster scheduling [8,22,26]. For instance, first come, first served
(FCFS) is a well-known scheduling policy deployed on production HPC systems
[22]. Backfilling is commonly used to enhance job scheduling by improving system
utilization, where subsequent jobs are moved ahead to utilize free resources [22].
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Recently, reinforcement learning (RL) is exploited to enhance cluster schedul-
ing in HPC. In RL driven scheduling, the agent is trained to learn a proper
scheduling policy according to a specific scheduling objective (e.g., reward) pro-
vided by system managers. Once trained, the agent can automatically inter-
act with the scheduling environment and dynamically adjust its policy as
workload changes. The application of reinforcement learning to the schedul-
ing problem has yielded a number of promising results for cluster scheduling
[10–12,14,19,20,23,25,30]. One of the key challenges for RL driven scheduling is
state representation (i.e., encoding) for RL agent. Encoding must be efficient and
scalable. An efficient encoding must capture critical system resource and waiting
job information. These pieces of information must be represented as a fixed-sized
input to the agent. RL agent is commonly built on deep neural network, and its
computational cost grows exponentially with the size of its input. Production
HPC systems typically contain a large number of computing resources. Hence,
a direct encoding of each of the system resources leads to poor scalability of the
RL agent. The training and inference time would increase drastically with the
system size growing.

Existing encoding approaches can be broadly classified as image-based or
vector-based. Image-based state representation uses a fixed-sized 2D image to rep-
resent waiting jobs and system resources: one dimension for resource availability
and the other dimension for time duration [10,11,14,19,25]. Image-based state
representation has two limitations. First, for HPC scheduling, although system
resource has a fixed size, time duration could be infinite as a job may take seconds
to days or even weeks to complete. As such, image-based state representation
cannot effectively address the wide range of or even infinite time duration issue.
Second, while image-based representation can capture resource requirement per
job, it lacks the encoding of job information such as job priority or job waiting
time [10,11,14,19,25]. In order to overcome the aforementioned issues of image-
based encoding, vector-based encoding is widely adopted [12,20,23,30], in which
the resource information and the job information are represented by vectors and
concatenated into a fixed-sized vector input to the agent. Unfortunately, existing
vector-based encoding methods suffer from two major shortcomings. First, prior
vector-based encoding methods are mainly designed for directed acyclic graph
(DAG) or malleable jobs, which are very different from rigid parallel jobs dom-
inating in HPC with fixed resource requirements [20,23]. Second, while several
vector-based encoding methods are presented for HPC scheduling [12,30], they
either miss essential resource information [30], or lead to a huge state space,
hence causing a scalability concern [12].

This work aims to tackle the aforementioned encoding problems. Specifically,
we present SEM, a new Scalable and Efficient state representation Model for
general RL driven scheduling in HPC. SEM adopts a vector-based encoding
approach. It is designed to be efficient as it encodes system resources and waiting
jobs, both being critical for efficient scheduling. It is also scalable such that it is
capable of representing the scheduling state of a large-scale system in a small-
sized vector (e.g., with 100–200 elements). RL agent typically uses deep neural
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network for decision making, and the computational cost of the neural work
grows exponentially with the input size. The significant reduction of input size
via SEM encoding means dramatic scaling improvement of the agent.

In SEM, each waiting job is encoded into a 4-element vector to capture its
state (i.e., job size, job estimated runtime, priority, and job waiting time). Rather
than encoding each system resource individually as a vector, SEM encodes the
system resources through the viewpoint of running jobs. We represent system
resources by a concatenated vector of the resources used by a fixed number of
running jobs. Resources used per running job is encoded as a 2-element vector
(i.e. job size, estimated remaining time). This design is based on a key obser-
vation, that is, the resources belonging to the same job have the same system
status (e.g., the same start and end time). Furthermore, parallel jobs occupying
multiple computing resources are common in HPC. Hence, the number of run-
ning jobs is significantly less than the amount of system resources. In order to
encode both system resources and waiting jobs into a small fixed-sized vector,
we develop two solutions, one for systems with minimum job size requirement
and the other for systems without such a requirement.

We compare SEM with existing encoding method under various configura-
tions by using trace-based, event-driven scheduling simulation. Experimental
results show that the use of SEM encoding can lead to a significant reduction in
RL agent training and inference (or testing) time while maintaining comparable
scheduling performance. Specifically, this paper makes three major contributions:

– We propose a novel encoding model for RL driven scheduler by leveraging
the fact that the resources belonging to the same running job have the same
system status and the number of running jobs is significantly less than the
amount of system resources in parallel computing.

– We develop two methods to address the challenge that a fixed-sized state
representation is required for RL agent even though the number of running
jobs dynamically changes in a realistic environment.

– Extensive trace-driven experiments show that compared to existing state
encoding models, our proposed method has a faster convergence speed. It
allows the RL agent to achieve 9X training speedup and 6X inference speedup
while maintaining comparable scheduling performance. Moreover, SEM can
scale well as the system size increases.

The remainder of this paper is organized as follows. We start by introducing
background and related work in Sect. 2. In Sect. 3, we describe SEM design. We
present workload trace, comparison method, experiment setup and evaluation
metrics in Sect. 4. The experimental results are presented in Sect. 5. Finally, we
conclude the paper in Sect. 6.

2 Background and Related Work

2.1 Cluster Scheduling

A cluster scheduler is responsible for allocating resources and for determining
the order in which jobs are executed on a HPC system. When submitting a
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job, a user is required to provide two pieces of information: number of compute
resources required for the job (i.e., job size) and job runtime estimate (i.e.,
walltime). The scheduler determines when and where to execute the job. The
jobs are stored and sorted in the waiting queue based on a site’s policy. Once a
new job is submitted, job scheduler sorts all the jobs in the waiting queue based
on a job prioritizing policy. A number of popular job prioritizing policies have
been proposed, and a widely used policy is FCFS [22], which sorts jobs in the
order of job arrivals.

In addition, backfilling is a commonly used approach to enhance job schedul-
ing by improving system utilization, where subsequent jobs are moved ahead to
utilize free resources. A widely used strategy is EASY backfilling which allows
short jobs to skip ahead under the condition that they do not delay the job at
the head of the queue [22].

2.2 Reinforcement Learning Driven Scheduling

Fig. 1. Overview of RL driven scheduling. In the state, each system resource is repre-
sented by a circle. The circles sharing the same color indicate these system resources are
allocated to the same running job; blank circles mean free/available system resources.

Reinforcement learning is an area of machine learning that is primarily focused
on dynamic decision making where an intelligent agent takes actions in an envi-
ronment with the goal of maximizing some reward [28]. The environment is
captured by its state information. When the agent performs an action, it will
be provided with the environment’s response to that action as feedback (i.e.,
reward) and be taken to another state within the environment. These feedback
and reward mechanisms allow the agent to learn, by trials and errors, how to
act in order to maximize its reward [17].

Pioneering studies have explored RL for cluster scheduling with encouraging
results [10–12,14,19,20,23,25,30]. In RL driven scheduling, the agent is trained
to learn a proper scheduling policy according to a specific scheduling objective
(e.g., reward) provided by system managers. Once trained, the agent can auto-
matically interact with the scheduling environment and dynamically adjust its
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policy as workload changes. Since the state space is typically enormous, memo-
rizing all states becomes infeasible. RL driven scheduling uses deep neural net-
work for approximation [21]. Figure 1 shows an overview of a typical RL driven
scheduling. At each step, state is observed and fed to the scheduling agent. The
agent provides job selection and receives the reward as the feedback. It is obvious
that state representation plays a critical role in RL driven scheduling.

2.3 Encoding Approaches

Fig. 2. Overview of existing state representation approaches.

Fig. 3. Analysis of training costs with growing system size when using the vector-based
encoding from the literature [12].

A key challenge of designing reinforcement learning driven scheduler is how to
represent a dynamic scheduling state. Existing state representation models can
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be broadly divided into two classes: image-based state representation [10,11,14,
19,25] and vector-based state representation [12,20,23,30].

Figure 2(a) illustrates image-based state representation. Image-based state
representation typically represents the waiting job information and resource
information by a fixed-sized 2D image: one dimension for resource availabil-
ity and the other dimension for time duration [10,11,14,19,25]. The images
for the first W waiting jobs are maintained for constraining the action space.
Image-based representation has limitations of limited time duration and lack
of the encoding of other critical job information as mentioned in Sect. 1
[10,11,14,19,25].

To overcome aforementioned issues, vector-based state representation meth-
ods are proposed [12,20,23,30]. Figure 2(b) illustrates vector-based state repre-
sentation. The waiting job information and resource information are represented
by vectors and concatenated into a fixed-sized vector as the input to the neu-
ral network. Specifically, the first W jobs in the waiting queue are encoded for
constraining the action space and each resource is also encoded as a vector. How-
ever, these proposed approaches still have their own limitations. In Decima and
DL2, all the jobs were DAG jobs and could be decomposed into malleable tasks,
whereas HPC was dominated by single rigid jobs that could not be decomposed
[20,23]. RLScheduler didn’t capture the allocated resource state information
in its state representation, hence missing essential resource information in the
model building [30]. DRAS overcame these issues; however, the state encoding
adopted in DRAS may lead to poor scalability [12]. DRAS used a vector to
capture each system resource (e.g, compute node). As a production system may
contain thousands of compute nodes, such an encoding results in an input vector
in the size of thousands of elements and consequently leads to nontrivial train-
ing cost. As an example, we examine the potential training time when applying
the vector-based state representation used in [12]. As shown in Fig. 3, the cost
exponentially increases with growing system size. The SEM model is designed
to address these encoding issues for RL driven scheduling.

3 SEM Design

SEM, shown in Fig. 4, is developed to provide a scalable and efficient state encod-
ing for general RL driven scheduling in HPC. It encodes waiting jobs and system
resources as vectors and concatenates them into a fixed-sized vector input to the
agent. The design of SEM is based on the two key observation: (1) the resources
belonging to the same job have the same system status and (2) the number of
running jobs is significantly less than the amount of system resources. Rather
than encoding each system resource individually as a vector, SEM encodes the
system resources through the viewpoint of running jobs. We represent system
resources by a concatenated vector of the resources used by a fixed number of
running jobs. Such a resource encoding can significantly reduce vector size.
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Fig. 4. SEM state representation. It captures system resources and user jobs as a fixed-
size input to the RL agent depicted in the general RL driven scheduling shown in Fig. 1.

We start by introducing the key observation through trace analysis in
Sect. 3.1. In Sect. 3.2, we present the encoding of waiting jobs. We describe the
resource encoding, including two methods to address the challenge that RL agent
requires a fixed-sized input whereas the number of running jobs dynamically
changes in a realistic environment, in Sect. 3.3. Finally, we analyze computa-
tional complexity of SEM in Sect. 3.4.

3.1 Observations

Table 1. Workload trace

Workload Site System size Period

Theta [7] Argonne 4,360 Jan.2018-Dec.2019

Mira [4] Argonne 49,152 Jan.2014-Dec.2014

Atlas [6] LLNL 9,216 Nov.2006-Jun.2007

DataStar [6] SDSC 1,664 Mar.2004-Apr.2005

For rigid jobs in HPC, the resources requested by the same job will be allocated
to start the job and released after job completion as a whole (i.e. the same start
and end time). Thus, the resources belonging to the same job have the same
system status.

To validate the assumption that the number of running jobs is much less
than the system size, we analyze a number of workload traces from production
supercomputers and four representative traces are presented in Table 1. Among
them, Mira and Theta represent the HPC systems that have a minimum job size
requirement, whereas Atlas and DataStar represent the systems without such a
job requirement. Note that for DataStar and Atlas, their resources are expressed
in the number of cores, hence the system size is set to the total number of cores
for these systems [13].
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We analyze these traces and present our data analysis in Fig. 5. It plots
the cumulative distribution function (CDF) of the number of running jobs. For
example, while Theta has 4,360 compute nodes for default queue, the number
of running jobs is no more than 32. Even for the larger system Mira with about
50K nodes, the number of running jobs is typically less than 50. In other words,
we observe that the number of running jobs is significantly less than the system
size on production supercomputers. Table 2 summarizes the maximum number of
running jobs for each trace. There are two reasons for this phenomenon. First,
a system is rarely fully occupied due to external and/or internal fragmentations
[24,29]. Second, parallel jobs using multiple system resources are common in
HPC systems. Many capability computing systems such as those deployed for
capability computing have a minimum job size requirement [1,3,5]. For instance,
the minimum job size on Theta is 128.

Fig. 5. The relationship between the number of running jobs and cumulative distribu-
tion function of trace period.

Table 2. Maximum number of running jobs

Workload System Size Maximum Number of Jobs

Theta 4,360 32

Mira 49,152 71

Atlas 9,216 90

DataStar 1,664 81

3.2 Encoding of Waiting Jobs

SEM adopts a vector-based state representation. It encodes the scheduling envi-
ronment by capturing the state of both waiting jobs and system resources. In
practice, the number of waiting jobs in job queue dynamically changes. When
scheduling the queued jobs, since the available system resources are limited, usu-
ally only front jobs have chance to be selected for execution. As the RL agent
requires a fixed-sized input, the first W jobs in the queue are encoded in previous
vector-based methods [12,30]. Take an example, we investigate the training cost
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of DRAS agent under different W values [12], and the results are shown in Fig. 6.
In order to perform such an analysis, we purposely adjust the job density in the
original trace to ensure there are sufficient waiting jobs in the queue. The results
show that the training time increase is negligible (within 1s). One key reason is
that compared to the system state, the waiting job representation accounts for
a smaller percentage.

In this work, we use the same window based design. We choose to encode
the first W jobs in the queue. For each waiting job, we encode it as a vector of
four elements: job size, job estimated runtime, priority (1 means high priority; 0
means low priority), and job waiting time (time elapsed since submission). Job
size is expressed by the percentage of system size.

Fig. 6. Training cost of DRAS agent [12] on Theta trace [7] when using different values
of W (a window of user jobs in the wait queue for decision making). One thousand
jobs are used for training.

In general, W can be chosen by the system administrator. For typical HPC
systems, W is set in the range of 10–100 [12,30].

3.3 Encoding of System Resources

SEM encodes the system resources through the viewpoint of running jobs rather
than encoding each system resource individually based on the key observations
in Sect. 3.1.

Specifically, we separate the system resources into two groups: the resources
occupied by running jobs, and the rest. For the former, SEM encodes them by
the viewpoint of the running jobs. For instance, if a job is executed on c compute
nodes, SEM encodes these c nodes by one vector: the group size (i.e., job size
normalized by the system size) and the remaining occupancy time (i.e., the time
difference between the job estimated end time and the current time). For the
latter, SEM does not encode it because it is a redundant feature (which can
be calculated by the system size minus the total allocated resources). Existing
research indicates that redundant features add no useful information for model
training [9]. By using such a resource encoding, SEM is capable of significantly
reducing the input size. For example, for the 4,360-node Theta, instead of having
an input of over 4K features, SEM only needs to encode dozens of features — a
reduction of two orders of magnitude.
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A remaining issue is how many running jobs K should be encoded for rep-
resenting the system state. RL agent requires a fixed-sized input whereas the
number of running jobs dynamically changes. To attack this issue, we propose
two methods. Note that production supercomputers can be broadly classified as
systems with minimum job size requirement and systems without such a require-
ment. For the former systems, we propose a method named zero-padding. More
specifically, we set K to the maximum number of running jobs which is calcu-
lated by dividing the system size over the minimum job size requirement. This
number reflects the maximum number of concurrent running jobs on the system.
For instance, Theta has 4,360 nodes for default queue and the minimum job size
requirement in default queue is 128 nodes. Hence the maximum number of run-
ning jobs is 34 (4,360/128) on Theta. When the number of existing running jobs
is less than K, we pad the rest of the vectors with zeros. Algorithm 1 shows the
pseudo code of this zero-padding algorithm.

Algorithm 1. The zero-padding method
1: procedure System Resources Encoding(K)
2: Read system state
3: R ← number of running jobs
4: Encode each running job as a vector
5: if R < K then
6: Pad the rest (K − R) vectors with zeros
7: end if
8: end procedure

For the systems without minimum job size requirement such as Atlas and
DataStar, the number of running jobs in practice is much less than the sys-
tem size as shown in Table 2. We propose K-largest-job method. In the fields of
natural language processing (NLP) and computer vision (CV), spatial pyramid
pooling [15] and K max pooling [18] are shown to preserve the important infor-
mation for variable size inputs. However, encoding for RL driven scheduling is
different from that in the problems in NLP and CV. In NLP and CV, we cannot
tell what information is important in advance. Fortunately, we can in RL driven
scheduling. With respect to resource allocation, a large-sized job weights more
than a small-sized job because the large-sized job requires a large amount of
the system resources. Hence, when the number of running jobs is greater than
K, SEM chooses to use the K largest jobs for encoding the system resources.
Algorithm 2 shows the pseudo code of K-largest-job algorithm. K can be chosen
by the administrator via experience or trace analysis.

To validate that the K-largest-job method can preserve system state with
negligible information loss, we examine the percentage of total node-hour loss
for each workload in Table 3. Node-hour is defined as the product of number of
nodes and time duration. For example, using one node for an hour is one node-
hour. Node-hour is a commonly used resource allocation unit at supercomputing
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Algorithm 2. The K-largest-job method
1: procedure System Resources Encoding(K)
2: Read system state
3: R ← number of running jobs
4: if R > K then
5: sort running jobs by job size
6: Encode the first K largest jobs as vectors
7: else
8: Encode each running job as a vector
9: Pad the rest (K − R) vectors with zeros

10: end if
11: end procedure

facilities [1,5]. The table shows the amount of node-hour losses by using different
K values. It clearly indicates that total node-hour loss percentage is extreme
trivial (within 1.3%), no matter when K is set to 30, 40 or 50 for both DataStar
and Atlas workloads.

Table 3. Information loss when using the K-largest-job method

Workload Information loss (node-hour loss %)

K = 30 K = 40 K = 50

DataStar 1.22% 0.36% 0.01%

Atlas 0.23% 0.03% 9e-05

In addition, we also expect to ensure that the K-largest-job method can cover
the majority of resources nearly all the time. Figure 7 shows the amounts of trace
period that is covered by using different K values. Two plots are presented here,
one for covering 90% of the allocated nodes and the other for 95%. When K is
set to 30, for DataStar, out of thirteen months, it covers 90% of the allocated
nodes for about 97% of the time and covers 95% of the allocated nodes for about
93% of the time. For Atlas, it covers 90% of the allocated nodes for about 99% of
the time and covers 95% of the allocated nodes for more than 98% of the time.
When K is set to 40, for DataStar, 90% of the allocated nodes are covered for
about 99% of the time and 95% of the allocated nodes are covered for about 97%
of the time. For Atlas, it can cover 95% of the allocated nodes for more than
99% of the time. When K is set to 50, for more than 99% of the time, 95% of
the allocated nodes are covered for DataStar. For 100% of the time, 95% of the
allocated nodes are covered for Atlas. This clearly demonstrates we can encode
K largest running jobs to represent the system state with negligible information
loss.
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(a) 90% of the allocated nodes (b) 95% of the allocated nodes

Fig. 7. Trace coverage by using different K values

3.4 Complexity Analysis

For the existing vector-based encoding such as [12], the input vector is O(W+N),
where W is the number of waiting jobs and N is the size of the system. When
adopting SEM, the input vector is reduced to O(W + K), where K is the num-
ber of running jobs used for representing the system resources. As discussed in
Sect. 3.1, K is greatly smaller than N . As shown in Fig. 1, the number of neu-
rons, hence the computational complexity of the agent, grow exponentially with
the input size [16]. As a result, a significantly reduced-size state representation
can lead to a great reduction of the corresponding RL model.

4 Evaluation

We describe how we evaluate our SEM design through extensive trace-based
simulation using real workload traces collected from several supercomputers,
and the results are listed in the next section.

4.1 Workload Trace

We implement SEM in the event driven scheduling simulator CQSim [2] and
use it in our evaluation. We use two workload traces, Theta and DataStar, for
evaluation. They are chosen to represent two HPC systems, where Theta stands
for the computing system with minimum job size of 128 nodes and DataStar
represents the computing system with no minimum job size requirement. All
experiments were conducted on a personal computer configured with Intel 2 GHz
quad-core CPU with 16 GB memory.
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For each trace, 60,000 jobs are used for training, 1,200 jobs for validation and
6,000 jobs for inference testing. During training, we monitor the convergence rate
by taking a snapshot of the model after each episode (each episode consists of
600 jobs, thus there are total 100 episodes). The unseen validation dataset (1,200
jobs) is used for evaluating the trained model. Finally, an unseen set of 6,000
jobs is used for testing the RL agent and the results are shown in Sect. 5.

4.2 Comparison Methods

Several RL methods are presented for cluster scheduling such as deep Q-network
(DQN), policy gradient (PG) [21,27]. SEM changes the state encoding, and
can be used with any RL method. In this study, we compare SEM with the
vector-based encoding deployed in DRAS [12] when adopting the policy gradi-
ent method. Note that in the original DRAS state encoding, each system resource
(i.e., compute node) is captured by a 2-element vector and the entire state encod-
ing grows linearly with the system size. In the rest of the paper, we use SEM
to denote the new state encoding presented in this work and DRAS to denote a
general vector-based state encoding.

Table 4. RL agent configurations under SEM and DRAS

Configuration Theta DataStar

SEM DRAS SEM DRAS

State vector size 268 8,920 280 3,528

Convolutional layer 134 4,460 140 1,764

Fully connected layer 1 200 4,000 200 1,000

Fully connected layer 2 100 1,000 100 250

Output 50 50 50 50

4.3 Experiment Setup

For Theta, DRAS encodes the scheduling state in a 8,920-element vector where
the 4,360-node machine is captured by 8,720 elements and the rest captures a
window of W (=50) waiting jobs. When using SEM, K is set to 34 which is
determined by the system size divided by the minimum job size requirement
(i.e., 4,360/128). SEM uses the same sized window for waiting jobs. Following
the reward deployed in DRAS [12], the reward is set to w1 × ti

tmax
+ w2 × ni

N +
w3 × Nused

N , where ti denotes the average wait time of selected jobs; tmax is the
maximum wait time of jobs in the queue. Similarly, ni is the average job size
of the selected jobs; N is the total number of nodes in the system; Nused is
the number of occupied nodes. This reward function intends to balance three
factors: to prevent job starvation, to promote capability (large) jobs, and to
improve system utilization. The weights are equally set to 1/3.
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For DataStar, DRAS encodes the scheduling state in a 3,528-element vec-
tor where the 1,664-node machine is captured by 3,328 elements and the rest
captures a window of W (=50) waiting jobs. When using SEM, K is set to 40
according to the trace analysis in Fig. 7. SEM uses the same sized window for
waiting jobs. The reward is set to

∑
j∈J −1/tj [19], where J is the set of jobs

currently in the system, tj is the (ideal) duration of the job. This reward function
aims to minimize the average job slowdown.

The details of SEM and DRAS neural networks for Theta and DataStar are
listed in Table 4. For instance, on Theta, when using SEM, we use a convolu-
tional layer with 134 neurons and two fully-connected layers with 200 and 100
neurons respectively. The output layer contains 50 neurons representing jobs in
the window. When using the existing vector encoding [12], we use a convolu-
tion layer with 4,460 neurons, two fully-connected layers with 4,000 and 1,000
neurons respectively. The output layer contains 50 neurons representing waiting
jobs in the window.

4.4 Evaluation Metrics

When evaluating different encoding methods, we use three quantitative metrics:
(1) agent convergence rate, (2) agent training/inference time, and (3) scheduling
performance.

Following the common practice, we use the following metrics to quantify
scheduling performance. Node utilization measures the ratio of the used node-
hours for useful job execution to the elapsed node-hours. Job wait time measures
the interval between job submission to job start time. We analyze both average
job wait time and maximum job wait time. Job slowdown denotes the ratio of
the job response time (job runtime plus wait time) to its actual runtime. It is
used to gauge the responsiveness of a system.

5 Results

In this section, we present the experimental results of comparing SEM with
DRAS. Our analysis centers upon four questions:

1) Does SEM lead to a faster convergence rate for training RL agent? (Sect. 5.1)
2) Does SEM lead to comparable scheduling performance? (Sect. 5.2)
3) How much are RL agent training and inference costs when adopting SEM?

(Sect. 5.3)
4) How scalable is SEM-enabled RL driven scheduling? (Sect. 5.4)

5.1 Convergence Rate

Convergence rate reflects how fast the scheduling agent can converge. We monitor
the progress of the training by taking a snapshot of the model after each episode.
We validate the trained SEM and DRAS enabled agent with an unseen validation
dataset.
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Figure 8 compares the convergence rates of the scheduling agents by using
SEM and DRAS state representations separately. For Theta, SEM converges
after 60 episodes while DRAS converges after 86 episodes. For DataStar, SEM
converges after 53 episodes whereas DRAS converges after 74 episodes. It is clear
that SEM leads to a faster convergence rate than DRAS. As shown in Table 4,
SEM results in a much smaller sized neural network and consequently leads to
faster convergence.

(a) Theta (b) DataStar

Fig. 8. Convergence rate of RL agent using different state encodings.

5.2 Scheduling Performance

Figure 9 presents the overall scheduling performance obtained by SEM and
DRAS state representations with Kiviat graphs. We use node utilization, the
reciprocal of average job wait time, the reciprocal of maximum job wait time
and the reciprocal of average slowdown in the plots. All metrics are normal-
ized within the range of 1. 1 means a method achieves the best performance
among all methods. For all metrics, the larger the area is, the better the overall
performance is.

We observe that the Kiviat graphs of SEM and DRAS almost overlap both
on Theta and DataStar. On Theta, SEM performs slightly better than DRAS
in utilization, maximum job wait time, average job wait time while DRAS per-
forms a little better in average job slowdown. The difference of all these metrics
are within 4%. On DataStar, SEM achieves a better performance than DRAS
in utilization, average slowdown, average wait time whereas DRAS achieves a
smaller maximum job wait time. The difference of all these metrics are within
6%. The results demonstrate that SEM can achieve comparable scheduling per-
formance compared with DRAS and SEM can capture all the necessary system
state information.
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Fig. 9. Scheduling performance by using different state encodings. The plots use Kiviat
graphs to provide a comprehensive view of scheduling performance. The larger the area
is, the better the overall performance is. It indicates that SEM can achieve comparable
scheduling performance as those obtained by the existing state encoding.
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5.3 Training and Inference Speedup

Fig. 10. Comparison of training and inference times.

In this subsection, we evaluate the training and inference time costs of RL agent
by using different state encodings. The training time is the time cost of training
60,000 jobs and the inference time is the time cost of testing 6,000 jobs.

Figure 10 shows the training and inference time comparison between SEM
and DRAS. The training and inference time of SEM is much less than that of
DRAS. Compared to DataStar, SEM can achieve a larger training and inference
speedup on Theta since Theta has a larger system size. The training and infer-
ence speedup can be up to 9X and 6X separately. This clearly shows SEM has
a much faster training and inference speed than DRAS.

5.4 Scalability Analysis

As described in Sect. 2.3, existing vector-based encoding captures system
resources individually. Since production supercomputers may contain a large
number of resources to meet the ever-increasing demand of workloads, the use
of existing vector-based encoding may lead to a neural network with millions or
even billions of parameters. In contrast, SEM captures system state through a
viewpoint of running jobs and is capable of capturing environment state using
a fixed-sized vector of dozens of elements. Such a significant reduction of input
size via SEM encoding means dramatic scaling improvement of the agent.

In this set of experiments, we examine training and inference time when
increasing system size by using SEM and DRAS state encodings. The results
are presented in Fig. 11. In this figure, system size is increased from 4,360 to
34,880. As system size increases, number of jobs and vector input also grow
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(a) Training time (b) Inference time

Fig. 11. Analysis of training and inference times when system size increases. One
thousand jobs are used for training and inference testing separately.

proportionally in this experiment. The plots show that the training and inference
time of SEM increases very slowly while the training and inference time of DRAS
increases drastically with the system size increasing. When the system size is set
to 34,880, the use of existing vector-based encoding leads to a training cost of
over 8,000 s, whereas SEM results in a training cost of only 7 s. This means over
1000X improvement compared to DRAS state encoding.

6 Conclusions

Reinforcement learning driven scheduling is a promising approach for cluster
scheduling. Prior RL driven scheduling studies mainly focus on exploiting dif-
ferent RL methods with little attention to state representation. Existing state
representation approaches either lack sufficient scheduling information or suf-
fer from poor scalability. In this work, we have presented a new and generic
state representation called SEM for general RL driven scheduling. SEM cap-
tures the state of scheduling environment in a fixed-sized vector. It is efficient
as it captures both waiting jobs and system resources for scheduling environ-
ment. It is also scalable as it utilizes a new method to capture system state
through a viewpoint of running jobs. In this study, two methods are presented
to encode scheduling environment into a fixed-sized vector, i.e., zero-padding
and K-largest-job. Experimental results show that SEM can lead to a faster con-
vergence speed, up to 9X training/inference time reduction, and high scalability
as compared to the existing encoding methods.

The proposed SEM encoding is generally applicable to a variety of RL driven
scheduling methods that use deep neural network for decision making. In this
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study, we focus on single type of resource encoding. Part of our future work is
to expand SEM for multi-resource scheduling.

Acknowledgement. This work is supported in part by US National Science Founda-
tion grants CCF-2109316, CNS-1717763, and CCF-2119294. This research used data
generated from resources of the Argonne Leadership Computing Facility, which is a
DOE Office of Science User Facility supported under contract DE-AC02-06CH11357.

References

1. Argonne Leadership Computing Facility (ALCF). https://www.alcf.anl.gov
2. Cqsim. https://github.com/SPEAR-IIT/CQSim
3. Lawrence Livermore National Laboratory. https://www.llnl.gov/
4. Mira. https://www.alcf.anl.gov/alcf-resources/mira
5. Oak Ridge Leadership Computing Facility (OLCF). https://www.olcf.ornl.gov/
6. PWA. https://www.cs.huji.ac.il/labs/parallel/workload/
7. Theta. https://www.alcf.anl.gov/theta
8. Allcock, W., Rich, P., Fan, Y., Lan, Z.: Experience and practice of batch schedul-

ing on leadership supercomputers at argonne. In: Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), IEEE (2017)

9. Appice, A., Ceci, M., Rawles, S., Flach, P.: Redundant feature elimination for
multi-class problems. In: Proceedings of the 21st International Conference on
Machine Learning, p. 5 (2004)

10. Baheri, B., Guan, Q.: Mars: multi-scalable actor-critic reinforcement learning
scheduler. arXiv preprint arXiv:2005.01584 (2020)

11. Domeniconi, G., Lee, E.K., Venkataswamy, V., Dola, S.: Cush: cognitive sched-
uler for heterogeneous high performance computing system. In: DRL4KDD 19:
Workshop on Deep Reinforcement Learning for Knowledge Discover, vol. 7 (2019)

12. Fan, Y., Lan, Z., Childers, T., Rich, P., Allcock, W., Papka, M.E.: Deep rein-
forcement agent for scheduling in HPC. In: Proceedings of the 35th International
Parallel and Distributed Processing Symposium, IEEE (2021)

13. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel work-
loads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

14. de Freitas Cunha, R.L., Chaimowicz, L.: Towards a common environment for learn-
ing scheduling algorithms. In: 2020 28th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS). pp. 1–8. IEEE (2020)

15. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9),
1904–1916 (2015)

16. Heaton, J.: Introduction to neural networks with Java. Heaton Research, Inc.
(2008)

17. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.
Artif. Intell. Res. 4, 237–285 (1996)

18. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

19. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics
in Networks (2016)

https://www.alcf.anl.gov
https://github.com/SPEAR-IIT/CQSim
https://www.llnl.gov/
https://www.alcf.anl.gov/alcf-resources/mira
https://www.olcf.ornl.gov/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.alcf.anl.gov/theta
http://arxiv.org/abs/2005.01584
http://arxiv.org/abs/1404.2188


Encoding for Reinforcement Learning Driven Scheduling 87

20. Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., Alizadeh, M.: Learn-
ing scheduling algorithms for data processing clusters. In: Proceedings of the ACM
Special Interest Group on Data Communication, pp. 270–288 (2019)

21. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

22. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

23. Peng, Y., Bao, Y., Chen, Y., Wu, C., Meng, C., Lin, W.: Dl2: a deep learning-
driven scheduler for deep learning clusters. IEEE Trans. Parallel Distrib. Syst.
32(8), 1947–1960 (2021)

24. Pinto, F.A.P., de Moura, L.G.L., Barroso, G.C., Aguilar, M.M.F.: Algorithms
scheduling with migration strategies for reducing fragmentation in distributed sys-
tems. IEEE Lat. Am. Trans. 13(3), 762–768 (2015)

25. Ryu, B., An, A., Rashidi, Z., Liu, J., Hu, Y.: Towards topology aware pre-emptive
job scheduling with deep reinforcement learning. In: Proceedings of the 30th
Annual International Conference on Computer Science and Software Engineering,
pp. 83–92 (2020)

26. Shahzad, B., Afzal, M.T.: Optimized solution to shortest job first by eliminat-
ing the starvation. In: The 6th Jordanian International Electrical and Electronics
Engineering Conference (JIEEEC 2006), Jordan (2006)

27. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Determin-
istic policy gradient algorithms. In: International Conference on Machine Learning,
pp. 387–395 PMLR (2014)

28. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT press
(2018)

29. Tang, W., Lan, Z., Desai, N., Buettner, D., Yu, Y.: Reducing fragmentation on
torus-connected supercomputers. In: 2011 IEEE International Parallel Distributed
Processing Symposium, pp. 828–839 IEEE (2011)

30. Zhang, D., Dai, D., He, Y., Bao, F.S., Xie, B.: RLScheduler: an automated
HPC batch job scheduler using reinforcement learning. In: SC’20: International
Conference for High Performance Computing, Networking, Storage and Analysis,
IEEE/ACM (2020)

http://arxiv.org/abs/1312.5602


RADICAL-Pilot and PMIx/PRRTE:
Executing Heterogeneous Workloads
at Large Scale on Partitioned HPC

Resources

Mikhail Titov1(B) , Matteo Turilli1,2 , Andre Merzky2 ,
Thomas Naughton3 , Wael Elwasif3 , and Shantenu Jha1,2

1 Brookhaven National Laboratory, Upton, NY 11973, USA
{titov,mturilli,shantenu}@bnl.gov

2 Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
andre@merzky.net

3 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
{naughtont,elwasifwr}@ornl.gov

Abstract. Execution of heterogeneous workflows on high-performance
computing (HPC) platforms present unprecedented resource manage-
ment and execution coordination challenges for runtime systems. Task
heterogeneity increases the complexity of resource and execution man-
agement, limiting the scalability and efficiency of workflow execution.
Resource partitioning and distribution of tasks execution over portioned
resources promises to address those problems but we lack an experi-
mental evaluation of its performance at scale. This paper provides a
performance evaluation of the Process Management Interface for Exas-
cale (PMIx) and its reference implementation PRRTE on the leadership-
class HPC platform Summit, when integrated into a pilot-based run-
time system called RADICAL-Pilot. We partition resources across mul-
tiple PRRTE Distributed Virtual Machine (DVM) environments, respon-
sible for launching tasks via the PMIx interface. We experimentally
measure the workload execution performance in terms of task schedul-
ing/launching rate and distribution of DVM task placement times,
DVM startup and termination overheads on the Summit leadership-class
HPC platform. Integrated solution with PMIx/PRRTE enables using an
abstracted, standardized set of interfaces for orchestrating the launch
process, dynamic process management and monitoring capabilities. It
extends scaling capabilities allowing to overcome a limitation of other
launching mechanisms (e.g., JSM/LSF). Explored different DVM setup
configurations provide insights on DVM performance and a layout to
leverage it. Our experimental results show that heterogeneous workload
of 65,500 tasks on 2048 nodes, and partitioned across 32 DVMs, runs
steady with resource utilization not lower than 52%. While having less
concurrently executed tasks resource utilization is able to reach up to
85%, based on results of heterogeneous workload of 8200 tasks on 256
nodes and 2 DVMs.
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1 Introduction

Workflows are increasingly necessary for scientific discovery, and represent a fast
growing class of applications [11] that require efficient and effective scalability
on computing resources. Workflow-based applications are increasing in number,
are often diverse and highly complex. This trend is driven by the coupling of tra-
ditional high performance computing (HPC) with new simulation, analysis, and
data science approaches. Several workflows of the Exascale Computing Project,
the winners and contestants of the special Gordon Bell Prize for COVID-19
research of the last two years, and of multiple INCITE awards exemplify this
new reality [14,15,34]: a heterogeneous combination of applications, machine
learning models, and “glue” code, running on heterogeneous computers, orches-
trated by a scalable workflow system.

Executing workflows on leadership-class HPC platforms at scale poses
unprecedented challenges in terms of capability and performance requirements.
Departing from traditional monolithic MPI applications, modern workflows
applications require executing tens of thousand heterogeneous tasks on heteroge-
neous computing supports. Tasks may have different for runtime and I/O prop-
erties, execute on CPU and/or GPU, utilize MPI across few or large amount of
nodes, and run as standalone executables, functions written in diverse languages
or services exposing dedicated interfaces. Workflow applications require middle-
ware capable of prioritizing, scheduling, placing and launching heterogeneous
workflow tasks across entire HPC platforms while maintaining high resource
utilization and low management overheads.

Addressing those challenges requires the development of new middleware
components specifically designed for modern HPC platforms. Among these, pilot
systems have played a major role in enabling the execution of many tasks appli-
cations on HPC resources. By decoupling resource acquisition performance via
a single job submission to the HPC platform’s batch system, and task schedul-
ing performed via a dedicated scheduler on the acquired resources, pilot systems
have made possible to execute hundreds of thousand tasks on resources otherwise
designed to execute a single large job. Pilot systems are relying on lower-level
middleware to place and launch those tasks across the nodes of the HPC plat-
forms. Often, that middleware is not designed specifically for high-throughput
task launching and poses bottlenecks both in terms of performance and reliabil-
ity. The Process Management Interface for Exascale (PMIx), focused on support
exascale environments, provides abstracted and standardized interfaces used as
building blocks for the implementation of distributed asynchronous runtimes.
PMIx-based Reference RunTime Environment (PRRTE) is a corresponding ref-
erence implementation with capabilities to launch and monitor MPI jobs.

In this paper, we offer a performance evaluation of PMIx/PRRTE when used to
execute up to 65,600 heterogeneous tasks on up to 2048 compute nodes of Summit,
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the leadership class HPC platform hosted at the Oak Ridge National Laboratory.
We couple our pilot system—RADICAL-Pilot—with PMIx/PRRTE to enable
task scheduling, placement and launching. We confirm that RADICAL-Pilot and
PMIx/PRRTE can be efficiently and effectively coupled, without introducing
mutual bottlenecks. Further, while PMIx/PRRTE was not originally designed to
support this use case, we show its ability to scale the provided workload, reaching a
peak of concurrently executed tasks up to 25K with resource utilization not lower
than 52%. Having workload with smaller number of concurrently executed tasks
allows reaching a peak of resource utilization up to 85%.

Our analysis focuses on resource partitioning via multiple PRRTE Dis-
tributed Virtual Machines (DVMs). Resource partitioning is fundamental for
scalability as the overheads of task placement and launching grows with the
number of managed resources per DVM. Without partitioning, the cost of book-
keeping and concurrent communication becomes dominant at petascale [31] and
unpractical at the upcoming exascale. By utilizing multiple DVMs, we partition
the costs of task placement and launching across multiple concurrent and inde-
pendent processes, limiting the impact of global overheads. While this approach
is generally considered promising, we are still missing a detailed performance
analysis on a production leadership class machine and with realistic workload
parameters. This paper fills this gap.

In the next section we introduce PMIx, PRRTE, DVM and RADICAL-Pilot,
detailing their architectures and integration, and explain how they support the
execution of heterogeneous tasks on Summit. In Sect. 3 we review related work,
outlining the gaps that this paper address in the current state of the art. In Sect.
4 we describe our experimental design and setup, show how we have parame-
terized our workloads to be consistent with the workflow applications that are
currently supported on Summit, and discuss the results of our performance eval-
uation across diverse scales and configurations. Finally, in Sect. 5 we summarize
the contributions of this paper and suggest some future lines of research sup-
ported by our results.

2 Background

2.1 Process Management Interface for Exascale

The Process Management Interface for Exascale (PMIx) [5] is an open source
standard that extends the prior PMI v1 & v2 interfaces used to launch tasks
on compute resources. PMIx provides a method for tools and applications to
interact with system-level resource managers and process launch mechanisms.
PMIx provides a bridge between such clients and underlying execution services,
e.g., process launch, signaling, event notification. The clients communicate with
PMIx enabled servers, which may support different versions of the standard.
PMIx can also be used as a coordination and resource discovery mechanism for,
e.g., machine topology information. An implementation of the PMIx standard
is provided by the OpenPMIx project [4] as a software library that contains the
programming interfaces needed to use the standard. The OpenPMIx project also
provides a reference implementation of a PMIx enabled runtime: PRRTE.
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2.2 PMIx Reference RunTime Environment

A reference implementation of the PMIx server-side capabilities is available via
the PMIx Reference RunTime Environment (PRRTE) [16]. PRRTE leverages the
modular component architecture (MCA) that was developed for Open MPI [19],
which enables execution time customization of its runtime capabilities. The
PRRTE implementation provides a portable runtime layer that users can lever-
age to launch a PMIx server.

PRRTE includes a persistent Distributed Virtual Machine (DVM), which
uses system-native launch mechanisms to bootstrap an overlay runtime environ-
ment that can then be used to launch tasks via the PMIx interface. This removes
the need to bootstrap the runtime layer on each individual task launch. Instead,
after the launch of the DVM, a tool connects and sends a request to start a task.
The task is processed and then generates a launch message that is sent to the
PRRTE daemons. These daemons then launch the task. Internally, this task is
referred to as a PRRTE job, not to be confused with the batch job managed
by the system-wide scheduler. The stages of each PRRTE job are tracked from
initialization through completion. DVM is teared down after the user session is
completed.

The lifetime of a PRRTE job could be roughly divided into the following
stages (marked by internal PRRTE state change events): (i) from init complete
to pending app launch—time to setup the task and prepare launch details; (ii)
from sending launch msg to running—time to send the process launch request
to PRRTE daemons and to enact them on the target nodes; and (iii) from
running to notify complete—duration of the application’s execution plus time
to collect task completion notification. First two stages are usually combined
into a generalized metric and we will refer to it as a task setup time, i.e., the
time between when the PRRTE job has started and when the job’s application
payload starts running.

In our experiments, we use multiple DVMs (i.e., multi-DVM) to partition
available resources for heterogeneous task execution, measuring task setup time,
DVM startup and termination times, and overall resource utilization. Together,
our experiments allow to understand how to configure PRRTE and DVMs to
support the execution of workloads with heterogeneous tasks at scale on Summit.

2.3 RADICAL-Pilot

RADICAL-Pilot (RP) [23] is a runtime system designed to decouple resource
acquisition from task execution. As every pilot system, RP acquires resources by
submitting a batch job, then bootstraps dedicated software components on those
resources to schedule, place and launch application tasks, independent from the
machine batch system [32]. Scheduling, placing and launching capabilities are
specific to each HPC platform, which makes supporting diverse platforms with
the same code base challenging. RP can execute single or multi core/GPU tasks
within a single compute node, or across multiple nodes. RP isolates the execu-
tion of each tasks into a dedicated process, enabling concurrent and sequential
execution of heterogeneous tasks by design.
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Fig. 1. Deployment of RP on Summit with PRRTE/DVM.

RP is a distributed system designed to instantiate its components across
available resources, depending on the platform specifics. Each components can
be individually configured so as to enable further tailoring while minimizing code
refactoring. RP uses RADICAL-SAGA [24] to support all the major batch sys-
tems, including Slurm, PBSPro, Torque and LSF. RP also supports many meth-
ods to perform node and core/GPU placement, process pinning and task launch-
ing like, for example, aprun, jsrun, srun, prun (PRRTE), mpirun, mpiexec and
ssh.

RP is composed of two main components: Client and Agent. Client exe-
cutes on any machine, while Agent bootstraps on one of Summit’s batch nodes.
Agent is launched by a batch job submitted to Summit’s LSF batch system
via RADICAL-SAGA. After bootstrapping, Agent pulls bundles of tasks from
Client, manages the tasks’ data staging if needed, and then schedules tasks for
execution via either JSM/LSF or PRRTE/DVM on Summit.

How Agent deploys on Summit depends on several configurable parameters
like, for example, number of sub-agents, number of schedulers and executors per
sub-agent, method of communication between agent and sub-agents, and method
of placing and launching tasks for each executor of each sub-agent. A default
deployment of Agent instantiates a single sub-agent, scheduler and executor on
a batch node of Summit. In case of JSM/LSF, the executor calls one jsrun
command for each task, and each jsrun uses the JSMD daemon to place and
launch the task on work nodes resources (thread, core, GPU).

An architecture block diagram describing the integration between RP and
PRRTE (Fig. 1) shows the deployment of RP/PRRTE Agent on a batch node
and one sub-agent on a compute node. In this configuration, RP uses SSH to
launch sub-agents on compute nodes and then PRRTE/DVM to place and launch
tasks across compute nodes. This configuration enables the sub-agent to use more
resources and, as shown in the next section, improves scalability and performance
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of task execution. Note that, independent from the configuration and methods
used, RP can concurrently place and launch different types of tasks that use
different amount and types of resources.

The RP resource manager is responsible to collect and manage information
about acquired nodes and to start related services if required. In case of PRRTE,
RP allows to configure the number of DVMs to be started and resource manager
distributes available compute nodes among all that DVMs. The command to
start a corresponding PRRTE process is prte, which does setup a DVM envi-
ronment and provides a list of compute nodes, which will be managed by the
DVM. In RP, it is configured to set a flat routing tree, i.e., a high connectivity
mode (all daemons directly connect to the DVM controller), to eliminate relay
times in the tree impacting startup time. Such mode is set due to PRRTE uses a
single progress thread, so communication competes with mapping and local pro-
cess start, thus the notion is to take out the time a daemon spent relaying launch
messages by having it directly connect to the DVM controller. Related to it, a
task placement mechanism uses prun command to invoke each application/task
as opposed to using PMIx Spawn. DVM controller is responsible for handling
prun connection requests, doing the initial mapping of each PRRTE job, etc.
prun command is configured to allow oversubscription (i.e., running more tasks
than available slots per node), but RP schedules tasks based on availability of
slots without oversubscribing.

There are several tracing events produced by RP for measuring performance
characteristics regarding PRRTE/DVM: DVM startup events dvm start and
dvm ready, DVM termination event dvm stop, task execution (DVM placement)
events task exec start and task exec stop, and application running events
app start and app stop. Thus, task setup time is measured from the time prun
call is executed (task exec start) until the time application starts running (i.e.,
to the time when process reports in, app start).

3 Related Work

Pilot systems like GlideinWMS [28], PanDA [29] and DIRAC [30] are used to
implement late binding and multi-level scheduling on a variety of platforms.
While these systems have been successfully used on HPC machines [18,21,22],
including on the former ORNL leadership class machine Titan [25], they are
currently not available on Summit and do not support PRRTE.

PRRTE [16] relies on PMIx to place and launch processes on Summit’s nodes.
Many applications are actively working to directly use PMIx to interface with
the system management stack to benefit from portable process and resource
management capabilities [33]. While PMIx explicitly supports interfacing with
command line tools, there are no other pilot systems using PMIx via PRRTE.
MPICH and Hydra [10] offer capabilities similar to PRRTE but are not sup-
ported on Summit.

Pilot systems are not the only way to execute many-task applications on HPC
machines. JSM and LSF natively support this capability but, as seen in [31], in
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their current deployment on Summit they cannot scale beyond 1000 concurrent
task executions. Flux [7] is a resource manager that provides users with private
schedulers on pools of dedicated resources. This enables the task scheduling
capabilities of a pilot system, including RP, but requires to be either adopted as
the main job manager of the machine or be deployed as part of a pilot system.

METAQ [13] are a set of shell scripts that forms a “middle layer” between
the batch scheduler and the user’s computational job scripts and supports task
packing. METAQ requires a separate invocation of mpirun (or equivalent) for
each task. METAQ has been superseded by mpi jm [12]—a Python library that
is linked to applications. In addition to intelligent backfilling and task pack-
ing, mpi jm allows the executable to be launched based upon an affinity with
the hardware but requires the be coded into task executables and the overall
workflow application.

TaskWorks—a task execution engine built using the PMIx interface—is
designed as a high-level, light-weight and portable task execution engine for
HPC applications [20]. It enables defining tasks and resolving their dependencies
within an application, and it supports MPI tasks. PMIx is used as an interface
to coordinates thread/task execution packages, such as OpenMP or MPI, and
to manage resource usage.

In Reference [23,27] we investigated the performance of RP on ORTE—a
precursor to PRRTE. Using ORTE, RP was capable of spawning more than
100 tasks/second and the steady-state execution of up to 16K concurrent tasks.
Resource utilization was significant lower than with PRRTE and more sensitive
to the number of tasks and tasks duration.

There is no other available solution with integration of PMIx/PRRTE using
multi-DVM approach. There is an ongoing development effort to introduce
resource partitioning in RP, which includes such multi-DVM approach as part
of RP scaling capabilities.

4 Experiments

The performance space of RP is vast, including the execution of both homoge-
neous and heterogeneous tasks with resolved dependencies beforehand at both
small and large scales. In Reference [31] we presented a baseline characterization
of executing homogeneous workloads on Summit, comparing the performances of
jsrun and prun (PRRTE). In this paper, we build upon those results, focusing
on the execution of heterogeneous workloads consistent with the requirements
of the INCITE program [3]. Specifically, we consider two types of task hetero-
geneity: spatial and temporal. We execute workloads with multi-core tasks of
different duration, requiring both CPUs and GPUs, within the boundaries of
Summit’s compute nodes. Further, we adjust configuration for DVMs setup,
significantly extending upon our previous characterization by scaling the con-
current execution of heterogeneous tasks and optimizing baseline performance
for real-life workloads.



RADICAL-Pilot and PMIx/PRRTE: Executing Heterogeneous Workloads 95

4.1 Use Cases

We consider the use cases from five DOE INCITE allocation awards [3] on Sum-
mit. We elicited the computing requirements of their workflows, deriving size and
duration of each type of task alongside their I/O requirements. All workflows
require to scale on Summit’s CPUs and GPUs, executing a variety of work-
loads with MPI and single/multi-threaded tasks. We focus our experiments on
PRRTE/DVM, and on how they support the placement and execution of those
tasks at scale. As such, we evaluate the upper and lower boundary requirements
of each workload, executing synthetic tasks consistent with those boundaries.
Note that for PRRTE/DVM, it makes no different what type of executable each
task launches or their I/O requirements, only how many CPUs/GPUs each task
requires and for how long.

Future studies will build upon our results to evaluate the actual workflows
in collaboration with the domain scientists. Without understanding the scala-
bility of PMIx/PRRTE with heterogeneous workloads, those studies would be
premature.

Overall, the workloads of the use cases we considered have the following
types of tasks: (i) up to 15 million single core tasks (no GPUs) with runtime
from a range 10..60 seconds for high-throughput ensemble docking to identify
small molecules (MD docking scans); (ii) an ensemble of about 120 MD sim-
ulation tasks using GPUs with runtime of several hours for modeling specific
binding regions and understanding mechanistic changes in drug discovery (AI-
driven Molecular Dynamics); (iii) one large MPI task with many GPUs over
several nodes and many CPU tasks with one core requirement (Earth Sciences
domain, PrincetonU); (iv) many OpenMM [17] simulation tasks with one GPU
requirement over 1000 nodes (OpenMM Ensemble, Cornell Medical Center); (v)
many NAMD [26] simulation tasks with CPUs requirement only, one task per
node over 1024 nodes (MDFF Error Analysis, ASU).

The first two use cases among selected are highlighted the most, due to
their tasks configurations, which cover all significant heterogeneity character-
istics. Both workloads are part of a multi stage campaign for a drug discov-
ery, namely IMPECCABLE (Integrated Modeling PipelinE for COVID Cure by
Assessing Better LEads) [9].

Based on the assessment of the considered workloads, we determined the
following setup for experiments: (i) we group compute nodes in multiple of 256
for all experiments, and every group of nodes process 8K tasks (weak scaling
up to 2048 nodes and 65K tasks); (ii) there are two types of tasks: 90% of
all tasks are small and short, which represent the small CPU tasks of the use
cases, and 10% of all tasks are large and long, including tasks with GPUs, which
represent a dedicated group of larger tasks (e.g., simulation tasks) in the use
cases. Important to note that we didn’t map MPI task over several nodes into
our experiment setup—larger tasks are easier to handle for RP and PRRTE and
thus essentially decreasing the load we test the system under.
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4.2 Experiments Design

Our experiments measure the performance of PRRTE/DVM in addition to the
performance of RP with PRRTE, when concurrently and sequentially executing
workloads with heterogeneous tasks on Summit. Task execution requires assign-
ing suitable resources to the tasks, placing them on resources (i.e., a specific
compute node, core, GPU or hardware thread) and then launching the execu-
tion of those tasks. RP tracks both tasks and available resources, scheduling the
former onto the latter; PRRTE enacts task placement and launching.

Combining experiments with different configurations (different number of
DVMs and number of nodes each DVM manages) helps to study how well
PRRTE/DVMs perform when managing nodes and tasks execution, as well as
the potential interference among DVMs. The number of nodes will vary from
256 up to 2048 nodes on Summit, doubling at every experiment configuration.
The experiment with 2048 nodes will demonstrate the performance of RP using
multi-DVM approach with configuration setup based on gained knowledge from
the previous experiments with lower number of nodes. Experiments setup param-
eters are collected in Table 2.

Our experiment tasks are self-contained executables, which carry a synthetic
payload (calls for environment variables to check the correctness of allocated
resources) and imitates task runtime with defined “sleep” time by suspending
the calling process. All tasks are heterogeneous, regarding their runtime, type of
using resources, CPU and/or GPU, and the amount of resources. For the tasks
parameters setup, it is important to note that the number of slots per node on
Summit [6] with simultaneous multithreading (SMT) level set to 4 is equal to
168 hardware threads (44 physical cores minus 2 reserved cores).

We elicit the task sizes from our use cases. First we define the min and max
for every type of task to have a better understanding of their possible layouts
on each compute node. Then we estimate a range of values between each min
and max, so to guarantee a wide heterogeneity. The size of “small” tasks will be
less than 21 slots (1/8th of compute node), while the size of “large” tasks will
be in a range of 42..84 slots (from 1/4th up to half of compute node), so as to
have two “large” tasks per node on average. Duration for tasks will be generated
randomly as well, and “small” tasks will be twice shorter than “large” tasks with
ranges 8..10 min and 16..20 min respectively.

Estimation of the number of compute nodes to be filled avoids task execution
“tailing”, i.e., having a small number of tasks launched after the anticipated
termination time of the run (i.e., walltime), due to a not precise scheduling (since
RP scheduler processes tasks as soon as a block of tasks arrived and not waiting
for all submitted tasks to perform scheduling). Thus we set to use 97% of all
allocated resources (i.e., provided slots) to generate task sizes, and considering
3% of resources as supplementary to avoid “tailing”.

Refined ranges for task sizes are calculated during the startup of RP applica-
tion as following: Nslots >= (Ntasks/Ngen) × avg(Ntask slots), where Nslots is a
number of provided slots, Ntasks is a total number of tasks of a particular type,
Ngen is a number of generations for tasks of a defined type, i.e., an approximate
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number of task groups, in which all tasks could be executed concurrently, and
Ntask slots is a number of slots per task.

For 256 nodes (including 8 “supplementary” nodes) and 8200 tasks, we have
7380 “small” tasks (4 generations) with average Ntask slots equals to 5 (slots
range in 1..9) and 820 “large” tasks (2 generations) with average Ntask slots

equals to 76 (slots range in 68..84). Having many “small” tasks will let us to
stress the runtime for comparing RTE capabilities.

Experiments Approbation. As part of the experiments design, we performed
an approbation stage, which confirmed the expected behavior of RP components
without any overhead, and expected nodes load level. Approbation of designed
experiments was made using a Docker container produced by the ExaWorks
project’s SDK [1,8]. RP allows to run an application locally with an arbitrary
defined resource characteristics, such as number of cores, GPUs, memory, and it
also allows to imitate any number of requested nodes (fake resources=true).
In case of Summit, resource description includes 168 cores (SMT=4) and 6 GPUs
per node. Docker file and resource description are provided in the GitHub repos-
itory [2] as part of the experiments setup.

Runs within Docker container also included usage of sub-agents (as described
in Sect. 2.3) for such components as RP scheduler and executor and running each
sub-agent on a dedicated node: one node for scheduler component and three
nodes for three instances of executor. Usage of sub-agents on a real resource is
necessary, because running all RP components on a batch node and having many
tasks O(104) hits the limitation of concurrent system processes calls per node.

4.3 Experiments on Summit

We used PRRTE release 2.0a1psrvr-v2.0.0rc1-3912-gff83b55e2e to con-
duct experiments on Summit, which is referred as a master release for production.
Note that a recommended delay of 10 sec was added after resource allocation
and before starting any DVM to ensure that resources were ready to be mapped
to DVM(s).

In this section we present key studies, which reveal limitations of examined
approach and allow to determine experiment configuration for exercising scaling
capabilities. We highlight metrics used to estimate the performance and evaluate
results.

PRRTE/DVM Size Estimation. PRRTE management capabilities depend
on both the number of managed nodes as well as the number of launched tasks
(i.e., the size of assigned workload to be executed). We experimentally deter-
mined the maximum number of nodes that can be successfully managed by a
single DVM in further experiments. At first we tried to run RP with PRRTE
without a payload (we submitted only one task with one core and without
any sleep time that let RP started without providing any task to the most
of acquired compute nodes), thus to confirm that DVM has started and then
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terminated successfully with a list of provided nodes. Then we tried the same
configurations, but with our designed workload.

Those experiments showed that, without a payload, the maximum number
of managed nodes is 512, but, with a payload of 8200 tasks for every 256 nodes
(as described in Sect. 4.2), the maximum number reduces to 256. Experiment
without a payload is not presented in the experiments listing, but experiment
with 256 nodes per one DVM is the first in Table 1, 2. Note that we disregard
possible cases when the number of nodes is in between 256 and 512, since we
double the number of nodes in each experiment, starting from 256, and this
paper is not focused on finding an exact maximum number of nodes per DVM.

Beyond that observed numbers, DVM either wasn’t able to start successfully
(i.e., never reached a confirmation status DVM ready) or started having “con-
nection lost” errors regarding communication with its managed nodes. We were
not able to localize the cause of such limitation (e.g., high connectivity mode
and/or Ethernet problems, socket timeouts, etc.), which is to be investigated,
but therefore chose to constrain the following experiments to 256 nodes, and to
explore the trade-offs of using multiple parallel DVMs instead of one large DVM.

PRRTE/DVM Startup and Termination Processes. The next set of
experiments measured the start and termination overheads of one or more DVM,
and the possible interference among concurrent DVMs. DVM startup and ter-
mination processes depend only on the number of nodes assigned to each DVM,
since these processes are responsible for establishing and managing a communi-
cation between DVM and PRRTE daemons prted on compute nodes.

In this study, we run three experiments with 256 nodes and 8200 tasks, and
different number of DVMs (#1,2,3 in Table 2). Table 1 shows the resulted aver-
age startup and termination times for DVMs, and the total overhead (OVH) per
experiment (including DVMs OVH). All DVMs started and terminated sequen-
tially, which is done to reduce the network load, i.e., it decreases the possibility
of DVMs interference and errors related to losing connection. Increasing the
number of DVMs decreases both startup and termination times for each DVM,
but increases the total OVH from all DVMs on average. Thus, changing the
number of DVMs from 1 to 256 decreases resource utilization (RU) from 85% to
65%. This should be considered, while planning runs with many DVMs for RU
improvement.

Table 1. Average DVM startup and termination times per each instance and the total
overhead for experiments with 256 nodes.

# Nodes DVMs DVM Avg DVM Avg DVM Total

Nodes Startup (s) Termination (s) OVH (s)

1 256 1 256 6.48 4.63 51.59

2 256 2 128 2.66 4.55 51.63

3 256 256 1 1.96 1.04 829.57
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PRRTE Task Placement. Earlier mentioned three experiments with 256
nodes also showed that decreasing the number of nodes per DVM decreases
the task setup time. Figure 2 shows the impact of the size of payload per DVM
on the task setup time. Having less tasks per DVM not just improves the average
or median of task setup time, but also shrinks the range of its distribution (espe-
cially interquartile range). Descriptions of these experiments along with collected
metrics, such as mean, median and third quartile, are provided in Table 2.

Fig. 2. Distribution of tasks setup time managed by PRRTE for experiments with 256
nodes and 8200 tasks: 1 DVM, which manages 256 nodes; 2 DVMs, each manages 128
nodes; 256 DVMs, each manages 1 node.

With a weak scaling, besides increasing the volume of resources and payload,
we increase the number of DVMs per experiment in a way to decrease the load
on average per each DVM. The next two experiments (#4,5 in Table 2) are
as following: (1) experiment with 512 compute nodes and 2 DVMs, thus each
DVM manages 256 nodes; and (2) experiment with 1024 compute nodes and
8 DVMs, thus each DVM manages 128 nodes. Figure 3 shows task setup times
for these experiments, and experiment with smaller number of nodes per DVM
has smaller task setup time on average. This observation helps to distinguish
a pattern - while scaling a heterogeneous workload for processing, the load per
DVM should be lowered.

Due to RP’s scheduling algorithm to use all available slots with attempting
to assign large tasks first, most of the large tasks were placed during the first
half of the experiments run, and most of the small tasks were placed during the
second half of the experiments run. This explains the two distinct phases visible
in Fig. 3 at the begin and middle of both runs: the first peak(s) is caused by
starting all large and a few small tasks, the second, larger peak, is caused by
launching all remaining small tasks (see Fig. 6 for a detailed comparison).

Note that experiment with 1024 nodes has some tasks with exceptionally
large setup times (up to 60 min), which were never executed due to the walltime
limit, and that values fall outside of the third sigma and we don’t present them
on the plot.
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Fig. 3. Setup times per each task for experiments with 512 nodes with 2 DVMs (blue)
and 1024 nodes with 8 DVMs (orange). (Color figure online)

Study of RP Performance. RP performance is determined by the task pro-
cessing rate at every stage of RP’s task management. As such, every stage can
become a performance bottleneck if the rate of task processing for that stage is
lower than the one of the other stages. RP allows to scale each component to
improve their performance (e.g., multiple instances of Agent’s Scheduler com-
ponent and use of sub-agents), but has limited options over the execution layer,
which depends on third party middleware. When using PRRTE, using multiple
DVMs allows to increase task execution rate and match it to the task scheduling
rate, avoiding performance bottlenecks. Scheduling rate depends on the num-
ber of tasks and the number of nodes, and when using PRRTE as launching
method, it is also affected by the number of DVMs. With PRRTE, when a task
is assigned to a particular node, the scheduler is also responsible to map it to the
DVM, which manages that node. Execution rate consists of RP launching rate
and PRRTE/DVM task placement rate, including task setup time and running
time.

Experiments with 256 nodes partitioned across 1 and 256 DVMs demon-
strate that the increase in amount of DVMs improves the execution rate, since
it decreases task setup times, and we got 3% improvement in the total task exe-
cution time (TTX). Figure 4 shows that using the same total number of nodes,
but changing the number of DVMs, does not significantly change the schedul-
ing and launching rates (plot slopes on a figure). That indicates the number
of DVMs should be estimated with consideration of DVMs OVH and achieved
tasks TTX.

RP with PRRTE at Scale. Based on the results of our previous experi-
ments, we use 32 DVMs for our final experiment to measure weak scaling of
PRRTE/DVM with up to 2048 compute nodes (#6 in Table 2). We increase the
number of nodes and tasks proportionally and, as a consequence, we also increase
the number of concurrent system processes calls (e.g., subprocess.Popen) in the
Agent’s Scheduler and Executor components. This creates a bottleneck in those
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Fig. 4. Tasks concurrency for scheduling and executing processes for experiments with
256 nodes and 8200 tasks.

components, which run out of available processes at the operating system level.
For such cases, RP allows using sub-agents to run both Scheduler and Executor
on dedicated compute nodes (as discussed in Sect. 4.2). When using sub-agents,
we add 4 extra nodes to the experiment resource allocation. RP does not use
these service nodes for tasks execution and, as such, we do not count them as
available nodes in our experiments.

Fig. 5. Resource utilization for experiments with 512 nodes (16,400 tasks), 1024 nodes
(32,800 tasks), and 2048 nodes (65,600 tasks), CPU and GPU resources per experiment.
The tasks’ actual execution is presented as exec app.

As Fig. 5 shows that the resource utilization decreased for experiment with
2048 nodes due to overhead related with RP task preparation stage, which could
be caused by shared file system (at this stage RP prepares startup scripts for
each task). Our focus in Fig. 5 is on tasks being in stages exec prte (DVM task
setup and termination) and exec app (DVM task running). For experiment with
512 nodes, there is a time period when DVM task preparation (setup and termi-
nation) slowed down the execution process (i.e., temporary decrease of resource
utilization). We assume that such behavior reflects the higher load per each
DVM compare to experiments with 1024 and 2048 nodes, where the RP over-
heads dominate.
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Fig. 6. Tasks concurrency for PRRTE/DVM tasks handling phases (Setup, Running,
Termination) for experiments with 512 nodes (16,400 tasks), 1024 nodes (32,800 tasks),
and 2048 nodes (65,600 tasks).

Further, we compare the scale of concurrently executed tasks in three DVM
stages (setup, running and termination) on Fig. 6. Peak values for the concurrent
number of tasks for experiments with 512, 1024 and 2048 nodes are the following:
(i) for the setup stage: 3.8 K, 4.3 K and 3.9 K; and (ii) for the running stage:
9.1 K, 17.9 K and 22.5 K. The termination stage is mostly passed by tasks
unnoticed, and only for experiment with 2048 nodes there is one peak of ∼ 600
tasks finalizing their state in DVMs during the same time.

Fig. 7. Distribution of tasks setup time managed by PRRTE for experiments with 512
nodes (16,400 tasks), 1024 nodes (32,800 tasks), and 2048 nodes (65,600 tasks).

For all these cases, RP distributes tasks among nodes not equally, and each
DVM processes different amount of tasks (i.e., having some fluctuation in num-
ber of tasks per DVM). Further, RP places tasks of different types not evenly in
time—most large tasks are scheduled first for better resource utilization. These
factors affect the number of concurrently executed tasks, which creates a load
on each DVM and DVM task setup time changes accordingly. As mentioned
earlier, such designed workload let us to stress the runtime, since RTE is con-
stantly cleaning up completed tasks (PRRTE jobs) while trying to start new
ones, causing a lot of resource contention within the RTE.

Figure 7 allows to compare the distribution of DVM tasks setup time for
experiments with 512, 1024 and 2048 nodes. For experiment with 2048 nodes
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distribution of task setup times is higher than for experiment with 1024 nodes.
This is affected by the high load of DVMs in conjunction with task placement
command prun as a high overhead method for invoking a PRRTE job—prun
and the DVM have to execute a multi-step handshake to resolve security and
communication protocols. The prun connection starts to become significant at
these load levels since it flows through a single progress event thread, so each
connection has to wait its turn.

Nonetheless, the experiment also shows the possibility to scale the execu-
tion of 65,600 heterogeneous tasks on 2048 nodes (+ 4 nodes for sub-agents),
which demonstrates a worst-case scenario, considering the type of tasks and their
distribution over DVMs.

Table 2. Descriptions and discovered metrics for conducted experiments.

# Nodes DVMs DVM Tasks Startup Tasks Task setup time (s)

Nodes OVH (s) TTX (s) Mean Median Q3

1 256 1 256 8200 41.18 2417 9.54 0.35 0.54

2 256 2 128 8200 38.02 2414 9.13 0.28 0.45

3 256 256 1 8200 555.39 2340 0.21 0.17 0.19

4 512 2 256 16,400 64.1 ± 16.4 3208 ± 5 63.5 11.9 139.7

5 1024 8 128 32,800 69.5 ± 9.2 3169 ± 12 44.3 3.9 44.4

6 2048 32 64 65,600 129.5 ± 6.6 3823 ± 53 46.7 18.6 83.9

5 Conclusions

We explored the capabilities and limitations of using PMIx/PRRTE as an exe-
cution layer within a pilot-based runtime system (RADICAL-Pilot), executing
heterogeneous multi-core CPU/GPU tasks on the leadership-class HPC platform
Summit. We identified a set of metrics that we used to characterize the perfor-
mance of PRRTE and its DVM under different configurations and payloads.
Our experiments offer a quantitative understanding of the factors that impact
PRRTE/DVM performance at scale.

We introduced several use cases with workflows that require the execution of
heterogeneous workloads. We used cumulative characteristics of those workloads
to build a synthetic workload of 8200 heterogeneous tasks per 256 compute
nodes, focused on spatial and temporal heterogeneity. With many small tasks
and non-uniform load on DVMs, it lets to stress the RTE.

We found no interference among DVMs while having 256 concurrently run-
ning DVMs and determined that DVM could have a limitation on the number
of nodes it can manage in conjunction with the placed payload. In case of our
synthetic payload, each DVM was constrained by 256 nodes.

Examination of introduced DVM overhead, as one of the important charac-
teristics, showed that, while changing number of DVMs from 1 to 256 (maximum
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tested value; DVMs were started and terminated sequentially) for 256 total allo-
cated compute nodes, the RP total overhead has increased by 16 times (from
52s to 830s), even though individual DVM overhead was decreased (from 11s to
3s). This affected resource utilization by dropping it from 85% down to 65%.

The main focus of our experiments is DVM performance evaluation, thus
we conducted analysis of DVM task launching process, and particularly DVM
task setup time. We investigated the case of changing only the number of DVMs
for 256 total allocated nodes, which showed that it is possible to reach only 3%
improvement in task TTX (increased OVH is mentioned earlier). Thus, the DVM
configuration assumes to have minimal number of DVMs, which will keep OVH
low, but allow to partition the payload. The case of weak scaling in amount
of resources, payload and DVMs (experiments with 256/8200 and 512/16,400
nodes/tasks, and each DVM manages 256 compute nodes) leads to increase in
the average DVM task setup time.

Also, weak scaling experiments showed that increasing the number of allo-
cated compute nodes from 512 to 2048 (executing from 8200 up to 65,600 tasks
respectively) requires to have at least 22 times more DVMs every time that the
total number of compute nodes is doubled. Having a small number of concur-
rently executed tasks, up to 5000 tasks (experiments with 256 nodes), allowed
to have ∼ 85% resource utilization, but with up to 25,000 tasks concurrently
executed (experiment with 2048 nodes), resource utilization dropped down to
∼ 52%. Increased number of concurrently executed tasks affected RP overhead
and along with increased DVM load has affected tasks TTX, which was increased
from its minimum 2340 s (experiment with 256 nodes and 256 DVMs) to the
maximum ∼ 3823 s (experiment with 2048 nodes and 32 DVMs).

This approach is not applicable for workloads with many one-core or small
multi-core non-GPU tasks, since it will bring a large overhead and could cause
execution process being unstable. Thus, for example, such workload as MD dock-
ing scans from IMPECCABLE will not benefit from it, workloads with larger
tasks will.

This study gives an understanding of the PMIx/PRRTE scalability capabili-
ties with heterogeneous workloads, and highlights corresponding characteristics.
Better control over a certain processes will let to redistribute DVMs load, which
will help to increase the overall performance.

Observed behaviour of PMIx/PRRTE tools and collected data can be used by
the PMIx community for future development, particularly considering breaking
down long times for DVM task setup and prun connecting states (e.g., allocation,
mapping, launching, etc.) for insights, which would assist in improving the total
launch time.

Early experiments with the new release of PRRTE 2.0.2v2.0.1-8-gaa5
7929 have demonstrated significant improvements in DVM task setup times
(e.g., new numbers for experiment with 512 nodes, #4 in Table 2, are: mean is
0.03 s, median is 0.02 s and q3 is 0.03 s) and increased the stability of overall
execution process. Coming RP releases (> 1.14) will support this PRRTE release
and will be used in further experiments.
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Abstract. The exponential growth in demand for digital services drives
massive datacenter energy consumption and negative environmental
impacts. Promoting sustainable solutions to pressing energy and digi-
tal infrastructure challenges is crucial. Several hyperscale cloud providers
have announced plans to power their datacenters using renewable energy.
However, integrating renewables to power the datacenters is challenging
because the power generation is intermittent, necessitating approaches
to tackle power supply variability. Hand engineering domain-specific
heuristics-based schedulers to meet specific objective functions in such
complex dynamic green datacenter environments is time-consuming,
expensive, and requires extensive tuning by domain experts. The green
datacenters need smart systems and system software to employ multiple
renewable energy sources (wind and solar) by intelligently adapting com-
puting to renewable energy generation. We present RARE (Renewable
energy Aware Resource management), a Deep Reinforcement Learn-
ing (DRL) job scheduler that automatically learns effective job schedul-
ing policies while continually adapting to datacenters’ complex dynamic
environment. The resulting DRL scheduler performs better than heuris-
tic scheduling policies with different workloads and adapts to the inter-
mittent power supply from renewables. We demonstrate DRL scheduler
system design parameters that, when tuned correctly, produce better
performance. Finally, we demonstrate that the DRL scheduler can learn
from and improve upon existing heuristic policies using Offline Learning.

Keywords: Renewable energy · Datacenters · Job scheduling · Deep
reinforcement learning

1 Introduction

The sustained demand for digital services has led to record datacenter build-outs
and increased energy consumption. Conservative estimates suggest that global
datacenter energy consumption between 2010 and 2018 went up by 6%, totaling
205 TWh in 2018. Further research [7] implies that the datacenter energy con-
sumption is an order of magnitude higher than the estimated 6%, considering
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numerous unaccounted small-to-medium scale datacenters and datacenters that
cater to new technologies (e.g., blockchain, cryptocurrency mining). Datacenters
in the U.S consume 1.8% of the total electricity; electricity predominantly gen-
erated using non-renewable sources emitting an estimated ∼ 230 Million Metric
tons of greenhouse gases every year.

Given high carbon emissions and growing societal awareness of climate
change, government agencies, non-profits, and the general public demand cleaner
(greener) goods and services. Consequently, cloud service providers are investing
in green datacenters, i.e., datacenters partially or entirely powered by renewable
energy. While some cloud service providers [9,14] buy carbon offsets, others [2,29]
are shifting towards datacenters entirely powered by renewables. These datacen-
ters either generate their own renewable energy (self-generation) or draw from
an existing carbon-free (e.g., wind, solar) power generation plant (co-location).

The difficulty with renewables is that power generation is intermittent and
subject to frequent fluctuations, making co-location and self-generation interest-
ing from a research perspective. Solar energy generation has a diurnal pattern
with maximum energy generation at mid-day, while wind energy generation is
higher late in the night (Sect. 3.3, Fig. 3b). By combining the solar and wind
sources, the energy generation typically complements each other.

Traditional heuristics-based job schedulers [16,30,33] use hand-crafted
scheduling policies suitable for datacenters with constant power supply. Hand-
engineering domain-specific heuristics-based schedulers to meet specific objective
functions of highly dynamic green datacenters is time-consuming, error-prone,
expensive, and requires domain expertise. A Reinforcement Learning (RL) based
job scheduler automatically learns scheduling policies from trial-and-error. The
growing body of research [12,26,34] has shown that RL schedulers can learn effec-
tive job scheduling policies in traditional datacenter environments with constant
power supply. Although the results presented in these works are convincing, they
do not examine the complex dynamic green datacenter environments. Further-
more, the existing works treat the RL scheduler as a black box without exploring
the design choices (Sect. 2.2) that further improve performance.

Scheduling in a green datacenter encounters additional complexity as the
resource pool expands and contracts based on the intermittent and varying power
supply. In our previous work [31], we demonstrated that the DRL scheduler
generates effective scheduling policies, with synthetic power and workload traces,
for a cluster of 10 resources. This paper makes the following contributions:

– We present a unified green datacenter DRL scheduler, RARE, that allows
experimenting with synthetic and real workloads, integrating multiple renew-
able energy sources and batteries (Sect. 3) to power the datacenter. We show
that the DRL scheduler learns effective scheduling policies using synthetic
and real HPC workload traces in small and medium scale datacenter envi-
ronments (Sect. 5.4.1). We demonstrate the DRL scheduler’s adaptability to
power fluctuations using real power prediction data from renewables (solar
and wind) (Sect. 5.4.2).
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– We identified four critical challenges in the existing work (Sect. 2.2) and
demonstrated performance improvements by appropriately calibrating the
DRL scheduler design parameters.

– We explore the impact of various DRL scheduler design choices that lead
to better performance. Specifically, we demonstrate that the DRL scheduler
performs better with a longer planning horizon (in Sect. 5.4.3) and show the
performance implications of choosing the DRL scheduler’s neural network
configurations (Sect. 5.4.4).

– We show that the DRL scheduler can learn from and improve upon existing
heuristic scheduling policies with Offline Learning techniques (Sect. 5.4.5).

2 Background and Challenges

Job scheduling is deciding when and where to run a set of jobs on a set of
resources in order to optimize an objective function. Objective functions define
the goal of scheduler optimization. Typical objective functions for schedulers
include maximizing revenue for the cloud service provider, maximizing uti-
lization, and minimizing the makespan. The efficient utilization of computing
resources leads to millions of dollars in savings for the service providers.

2.1 Reinforcement Learning (RL) and Job Scheduling

RL is formalized by a Markov Decision Process (MDP) M := (S,A,R,T, γ). S is
the set of states, which are representations of information about the environment.
A is the set of available actions that can be taken at each state. R is the reward
function S × A × S → R. T is the transition function S × A → S that describes
the way actions impact the environment and alter its state. An agent is defined
by a stochastic policy π that maps states to a distribution over actions in A. A
trajectory is a sequence of the states encountered at each timestep, the action
taken in those states, and the rewards received τ := (s0, a0, r0, . . . , sT , aT , rT ).
The goal of RL is to find a policy that maximizes the discounted sum of rewards
over trajectories of experience, denoted ηM(π) = Eτ∼π[

∑t=∞
t=0 γtrt] where γ ∈

[0, 1) is a discount factor that determines the agent’s emphasis on long-term
rewards instead of short-term outcomes.

A Deep Neural Network (DNN) is a function approximator that uses layers of
nonlinear transformations to learn a mapping between inputs and outputs. The
coefficients of a DNN’s matrices and vectors are called its weights or parame-
ters. Learning involves finding accurate weights by taking iterative optimization
steps along gradient directions that minimize a loss function. Let πθ be a policy
parameterized by a neural network with a set of weights θ. πθ takes the current
state as input and outputs a distribution over the action space, which can be
sampled to make decisions in the environment.

In this work, we utilize a custom variant of the model-free off-policy actor-
critic framework with discrete actions [8,15]. The agent interacts with the envi-
ronment, sampling actions from πθ in state s, transitioning to a new state s′ and
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receiving a reward r. This experience is saved in a replay buffer D for later use.
In addition to the “actor network”, we initialize a neural network φ to represent
the Q-function, denoted Qφ, which takes state and action vectors as input and
outputs an estimate of the expected return when taking action a in state s and
following π thereafter. We can use our critic network to train the actor network
to output higher-value actions. The improved actor is then used to improve the
critic network’s value estimates, and this process is repeated until performance
converges. This technique is “model-free” because it does not attempt to directly
model changes in the environment and “off-policy” because it recycles data col-
lected from past decisions of the actor network. Further technical details of the
implementation are provided in (Sect. 4).

2.2 Challenges

First, the environment plays a crucial role in RL by providing suitable reinforce-
ment and encouraging the agent to execute the positive actions repetitively. The
specially constrained environment rewards or penalizes the agent for correct
or incorrect behavior (action). Although existing work [12,26,27,34] has shown
RL schedulers learn effective job scheduling policies in datacenter environments
(with constant power supply), they do not capture the complex dynamic green
datacenters environments where the resource pool expands and contracts (inter-
mittent power from renewables). Additionally, dissimilarities in their environ-
ments make it nearly impossible to make a one-to-one comparison among these
implementations.

Second, the existing work does not discuss the implications of system design
choices, making it difficult to analyze why the RL schedulers perform better than
heuristic policies. One such design choice is the size of the planning horizon. The
RL scheduler seeks to maximize the future cumulative rewards over some prede-
fined planning horizon. Typically, renewable energy predictions are generated for
a 24-h while others may influence training (day ahead) window. The RL sched-
ulers can make better scheduling decisions with a longer planning horizon, whereas
greedy heuristic policies cannot plan for future events. Therefore, studying the
DRL scheduler’s performance over longer planning horizons is crucial for green
datacenters (Sect. 5.4.3).

Third, the current implementations, discussed in Sect. 6, treat the RL sched-
ulers as a black box. These works do not explore RL specific configurations that
may significantly contribute to the success of RL schedulers. These configura-
tions may include the neural network size (number of neurons in input, hidden,
and output layers) and the state representation (jobs, resources, and power sup-
ply). Additionally, following a one-size-fits-all approach while evaluating the RL
scheduler with different workloads (with different job properties and size distri-
butions) might diminish the performance. Some of these configuration decisions
have performance implications (Sect. 5.4.4), while others may influence training
time or system memory consumption (not explored in this paper).

Finally, existing RL schedulers overlook the importance of learning and
improving upon existing heuristic policies. For instance, designing reward func-
tions that elicit desired behaviors in complex environments is challenging.
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Instead, the RL schedulers can leverage the behavior of custom heuristic sched-
ulers’ designed specifically for unique workloads or environments to learn and
improve the overall performance. That is, the heuristic schedulers generate
expert demonstrations, and the RL schedulers learn from these demonstrations
to improve upon the heuristic policies (Sect. 5.4.5).

3 Renewable Energy Datacenter Environment

The green datacenter is a datacenter co-located at or near renewable energy
sources. Various renewable sources can power the datacenter with the provision
to store (battery) excess energy from renewables. Additionally, the datacenter is
connected to the electric grid to support critical infrastructure when energy from
renewables and batteries cannot sustain the load. We aim to design a green data-
center environment that can be controlled by heuristic and DRL-based scheduling
policies. In order to train the DRL scheduler agent, we convert the renewable data-
center scheduling problem into an MDP (Sect. 2.1) with a state space S describing
the current status of the cluster resources, an action space A of new jobs, and a
reward function R to be optimized. The operation of the datacenter - including
receiving new jobs and placing scheduled jobs on available resources - becomes the
MDP transition function, T. Figure 1 provides an overview of a DRL scheduler
agent interacting with the green datacenter environment.

Fig. 1. DRL scheduler agent interacting with the green datacenter powered by renew-
ables, battery and electric grid. (Color figure online)

3.1 State Space, Action Space, and Reward Function

The state space, S, includes information about jobs, resources, and resource
availability (based on power generation predictions).

3.1.1 Resources
Resource availability is represented in an image format of shape
(time horizon, resource types × max resources), with grey pixels indicating free
resources. As jobs are scheduled on the resource pool, segments of the image
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are occupied by colored rectangles representing jobs’ resource requirements and
duration. Figure 2 illustrates the cluster image (10 CPUs, 10 GPUs for 24-time
units) and the allocation of each resource to jobs scheduled for service, starting
from the current timestep and looking ahead 24-time units into the future. Our
simulator models a “pool of resources” (CPUs and GPUs), allowing the sched-
uler to make granular per resource scheduling decisions. The available resources
are allocated contiguously to the jobs (e.g., 8 CPUs and 4 GPUs are allocated
to the blue job for three time units).

The power availability feedback is not directly provided to the scheduler
agent. Instead, the resource pool expands and contracts based on the power
available to the datacenter at any given time. The power availability decides
when and how many resources are turned on or off. Therefore, power prediction
data is an integral part of the state space, i.e., as power availability changes,
the corresponding resource availability is reflected in the state information sup-
plied to the scheduler agent. Resources unavailable due to power constraints are
marked black in the resource image. For instance, at timestep 22 (Fig. 2), 70%
of power is available, so 70% of the resources are on, and 30% are shut down.
Similarly, at timestep 23, 80% of power is available, meaning 80% resources are
on and 20% are shut down.

Fig. 2. Resource state: A 10 CPUs, 10 GPUs cluster, time-horizon=24, and readypool
size=5.

3.1.2 Jobs
In our system, jobs can be in one of three locations: 1) wait pool, 2) ready pool,
or 3) scheduled on the resources. The wait pool is where jobs first arrive. The jobs
from wait pool are moved (in FIFO order) to the ready pool where they can then
be scheduled on the resources. Jobs have meta-data, including the job’s id, value,
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and resource requirements. The jobs in the ready pool are represented as vec-
tors, each job’s vector consists of job value, qos, qos violation time, enter time,
expected finish time, duration and resource requirement. Additional meta-data
for each job is calculated after the job is admitted, e.g., remianing runtime (if a
job gets suspended) and qos violation time.

In Fig. 2, the ready pool size is 5 (with job indices 0 − 4) and has 5 jobs.
The yellow job (at ready pool[1]) requires 4 CPU and 4 GPU units for the
next six timesteps, and the job’s value is 24. The jobs are processed over some
fixed T timesteps. The time horizon shifts after processing jobs during that
timestep, with the job metadata vectors updated and resource image advancing
by one row. As the time horizon shifts, the energy available from renewables
(and battery) dictates the availability of resources for placing new jobs. The
scheduler agent continuously observes the state - consisting of jobs, resources,
and resource/power availability - to make scheduling decisions.

QoS Value: Users may have different utility functions, i.e., users are willing
to pay different amounts for different jobs based on their importance. The
user picks the required QoS for that job based on the user’s willingness to
pay for the job (e.g., spot instances [3–5]). The QoS value is specified as a
percentage of the time the user wants his job to run. The qos violation time,
(expected finish time ÷ Qos V alue), specifies the upper bound by which the
job must finish executing. If a job remains in the system past qos violation time,
it incurs negative rewards every time step after that. The higher the QoS value,
the closer the job’s completion time to the expected finish time. If a user wants
0.95 (95%) QoS value and specifies expected finish time = 10 hours, then the
job must be completed within 10.5 hours. Expressing QoS value in percentages
gives an upper bound of when a user can expect his job to finish. The idea is
similar to Least Attained Service (LAS) [25] in that if preempted, a job that has
received more service is suspended and later restarted.

3.1.3 Actions
The action space for a datacenter with ready pool size n is a set of n+2 discrete
options A = {j0, j1, . . . , jn, suspend, no op}. The actions {a = ji,∀i ≤ n} sched-
ule the ith ready pool job ji on available resources. The job’s colored rectangle
is added to the first available slot in the resource image with enough free space
to schedule it. The action a = suspend is used to suspend an incomplete job
and replace it with one of higher value. The suspend action is work preserving,
in that a suspended job resumes from the point it was stopped at and not from
the beginning. The suspended jobs are re-queued after updating the remaining
run time, along with the other ready jobs. Although our scheduler framework
supports checkpoint and restart capability [18], the feature was turned off for
the experiments discussed in this paper. Finally, the action a = no op means
that the scheduler agent does not want to schedule (e.g., resources requirements
cannot be satisfied) or suspend any jobs in that timestep. In Fig. 2, action = 1
(at ready pool[1]) schedules the yellow job to run on the available resources.
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3.1.4 Rewards
The DRL scheduler’s objective is realized with rewards that the agent receives.
Rewards, which are scalars given by the reward function R(st, at, st+1), are a
combination of the positive reward or associated cost for the action in a given
state. Some actions collect positive rewards, while other actions accrue neg-
ative costs. For instance, if a job, j, is running on a resource, it collects a
positive reward proportional to the job’s value. A job’s value, j.value, is cal-
culated based on the type of resources requested, duration, and QoS value. If a
job is delayed and QoS violated, it collects a negative reward. Negative reward
indirectly encourages fairness, ensuring low QoS value jobs are not delayed or
starved. Other costs and rewards can be incorporated into the reward function.
Our DRL scheduler’s objective is to maximize the total job value from finished
jobs, |Jfinished| expressed as,

Total Job V alue =
|Jfinished|∑

i=1

ji.value (1)

A direct calculation of value is the price the user is willing to pay to run
a job. Total Job Value is both an application-centric and resource-centric met-
ric; the emphasis is on processing as many user jobs as possible, which may
increase resource utilization. By processing as many jobs as possible, we essen-
tially maximize the total value we gain from running those jobs. Even a small
improvement in total job value can generate millions of dollars in savings for
the service providers. Other common objective functions (utilization, makespan,
and system throughput) are driven by system-centric parameters that enhance
throughput and utilization rather than improving the utility of application pro-
cessing. These systems treat resources as if they cost the same price and the
results of all applications have the same value, even though this may not be the
case..

3.2 Renewable Energy Forecasting

Forecasting is crucial for integrating variable renewable energy (VRE) resources
such as wind and solar into datacenters. The difference between forecasted out-
put and actual generation is forecast error. Factors that affect forecast perfor-
mance include forecast time-horizon, local weather conditions, and weather data
availability. By integrating VRE forecasts into the scheduling system, datacenter
operators can anticipate up- and down-ramps in VRE generation to balance load
and generation in intra-day and day-ahead scheduling.

With shorter timescales, accurate VRE generation forecasting can help
reduce the risk of incurring penalties. Over longer timescales, improved VRE
generation forecasting based on accurate weather forecasting can help better
plan long-running jobs (suspending and resuming the jobs appropriately). The
forecasting accuracy decreases with the increase in the forecast time horizon.
Thus, selecting a proper time horizon before designing a forecasting model is
key to maintaining the accuracy of forecasting at an acceptable level [24].
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Additionally, Fig. 1 shows that brown energy can contribute to the electric
grid connected to the datacenter. It may not be acceptable to reject or delay
some jobs (e.g., jobs with high QoS requirements) if it is possible to execute
them with a small additional amount of brown energy. In this case, the dat-
acenter faces a multi-criteria optimization problem comprising the selection of
power sources and the scheduling of jobs. Similarly, the use of batteries also
results in a multi-criteria optimization problem since the datacenter administra-
tor can decide when to use the additional power from the battery. Multi-criteria
optimization is ongoing, and we will cover this topic in our future work.

3.3 Energy Storage Devices (ESDs)

ESDs act as a buffer to smooth out intermittent power from renewables, shifting
energy from peak generation time-of-day (charging) to low generation periods
(discharging). Batteries store the excess energy from wind and solar, increasing
the contribution from renewable resources and reducing the electric grid’s need.
This translates to reduced electricity costs, lower carbon emissions, and highly
reliable services.

(a) % of time available power exceeds a
given value from renewables and battery.

(b) Power generation: solar (peak 120
kW), wind (peak 600 kW), June, 2019.

Fig. 3. Power generation and power availability from wind and solar

Figure 3a shows the probability that total expected power will exceed a given
value for each of renewable sources and combinations from data calculated hourly
across the 2019 calendar year at the GLEAMM [1] site. For example, a datacenter
of 240 kW total electrical draw can expect to have its energy needs met at least
60% of the time entirely by the solar array and wind farm. Approximately 80
kW or more will be available at least 95% of the time for critical infrastructures
- such as storage, networking, and control functions of the computational cluster
- entirely from the renewables. Under ideal conditions, Fig. 3b (red line) shows
the power (over 3-days in June 2019) from renewables and power available with
battery on site. Under normal conditions, the power generation from solar and
wind is much more volatile.
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4 DRL Scheduling Agent

We train our scheduling agent with a custom variant of the Deep Actor-Critic
RL framework (Sect. 2.1). The datacenter simulator (Sect. 3) with ready pool
size n is converted to a RL environment that takes an action index < n + 2 and
returns a new state and reward. States are tuples containing both the resource
image and array of job metadata (Sect. 3.1), while the reward function can be
adjusted to reflect the goals of our scheduling system. This paper focuses on
optimizing the total (monetary) value of completed jobs; the reward at timestep
t is the total value of all completed jobs at that timestep. Our agent learns to
select jobs from the ready pool that maximize total job value with the help of
three DNNs.

The encoder combines the state information in the resource allocation image
and job metadata array and produces a compact vector representation. The
resource allocation image is processed by convolutional layers common in com-
puter vision applications, while the job array is passed through standard feed-
forward layers.

The two representations are then normalized for stability and concatenated
together before a final sequence of layers condenses them to a vector s̃ ∈ R
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that summarizes the current state of the scheduling environment. The actor net-
work takes s̃ as input and outputs probabilities for selecting all n+2 scheduling
actions. The critic also takes s̃ as input and outputs q ∈ R

n+2, where q[i] is
an estimate of the total monetary value that we expect to achieve in the future
when beginning in the current state and taking the ith action.

In an actor-critic method, the actor is trained to assign higher probabilities to
actions that the critic determines will lead to higher monetary value. The critic
then uses the improved actor to better estimate the expected return of selecting
each action. Both networks rely on the state representation s̃ learned by the
encoder network. Separating the encoder in this way lets us share parameters
across the actor and critic training processes and reduces overall network size.
However, the encoder parameters are updated alongside the critic but not the
actor for stability reasons.

Additionally, we are interested in learning to mimic or improve upon the
decisions of heuristic schedulers. Learning from fixed datasets of prior experience
is the topic of Offline RL [22], and applying standard (“online”) actor-critics
without the ability to test the policy in the environment and confirm the outcome
can lead to value overestimation [21]. Therefore, we adjust the training process
when using offline data so that the actor network learns to mimic the scheduling
decisions in the dataset, as long as the critic network suggests those actions are
an improvement over what the actor would have done otherwise.

The training process is outlined in Algorithm 1. Our specific implementation
includes several additional details that have been shown to improve stability and
performance; the online version of RARE is closest to discrete SAC [8,15] while
the offline variant is implemented similarly to CRR [32].
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Algorithm 1: RARE Training Process
Input: Batch Size B, Learning Rate α, Online True/False, Discount γ
Initialize: Encoder Net gψ, Actor Net πθ, Critic Net Qφ

1 if Online then
Input: Datacenter Simulator Env with Dynamics T : S × A → S and

Reward Function R : S × A × S → R

Initialize: Replay Buffer D ← {}
2 else

Input: Advantage Samples k, Replay Buffer with pre-provided transitions
D ← {(si, ai, ri, s

′
i), . . . }

3 end
4 for training step t ∈ {0, . . . , T} do
5 if Online then

// sample an action from the policy

6 at ∼ πθ(gψ(st))
// advance datacenter sim and receive next state and reward

7 s′
t ← T(st, at), rt ← R(st, at, s

′
t)

// add transition to the replay buffer

8 D ← D ∪ {(st, at, rt, s
′
t)}

9 end

10 Randomly Sample Batch of B transitions {(si, ai, ri, s
′
i)}i=B

i=0 ∼ D
// the encoder embeds the resource image and job metadata into a

single array

11 Let s̃j := gψ(sj)
// critic loss (where �∇ cancels gradient contributions)

12 Lcritic ← 1

B

i=B∑

i=0

((
Qφ(s̃i, ai) − E

a′∼πθ(s̃
′
i)

[
(ri +�∇γ(Qφ(s̃′

i, a
′)

]
)2)

13 if Online then
// online actor loss (see [15]). train the actor to maximize

the Q-function.

14 Lactor ← 1

B

i=B∑

i=0

(
E

a′∼πθ(s̃i)

[−Qφ(s̃i, a
′)

])

15 else
// estimate the advantage function, A(s, a), by comparing the

value of a to the average value of actions sampled from

the policy in a given state.

16 Let Â(s̃i, ai) := Qφ(s̃i, ai) − 1
k Σ

k
0 Qφ(s̃i, a

′ ∼ πθ(s̃i))
// offline actor loss (see [32]). supervised regression to

copy actions with positive advantage (where 1{x} is 1 if x
is True else 0)

17 Lactor ← 1

B

i=B∑

i=0

(
−1{Â(s̃i,ai)>0}logπθ(ai|s̃i))

)

18 end
// update neural nets by gradient descent

19 ψ ← ψ − α∇ψLcritic , φ ← φ − α∇φLcritic , θ ← θ − α∇θLactor ,

20 end
Output: Trained Scheduling Policy πθ(gψ(s))
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5 Evaluation

This section evaluates the DRL scheduler’s performance with different work-
loads, power availability at the green datacenter and explores the effects of design
choices on the performance. Before presenting the results, we briefly discuss the
workload and experimental setup.

5.1 Experimentation Conditions

Our green datacenter simulator compares different resource allocation and
scheduling policies using various workloads and power availability settings. Our
datacenter simulator (Sect. 3) integrates resources, jobs, power supply from
renewables (Sect. 3.2) and ESDs (Sect. 3.3). We have not explicitly modelled net-
working, storage and I/O overhead. These overheads can be incorporated into
the model by adding start/end delay to each job’s start and end times. The flex-
ible design of our datacenter simulator allows exploring various design options
that can potentially improve the DRL scheduler’s performance. For the following
experiments, we modeled a small-scale (10 to 50 resources) and a medium-scale
datacenter (100 to 300 resources).

5.2 Evaluation Metrics

The metric used for evaluating the DRL scheduler’s performance is the Total
Job Value (Sect. 3.1.4) from running the jobs. The Total Job Value, accumulated
during evaluation, includes a total value for all the jobs that complete on time.
The higher the Total Job Value, the better. We repeated each experiment 10
times, with new seed, and found the error margin between runs was insignificant.

We also evaluate traditional heuristic scheduling policies, including: Shortest
Job First (SJF), Quality of Service (QoS), Highest Value First (HVF), and First
Come First Serve (FCFS) for comparison. With the SJF heuristic policy, the job
with the shortest runtime is picked first. The job with the highest QoS value
(refer Sect. 3.1.2) is scheduled first with the QoS scheduling policy. The highest
value job is scheduled first with the HVF policy, and the job with the earliest
enter time is scheduled using FCFS. Our framework does not support backfilling
during scheduling; we will incorporate this feature in our future work.

5.3 Workload

The datacenter simulator consists of a cluster with different resource types. Jobs
arrive at the cluster in an online manner in discrete timesteps. We assume that
the resource demand of each job is known upon arrival; i.e., the resource require-
ments of each job j is given by the vector rj = (rj,1, rj,2), and Tj is the duration
of the job. We assume each job has a fixed allocation (no malleability), such that
rj must be allocated continuously from when the job starts execution until com-
pletion. If a job gets suspended, then the job’s remaining run time is updated
when the job resumes.
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5.3.1 Synthetic Workload
We used a synthetic workload where each job consists of meta-data, includ-
ing job-id, resource requirement (#cpus, #gpus), and job duration. Jobs arrive
online according to a Poisson process. The average job arrival rate, λ, deter-
mines the average load on the cluster. We chose the job duration and resource
requests such that 70% of the jobs are short jobs with a duration between 1t
and 10t chosen uniformly. The remaining are long duration jobs chosen uniformly
from 10t to 30t for a time horizon of 48. Each job can request a maximum of
50% of the total resources, picked randomly. Synthetic workload provides more
nuanced control over simulation parameters (e.g., job arrival rate, job distribu-
tion) while allowing us to study the scheduler’s behavior under a wide range of
conditions [10,11].

5.3.2 HPC Workload
We trained and evaluated the RARE scheduler using Argonne National Lab-
oratory (ANL) Intrepid HPC workload [6]. The logs contain several months’
accounting records (from 2009) from the Blue Gene/P system called Intrepid.
The ANL HPC workload is an old data set, but it has similar characteristics to
modern workloads in terms of job arrival rates, resource requirements, and job
duration. We made additional changes to the job logs to compensate for miss-
ing information. For example, we added GPU requirements to the job requests
because Intrepid job logs did not have GPU jobs. Similarly, ANL logs do not
have a QoS parameter. We added QoS value (ranging between 0.1 to 0.9, refer
§3.1.2) for each job during training and evaluation.

5.3.3 Power Availability
We use synthetic power and real power prediction data traces in our experiments.
When using synthetic power traces, the power availability level, e.g., 90%, means
that 90% of the resources are turned on (10% resources turned off) for that time
step (refer Fig. 2). The real power prediction data (solar and wind) is from
GLEAMM [1] datacenter. The GLEAMM center is a microgrid equipped with
150 kW solar power and three wind turbines connected to the facility, each with
300 kVA of expected power generation.

5.4 Results

First, we evaluate our DRL scheduler with synthetic and HPC workloads. Sec-
ond, we demonstrate the DRL scheduler’s adaptability to the intermittent power
supply. Third, we evaluate design choices, namely extended planning horizon and
increasing ready pool size, that significantly increase the performance of the DRL
scheduler compared to heuristics. Finally, we show that the DRL scheduler can
learn to imitate the existing heuristic policies and improve performance over
those heuristic policies.
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5.4.1 Performance with Synthetic and HPC Workloads
Performance with Synthetic Workload and Power Data: This section demon-
strates the DRL scheduler’s performance with the increasing number of
resources. We modeled a small and medium scale datacenter and maintained
the workload and power availability at 100%. The Total Job Value obtained
compared to heuristic scheduling policies is plotted in Fig. 4.

Analysis: From Fig. 4, the DRL scheduler performs 18% to 25% better for small
scale datacenter and 2% to 20% better for medium scale datacenters compared
to heuristic policies. As the number of resources increases (≥50), the DRL sched-
uler’s performance closely matches (2% to 6% better) the performance of QoS
and SJF policies. The DRL scheduler’s state space increases as the problem size
increases (100 to 300 resources). As the state space increases, the DRL scheduler
must explore more states to decide on the best action in any given step. Given
the vast state space (for resources ≥50), the agent cannot explore all possible
state-action pairs within the fixed episodic limits. Therefore, the performance
difference between DRL scheduler and heuristic policies narrows with a larger
state space. This huge state-space problem can be alleviated by splitting the
state space into smaller sizes. We will investigate this approach in the future.

Fig. 4. DRL scheduler’s performance vs. heuristic scheduling policies with varying
resource pool size (small to medium scale datacenter)

Performance with ANL Workload and Real Power Prediction Data: We modeled
a small scale datacenter (10 to 30 resources) with ANL HPC job workload and
maintained the job arrival rate at 100%. Additionally, we used the actual power
prediction data from the GLEAMM datacenter to simulate a real-world green
datacenter powered by renewables and battery (no brown energy).
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Fig. 5. DRL scheduler’s performance vs. heuristic scheduling policies with ANL work-
load and GLEAMM power data

Analysis: Figure 5 shows the performance of the DRL scheduler compared to
heuristic policies on the ANL workloads and real power prediction data from
GLEAMM. For 10 resources, the DRL scheduler’s performance matches the QoS
and is 5% to 10% better than other scheduling policies. For 20 and 30 resources,
the DRL scheduler performs 7% to 14% better than the heuristic policies.

Different workloads have different job mixes and distributions; therefore, their
performance varies [34]. Although the one-size-fits-all approach works, we plan
to investigate further the diverse workload properties to gain deeper insights into
designing DRL schedulers (e.g., DNN shape, size, and state representation).

5.4.2 Scheduler’s Adaptability to Intermittent Power Supply
This section presents the DRL scheduler’s adaptability to the varying power
supply. The intermittent power generation by renewables necessitates the dat-
acenter resources to switch between power states (off, idle, full throttle). Our
experiments simulate intermittent power supply to the datacenter at each time
step, not fixed reduced power supply. We modeled small and medium-scale dat-
acenter with different power availability levels and measured the total job value
obtained at each level. The resource pool size expands and contracts at every
timestep (Fig. 2), based on power availability. The job arrival rate is kept con-
stant at 100% for all the power availability levels. We did not simulate adaptive
throttling to dynamically manage the datacenter load since it is out of the scope
of this paper.

Analysis: In Fig. 6, we plotted the total job value with varying power supply
(100%, 90% and 80%) for small and medium size cluster. For small-scale clus-
ter (Fig. 6a, b and c), the DRL scheduler performs 9% to 13% better (10 and
20 resources) and 8% to 12% better (50 resources) than heuristic policies. For
medium-scale cluster (Fig. 6d), the DRL scheduler performs 1% better than QoS
policy and 5% to 20% better than other heuristic policies. The greedy heuris-
tic policies, like SJF, do not plan for the future by design. On the contrary,
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the DRL scheduler observes the resource availability changes in the future and
intelligently schedules suitable jobs maximizing total job value. As observed in
the previous section, the performance difference between DRL scheduler and
heuristic policies narrows (300 resources) with a larger state space.

Fig. 6. DRL Scheduler’s performance with varying power supply - small and medium
scale datacenter

5.4.3 Extended Planning Horizon
Typically, the renewable energy predictions are generated for a 24−hour (day
ahead) window. More recently, researchers have developed better prediction
models that can predict (with relative accuracy) power generation for extended
time windows (2–3 d) [19]. This subsection investigates the DRL scheduler’s per-
formance with various planning horizons, namely 36, 48, 60, and 72 time units.
For this experiment, we used synthetic workload and 100% power to isolate the
performance implications of the extended planning horizon.
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Analysis: From Fig. 7, as the planning horizon increases from 36 to 72, the DRL
scheduler performs 4% to 14% and 6% to 10% better than SJF heuristic policy
for synthetic and ANL HPC workloads, respectively. The DRL scheduler seeks
to maximize the future cumulative rewards over some predefined planning hori-
zon (a.k.a, time horizon). With a shorter planning horizon, TH=36, the DRL
scheduler might be limited to myopic decisions yielding immediate gains. The
greedy heuristic policies lack the ability to plan for future events; specifically,
the performance of SJF policy cannot improve as long as the jobs’ runtimes are
strictly less than the planning horizon.

Fig. 7. DRL scheduler’s performance vs. SJF scheduling policy with increasing time
horizon - 10 resources

Our experiments assume that the quality of predictive information does not
decay with an extended time horizon. In reality, as the time horizon increases,
uncertainty increases due to weather prediction inaccuracy (described in §3.2).
This uncertainty can be captured by changing the discount factor, γ. The dis-
count factor determines how much the DRL agent cares about rewards in the
distant future relative to those in the immediate future. If γ = 0, the agent will
be completely myopic and only learn about actions that produce an immediate
reward. For our experiments above, we set γ = 0.99. We note that optimization
problems become computationally-intensive (due to state-space explosion) with
longer time horizons. In the future, we will identify the limits beyond which
extending the time horizon will yield ineffective results for the DRL scheduler.

5.4.4 Varying Readypool Size
This section evaluates the performance of different scheduling policies as the
ready pool size varies. The size of the ready pool (described in Sect. 2) is fixed
for any given problem size because the DNN’s shape cannot change dynamically
during training or evaluation. The DRL scheduler can only select one or more
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jobs in the ready pool at each step. On the other hand, typical heuristic sched-
ulers can select one or more jobs from all of the waiting jobs in the system. This
experiment demonstrates that limiting the list of jobs (ready pool size) does
not affect the performance of the DRL scheduler. For this experiment, we used
10 resources, synthetic and ANL workloads with 100% power supply to study
the effect of ready pool size on the quality of the results produced by the DRL
scheduler.

Fig. 8. DRL scheduler’s performance vs. SJF scheduling policy with varying ready pool
sizes - 10 resources

Analysis: Figure 8a shows the DRL scheduler’s performance (synthetic workload)
compared to SJF scheduling policy with varying ready pool sizes. The DRL
scheduler performs best with a ready pool size of 15, an 18% improvement over
SJF. The DRL scheduler’s performance decreases for ready pool sizes of 25 and
higher but still performs 4% to 7% better than SJF. On the other hand, the
SJF policy always picks the smallest job, and the performance stays constant
even when we increase the ready pool size because the jobs’ lengths are within
a certain distribution (described in Sect. 5.3.1). Even if more jobs are visible (in
the ready pool) to the SJF scheduler, the job lengths are likely to be similar.

Figure 8b shows the DRL scheduler’s performance with ANL HPC workload.
The DRL scheduler performs 10% better than SJF when the ready pool size is
5 and 7% better for ready pool size 15 and above. Whereas, with the synthetic
workload, the DRL scheduler’s performance increases, with ANL HPC workload,
the performance decreases as ready pool size increases. We showed that having
a smaller set of ready pool jobs does not affect the DRL scheduler’s overall
performance. Further, we believe that the graph trends for the two workloads
are different due to the differences in the job distributions. We plan to investigate
further with other workloads.
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5.4.5 Behavioural Cloning and Offline RL
While DRL can learn efficient scheduling strategies, it often takes hundreds of
thousands of timesteps to explore the datacenter environment and adapt from a
randomly initialized DNN policy. Following the recent success of Offline RL [22],
we can try to learn a scheduling policy from a fixed dataset of prior experience
collected from existing heuristic schedulers.

We used a synthetic workload with 100% power supply on a small cluster
(20 resources). First, we collected 20 rollouts (sequences of 100–200k samples) of
offline experience data where the heuristic scheduling policies select the actions.
Second, we load the offline experience into the empty replay buffer during the
DRL scheduler’s training. The simplest offline learning algorithm is behavioral
cloning (BC), where we train the DRL scheduler’s actor net to directly mimic the
action choices of the heuristic data in its replay buffer. To evaluate the success
of the learning process, we simulated new rollouts controlled by the original
heuristic and measured the percentage of steps where the BC policy’s action
is equal to the heuristic’s decision in the current state. This action agreement
metric can be prone to compounding errors because we follow the heuristic even
when the DNN would have chosen another action, leading to states that are out
of the distribution of the policy πθ. However, it provides some insight into our
agent’s ability to learn heuristic policies.

Table 1. DRL scheduler’s action agreement of BC and performance improvement over
BC with Offline learning

20 Resources SJF QoS HVF FCFS

Action Agreement (BC) 98% 71% 75% 80%

Offline Improvement 2% 5% 19% 7%

Analysis: The results for 20 resource environment are shown in Table 1. We also
experiment with fully offline RL (Algorithm 1 with Online = False), where we
use reward information to mimic heuristic actions only when our trained critic
network interprets those actions to be an improvement over what the current
policy πθ would have done otherwise. This approach improves upon BC in terms
of percentage increase in Total Job Value shown in the second row of Table 1.

Another interesting direction is whether our offline agent can learn from
multiple heuristic policies. We collected rollouts from SJF, QoS, HVF, and FCFS
on a 50 resource environment and trained the offline version of RARE on a replay
buffer filled evenly with actions from each heuristic. We then measured the action
agreement of the DRL policy with each of the original heuristics, and found:
SJF (64%), QoS (7%), HVF (31%), and FCFS (16%). This suggests that the
offline algorithm learns to favor the SJF heuristic, which performs well in the 50
resource datacenter (Fig. 6), and easier to mimic SJF than QoS.
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6 Related Work

6.1 Heuristics Schedulers

Resource allocation or scheduling has been extensively studied in the literature.
Tetrisched [30] is a scheduling system implemented for repetitive analytics jobs
in datacenters. Tetrisched plans ahead in time using a Mixed Integer Linear
Programming (MILP) constraint solver to optimize job placement. Gandiva [33]
scheduler, implemented on top of Kubernetes, exploits intra-job predictability
(time taken for each mini-batch iteration) to time-slice GPUs efficiently across
multiple jobs leading to low job latency. These schedulers do not demonstrate
their suitability in green datacenter environments. To address the intermittent
power supply from renewables, the existing heuristics schedulers [13,20,28] delay
the deferrable jobs until the renewable power is adequate or the electricity price
is low before the soft deadline of the jobs expires. Deferring the jobs may lead to
poor QoS for the users. Additionally, these implementations use hand-crafted
heuristics-based scheduling techniques, and reasoning about these heuristics’
interactions is complicated and becomes intractable as the number of variables
and heuristics increases.

6.2 RL Schedulers

The Spotlight [12] partitions the agent’s neural network training operations onto
different devices (CPUs and GPUs) for fast model execution. The RL scheduler
in [17] is designed to minimize the makespan of DAG jobs considering both
task dependencies and heterogeneous resource demands. DeepEE [26] proposes
improving datacenters’ energy efficiency by considering the jobs scheduling and
cooling systems concurrently. The goal, in [26], is to reduce cooling costs in a
datacenter rather than optimize job scheduling. The scheduler in [27] imple-
ments a co-scheduling algorithm based on an adaptive RL by combining appli-
cation profiling and cluster monitoring. Smoother [23] is renewable power-aware
middleware. This work’s primary focus is to provide sustained power to the dat-
acenter with stored energy rather than learning to adapt job scheduling given
intermittent power supply.

The RL schedulers discussed above do not have power variability as part of
the system’s internal state. When we consider power intermittency as part of
the system state, it changes the problem setting completely. Additionally, the
works discussed above treat the RL schedulers as black boxes without exploring
crucial system design parameters that significantly improve overall performance.
Further, each of these works is designed for specific environments and workloads
and therefore cannot be directly compared with one another or used in other
settings. Our implementation is a dynamic system with power variability encoded
in the system’s internal state. Our DRL scheduler’s primary focus is to schedule
jobs in green datacenters effectively, not predicting renewable energy production,
reducing electricity consumption or carbon emissions.
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7 Conclusion

Datacenters operate 24X7, guzzling megawatts of electricity, relying heavily on
brown energy. Brown energy is expensive and harmful to the environment as
brown energy generation releases gigatons of greenhouse gases. Concerns regard-
ing carbon emissions have led organizations to raise the bar by adopting a goal
of matching their power consumption with renewable energy.

The difficulty with using renewables to power datacenters is intermittent
energy generation, accompanied by inaccuracies in power predictions. The degree
of inaccuracy varies from one renewable energy source to another, requiring
smart systems and system software to carefully balance and intelligently adapt
computing to energy generation. The existing heuristic and RL schedulers are
not designed for complex dynamic green datacenters. Additionally, the existing
RL schedulers do not explain or explore the system design configurations that
lead to better performance with proper tuning.

To address these shortcomings, we propose a unified green datacenter sched-
uler, RARE, that allows experimenting with synthetic and real workloads and
integrates various renewable energy sources along with Energy Storage Devices
(batteries). We showed that our DRL scheduler performs better than heuristics-
based algorithms in the dynamic green datacenter environment for synthetic
and real HPC workloads for a cluster of up to 300 resources. The DRL sched-
uler adapts exceptionally well to the intermittent power supply (synthetic and
actual power prediction data). We demonstrated that accurately tuning the sys-
tem parameters like planning horizon and ready pool size leads to increased
performance. Finally, we show that the DRL scheduler can effectively learn from
and improve the existing systems using Offline Learning techniques.

References

1. GLEAMM Facility at TTU. https://www.depts.ttu.edu/gleamm/
2. Lancium Inc. https://lancium.com
3. Amazon ec2 spot instances. Accessed May 2022. https://aws.amazon.com/ec2/

spot/
4. Azure spot virtual machines. Accessed May 2022. https://azure.microsoft.com/en-

us/pricing/spot/
5. Ambati, P., Bashir, N., Irwin, D., Shenoy, P.: Waiting game: optimally provisioning

fixed resources for cloud-enabled schedulers. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
SC 2020, p. 14. IEEE Press, Atlanta (2020). articleno 67

6. ANL: The argonne national laboratory intrepid log (2009). https://www.cs.huji.
ac.il/labs/parallel/workload/l anl int/

7. Bashroush, R.: Data center and ICT energy consumption: a fact-check on
“factchecking” (2020). https://www.linkedin.com/pulse/data-center-ict-energy-
consumption-fact-check-rabih-bashroush

8. Christodoulou, P.: Soft actor-critic for discrete action settings. arXiv preprint
arXiv:1910.07207 (2019)

9. Facebook: Facebook sustainability. https://sustainability.fb.com

https://www.depts.ttu.edu/gleamm/
https://lancium.com
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com/en-us/pricing/spot/
https://azure.microsoft.com/en-us/pricing/spot/
https://www.cs.huji.ac.il/labs/parallel/workload/l_anl_int/
https://www.cs.huji.ac.il/labs/parallel/workload/l_anl_int/
https://www.linkedin.com/pulse/data-center-ict-energy-consumption-fact-check-rabih-bashroush
https://www.linkedin.com/pulse/data-center-ict-energy-consumption-fact-check-rabih-bashroush
http://arxiv.org/abs/1910.07207
https://sustainability.fb.com


RARE: Renewable Energy Aware Resource Management in Datacenters 129

10. Feitelson, D.: Workload modeling for performance evaluation, pp. 114–141, January
2002

11. Feitelson, D.: Resampling with feedback – a new paradigm of using workload data
for performance evaluation (2021). https://youtu.be/JAvha-eM3G4

12. Gao, Y., Chen, L., Li, B.: Spotlight: optimizing device placement for training deep
neural networks. In: Proceedings of the 35th International Conference on Machine
Learning. In: Proceedings of Machine Learning Research (2018)

13. Goiri, I.N., Le, K., Nguyen, T.D., Guitart, J., Torres, J., Bianchini, R.: Green-
hadoop: leveraging green energy in data-processing frameworks. In: Proceedings of
the 7th ACM European Conference on Computer Systems, EuroSys 2012 (2012)

14. Google: We’re sourcing clean energy for a better future. https://www.google.com/
about/datacenters/renewable/

15. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor (2018)

16. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the
data center. In: Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI 2011 (2011)

17. Hu, Z., Tu, J., Li, B.: Spear: optimized dependency-aware task scheduling with
deep reinforcement learning. In: 2019 IEEE 39th International Conference on Dis-
tributed Computing Systems (ICDCS) (2019)

18. Jain, T., Cooperman, G.: CRAC:: Checkpoint-restart architecture for CUDA with
streams and UVM. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2020, IEEE Press
(2020)

19. Jee, C.: Deepmind’s AI is predicting how much energy Google’s wind turbines
will produce (2019). https://www.technologyreview.com/2019/02/27/239459/
deepmind-creates-algorithm-to-squeeze-more-out-of-wind-power/

20. Krioukov, A., et al.: Design and evaluation of an energy agile computing cluster.
Technical Report, EECS Department, University of California, Berkeley (2012).
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-13.html

21. Kumar, A., Fu, J., Soh, M., Tucker, G., Levine, S.: Stabilizing off-policy q-learning
via bootstrapping error reduction. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

22. Levine, S., Kumar, A., Tucker, G., Fu, J.: Offline reinforcement learning: tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643 (2020)

23. Liu, X., Hua, Y., Liu, X., Yang, L., Sun, Y.: Smoother: a smooth renewable power-
aware middleware. In: 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS) (2019)

24. Muhammad Naveed Akhter, Saad Mekhilef, H.M.N.M.S.: Review on forecasting
of photovoltaic power generation based on machine learning and meta heuristic
techniques (2018). https://doi.org/10.1049/iet-rpg.2018.5649

25. Narayanan, D., Santhanam, K., Kazhamiaka, F., Phanishayee, A., Zaharia, M.:
Heterogeneity-aware cluster scheduling policies for deep learning workloads. In:
14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pp. 481–498. USENIX Association, November 2020. https://www.
usenix.org/conference/osdi20/presentation/narayanan-deepak

26. Ran, Y., Hu, H., Zhou, X., Wen, Y.: Deepee: joint optimization of job schedul-
ing and cooling control for data center energy efficiency using deep reinforcement
learning. In: 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS) (2019)

https://youtu.be/JAvha-eM3G4
https://www.google.com/about/datacenters/renewable/
https://www.google.com/about/datacenters/renewable/
https://www.technologyreview.com/2019/02/27/239459/deepmind-creates-algorithm- to-squeeze-more-out-of-wind-power/
https://www.technologyreview.com/2019/02/27/239459/deepmind-creates-algorithm- to-squeeze-more-out-of-wind-power/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-13.html
http://arxiv.org/abs/2005.01643
https://doi.org/10.1049/iet-rpg.2018.5649
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak


130 V. Venkataswamy et al.

27. Souza, A., Pelckmans, K., Tordsson, J.: A hpc co-scheduler with reinforcement
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Abstract. Energy reduction has become a necessity for modern data-
centres, with CPU being a key contributor to the energy consumption
of nodes. Increasing the utilization of CPU resources on active nodes
is a key step towards energy efficiency. However, this is a challenging
undertaking, as the workload can vary significantly among the nodes
and over time, exposing operators to the risk of overcommitting the
CPU. In this paper, we explore the trade-off between energy efficiency
and node overloads, to drive virtual machine (VM) consolidation in a
cost-aware manner. We introduce a model that uses runtime informa-
tion to estimate the target utilization of the nodes to control their load,
identifying and considering correlated behavior among collocated work-
loads. Moreover, we introduce a VM allocation and node management
policy that exploits the model to increase the profit of datacentre oper-
ators considering the trade-off between energy reduction and potential
SLA violation costs. We evaluate our work through simulations using
node profiles derived from real machines and workloads from real data-
centre traces. The results show that our policy adapts the nodes’ target
utilization in a highly effective way, converging to a target utilization
that is statically optimal for the workload at hand. Moreover, we show
that our policy closely matches, or even outperforms two state-of-the-
art policies that combine VM consolidation with VFS – the second one,
also operating the CPU at reduced voltage margins – even when these
are configured to use a static, workload- and architecture-specific target
utilization derived through offline characterization of the workload.

Keywords: Energy efficiency · Dynamic CPU management · Dynamic
VM consolidation · Cost-effective datacentre operation

1 Introduction

Modern datacentres have a significant energy footprint, which accounts for
approximately 2%–3% of the worldwide energy consumption [9]. In fact, CPUs
are responsible for up to 60% of the total energy consumption of compute
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nodes [8]. Therefore, optimizing the energy efficiency of these nodes is a first-class
concern for both designers and operators of large-scale datacentres.

Techniques such as virtual machine (VM) consolidation [5,7] promote energy
efficiency at the datacentre-level by creating opportunities to switch off nodes.
The challenge is to balance between packing VMs to the nodes as densely as
possible, and avoiding node overloads that will trigger Service Level Agreement
(SLA) violation penalties. At the node-level, dynamic voltage and frequency
scaling (VFS) [13], available on most modern processors, enables the dynamic,
joint manipulation of CPU voltage (V ) and frequency (f) to support potentially
more power- and energy-efficient operating points, according to the character-
istics of the workload. Our recent work in [15] goes a step further, exploiting
CPU voltage guardbands to enable even more energy-efficient operation by con-
figuring CPUs outside their normal (V, f) envelope, with only slightly increased
crash probability (if managed carefully).

Dealing with this multi-parametric configuration and optimization space is
far from trivial. Scheduling, configuration and resource management policies for
the cloud often use static thresholds to drive their decisions [4,15] with node
target utilization thresholds being a typical example. This popular approach
has low design complexity, however (a) selection of the optimal static threshold
requires a priori knowledge of the workload, which may not always be realistic,
(b) it fails to capture inter-node variations of workload characteristics at any
given time, (c) it fails to capture system-wide workload variations in time, and
(d) the value of the optimal threshold is also sensitive to hardware characteristics
and configuration.

In this paper, we tackle the aforementioned weaknesses with a policy which
dynamically adapts target node utilization thresholds. This is achieved by ana-
lyzing the workload characteristics observed in the past and predicting short-
term future behavior. Moreover, we quantify the correlation among collocated
workloads on each node in order to identify a sweet-spot between high node
utilization and risk of SLA violation penalties due to unexpected load increases,
which may lead to node overloads. More specifically:

– We introduce a scalable, analytic and architecture-agnostic model to esti-
mate target CPU utilization for individual nodes in a datacentre, exploiting
knowledge on the past behaviour of the VMs scheduled on these nodes. These
adaptive utilization targets favor high VM consolidation, while controlling the
risk of node overloads.

– We find that, in order to achieve this dual goal, the policy needs to identify
correlations between the CPU capacity requests of co-scheduled VMs and
consider them when deciding on node utilization targets.

– The proposed method works fully online, without a priori knowledge regard-
ing the workload of the datacentre, nor requiring any pre-training.

– We introduce an adaptive VM management and node configuration policy
that exploits the aforementioned adaptive thresholds for VM consolidation,
together with VFS and with CPU configuration at reduced voltage margins,
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considering the cost of SLA violation penalties due to both node overloads
and crashes (due to operation with reduced margins).

– We perform simulations to evaluate our approach using real datacentre work-
load traces and realistic node parameters ((V, f) steps, voltage margins, power
consumption to the plug, failure probability) derived from real systems with
two different processor architectures, an Intel Xeon E3-1120 v5, and an ARM-
based Ampere Computing X-Gene 3.

To the best of our knowledge, this is the first work that combines per node tar-
get CPU utilization adaptivity with VFS and relaxed CPU voltage guardbands
in a cost-centric approach, to increase the profit of cloud infrastructure providers
exploring the trade-off between energy cost and potential SLA violation penal-
ties. Our results show that our adaptive policy manages to always outperform
two state-of-the-art policies using statically optimal target CPU utilization val-
ues derived via pre-characterization of the workload at hand on the respective
architecture: (a) a policy that combines VM consolidation with VFS [3], and
(b) a policy which also exploits reduced CPU voltage guardbands on top of VM
consolidation and VFS [15].

2 Background

In this section, we briefly outline the notation and some basic assumptions used
in our adaptive model introduced in Sect. 3. We use a notation and assumptions
compatible to those in [15].

2.1 System Model

We assume a datacentre with nodes ni, 1 ≤ i ≤ N . Each node has limited
memory MEMi. All nodes have the same CPU, which can operate at different
nominal voltage-frequency points (V , f), where (Vmax, fmax) offers maximum
performance. For each nominal point, there is a reduced voltage configuration
(V r, f) with V r < V , offering the same performance at lower power consump-
tion. However, in this case the node may fail with probability Pfail > 0, whereas
Pfail = 0 for nominal configurations. We assume crash failures, where the node
stops working and all hosted VMs stop running. Modeling and tolerating silent
data corruptions that might occur due to CPU undervolting is beyond the scope
of this work.

Different jobs are submitted for execution, packaged as virtual machines
V Mm, 1 ≤ m ≤ M with formally declared resource requirements in respec-
tive SLAs. Let MEMSLA

m be the required memory and CSLA
m,fmax

be the CPU
capacity at fmax for V Mm as per its SLA. Notably, when the CPU operates at
f < fmax, the effective CPU capacity as per the SLA becomes CSLA

m,f ≥ CSLA
m,fmax

(the increase depends on the sensitivity of the VM to frequency scaling).
We partition time into periods and assume that VMs arrive and terminate

at their boundaries. Further, we divide each period in K timeslots of duration
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Fig. 1. Overview of the proposed approach.

slotT (the total duration of a period is prdT = K × slotT ). Let Creq
m,f,p be the

actual CPU capacity requirements of V Mm for frequency f throughout period
p. Note that Creq

m,f,p ≤ CSLA
m,f , i.e., in some periods the VM may not need the full

CPU capacity as per its SLA.
Let Calloc

m,f,p,k be the CPU capacity at frequency f that is allocated to V Mm in
the kth timeslot of p. If the host node is overloaded, the VM may get less capacity
than needed, Calloc

m,f,p,k < Creq
m,f,p. Furthermore, the restart of V Mm on a node in

period p (due to an eviction from its old host) takes Rm time slots (linearly
dependent contractually agreed memory footprint of V Mm) thus Calloc

m,f,p,k =
0, 1 ≤ k ≤ Rm. We assume VMs to be stateless, therefore they can be restarted
without needing elaborate migration. Also, if the host of V Mm crashes (due to
operation with reduced voltage), Calloc

m,f,p,k = 0, 1 ≤ k ≤ K for all slots of the
period.

2.2 VM Allocation Approach

When a period ends, the target utilization, VM allocation and operating point
is decided for each node, so as to minimize the expected cost for the datacentre
due to the node’s energy consumption and SLA violation penalties – the latter
apply in case of node overload as well as in case the VM remains unavailable
because it is being restarted on another node or the host node crashes.

Our approach is divided in the following main steps, illustrated in Fig. 1. (1)
We estimate the target node utilization for each CPU frequency based on the
current VM allocation and load, in order to identify expected node overloads
for each operating point and pick the VMs that need to be evicted from the
node to avoid overload. (2) We select the best nominal operating point of each
node considering the trade-off between the node’s energy cost and SLA violation
penalties due to restart of the evicted VMs on other nodes. (3) We allocate
evicted VMs and newly arrived VMs to nodes, respecting the selected operating
point and target utilization of each node. At this point, we consider activating
additional nodes or deactivating underutilized nodes. (4) We re-configure each
node considering the updated VM allocation, exploiting operation at reduced
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voltage margins for additional cost gains selecting the operating point in a cost-
driven manner. Note that steps (1), (2) and (4) are performed using only local
data of the node. Thus, the approach is scalable even for large datacentres.

3 Node-Level Estimations

We introduce a model that considers the trade-off between the energy cost and
potential SLA violation penalties. In contrast with previous work [15], this model
does not require in advance knowledge and characterization of the workload,
but instead quantifies and adapts to workload characteristics at execution time.
Moreover, it estimates the cost at the level of the entire system, even though
scheduling decisions are taken at the node level. Hence, our approach is: (a)
easily applicable in realistic settings, (b) scalable, and (c) cost-effective even
for large datacentres. In this section we discuss in detail the estimation of the
different costs involved, while in Sect. 4 we focus on the adaptation to workload
characteristics.

3.1 Target CPU Utilization and VM Evictions

Each node ni has a target CPU utilization utarget
i,f,p for ni in period p for CPU

frequency f . This serves as a conservative upper bound for the CPU load to be
assigned to the node, so as to avoid node overload in case some of the hosted
VMs request more CPU capacity than expected. When the period ends, the
target utilization is adjusted for the next period p + 1 based on the current VM
allocation and a tentative frequency fi, possibly selecting some VMs for eviction
to avoid overloads.

The tentative VM evictions are captured via matrix Evct, where
Evct[i, fi,m, p + 1] = 1 if V Mm is to be evicted from ni assuming operation
at fi in p + 1, else 0. Similarly, we use Rem[i, fi,m, p + 1] to encode whether
V Mm will remain on ni in p + 1. This exploration is done for each of the sup-
ported CPU frequencies, in order to find the best option for ni. Note that any
VM allocation must respect the full memory requirements of each hosted VM,
i.e.,

∑M
m=1 Rem[i, ∗,m, p + 1] × MEMSLA

m ≤ MEMi.

3.2 Load Estimation

We estimate the CPU requirements of each V Mm for frequency f in the next
period p + 1 as Ĉreq

m,f,p+1 = C
req

m,f,p, where C
req

m,f,p are the VM’s mean CPU
requirements over the past periods up to p adjusted to f .

Then, the estimated load for ni assuming operation at fi, based on the VMs
that will remain on the node in the next period, is calculated as

ˆload
rem

i,fi,p+1 =
M∑

m=1

Rem[i, fi,m, p + 1] × Ĉreq
m,fi,p+1 (1)
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We also estimate the load of each VM to be evicted from ni and restarted on
another node. However, we do not know the hosts of these VMs nor the respective
CPU frequencies in the next period. As an approximation, we estimate the load
of the evicted VMs for each supported frequency f as

ˆload
vms

i,fi,p+1,f =
M∑

m=1

Evct[i, fi,m, p + 1] × Ĉreq
m,f,p+1 (2)

And then we estimate the total load of the VMs to be evicted from ni for the
entire system, by weighing the above load for each frequency according to the
nodes’ operating frequencies during the previous period p

ˆload
evct

i,fi,p+1 =
∑

f∈F

nodesf,p
nodesp

× ˆload
vms

i,fi,p+1,f (3)

where nodesf,p is the number of nodes that operated at f in p, and nodesp is
the number of nodes that were active in p.

Thus, the total estimated VM load related to ni (for the node and the system
as a whole) assuming it will operate at fi in the next period p + 1, is

ˆloadi,fi,p+1 = ˆload
rem

i,fi,p+1 + ˆload
evct

i,fi,p+1 (4)

3.3 Energy Cost Estimation

The estimated energy cost of each active node ni that will host one or more
VMs in the next period, assuming it will be configured to operate at (Vi,fi), is
calculated as

ˆcostE
rem

i,Vi,fi,p+1 = Pnode(Vi, fi, ûi,fi,p+1) × prdT × priceen (5)

Pnode(V, f, u) = A + B × f × V 2 × u (6)

ûi,fi,p+1 = min( ˆload
rem

i,fi,p+1, 1) (7)

where priceen is the energy price and ûi,fi,p+1 is the estimated node utilization
for the next period based on the estimated load as discussed in Sect. 3.2. Function
Pnode(V, f, u) returns the node’s power consumption when the CPU operates at
(V ,f) with utilization u, based on a linear power estimation model [15] where A
and B are platform-specific constants for the node’s static and dynamic power
consumption, respectively.

The energy cost due to the load of the VMs that will be evicted from ni

is approximated as follows. First, the individual cost of each evicted V Mm if
hosted on a node configured to operate at (V ,f) is

ˆcostE
vm

i,m,fi,V,f,p+1 = Pvm(V, f, Ĉreq
m,f,p+1) × prdT × priceen (8)

Pvm(V, f, u) =
u

utarget
fi,p

× A + B × f × V 2 × u (9)



Dynamic CPU Management Towards Profitable Datacentre Operation 137

In this case, the CPU utilization factor for the dynamic component of the
power estimation function is set to the expected CPU load of V Mm in the next
period Ĉreq

m,f,p+1. We also factor the static power consumption component with
the ratio of that load to the mean target CPU utilization of all nodes configured
to operate at fi in the previous period p, let utarget

fi,p
, as a proxy for the likelihood

of that particular VM eviction leading to the activation of a new node in p + 1.
Then, we estimate the total energy cost for the entire system of all VMs that

will be evicted from ni, as

ˆcostE
evct

i,Vi,fi,p+1 =
∑

(V,f)∈V F

(
nodesV,f,p

nodesp
(10)

×
M∑

m=1

Evct[i, fi,m, p + 1] × ˆcostE
vm

i,m,fi,V,f,p+1)

weighing the contribution of each operating point in the same spirit this done
for the load estimation in Eq. 3.

Thus, the total estimated energy cost related to ni (for the node and the
system as a whole) assuming it will operate at (Vi,fi) in the next period p+1 is

ˆcostEi,Vi,fi,p+1 = ˆcostE
rem

i,Vi,fi,p+1 + ˆcostE
evct

i,Vi,fi,p+1 (11)

3.4 SLA Violation Cost Estimation

We estimate the CPU capacity Ĉalloc
i,m,fi,p+1,k allocated to V Mm hosted on ni

in the kth timeslot of period p + 1 as follows. If ni
ˆload

rem

i,fi,p+1 ≤ 1 then
Ĉalloc

i,m,fi,p+1,k = Ĉreq
i,m,fi,p+1, else (if the node is overloaded) Ĉalloc

i,m,fi,p+1,k <

Ĉreq
i,m,fi,p+1 since the node’s CPU capacity is divided among the VMs proportion-

ally to their requirements (all VMs have the same priority). Also, Ĉalloc
i,m,fi,p+1,k =

0 in timeslots where V Mm is restarting as well as in all timeslots of the period
if ni crashes.

Whenever V Mm does not get the requested CPU capacity, the datacentre
provider has to pay a penalty to the customer. We consider the Percentage Price
Refund (PPR) model [11] where the penalty is a percentage of the VM price for
the duration of the violation, depending on the percentage of the CPU capacity
that was not allocated w.r.t. to the SLA requirements. More specifically, the
expected violation cost for V Mm for the kth timeslot of period p + 1 is

ˆcostV
vm

m,fi,p+1,k =

⎧
⎪⎪⎨

⎪⎪⎩

qm × CSLA
m,fi

−Ĉalloc
m,fi,p+1,k

CSLA
m,fi

× pricem,

if Ĉalloc
m,fi,p+1,k < Ĉreq

m,fi,p+1

0, if Ĉalloc
m,fi,p+1,k = Ĉreq

m,fi,p+1

(12)

where qm reflects the severity of the violation and pricem is the price charged
for executing V Mm per timeslot.



138 C. Kalogirou et al.

We then calculate the total estimated SLA violation cost for ni for the entire
period p + 1, as follows

ˆcostV i,fi,p+1 =
M∑

m=1

K∑

k=1

Rem[i, fi,m, p + 1] × ˆcostV
vm

m,fi,p+1,k (13)

This equation captures node overloads and VM restarts during normal oper-
ation, let ˆcostV

nofail

i,fi,p+1, as well as the case where ni crashes and does not run

any VM, let ˆcostV
fail

i,fi,p+1.

3.5 Total Estimated Node Cost

Based on the above, the total estimated operational cost related to ni (for the
node and the system as a whole) assuming it will operate at (Vi,fi) in the next
period p + 1 is

ˆcosti,Vi,fi,p+1 = Pfail × ˆcostV
fail

i,fi,p+1+ (14)

(1 − Pfail) × ( ˆcostEi,Vi,fi,p+1 + ˆcostV
nofail

i,fi,p+1)

calculated by weighing the cost of normal node operation vs a node crash with
the corresponding probabilities.

We assume that if a node fails it does so for an entire period during which it
does not run any VMs and does not consume any energy.

4 Adaptive Target CPU Utilization

The target node utilization for the next period utarget
i,f,p+1 is set with some slack,

so that the node can handle load beyond the estimated Ĉreq
i,fi,p+1 without being

overloaded. This is subject to an interesting trade-off: High utilization targets
result in more energy-efficient hence also greener and lower cost operation. How-
ever, if future CPU requests of the VMs are underestimated and overshoot the
CPU capacity of the node, SLA violations will occur, incurring penalties for the
operator.

In addition, potential correlation between different collocated VMs further
perplexes the estimation of a good CPU utilization target. Let Cratio

m,p =
Creq

m,fmax,p

CSLA
m,fmax

be the percentage of the CPU requirements of V Mm in period p with respect
to the contractually promised CPU capacity, both at frequency fmax. Figure 2
illustrates the Cratio of eight VMs from Google traces [19] over 10 periods. Each
line corresponds to a different VM. One can identify clusters of VMs with similar,
positively correlated Cratio

m,p variations (lines of the same color). Moreover, VMs in
the blue and green cluster are characterized by a rapid increase of their requested
CPU capacity at period 10, while the red cluster has the opposite trend to the
blue one.
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If decisions on target CPU utilization do not consider such phenomena, they
are highly likely to lead to node overloads. On the one hand, the identification of
positively correlated VMs should encourage more conservative values of target
CPU utilization. On the other hand, the co-execution of anti-correlated VM
clusters on the same node can protect against overloads due to dynamic workload
changes: when one cluster increases its requests, its counterpart tends to decrease
them, thus balancing the total load on the host node. This allows for more
aggressive (higher) CPU utilization targets, and a more energy-efficient usage of
the available resources.

Fig. 2. CPU pressure of different VMs w.r.t their contractual (SLA) maximum CPU
requirements, over consecutive periods.

To address the aforementioned challenges, at period boundaries we evaluate,
separately for each node ni, the past behavior of its assigned VMs and decide a
new value for utarget

i,f,p+1 for the following period. The estimation process involves
the following steps: (1) For every pair (V Ml, V Mm) of VMs on the node we
quantify the Pearson correlation corr(l,m),p between the Cratio of V Ml and V Mm

during periods up to p. (2) We use linear regression to estimate the CPU capacity
requests of every V Mm on the node, given the capacity requests of a different
V Ml for the next period, according to corr(l,m),p. (3) We pessimistically assume
that on the next period a specific V Ml will request its maximum contractually
agreed CPU capacity, i.e., Ĉratio

l,p+1 = 1. Given this assumption and the correlations
determined in step (2), we reach a conservative estimation of the respective total
node load. (4) We repeat steps (2)–(3) using each VM on the node as the baseline
for the estimation, and then use the highest (most pessimistic) load estimation
for period p + 1 to set the new target CPU utilization for the node. Below we
provide more details about these steps.

In step (2) we first apply linear regression, as modelled by Eq. 15, to predict
the Cratio of V Mm in period p + 1 assuming we know the Cratio of V Ml on the
same period:

Ĉratio
(m|l),p+1 = α(m|l),p × Ĉratio

l,p+1 + β(m|l),p + ε(m|l),p (15)
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where α(m|l),p is the slope of the regression line, β(m|l),p is the intercept, and
ε(m|l),p is the error of the prediction. We calculate α(m|l),p = corr(m,l),p × stdm,p

stdl,p
,

where stdl,p and stdm,p are the standard deviations of the Cratio of V Ml and
V Mm respectively, over past periods up to p. To derive β(m|l),p, we first calculate

the mean Cratio of V Mm and V Ml up to period p, let C
ratio

m,p and C
ratio

l,p , respec-

tively. Then, we set ε(m|l),p = 0 and solve Eq. 15 for β(m|l),p, using C
ratio

m,p and

C
ratio

l,p in place of Ĉratio
(m|l),p+1 and Ĉratio

l,p+1. Finally, since our goal is to avoid node
overloads, we conservatively set ε(m|l),p to the maximum absolute error between
the predicted values of our model and the observed real values over past periods.

In step 3, we predict the load of ni for period p + 1, as a fraction of its total
CPU capacity, assuming Ĉratio

l,p+1 = 1, as

ˆload
pre

i,l,fi,p+1 = CSLA
l,fi +

∑

m �=l

Rem[i, fi,m, p + 1] × Ĉpre
(m|l),fi,p+1 (16)

where Ĉpre
(m|l),fi,p+1 is the predicted CPU capacity request by V Mm for frequency

fi under the assumption that Ĉratio
l,p+1 = 1. This is calculated by deriving the

predicted CPU capacity request Ĉpre
(m|l),fmax,p+1 = Ĉratio

(m|l),fmax,p+1 × CSLA
m,fmax

at

fmax and then calculating Ĉpre
(m|l),fi,p+1 for fi (according to the sensitivity of

V Mm to frequency scaling).
Finally, in step 4, after performing the above for each VM hosted on ni, we

determine the highest (most pessimistic) load across all scenarios, let ˆload
max

i,fi,p+1.
We then use this value to set the new target CPU utilization for ni at fi in p+1:

utarget
i,fi,p+1 = utarget

i,fi,p
× (1 +

1 − ˆload
max

i,fi,p+1

ˆload
max

i,fi,p+1

) =
utarget
i,fi,p

ˆload
max

i,fi,p+1

(17)

where we adjust the previous target based on the relative slack
1− ˆload

max
i,fi,p+1

ˆload
max
i,fi,p+1

between the most pessimistic load and full node utilization, asymptotically push-
ing the maximum expected CPU requests on the node close to (yet lower than)
full utilization. A negative slack indicates that the node is at risk for an overload,
thus the target utilization is lowered. If, on the other hand, the slack is positive,
there is CPU capacity available for hosting more VMs, and the target utilization
is increased. As an exception, if utarget

i,fi,p+1 > ˆload
max

i,fi,p+1, we set utarget
i,fi,p+1 = utarget

i,fi,p
.

This guards against the corner-case of having enough spare CPU capacity on ni

just because it did not host ”enough” VMs in p, as in this case a further increase
of the target utilization would introduce the risk of excessive arrival of additional
VMs on ni, leading to an overload.

5 VM Allocation and Node Configuration Policy

In this section, we introduce Adaptive Target Utilization and Configuration
(ATUC ), a VM allocation policy which dynamically adjusts the target utiliza-
tion and configuration of each node to increase the profit of datacentre providers.
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The optimization target is to minimize the predicted cost-to-load ratio of each
node for the next period

ĈL
ratio

i,Vi,fi,p+1 =
ˆcosti,Vi,fi,p+1

ˆloadi,fi,p+1

(18)

where the nominator and denominator of the fraction comes from Eq. 14 and
Eq. 4, respectively. Note that this involves only local information, as discussed
in Sect. 3.2, Sect. 3.3 and Sect. 3.4.

Algorithm 1. Selection of nominal operating point (V ′
i ,f ′

i) and evicted VMs
for ni in the next period p + 1.

Input: vmsHosti,p, u
target
i,∗,p+1

Output: (V ′
i , f

′
i), vmsEvcti,p+1

1: minCLRatio ← ∞
2: for each nominal (Vi, fi) and utarget

i,fi,p+1 do
3: Rem[i, fi,m, p + 1] ← 1, ∀m ∈ vmsHosti,p
4: Evct[i, fi,m, p + 1] ← 0, ∀m ∈ vmsHosti,p
5: ˆload

rem

i,fi,p+1 ← calculate based on Equation 1

6: while ˆload
rem

i,fi,p+1 > utarget
i,fi,p+1 do

7: minRestartCost ← ∞
8: for each m : Rem[i, fi,m, p + 1] = 1 do
9: vmRestartCost ← ∑Rm

k=1
ˆcostV

vm

m,fi,p+1,k

10: if vmRestarCost < minRestartCost then
11: minRestartCost ← vmRestartCost
12: vmEvct ← m
13: end if
14: end for
15: Rem[i, fi, vmEvct, p + 1] ← 0
16: Evct[i, fi, vmEvct, p + 1] ← 1
17: ˆload

rem

i,fi,p+1 ← calculate based on Equation 1
18: end while
19: ĈL

ratio

i,Vi,fi,p+1 ← calculate based on Equation 18

20: if ĈL
ratio

i,Vi,fi,p+1 < minCLRatio then

21: minCLRatio ← ĈL
ratio

i,Vi,fi,p+1

22: (V ′
i , f

′
i) ← (Vi, fi)

23: end if
24: end for
25: vmsEvcti,p+1 ← {m : Evct[i, f ′

i ,m, p + 1] = 1}

The ATUC policy consists of the following main steps:

1) Estimation of target CPU utilization for each frequency: We use the
methodology discussed in Sect. 4 to estimate the new target utilization for each
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node independently. More specifically, we estimate utarget
i,fi,p+1 for the next period

p + 1, for each node ni and for each supported CPU frequency step fi.

2) Cost-driven node configuration and VM eviction: Given utarget
i,fi,p+1 for

each fi, we select the best operating point for each node ni independently in
p + 1 and the VMs to be evicted in this case. At this point, we focus on VM
(re)assignment and only consider nominal operating points (Pfail = 0). The
decision whether to configure the node to operate at reduced voltage margins
(where Pfail > 0) is taken in the last step of the policy.

The high-level logic of this step is given in Algorithm 1 (while some values can
be calculated incrementally, we refer to the previously introduced equations for
more clarity). The algorithm takes as input the VMs hosted on ni in the previous
period p, and the node utilization targets for each CPU frequency in the next
period p + 1, and produces as output the nominal operating point and the VMs
to be evicted from ni for that period. The logic is briefly as follows. For each
nominal CPU operating point, starting from the previous VM allocation (lines
3–4) and the corresponding estimated load (line 5), the VMs with the smallest
SLA violation cost due to restart on another node (lines 7–14) are tentatively
selected for eviction (lines 15–16) and the expected node load is recalculated (line
17), until the load does not exceed the target utilization. Note that the evicted
VMs are assumed to be hosted on a non-overloaded node (the cost only comes
from the time slots needed to restart the VM). Then, the operating point in
question is preferred if the respective cost-to-load ratio is better than the one of
the current selection (19–22). The final (best) selection results after performing
this check for all nominal operating points.

3) Assignment of unallocated VMs to nodes and switch-off of under-
utilized nodes: At this point there are two types of unallocated VMs that need
to be assigned to nodes: the VMs selected for eviction in the previous step and
newly arrived VMs (if any). In a first step, we use the approach in [15] (best fit
decreasing allocation) to assign unallocated VMs to nodes. In a second step, we
adopt the technique in [5] to identify severely underutilized nodes and switch
them off, by relocating the VMs accommodated on them (as above).

4) Cost-driven re-configuration of nodes at a nominal or reduced volt-
age margins operating points: Finally, based on the new VM allocation, the
CPU of each node is configured to the most cost-effective operating point. This
is done by examining all (V, f) configurations that do not violate the target uti-
lization, and selecting the one that minimizes the respective cost-to-load ratio
for each node independently according to Eq. 18. In this step, reduced voltage
configurations are considered as well, taking into account the probability of node
crash and the respective SLA violation costs as per Eq. 14.

6 Experimental Evaluation

In this section, we evaluate the ATUC policy via simulations. For these exper-
iments, we use real-world traces and hardware parameters derived from real
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Fig. 3. Cumulative CPU load (normalized w.r.t the maximum cumulative CPU load)
variation in time (across different periods).

platforms. We also compare ATUC against LrMmt [3], which combines VM con-
solidation with VFS, and XM-VFS [15], which exploits configuration of reduced
CPU voltage margins on top of these two techniques. Both these policies use a
static target CPU utilization value, which is derived by offline characterization
of the workload and the platform architecture at hand.

6.1 Experimental Setup

For our simulations, we use the CloudSim toolkit [6], a popular framework for
evaluating cloud policies, which already supports mechanisms such as VM con-
solidation and configurable node hardware parameters. We extend CloudSim to
implement our system model (Sect. 3) and the ATUC policy (Sect. 5), including
target utilization adaptivity at the node granularity (Sect. 4).

We use real values for the energy price [2] ($0.14 per KWh) and the range
price of the VMs [1] ($0.0062 − $0.896 per hour). Our simulated workload con-
sists of 10, 000 VMs from Google traces [19], for a period of one day. Figure 3
illustrates the cumulative CPU load for this workload for each period (the val-
ues are normalized to the maximum cumulative CPU load during the simulated
period). This dataset combines different interesting characteristics. During the
first half of the day, it is characterized by a low frequency CPU load variation,
combined with significant high frequency fluctuations. On the second half, the
cumulative load does not vary (however the CPU requests of individual jobs
still follow different, varying patterns — not visible in the figure). The mean
cumulative normalized CPU load is 0.86, with a standard deviation of 0.12.

We assume the policy is invoked every 300 s (we select the same scheduling
period as in [3], which is also the default for CloudSim). The execution time of
the policy is negligible, particularly considering that job scheduling in large scale
cloud systems is performed at orders of magnitude lower frequency compared
with the OS scheduling frequency on individual nodes.
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6.2 Hardware Parameters

We configure the simulator with the hardware parameters of two real systems
with different processor architectures, namely an Intel Xeon E3-1220 v5 and an
ARM-based Ampere Computing X-Gene 3. In order to enable a direct and fair
comparison between ATUC and XM-VFS, we use the parameters identified by
the characterization of these two systems in [15], in terms of (a) the reduced
voltage margins of the processors, (b) the failure probability when operating
at reduced margins configurations, (c) a power model that estimates the power
at the plug for different utilization levels and operating points, and (d) the
performance sensitivity of applications due to frequency scaling.

Table 1. Intel Xeon E3-1220 v5 and ARM-based ampere computing X-Gene 3 oper-
ating points.

Intel platform ARM platform

Frequency
(GHz)

Nominal
Voltage (mV)

Reduced
Voltage (mV)

Frequency
(GHz) (mV)

Nominal
Voltage (mV)

Reduced
Voltage (mV)

2.0 850 666 0.4 880 790

2.5 922 741 1.3 880 790

3.0 1075 865 2.2 880 830

3.3 1147 929 3.0 880 840

More specifically, Table 1 gives the parameters of the (V, f) pairs (nominal
and reduced margins) used for the Intel and the ARM platforms. The failure
probability for a scheduling period of 300 seconds, when the processors operate
at reduced voltage margins configurations, is Pfail = 0.000579. As in [15], we
assume crash failures (no silent data corruptions). Also, when the CPU is at
nominal conditions, it operates with a negligible failure probability. Power at
the plug, is calculated using linear model A + B ∗ V 2 ∗ f ∗ u, where A and B
are platform-specific constants of the model, V is the voltage, f is the frequency
and u is the utilization of the processor. For the Intel platform A = 34.01 and
B = 18.98, whereas for the ARM platform A = 52.48 and B = 34.38 [15].

6.3 Threshold and Cost Convergence

ATUC adjusts the target utilization of each node independently, adapts VM
allocation to nodes, and hardware configuration according to the dynamic work-
load requirements, in order to minimize the cost for the operator. It is important
for ATUC to be resilient to sub-optimal initial values of the target utilization
(utarget), as historical data of VM behavior are not available during the first
periods of the simulations.

Figure 4 presents utarget (the mean target utilization of the nodes) for each
period for different initial utarget values (different solid lines). The dashed lines
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Fig. 4. utarget per period for different initial values of utarget (0.5 − 1.0).

mark (for the initial utarget with the same color) the time of convergence with
the utarget timeseries for an initial target utilization of 0.7. We select 0.7 as the
baseline for the convergence study as it is roughly in the middle of the range of
evaluated initial target utilization values.

We observe that ATUC is resilient to the “sub-optimal” choice of the initial
value of utarget, as it eventually converges to similar utarget values in all cases.
However, the convergence time depends on that initial value. Lower initial values
(0.5 and 0.6) converge later, as ATUC is conservative when increasing the target
utilization, in order to avoid node overloads. For example, recovering from a low
initial utarget of 0.5 requires 46 and 36 periods for the Intel and ARM platform,
respectively. On the other hand, the convergence from higher initial values of
utarget (0.8, 0.9 and 1.0) is quick, as ATUC decreases the target utilization
rapidly when at risk for node overloads. As an example, utarget estimations
reached with initial utarget = 1.0 and 0.7 (baseline) converge within just 11 and
23 periods for the Intel and ARM nodes, respectively. Overall, ATUC adjusts
the target utilization within the ranges of 0.64 - 0.89 and 0.64 - 0.88 for the Intel
and the ARM, respectively.

Apart from the resilience of utarget estimates to the initial value, we also study
the cost breakdown per period for different initial utarget values to evaluate the
cost of convergence. We perform experiments for low (0.5), high (1.0) and the
baseline (0.7) initial values for utarget. Figure 5 illustrates the results, where the
green, yellow, blue and red areas represent the cost of energy, and the cost of SLA
violations due to VM relocation, node overloads and node crashes, respectively.
All costs have been normalized, for each of the two architectures (Intel and
ARM), w.r.t. the total cost during the first period of execution with an initial
utarget = 0.5. Similarly to the previous figure, for the experiments with initial
utarget = 0.5 and 1.0 we use vertical dashed lines to illustrate the convergence
time of the target utilization timeseries w.r.t to that for 0.7.

As expected, the case of an initial utarget of 0.5 introduces a higher cost (dom-
inated by the energy cost) for both platforms, compared with the other two cases
(0.7 and 1.0) for the periods before convergence of the target utilization, as the
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Fig. 5. Normalized cost per period for initial values of target utilization of 0.5, 0.7 and
1.0.

resulting low adaptive target utilization leads to the activation of more nodes.
On the other hand, although a high utarget (1.0) achieves the lowest energy cost
at the first periods, the total cost is higher due to node overloading. However,
once convergence is reached, we observe that the energy cost pattern is similar,
irrespective of the initial utarget selection. More specifically, after convergence,
the relative energy cost difference between algorithm invocations with initial esti-
mates 0.5 and 1.0, and the invocation with 0.7 is in the order of 1.76% and 1.55%
respectively for the Intel platform. The respective relative energy cost differences
for the ARM platform are 2.3% and 1.65%. In conclusion, ATUC manages to
recover from sub-optimal initial values of the target utilization, asymptotically
introducing similar energy cost per period, irrespective of the value of target uti-
lization used for the initialization of the adaptive estimation algorithm. In the
next section, we focus on the total cost, also including SLA violation penalties.

6.4 ATUC Total Cost of Operation

As we discussed in Sect. 6.3, ATUC manages to recover from sub-optimal initial
values of utarget achieving, after convergence, a low relative energy cost difference
w.r.t. the baseline initial utarget case. In this section, we evaluate the effectiveness
of ATUC regarding the total cost, also including the periods of sub-optimal
operation until convergence. Figure 6 illustrates the results. Similarly to Sect. 6.3,
we itemize the cost as energy cost and SLA violation penalty cost (node crash,
VM relocation, node overload). For each architecture, cost is normalized w.r.t.
the cost achieved by setting the initial value of utarget = 0.7.

We observe that a low initial value (0.5) results in the highest cost, for both
platforms. This is expected, as in this case ATUC (i) requires the longest time to
recover from this sub-optimal initial target utilization value, and (ii) during this
time the estimated target CPU utilization of nodes remains lower than needed to
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Fig. 6. Normalized (total) cost for different initial values of utarget.

achieve overload-safe operation for the architecture and workload at hand, hence
the policy activates a higher number of nodes, which consume more energy. How-
ever, even in this case the total cost is only 2.98% and 2.46% higher compared
with the baseline initial value for the Intel and ARM nodes, respectively. For
all other initial values, we observe that the cost is similar, for both platforms.
These results confirm that ATUC manages to recover not only quickly but also
cost-effectively from adverse values for the initial setting of utarget.

6.5 Comparison of ATUC with State-of-the-Art Policies

In this section, we compare ATUC with XM-VFS and LrMmt in terms of energy
and cost efficiency. The statically optimal target CPU utilization threshold is
a function of the workload and the performance elasticity of the architecture
along different (V, f) operating points. Work in [15] has experimentally con-
firmed this; after brute-force evaluation of different target utilization thresholds,
it was determined that both XM-VFS and LrMmt introduce the minimum cost
at the essentially the same target CPU utilization threshold, which is equal to
0.8 on Intel nodes and 0.7 on ARM nodes. In this work, we focus on evaluating
whether ATUC can match the efficiency of these policies, which need in advance
characterization of the workload to derive the optimal static target utilization
(which is quite unrealistic for several real-world settings). The performance of
these policies is highly dependent on the quantification of an appropriate static
target utilization for the specific workload at hand. If the workload is not char-
acterized in advance, or if it is characterized on a non-representative sample,
performance is significantly penalized, even for small deviations of the target
node utilization from the statically optimal value. For example for the workload
in our evaluation, XM-VFS may introduce 14.65% higher cost on Intel nodes for
a static target utilization of 0.65 (instead of the optimal 0.8).

Thanks to the effective adaptation employed by ATUC, the initial utarget

value does not significantly affect cost (Sect. 6.4), therefore we set it at 0.7 for
all these experiments. Figure 7 presents the results of the comparison between
ATUC and the two state-of-the-art policies for the Intel and ARM platforms.
Once again, we itemize the cost incurred due to energy consumption and the
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Fig. 7. Cost comparison of ATUC with LrMmt and XM-VFS.

different sources of SLA violation penalties. All costs are normalized w.r.t. the
total cost of the policy we compare against on the corresponding platform.

We observe that ATUC is not inferior to policies requiring in advance knowl-
edge of workload characteristics. Instead, it manages to outperform them in all
cases, even compared with XM-VFS which also exploits reduced CPU voltage
margins.

Specifically, with ATUC the percentage of penalty cost due to node overloads
over the total cost is 2.27% for Intel and 0.51% for ARM nodes on average. The
respective contribution of overload penalty to the total cost is higher for both
the other policies: with XM-VFS it accounts for 5.41% (Intel) and 1.67% (ARM)
of the total cost, whereas with LrMmt for 6.39% (Intel) and 0.85% (ARM).

ATUC reduces the SLA violation penalties due to overloads at the expense
of a slightly higher energy cost compared against XM-VFS for the Intel plat-
form, however, still achieving 0.85% cost gains against a policy that uses an
optimal static target utilization for the current workload. In the case of the
ARM platform, beyond reducing SLA penalties due to overloads, ATUC also
achieves energy gains over XM-VFS, resulting in 5.1% net cost gains. Moreover,
ATUC manages to reduce the cost of crashes (red area) by 19.65% and 29.52%
compared with XM-VFS for the Intel and ARM platform, respectively.

Comparing ATUC with LrMmt, we observe that ATUC, beyond reducing
SLA violation costs due to node overloading, it also reduces the penalties due to
VM relocations managing to adapt to the dynamic workload requirements. There
are also energy gains against LrMmt, however, given that — unlike ATUC and
XM-VFS — LrMmt does not exploit configuration at reduced margins, these
energy gains come mainly from operation at reduced margins. The cost gains of
ATUC against LrMmt are 17.06% for the Intel and 15.61% for the ARM nodes.

In summary ATUC, with zero-knowledge of the workload, manages to dynam-
ically identify favorable points in the energy reduction vs. SLA penalties trade-
off, thus outperforming XM-VFS and LrMmt, which use a statistically optimal
target utilization, obtained via offline pre-characterization of the workload. The
effective, adaptive estimation of the target CPU utilization is a key contributor
towards the gains achieved by ATUC. In turn, a key feature of the estima-
tion process is quantifying and considering the correlation between collocated



Dynamic CPU Management Towards Profitable Datacentre Operation 149

workloads. If this correlation is overlooked, the operating cost achieved by ATUC
is 24.52% higher due to the larger number of node overloads.

7 Related Work

Making educated decisions on the trade-off between energy cost and potential
SLA violation penalties is a challenging, yet necessary undertaking towards cost
reduction for cloud infrastructure providers. VM consolidation is a commonly
used technique that tries to consolidate VMs to fewer nodes (without trigger-
ing SLA violations) to create opportunities to switch nodes off. The authors
in [12,17] propose heuristics to increase the energy gains when applying VM
consolidation.

Handling the aforementioned trade-off is further complicated by the dynamic
variations of typical cloud workloads, which – if not guarded-against through
overallocation of resources – may affect the quality of service (QoS) received by
the end-users, increasing the SLA violation cost. The work in [10] uses Rein-
forcement Learning (RL) to adapt to a dynamic environment, while reducing
the energy consumption and preserving the performance of the system. Work
in [22] introduces an adaptive, multi-threshold framework to categorize the nodes
according to their load to drive VM management considering both energy con-
sumption and SLA violations. Authors in [14] discuss an approach to satisfy
the maximum response time requirements in multi-tier applications for Cloud,
detecting and resolving bottlenecks and predicting the optimal configuration.
The study in [20] uses fuzzy logic to estimate a lower and upper utilization
threshold of the nodes, which is used to characterize nodes as underloaded or
overloaded, and to optimize the VM placement in order to reduce energy con-
sumption and SLA violation penalties. The authors in [5] deal with the dynamic
resource requirements of VMs, proposing heuristics for VM allocation and meth-
ods for estimating a target utilization threshold for the nodes. Authors in [21]
deal with the dynamic workload problem, proposing two regression-based algo-
rithms to estimate the upper utilization threshold of the nodes and detect over-
loads, combined with an algorithm that selects VMs from overloaded nodes,
minimizing the VM migration time. In contrast with [5] and [21], our policy
– apart from detecting node overloads – considers the target utilization of the
nodes for the mapping of VMs to nodes, both for new VMs and for relocated
ones. Moreover, unlike policies in [5] and [21], ATUC does not employ arbi-
trary safety parameters, which directly affect the energy vs. SLA penalty costs
trade-off.

Apart from VM consolidation, works that combine VM management with
DVFS can exploit opportunities for additional energy gains, as DVFS allows
processors to operate at more power-efficient states. The work in [16] discusses
the importance of combining VM consolidation with DVFS in datacentres. The
study in [18] introduces an algorithm that employs an adaptive threshold estima-
tion to improve the performance through task replication, while saving energy
through DVS. Authors in [3] extend the policies in [5]. They combine VM consol-
idation with DVFS, and achieve significant energy gains compared with [5]. Our



150 C. Kalogirou et al.

previous work in [15] combines VM consolidation and DVFS with CPU configu-
ration at reduced voltage margins, aggressively reducing energy at the expense
of an increased probability of crashes. However, similarly to LrMmt, the best
performing policy in [3], they exploit a static CPU utilization target estimated
through offline workload characterization. Our work combines adaptivity, VM
consolidation, DVFS and CPU operation at reduced margins in a cost-driven
profit maximization approach. It also exploits online analysis of past VM behav-
ior, rather than offline pre-characterization, to reduce the risk of costly, hard to
predict and mitigate node overloads.

8 Conclusions

In this paper, we introduced an adaptive VM scheduling and node configuration
policy (ATUC ). Our policy identifies profitable points in the multiparametric
space of VM-node mappings and node CPU configurations, using exclusively
information collected at execution time. We combine a scalable, architecture-
agnostic, statistical model that estimates a target CPU utilization for each node
independently, considering VM allocations to the node and runtime information
on past CPU usage of the VMs, with VM consolidation, VFS and CPU operation
at reduced voltage margins. We evaluated our approach through simulations,
using real datacentre workload traces and hardware parameters derived from
real Intel- and ARM-based systems. We found that ATUC outperforms, in all
cases, two state-of-the-art policies (XM-VFS and LrMmt) that assume a priori
workload knowledge and use offline characterization to derive an optimal static
target utilization for the workload at hand.

References

1. Amazon EC2 pricing. https://aws.amazon.com/ec2/pricing/
2. Eletric Power Monthly. https://www.eia.gov/electricity/monthly/
3. Arroba, P., Moya, J.M., Ayala, J.L., Buyya, R.: Dynamic Voltage and Frequency

Scaling-aware dynamic consolidation of virtual machines for energy efficient cloud
data centers. Concurrency Comput. Pract. Experience 29(10), e4067 (2017)

4. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

5. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurrency Comput. Pract. Experience 24(13),
1397–1420 (2012)

6. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

7. Cao, Z., Dong, S.: An energy-aware heuristic framework for virtual machine con-
solidation in cloud computing. J. Supercomput. 69(1), 429–451 (2014)

8. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a
survey. IEEE Commun. Surv. Tutorials 18(1), 732–794 (2016)

https://aws.amazon.com/ec2/pricing/
https://www.eia.gov/electricity/monthly/


Dynamic CPU Management Towards Profitable Datacentre Operation 151

9. Engbers, N., Taen, E.: Green Data Net. Report to IT Room INFRA. European
Commission. FP7 ICT 2013.6.2;2014 (2016)

10. Farahnakian, F., Liljeberg, P., Plosila, J.: Energy-efficient virtual machines consoli-
dation in cloud data centers using reinforcement learning. In: 2014 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing,
pp. 500–507, February 2014. https://doi.org/10.1109/PDP.2014.109

11. Garg, S.K., Gopalaiyengar, S.K., Buyya, R.: SLA-based resource provisioning for
heterogeneous workloads in a virtualized cloud datacenter. In: Xiang, Y., Cuz-
zocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011. LNCS, vol. 7016, pp. 371–
384. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24650-0 32

12. Ghribi, C., Hadji, M., Zeghlache, D.: Energy efficient VM scheduling for cloud
data centers: exact allocation and migration algorithms. In: 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, pp. 671–678,
May 2013. https://doi.org/10.1109/CCGrid.2013.89

13. Herbert, S., Marculescu, D.: Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In: 2007 ACM/IEEE International Symposium on Low Power
Electronics and Design (ISLPED), pp. 38–43, August 2007. https://doi.org/10.
1145/1283780.1283790

14. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning
for read intensive multi-tier applications in the cloud. Future Gener. Comput. Syst.
27(6), 871–879 (2011)

15. Kalogirou, C., et al.: Exploiting CPU voltage margins to increase the profit of cloud
infrastructure providers. In: 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), pp. 302–311. IEEE (2019)

16. von Laszewski, G., Wang, L., Younge, A.J., He, X.: Power-aware scheduling of vir-
tual machines in DVFS-enabled clusters. In: 2009 IEEE International Conference
on Cluster Computing and Workshops, pp. 1–10, August 2009. https://doi.org/10.
1109/CLUSTR.2009.5289182

17. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud comput-
ing systems. J. Supercomput. 60(2), 268–280 (2012)

18. Liu, W., Du, W., Chen, J., Wang, W., Zeng, G.: Adaptive energy-efficient schedul-
ing algorithm for parallel tasks on homogeneous clusters. J. Netw. Comput. Appl.
41, 101–113 (2014)

19. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format +
schema. Technical report, Google Inc., Mountain View, CA, USA, November 2011.
revised 2014–11-17 for version 2.1. Posted at https://github.com/google/cluster-
data

20. Salimian, L., Esfahani, F.S., Nadimi-Shahraki, M.H.: An adaptive fuzzy threshold-
based approach for energy and performance efficient consolidation of virtual
machines. Computing 98(6), 641–660 (2016)

21. Yadav, R., Zhang, W., Kaiwartya, O., Singh, P.R., Elgendy, I.A., Tian, Y.C.:
Adaptive energy-aware algorithms for minimizing energy consumption and SLA
violation in cloud computing. IEEE Access 6, 55923–55936 (2018)

22. Zhou, Z., et al.: Minimizing SLA violation and power consumption in Cloud data
centers using adaptive energy-aware algorithms. Future Gener. Comput. Syst. 86,
836–850 (2018)

https://doi.org/10.1109/PDP.2014.109
https://doi.org/10.1007/978-3-642-24650-0_32
https://doi.org/10.1109/CCGrid.2013.89
https://doi.org/10.1145/1283780.1283790
https://doi.org/10.1145/1283780.1283790
https://doi.org/10.1109/CLUSTR.2009.5289182
https://doi.org/10.1109/CLUSTR.2009.5289182
https://github.com/google/cluster-data
https://github.com/google/cluster-data


Optimization of Execution Parameters
of Moldable Ultrasound Workflows Under

Incomplete Performance Data

Marta Jaros(B) and Jiri Jaros

Faculty of Information Technology, Centre of Excellence IT4Innovations,
Brno University of Technology, Brno, Czech Republic

{martajaros,jarosjir}@fit.vutbr.cz

Abstract. Complex ultrasound workflows calculating the outcome of
ultrasound procedures such as neurostimulation, tumour ablation or pho-
toacoustic imaging are composed of many computational tasks requiring
high performance computing or cloud facilities to be computed in a sen-
sible time. Most of these tasks are written as moldable parallel programs
being able to run across various numbers of compute nodes. The number
of compute nodes assigned to particular tasks strongly affects the overall
execution and queuing times of the whole workflow (makespan) as well
as the total computational cost.

This paper employs a genetic algorithm searching for a good resource
distribution over the particular tasks, and a cluster simulator evaluating
the makespan and cost of the candidate execution schedules. Since the
exact execution time cannot be measured for every possible combination
of the task, input data size, and assigned resources, several interpolation
techniques are used to predict the task duration for a given amount of
compute resources. The best execution schedules are eventually submit-
ted to a real cluster with a PBS scheduler to validate the whole technique.

The experimental results confirm the proposed cluster simulator corre-
sponds to a real PBS job scheduler with a sufficient fidelity. The investiga-
tion of the interpolation techniques showed that incomplete performance
data can successfully be completed by linear and quadratic interpola-
tions keeping the maximum mean error below 10%. Finally, the paper
introduces a user defined parameter instructing the genetic algorithm to
prefer either the makespan or cost, or find a suitable trade-off.

Keywords: Task graph scheduling · Workflow · Genetic algorithm ·
Moldable tasks · Makespan estimation · Performance scaling
interpolation

1 Introduction

All fields of science and engineering use computers to reach new findings, while
the most compute power demanding problems require High Performance Com-
puting (HPC) or Cloud systems to give answers to their questions. The problems
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being solved nowadays are often very complex and comprise a lot of various tasks
with mutual dependencies describing different aspects of the investigated prob-
lem. Their computation can be formally described using scientific workflows [2],
also referred to as task graphs [22].

Ultrasound computing workflows aim at various applications of the ultra-
sound such as neurostimation, tumour ablation, targeted drug delivery, or pho-
toacoustic imaging [23]. The goal of ultrasound treatment workflows is to asses
the outcome the treatment and adjust the parameters of the ultrasound traduc-
ers to deliver the acoustic energy into desired area while preventing any damage
to heathy tissue. The goal of photoacoustic imaging is to reconstruct the tissue
structure by running an iterative inverse ultrasound models on signals recorded
at the body surface [20]. Since the wavelength of the ultrasound signals are very
small compared to the investigated area, e.g. human head or chest, and there
are tight deadlines by when the simulation outcome has to be delivered, it is
necessary to optimize the workflow execution to reduce both the execution time
as well as the cost.

The execution of scientific workflows on HPC systems is performed via com-
munication with the HPC front-end, also referred to as the job scheduler [11].
After the workflow data has been uploaded to the cluster, the workflow tasks
are submitted to the computational queues where waiting until the system has
enough free resources, and all task dependencies have been resolved (predecessor
tasks have been finished).

Modern HPC schedulers implement advanced techniques for efficient task
and resource management [12]. However, the queuing time, computation time
and related cost depend on the task execution parameters provided at submis-
sion. These parameters include the required execution time accompanied by the
number of compute nodes, cores and accelerators, the amount of main memory
and storage space, and more and more frequently, the frequency and power cap of
various hardware components. In most cases, only experienced users are endowed
by sufficient knowledge to estimate these parameters appropriately knowing the
size of the input data for particular tasks. In other cases, default parameters
may be chosen leading to inefficient workflow processing.

Complex compute tasks are usually written as moldable distributed pro-
grams being able to exploit various amounts and types of computing resources,
i.e., they can run on different numbers of compute nodes. However, the mold-
ability is often limited by many factors, the most important of which being the
domain decomposition [4] and parallel efficiency (strong scaling) [1]. The goal
of the workflow execution optimization is posed as the assignment of suitable
amount of compute resources to individual tasks in order to minimize the overall
computation time and cost.

While the field of rigid workflow optimization, where the amount of resources
per task is fixed or specified by the user in advance, has been thoroughly studied,
and is part of common job schedulers such as PBSPro [11] or Slurm [28], the
autonomous optimization and scheduling of moldable workflows has still been
an outstanding problem, although firstly opened two decades ago in [8].
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During the last decade, many papers have focused on the prediction of rigid
workflow execution time and enhancing the HPC resource management. For
example, Chirkin et al. [5] introduces a makespan estimation algorithm that
may be integrated into job schedulers. Robert et al. [22] gives an overview of task
graph scheduling algorithms. The usage of genetic algorithms addressing the task
scheduling problems has also been introduced, e.g., a task graph scheduling on
homogeneous processors using genetic algorithm and local search strategies [13],
and performance improvement of the used genetic algorithm [19]. However, a
handful works have taken into the consideration the moldability and strong
scaling behavior of particular tasks, their dependencies and the current cluster
utilization [3,7,27].

In all cases, the estimation of the makespan and optimization of the tasks
execution parameters rely on the performance database storing strong and weak
scaling. However, it is often not possible to benchmark the execution time for all
possible combinations of the task type, task inputs and execution parameters. If
a task has already been executed with given inputs and execution parameters,
the execution time can be retrieved from the performance database. However, for
unseen combinations, some kind of interpolation or machine learning techniques
have to be used.

In our previous work [16], Genetic Algorithms (GA) [10] and a simple cluster
simulator were used to find optimal execution parameters for various workflows
on systems with on-demand and static allocations. This paper follows up with our
previous work and its main goals are to (1) prove that GA is able to find execu-
tion plans for different workflows when using incomplete performance datasets,
(2) prove a trade-off parameter to find different solutions meeting contradic-
tory optimization criteria can be introduced, and finally (3) extend the cluster
simulator by adding support for backfilling and considering the initial cluster
workload. The resilience of the optimization techniques will be investigated on
several scenarios and validated against the real workflow makespan measured on
the Barbora supercomputer1.

2 Automatic Optimization of Workflow Execution
Parameters

Selection of suitable execution parameters for workflow tasks plays a crucial role
in scheduling process and the maskespan/cost optimization. A naive selection
of the execution parameters often leads to various unpleasant situations such as
unnecessarily long waiting times and idling nodes if high amounts of compute
resources were chosen, or on the other hand, premature task termination and
crashes if the amount of compute resources was not sufficient.

Even having enough experience with applications used within the workflow,
setting the execution parameters properly to get good performance is a difficult
and tedious task. The key to get short makespan is to look at the workflow as a

1 IT4Innovations, Czech republic, https://docs.it4i.cz/barbora/introduction/.

https://docs.it4i.cz/barbora/introduction/
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whole. There are many dependencies among tasks and selection of best execution
parameters for each task independently may lead to a suboptimal solution since
there is a limited total amount of resources offered by the HPC facilities.

Although batch schedulers implement several optimization methods and
heuristics to maintain high cluster utilization and low queueing times, bad exe-
cution parameters spoil their submission schedules, e.g., when tens of tasks enter
the queue asking for 24 h allocations but actually finishing after an hour.

2.1 k-Dispatch Workflow Management System

Molding scientific workflows during the scheduling process goes beyond the capa-
bilities of common batch job schedulers which schedules tasks independently only
paying attention to their dependencies and requires the resource requirements
to be specified in advance. For the modlable workflow scheduling, a workflow
management system sitting in between the end user and the batch job scheduler
is required [18,24]. k-Dispatch [18] is a Workflow Management System (WMS)
[6,26] allowing the end users to submit complex workflows with associated data
via a simple web interface and have them automatically executed on remote
HPC facilities. Although oriented on the ultrasound community and the popu-
lar k-Wave acoustic toolbox [24], its general design allows simple adaptation to
other workflows and toolboxes by integrating new task graphs, registering new
binaries and adding performance tables.

k-Dispatch consists of three main modules depicted in Fig. 1: Web server,
Dispatch database and Dispatch core. The user applications, e.g., a stand-
alone medical GUI, Web application, or Matlab interface, communicate with the
Web server using the secured HTTPS protocol and REST API. The Dispatch
database holds all necessary information about the users, submitted workflows,
jobs, computational resources, available binaries and the performance data col-
lected over all executed tasks suitable for the execution time estimation. The
Dispatch core is responsible for planning, executing and monitoring submitted
workflows. The communication with HPC and cloud facilities is done via SSH
and RSYNC protocols. For more information, please refer to [18].

2.2 Workflow Optimization Within k-Dispatch

The optimization algorithm providing suitable parameters for particular tasks
of the workflow is integrated inside the Dispatch core. It is composed of four
modules: Optimizer, Estimator, Evaluator and Collector [16].

The Optimizer is based on a Genetic Algorithm implemented in the PyGAD
library [9] and its parameter settings have been thoroughly investigated in [16].
The goal of the Optimizer is to generate high quality candidate solutions, each of
which holding a list of execution parameters for all tasks in the workflow. In the
simplest case, a candidate solution is a vector where the position of the task is
given by a breath first traversal through the workflow task graph and the value
determines the number of compute nodes to be used. Although several heuristics
has been proposed to optimize the execution parameters [7,14,27], they have
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Fig. 1. k-Dispatch’s modules and a brief description of the actions each module is
responsible for. Arrows show the communication between Dispatch Core, Web Server
and Dispatch Database.

strong limitations such as no dependencies among tasks or monotonic strong
scaling. The genetic algorithm allows to solve any instance of the optimization
problem.

The Estimator is responsible for estimating the execution time for particular
tasks based on their input data and the amount of required resources. The Esti-
mator incorporates various interpolation heuristics to reckon up missing values
in strong and weak scaling.

The Evaluator uses a simplified simulator of job scheduler called
Tetrisator [16], which takes a candidate schedule, simulates its execution on
a given cluster and calculates the workflow makespan and cost. Tetrisator is a
one-pass simulator of an HPC system with a predefined number of uniform com-
puting nodes. It is inspired by the default strategy of the PBS job scheduler. In
this paper, its functionality was extended by the backfilling technique allowing
smaller jobs to overtake larger ones if no delays is introduced. The tasks are
submitted to the simulator in the order defined in the candidate solution. Work-
flows may contains multiple dependencies among inner tasks, and the initial
cluster workload may be defined, i.e., the cluster is not empty at the workflow
submission time.

As soon as a satisfactory solution is found, the workflow is submitted to the
real cluster and executed. Upon finishing the execution, the execution times for
all tasks are collected by the Collector and stored in the performance database.
This data is used to gradually improve the accuracy of the Estimator.

2.3 Estimator Module and Interpolation Techniques

There are many factors that may affect the execution time of a given task.
Obviously, the most important ones are the size of the problem stored in the
input file and the amount of resources assigned to the task. However, there might
be many additional aspects significantly impacting the execution time such as
data distribution and load balance, varying time complexity of the algorithms
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Fig. 2. Red line shows the strong scaling of the k-Wave code measured for a domain
size of 10243 grid points on the Barbora cluster. Blue line shows the evolution of the
computational cost when more nodes are added. (Color figure online)

used, additional task parameters and the amount of data being stored during
the task execution.

As a practical example, let us talk about the MPI implementation of the
k-Wave toolbox [15] simulating (non)-linear propagation of ultrasound wave
through a heterogeneous absorbing medium. The scaling of the execution time
and cost for one specific problem instance on the Barbora cluster with 36 pro-
cessor cores per node can be seen in Fig. 2. Here, a domain of 10243 grid points
is partitioned into 2D slabs and distributed over various numbers of compute
nodes (1 to 32). The red curve shows the execution time per one simulation time
step (the whole simulation usually executes tens of thousands of time steps).

Although this strong scaling curve looks almost ideal, several sudden drops
in the execution time can be observed. These drops are the consequences of
well balanced workload distribution. For example, if we cut the domain into 512
slices, we can distribute the work over 512 ranks mapped onto 512 cores. Since
k-Wave is a memory and network bound application, it is often advantageous
to undersubscribe the computing nodes and use higher aggregated memory and
network bandwidth. On the Barbora cluster, we can spread 512 ranks over 15
to 28 nodes in a round robin fashion. Since the efficiency of such distribution is
decreasing, the scaling curve is flattening toward 28 nodes. However, when 29
nodes are allocated to the task, the domain can be cut into 1024 slices leading to
a much better workload distribution and significantly lower execution time. This
imperfect workload distribution also renders into the simulation cost since there
is a direct proportion between the parallel efficiency and the related cost. The
blue curve shows several local minima and maxima in the execution cost which
provide very suitable execution parameters or should be avoided, respectively.
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Fig. 3. Strong scaling of the k-Wave code execution time measured for 10243 domain
size on the Barbora (36 cores/node) and Salomon (24 cores/node) cluster.

Let us note that having a complete performance dataset with all possible
input sizes, numbers of nodes, and other tens of simulation parameters is com-
putationally intractable. When having incomplete performance datasets where
some points on the scaling curve are missing, the interpolation should rather
overestimate the execution time to prevent premature task termination. Even
more important question is how the scaling curve changes when a previously
unseen domain size is used. In this situation, it is necessary to estimate both
the shape and the position of the scaling curve from measured strong and weak
scaling. As interpolation functions, linear and quadratic interpolation were used.

Finally, the scaling curves may change significantly among different machines.
One such an example can be seen in Fig. 3 where the same problem is solved on
Barbora (36 Cascade Lake cores per node) and Salomon (24 Haswell cores per
node). Not only is the curve shifted due to a lower node performance, but it has
a very different shape in the second half. This may be the effect of a different
interconnection network topology, but also current cluster utilization. In this
case, it may be very hard to use any interpolation. Thus when a new cluster is
connected to k-Dispatch, a few benchmark runs for the most typical simulation
settings are performed to get a minimum amount of performance data.

2.4 Evaluator Module Improvement

Since our previous work [16], Tetrisator has been extended by implementing the
backfilling technique [21] to simulate the real batch scheduler more accurately.
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Fig. 4. The state of the entry and backfill queues when the task no 4 is about to be
executed. Workflow tasks came to the entry queue in the execution order. Tasks 0–3
have already been executed. When task 4 is to be executed, the scheduler (depicted
as schedule on the right) gets short of free nodes, and allows task 5 and 7 to overtake
task 4 and fill the shadow window.

Tetrisator schedules tasks in the same order as they come to the HPC system
(breadth first traversal of the workflow) [16]. The tasks are waiting in an entry
queue until executed. A task at the front of the entry queue is ready for execution
when all the task dependencies have been fulfilled and there are enough free
resources. If this condition is not met, backfilling may find its place. Provided
that the execution time of the waiting task will not be postponed and any task
dependencies will not be offended, tasks requiring smaller amount of resources
may overtake the waiting task. The task to be backfilled is calculated in a so
called shadow window. The implemented algorithm is depicted in Fig. 4.

Real batch schedulers2 may implement more sophisticated criteria for back-
filling. For example, user and task priorities may be taken into account when
deciding which tasks may overtake the waiting ones (fair-share policy). Since
we mainly aim at static allocations where users do not compete, this calcula-
tion is omitted, i.e., all tasks and users have the same priority and only task
dependencies are considered.

The implemented backfilling algorithm considers a queue of jobs that could
be possibly backfilled, i.e., the backfill queue of length n and width of 1. n stands
for a positive number of tasks that have the capability to be backfilled. Width
of 1 means that the dependent tasks on the direct candidates to backfill are not
considered. In other words, let us have task A actually being calculated, task B
waiting for task A and other two tasks C and D. Task D depends on task C.
Task C is not dependant on any other task and since not offending the execution
time of task B, it can be directly added to the backfill queue. Task D could be
also executed and finished within the shadow window as task C as well as still
not running out of available resources, however, since dependent on task C it is
not added to the backfill queue (attacking width of 2).

2 https://docs.it4i.cz/general/job-priority/.

https://docs.it4i.cz/general/job-priority/


160 M. Jaros and J. Jaros

3 Experiment Setup

This paper follows the experimental setup presented in [16] to evaluate the
developed workflow schedules under incomplete performance database. For the
makespan and cost evaluation, the Tetrisator simulator worked with a 54 node
cluster. The validation of the final schedules was performed on the Barbora clus-
ter, where a static allocation was created to ensure the same initial conditions
for all tests.

3.1 Investigated Workflows

This paper uses two typical biomedical ultrasound workflows applied in the ultra-
sound neurostimulation and photoacoustic imaging, see Fig. 5. Both workflows
consist of two types of tasks. The simulation tasks (ST) executing the k-Wave
MPI solver represent heavy parallel jobs running for a few hours. The ST tasks
were limited to use between 1 and 32 nodes (36 - 1152 cores). The data process-
ing tasks (PT) perform data pre-processing, post-processing, aggregation, etc.
The PT tasks have a linear time complexity and almost perfect scaling. Since
their runtime is on the order of minutes, only one or two nodes depending on
the amount of memory requested are used.

The first workflow starts with a single PT task generating input files for
the ST tasks. Consequently, a few independent trains of ST-PT-ST tasks are
executed. Finally, the results from all trains are aggregated using a parallel
reduction tree composed of PT tasks. The second workflow starts by running a
few ST tasks operating on the same input file, but with different parameters. The
results are aggregated into a single output file using a parallel tree reduction.
But this time, the result is used by the following wave of ST tasks. In practise,
this workflow is repeated in a loop until some error metric calculated by the last
PT task is satisfied.

3.2 Used Datasets

Let us here define the datasets used in our experiments along with their short
description:

– Dataset A. Reference strong scaling of the k-Wave code measured on
a domain size of 1024 × 1024 × 1024 grid points using 1–32 nodes.

– Dataset 1A. Based on Dataset A but having only 16 values including peaks
and values in between them.

– Dataset 2A. Based on Dataset A but having only 8 values excluding peaks.
– Dataset B. Reference strong scaling of the k-Wave code measured on

a domain size of 810 × 810 × 810 grid points using 1–32 nodes.
– Dataset 1B. 810 × 810 × 810 domain interpolated for 1–32 nodes using

the quadratic interpolation from the known domain sizes: 512 × 512 × 512,
648 × 648 × 648, 1024 × 1024 × 1024.
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Fig. 5. The structure of investigated workflows. The heavy simulation tasks are inter-
leaved with light data processing tasks. The parts highlighted in black show the minimal
workflow structure consisting of 20 and 11 tasks, respectively. The parts displayed in
grey show how the workflow structure can grow. (Color figure online)

3.3 Tetrisator Validation Against Real Cluster

To compare the simulator output with the real execution carried out in a ded-
icated queue comprising 54 nodes of the Barbora cluster, an artificial schedule
based on the first workflow type was created. This workflow contained 20 tasks,
(8 heavy STs alternated with 12 light PTs). The execution times of particu-
lar tasks were taken from the Dataset A. The number of simulation time steps
inside the ST tasks were reduced to make the workflow finish in less that 1 h.
To prevent premature termination, a safety cap of 10% calculated from the esti-
mated execution time was added to each task. The real execution time actually
covers net computing time as well as overheads such as the computing node
initialization. Performed experimental scenario expects no initial workload, i.e.,
the cluster was empty when the workflow was submitted and executed. The
obtained experimental results are then compared against two evolved execution
plans employing Tetrisator with backfilling switched on and off.

3.4 Workflow Schedule Quality Measures

The quality of the developed workflow schedules is evaluated by a fitness function
the Optimizer calls after the execution trace has been created by Tetrisator. This
work investigates two different fitness functions: GODA and GOSA.

GODA (Global Optimization of the workflow on systems with on-Demand
Allocations) calculates the makespan over the longest critical path including
queueing times. However, the execution cost considers only truly consumed
resources. This is a typical cluster operation with users competing for resources.
Since having two contradictory criteria, a user-defined scalarization parameter α
is used to balance between the execution time and cost. The algorithm cannot
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perform a true multi-objective optimization because there is no further feedback
from the user that could select the preferred solution from the Pareto front.
Contrary, the most suitable solution has to be chosen autonomously and sub-
mitted to the cluster as soon as possible (before the cluster background workload
changes significantly).

GOSA (Global Optimization of the workflow on systems with Static Allo-
cations) expects the user holds a dedicated part of the cluster and thus has to
pay for the whole allocation no matter some nodes may remain idle. Although
this is a more expensive solution, it usually reduces the queueing time. Since
the makespan and cost are directly proportional, no scalarization coefficient is
needed and only the makespan is considered.

3.5 Evaluation of Interpolation Techniques

To estimate missing execution time for a particular task, domain size, and num-
ber of nodes, two different interpolation techniques from the Python’s scipy pack-
age [25] were used. After a thorough investigation in [17] and new experiments
performed in the paper, a linear and quadratic interp1d interpolations were
chosen. Very similar results to the quadratic interpolation were also obtained by
cubic spline CubicSpline with the bc type parameter set to natural. Unfor-
tunately, the use of the default value of bc type caused high oscillations and
strong underestimations of the execution time. Therefore, we decided to use a
quadratic interpolation instead.

Three different experiments with the interpolation functions were conducted.
The goals of particular experiments were

– to estimate missing points on the strong scaling curve for a domain size of
10243 grid points defined by the points with ideal scaling (N%(P ∗ 36) ≈ 0),
where N is the domain size and P is the number of nodes, see Fig. 8.

– to estimate missing points on the strong scaling curve for a domain size
of 10243 grid points when having also points in the middle of the intervals
between two points with ideal scaling, see Fig. 8.

– to reconstruct a completely unknown scaling curve for an unseen domain size
from the data stored in the performance database. In this example, scaling
curves for 5123, 6483 and 10243 were used to estimate the one for 8103 grid
points, see Fig. 9. The domain sizes chosen progressively double the total
number of grid points.

As the measure of the interpolation quality, a mean relative error was used,
see Eq. (1).

meanError =
1
N

N∑

i=0

(
|ai − bi|

ai
) (1)

where a denotes the measured execution time, b the interpolated execution time,
and N is the total number of the compute nodes (32).

In all cases, we can tolerate a small overestimation but shall avoid underes-
timation which leads to premature job termination and necessary resubmission
with prolonged execution time.
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4 Experimental Results

This section presents and discusses (1) the similarity of the workflow execution
schedule to the one executed on a real HPC cluster, and (2) the error reached
by the interpolation techniques.

4.1 Simulated Execution Plans Reliability

The following figures point out the differences between simulated execution plans
created by Tetrisator and the real executions performed in the dedicated queue
on Barbora. Figure 6 shows the scenario where no initial workload is expected
and all 54 nodes are fully available at submission time. As expected, the sim-
ulated makespan by Tetrisator with backfilling switched off is a bit pessimistic
causing the overestimation by 15%. On the contrary, it can be seen that the
simulated makespan by Tetrisator using backfilling is underestimated by 3%.
This underestimation is, however, caused by cumulative error produced by slight
delays of individual task execution times on the cluster.

Our observations suggest that the real PBS cluster scheduler works in the
same manner as Tetrisator. This means the tasks within the workflow are submit-
ted to the real cluster in the same order as they are processed by the Tetrisator,
and their submission time is more or less the same. Thus, the tasks are also
executed one by one in the same manner as arriving to the cluster. The changes
in the order happen when a task has to wait for free resources (Fig. 7).

4.2 Interpolation Functions Accuracy

Figure 8 shows the measured and interpolated strong scaling curves on a domain
composed of 10243 grid points. Inspecting the scaling curve created by a linear
interpolation, a very close match can be seen. When interpolating using values
where the scaling is close to the optimal, the mean interpolation error reaches 4%.
After adding the values from the middle of particular intervals, the error drops
below 0.8%. Unfortunately, the interpolated values for sparser training data are
mostly underestimated, which can be corrected by a small bias or picking the
points with the worst instead of best workload distribution.

When repeating the same experiment with a cubic spline and a quadratic
interpolation, the mean error gets higher up to the level of 12% and 7%, respec-
tively, depending on the number of known values. The high error is caused by
several oscillations, and more specifically, by the extrapolation error where the
execution time is extremely underestimated.

The 4% error of the linear interpolation reaches the level of uncertainty of real
execution time measurement on clusters due to unstable node, network and I/O
performance. The suitability of the linear interpolation can be also attributed
to a very good scaling of the ST tasks without any significant anomalies. Since
parallel codes have to show good scaling to be deployed in production runs,
linear interpolation is expected to work well for most such codes.
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Fig. 6. Two simulated execution schedules. The top one with backfilling switched-off
and the makespan reaches 32.1 min, and the bottom one implementing backfilling and
finishing earlier in 26.4 min.
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Fig. 7. Real execution of the workflow on Barbora finishing in 27.3 min.

The second experiment attempts to estimate the strong scaling for an
unknown domain size, see Fig. 9. The figure reveals that the interpolation method
rather overestimate the scaling curve. When repeating this experiment with a
linear and a natural cubic spline interpolations, we got the mean error of 25.4%
and 13.5%, respectively, while the quadratic interpolation and the cubic spline
with bc type parameter set to default produced better estimates reaching the
mean error at a level of 10.5%. The explanation is quite simple. While the strong
scaling of the ST tasks on a given domain size is almost linear, the algorithm
has an asymptotic time complexity of O(n log n). Moreover, the ST tasks heavily
employ fast Fourier transform which is very sensitive to the domain size and its
prime factors. The quadratic interpolation thus better capture the nature of ST
tasks.

The conclusion is to use a linear interpolation to estimate values on known
scaling curves while using a quadratic interpolation when the domain size has not
been seen before. It is important to say that the k-Wave code is highly tuned and
scales very well. Employing a code the scaling of which is more “wild” with many
peaks or a dramatic slowdowns may become a challenge. When using different
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Fig. 8. Reference and interpolated strong scaling of ST tasks for a domain size of
10243 grid points with a linear interpolation calculated from 8 and 16 known values,
respectively. In the top figure, values in unexpected peaks were selected intentionally
to see how much the value would be underestimated.

parallel codes, it may be beneficial to use a different interpolation for unknown
domain sizes corresponding to the asymptotic time complexity. Moreover, if the
scaling is relatively stable, it may be possible to construct a scaling equation
and use a fitting methods to set its coefficients using known performance data.
Alternatively, we may try to interpolate the known points using a various poly-
nomial interpolations and based on the error make a decision about a selection
of the interpolation method.
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Fig. 9. Reference and interpolated strong scaling of ST tasks for an unknown domain
size of 8103 grid points with a quadratic interpolation.

4.3 Impact of Interpolation on Schedule Makespan and Cost

This section investigates the quality and accuracy of the developed schedules
when using the performance database containing all data, only a subset, or no
data for particular domain size.

Figure 10 shows the makespan and cost of the best workflow schedules devel-
oped for the GODA situation on a known domain size of 10243 grid points, with
all, 8 and 16 performance values. These experiments also use different values
of the α scalarization coefficient (only three values of α are used in figure for
better visibility). The schedules were collected over twenty independent runs of
the genetic algorithm. The Pareto fronts (lines in the plot) for the same values
of α are close to each other confirming that by employing interpolation methods
on incomplete datasets we are able to achieve very similar results. When using
Dataset 2A containing only 8 performance values, the solutions found may be
deflected from that ones evolved using dense dataset. This actually does not
mean that found solutions are bad, they just overlap the area where solutions
for different value of α would be expected. Next, it can be seen that solutions
for different α form isolated clusters. This implies we can affect the execution
plan to prioritize different criteria. At this point, it is important to note that
the execution plan may be adjusted in makespan by a factor of 10.0 while in
computational cost by a factor of 1.7. The factors vary and the cost factor is
such small due to the highly optimised code used. This is a very promising result
showing that when the interpolation is reasonably accurate, the impact on the
best solution developed by the Optimizer is rather small.

Table 1 summarizes conducted experiments of GOSA expressing the quality
of the execution schedules as makespan. The table may be divided into two
parts. The left one is for the domain size of 10243 where missing strong scaling
values were completed by a linear interpolation. The right one is for the domain
size of 8103 which was fully interpolated using a quadratic interpolation. The



168 M. Jaros and J. Jaros

difference between the achieved makespan for the full performance dataset and
interpolated datasets is given by an interpolation error (investigated in Sec. 4.2)
and performance fluctuations of cluster’s nodes. The experiments were provided
with both backfilling switch on and off. It turned out backfilling did not impact
the results significantly, causing differences between 0.09% and 4%. This suggests
the genetic algorithm finds such good workflow schedules that minimize the
amount of unused resources so that the backfilling has only a limited space for
schedule improvements. Next, a workflow structure also influences how good the
workflow could be mapped.

Table 1. The results show GOSA applied on the domain of 10243 on the left and
8103 on the right. Experiments were performed using (1) the full performance dataset
without interpolation, (2) the partial performance dataset of 8 and 16 known values,
respectively, and completed using linear interpolation, and (3) the full performance
dataset created using quadratic interpolation. The table depicts average (Avg), mini-
mum (Min) and maximum (Max) obtained values of makespan in minutes. The per-
centage difference between experiments with partial and full performance datasets is
also depicted.

1024 x 1024 x 1024 40 Tasks 80 Tasks 810 x 810 x 810 40 Tasks 80 Tasks

Makespan
[min]

Diff.
[%]

Makespan
[min]

Diff.
[%]

Makespan
[min]

Diff.
[%]

Makespan
[min]

Diff.
[%]

GOSA Avg 29.70 - 58.31 - GOSA Avg 14.82 - 30.05 -

with no Min 27.75 - 55.74 - with no Min 14.07 - 28.32 -

interp. Max 35.10 - 61.07 - interp. Max 16.88 - 31.76 -

GOSA with Avg 29.19 1.72 59.23 1.57 GOSA Avg 17.08 15.25 33.11 10.18

linear interp. Min 27.29 1.65 55.27 0.84 with quadratic Min 15.44 9.70 31.27 10.41

(Dataset A1) Max 33.25 5.27 65.47 7.21 interpolation Max 18.85 11.64 36.67 15.44

GOSA with Avg 26.74 9.98 51.06 12.44

linear interp. Min 24.87 10.36 49.05 12.00

(Dataset A2) Max 30.33 13.58 56.46 7.55

Fig. 10. Pareto front together with dominated solutions showing the evolved schedules
for workflows of 11 tasks not requiring interpolation, and two experiments both using
linear interpolation (LI) but differing in the content of the performance dataset.
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5 Conclusions

The paper has investigated the optimization of moldable ultrasound workflow
executions under incomplete performance database where the execution times for
some combination of tasks, input data and amount of resources are not known
and have to be estimated. Consequently, the paper has proven the workflow
execution on a cluster can be simulated and this simulator can be integrated
in the k-Dispatch’s optimization module. Although being a one-pass PBS-based
simulator, the estimations provided are sensible. The simulator gives accurate
estimations especially for workflows executed on dedicated resources where other
workload is known. The cross validation of an artificial and the real schedules
created by the PBS job scheduler on Barbora show a good general match.

The experimental results indicate that linear interpolation works well in sit-
uations the input data has been seen before and the task has already been
executed using a few execution parameters configurations. In such cases, the
missing performance data can be calculated with a very small error below 4%.
From our experience, linear interpolations appear to be generally applicable on
parallel codes with good strong scaling. On the other hand, if the input data
has not been seen before, the execution time has to be estimated from similar
inputs by interpolating between known strong/weak scaling curves. In this case,
a quadratic interpolation worked sufficiently well for our codes, however, the
error may reach 10%. This can be attributed to used codes having O(N log N)
time complexity. For codes with different time complexity, higher polynomial
interpolations may produce better results.

The paper also confirms that it is possible to find different schedules that
prioritize various criteria using the trade-off parameter α. The proposed opti-
mization algorithm constructs the Pareto front offering different suitable sched-
ules. Users, however, (1) are not aware of what tasks are executed within the
workflow, (2) may not know what solution to choose, and finally (3) the Pareto
fronts are calculated just before the workflow execution and this information is
not available at submission time to k-Dispatch. This is the reason why a multi-
criteria optimization is transformed to an easier form where users can express
their preferences between two criteria (makespan vs. computational cost) using,
e.g., a slider bar just before workflow submission to k-Dispatch.

The developed schedules tend to overestimate the execution time, which is
partially caused by imperfect interpolation, and a reserve of 10% added to the
workflow to avoid premature termination. Nevertheless, the error between devel-
oped and real schedules fits within a 15% margin, which is considered to be
acceptable for most users.

5.1 Future Work

There are two directions we would like to follow in our future work. First, we
would like to include the information about the actual cluster utilization into the
cluster simulator. This will allow us to better simulate workflow execution in on-
demand allocations where the user competes with others. It may have an impact
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on the shape of the developed schedules because tasks asking for more resources
sit longer in the queue. Using smaller amounts of resources thus may improve the
workflow makespan. Second, we would like to examine more advanced machine
learning techniques to improve the interpolation accuracy once the performance
database includes tens of thousands of records.
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Abstract. Elastic parallel applications that can change the number
of processors while being executed promise improved application and
system performance, allow new classes of data and event-driven highly
dynamic parallel applications, as well as provide the possibility of pre-
dictive proactive fault tolerance via shrinkage in increasingly larger and
more complex HPC systems, where the mean time between component
failures is decreasing. There are several challenges for elastic application
to become mainstream: 1) a clear understanding of programming mod-
els for elastic applications, 2) adequate support from message passing
libraries, middleware, and resource management systems (RMS), and 3)
thorough investigation of scheduling algorithms. Scheduling elastic jobs
requires communication between running jobs and the RMS, keeping
track of pending jobs, and prioritizing jobs to expand or shrink at a cer-
tain point in time. These challenges make the task of finding an optimal
schedule challenging. We have proposed three different scheduling algo-
rithms to schedule elastic applications along with six different candidate
selection policies to prioritize the shrinkable applications and investi-
gated their impact on system and application performance. We have
studied the impact of workload characteristics and algorithms on per-
formance. Our simulations results indicate that workload characteristics
as well as the range of elasticity (flexibility) of the elastics applications
impact the system and application performance.

Keywords: Elastic applications · Malleable · Evolving · Scheduling

1 Introduction

High Performance Computing (HPC) systems are growing in capacity, complex-
ity, and heterogeneity [5,23]. The upcoming and current large HPC systems have
hundreds of thousands of computing cores in addition to networking and other
components. On the other hand, parallel applications that generally run on such
systems are also growing increasingly complex. They are increasingly data and
event-driven and dynamic in nature. The current generation of message pass-
ing parallel applications can not change resources (grow or shrink in terms of
resource usage) once they start executing. According to Feitelson [8], a malleable
application can grow or shrink in response to commands by the resource man-
agement system and an evolving application can also grow or shrink, but the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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application itself decides when it needs to change size. We will refer to malleable
and evolving applications as elastic applications. Currently, there is no or limited
support from runtime libraries and/or resource management systems (RMS) for
such applications.

One use case for elastic applications is for dynamic applications whose com-
putational needs are not known when the application is launched. Consider an
application that simulates both airflows around an airplane and the stresses
on the frame from the airflow. If the stress simulation determines that a crack
appears then the computational needs to simulate the airflow may increase by
an order of magnitude. Using current inelastic (rigid) applications, the way to
deal with this would be to give the application the worst-case number of nodes
(which may be difficult to compute), wasting resources. An elastic application
could automatically request more nodes from the system at the time they are
needed. If no crack appears then there would be no need to waste resources
for that potentiality. Another potential benefit of elastic applications is that it
gives a way for applications to proactively respond to failures. If a node is giv-
ing signs of impending failures, such as temperatures running too hot, then the
system could instruct the application to shrink down, off the failing node. Elas-
tic applications provide a path to maximum possible utilization by expanding
or shrinking applications. Elastic applications would open up the potential for
new highly dynamic applications that are not developed as there is no support
for running them. There is no support because there are no applications that
need it. Breaking this cycle would allow opportunities for a new generation of
applications.

There are many challenges to realizing elastic applications. Current applica-
tions use a distributed memory model. Data is transferred by message passing.
The number of shared memory nodes remains fixed for the lifetime of the appli-
cation. Elastic applications will need to reorganize their data as they shrink
or grow. The nature of the reorganization would depend on the application. A
parameter sweep application might simply need to migrate some runs to a new
node. An iterative grid-based application might need to completely redistribute
the data to a new rectangular layout. The resource manager will need to com-
municate with running and the elastic applications in order to allocate more or
preempt (shrink) resources. Likewise, the application will need to be able to give
up or acquire more resources. Evolving applications will need to request more
resources. This may potentially involve multiple phases as the resource manager
offers resources and the application counteroffers. Current resource managers
only need to consider pending applications in the queue and keep track of used
and free nodes. An elastic job scheduler will need to make decisions about when
to grow or shrink malleable applications, as well as respond to evolving applica-
tions’ requests to grow or shrink. This will need to be done in a way that is fair
to inelastic and elastic applications.

We have proposed three algorithms to schedule workloads containing elastic
as well as non-elastic (traditional rigid) jobs. Each algorithm has been evaluated
with a different policy to select a running malleable job to preempt resources.
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We have run a number of simulations to observe the impact of these different
policies on different types of workloads. We have used modified workload traces
from real systems [17,24] as well as synthetic workloads. Our simulation results
indicate that as the workload increases the impact of candidate selection policy
gradually becomes insignificant. We also found that the distribution of elastic
jobs in the workload impacts the performance gain. Our simulation results are
consistent with several previous works that the presence of elastic application in
the workload improves both system and application performance compared to
the same workload with rigid applications only.

The rest of the paper is organized as follows. Section 2 provides a brief dis-
cussion of related works found in the literature. Our elastic application model
is presented in Sect. 3, followed by a description of scheduling algorithms and
candidate selection policies in Sect. 4. The experimental results are presented in
Sect. 5. Finally, Sect. 6 presents our conclusion and planned future works.

2 Related Works

Research in the field of elastic parallel systems is not as extensive compared in
other HPC areas. The simplest way of expanding and shrinking is to checkpoint
the application state at some point in time and then again start the appli-
cation from that point with a different number of processors. This approach
has been implemented by Vadhiyar and Dongarra [27] as the Stop Restart Ser-
vices (SRS) framework. ReSHAPE, developed by Sudarsan et al. [25] combines
a scheduler with a reconfiguration library for iterative MPI applications. The
Parallel programming framework, AMPI [15], is built on top of Charm++ [13].
AMPI implements MPI as user level threads. Recently, Iserte et al. [11] have
designed a library DMRlib which provides a series of predefined communication
patterns for data-redistribution and communication with the RMS. They have
designed a communication API using which Nanos++ OmpSs [1] can commu-
nicate with the Slurm resource manager [28]. CooRMv2 is an RMS to ensure
efficient scheduling of non-predictable evolving applications developed by Klein
et al. [16]. Process Management Interface-exascale (PMIx) is an abstract set
of interfaces using which applications and tools can interact with the different
components of the System Management Stack (SMS) as well as different SMS
components can also interact with each other [3,19]. The PMIx standard pro-
vides APIs for applications to request allocation of additional resources, extend
the reservation on currently allocated resources, and release currently allocated
resources. These APIs are still being developed, yet to provide support for full
flexibility, and have not been adopted by production RMSs.

Kale et al. [14] have designed a simple scheduling algorithm for elastic job
schedulers where all jobs are initially allocated with their minimum number
of processors and the rest of the processes are shared equally among the jobs
considering the maximum allowable resources of a particular job. Utrera et al.
[26] have proposed an algorithm that mainly focuses on reducing the average
waiting time. Gupta et al. [10] have proposed a split-phase scheduling algorithm
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where shrinkage requests are performed asynchronously. D’Amico et al. [4] have
proposed a dynamic slowdown-driven (SD) policy to schedule rigid and malleable
jobs to reduce average response time. Iserte et al. [12] have modified Slurm and
implemented a reconfiguration policy using the moldable submission mechanism
of Slurm. Prabhakaran et al. [20] have proposed a scheduling algorithm to run
evolving jobs with rigid jobs but they have only considered expansion. They have
extended the algorithm to schedule rigid, malleable, and evolving jobs together
[21].

Research on scheduling elastic applications is at an early stage. Recent
research mainly focuses on the impact of different scheduling parameters on
performance, but how workload characteristics impact performance along with
scheduling algorithms has not been investigated adequately. Similarly, the com-
munication and negotiation aspect between RMS and elastic applications has
been under investigation.

3 Application Model

Before developing the scheduling algorithms, we developed a model for elastic
application and their interaction with the RMS. We made the following assump-
tions for our proposed model and algorithms:

– All applications in the workload are parallel applications.
– Only processors are considered as resources.
– The HPC system is homogeneous and communication time between any pair

of processors are identical.
– An elastic application can run on any number of processors between a prede-

fined minimum and maximum allowable processors (this may not hold true
for some applications).

– The overhead of interaction between a running application and the RMS is
negligible.

An elastic message-passing application consists of ph phases and the number
of resources allocated to the application does not change during a phase. Chang-
ing a phase involved a change in the number of resources either in response to
the application request or the RMS request.

A phase phi can be defined by three tuples-

< Ri,Wi, Ti >

where Ri is the allocation of phase i, Wi is the amount of computation done at
that phase and Ti is the execution time of the phase. The total runtime of the
application T is a summation of all Ti.

A phase change may involve data re-distribution as the number of processors
changes. So, the total time of a phase consists of five components: computa-
tion time tw, parallel overhead to, data reorganization cost td, synchronization
cost ts, and other overhead such as process creation or terminations tp. So,
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Ti = twi + toi + tdi + tsi + tpi. The parallel overhead of an application in
general increases and computation time decreases as the number of processors
increases and vice versa when the workload remains constant. We have modeled
the parallel overhead as a certain percentage (x%) of total execution time before
any phase change. The remaining(1 − x%) time is required for computation. x
varies from application to application. Let us assume that, the application has
pi and pi+1 processors at phase i and phase i + 1. So,

toi+1 = toi/pi ∗ pi+1

twi+1 = twi ∗ pi/pi+1

Data-redistribution cost depends on two variables- the total number of pro-
cessors involved in change and change in the number of processors. The data dis-
tribution cost decreases if the total number of processors involved is increased.
Again, data redistribution cost increases with the increase in the difference in
the number of processors. For example, the data distribution cost of 8 to 16 pro-
cessors is lower than the data distribution cost of 4 to 16 processors. The total
number of processors involved is 24 and 20, and the difference in processors is 8
and 12, respectively. Synchronization cost varies from application to application
state and does not depend on the change in resources. Though synchronization
cost depends on the current resources of the application, we are ignoring that
for simplification.

tsi+1 = σ, where σ varies from application state to application state. Total
processor involved in phase change ptotal = pi + pi+1. Change in processor
pdifference = |pi − pi+1|. Then, data redistribution cost-

tdi+1 = α ∗ pdifference + β/ptotal.

Here, α and β are constants. Other overhead like processor creation or deletion
cost is directly proportional to the number of new processors. So,

tpi+1 = b ∗ pdifference

where b is the cost of one processor. We have used [9] as the execution model of
the elastic parallel application in this study.

4 Scheduling Algorithms

To simulate different scheduling algorithms and visualize their impact on dif-
ferent performance metrics, we have used a discrete event simulator. We have
followed the pattern from [9]. The following data structure is used in the algo-
rithms described in this section:

– system state:
• Idle processors (p c): Number of idle processors
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• total processors (p t): Number of total processors
• Running job list (J r): List of all currently running jobs
• Running malleable job list (J rm): List of all currently running malleable

jobs
• Pending job list (J p): List of all pending jobs yet to be scheduled

– Candidate schedule:
• List of job to start list (J s): Jobs that are scheduled to be started at this

time
• Agreement List (A): List of expansion and shrinkage that needs to be

done at this time
– Shrinkable malleable job list (J sm): List of malleable jobs that need to be

shrunk
– Required number of processors p r: Number of processors that are required

by a job for execution

The main scheduling algorithm is described in Algorithm 1.

Algorithm 1. Main Scheduling Algorithm (FCFS & easy backfilling with evolv-
ing request priority over pending job with maximizing throughput)
input: The current system state
output: A candidate schedule & system state

1: (schedule evolving request)#SatisfyEvolvingRequest()
2: (schedule initial allocation)#InitialAllocation()
3: if length(J p) > 0 and length(J rm) > 0 then
4: (schedule pending jobs by shrinking malleable jobs)#SchedulePendingJob()
5: end if
6: if p c > 0 and length(J rm) > 0 then
7: (expand running malleable jobs if possible)#ExpandRunningMalleableJobs()
8: end if
9: while length(A) do

10: Take the first agreement
11: Calculate negotiation cost (Similar to [9])
12: execute agreement
13: return J s and A
14: end while

Main Scheduling Algorithm

The algorithm SatisfyEvolvingRequest() is described in Algorithm 2. As evolving
requests are given the highest priority, first the algorithm tries to schedule the
evolving request with idle resources. If enough idle resources are not found,
the algorithm tries to allocate necessary resources by shrinking malleable jobs.
The candidate for shrinkage is chosen by select shrinkable job() algorithm. The
select shrinkable job() algorithm is described later in this section.

The initial allocation is based on FCFS with an easy backfilling schedul-
ing policy [18]. The algorithm is described in Algorithm 3. If there are jobs in
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Algorithm 2. SatisfyEvolvingRequest(system state)
input: system state
output: A & system state

1: if Shrinkage Request then
2: Add shrink to A
3: Update system state
4: else
5: Allocate idle resources
6: if Enough idle resources not found then
7: J sm = select shrinkable job()
8: if length(J sm) not zero then
9: Add the shrinkages to A

10: Add the expansion to A
11: Update system state
12: end if
13: end if
14: end if
15: return A and system state

the pending job list and running malleable job list, the algorithm then tries
to schedule pending jobs by shrinking running malleable jobs using the Sched-
ulePendingJob() algorithm. The algorithm is detailed in Algorithm 4.

Algorithm 3. InitialAllocation(J p, system state)
input: J p, system state
output: J s, J p, system state

1: for each job in J p do
2: if p c == 0 then
3: return J s, J p, system state
4: end if
5: if job.p r ¡= p c then
6: add the job to J s
7: update system state
8: end if
9: end for

10: return J s, J p, system state

The ExpandRunningMalleableJob() algorithm expands running malleable
jobs if idle resources are available after scheduling pending jobs. As expanding
any job will result in higher system utilization, jobs with the highest runtime are
chosen for expansion with the motivation to reduce average turnaround time.

We have proposed three different algorithms to select the shrinkable malleable
jobs. Algorithm 5 does not look at any system or application state. It tries to
shrink jobs if enough resources are not found. For the rest of the paper, we
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Algorithm 4. SchedulePendingJob(J p)
Input: J p
Output: A, J s

1: for each job in J p do
2: if Job is malleable then
3: p r = minimum processor that is required to run the job
4: end if
5: (J sm), J s, system state = select shrinkable job()
6: if length(J sm)! = 0 then
7: Add shrinkages to agreement list
8: Add the job to job to start list and remove from pending queue
9: Update system state

10: end if
11: end for

will refer to it as “Default”. Algorithm 6 looks at the running applications first
and sees if any application ends in the next t seconds. If it is the case, then
the application waits for that application to finish before it shrinks any new
application. We will refer to this algorithm as “Application” for the rest of the
paper. Algorithm 7 looks at the system utilization before shrinking any job. If
the utilization is greater than u%, it does not shrink any job. For the rest of the
paper, we will refer to this algorithm as “System”. In each algorithm, malleable
jobs are sorted according to a certain priority. These techniques are described
later in this section. Algorithm 8 tries to shrink running malleable jobs and
allocate necessary resources. The technique to set these priorities is called the
candidate/ victim selection technique.

Algorithm 5. Algorithm 01 for selecting shrinkable jobs (SelectShrinkableJob
(J rm, p r))
input: J rm and p r
output: (J sm) , J s & system state

1: Sort the running malleable jobs according to priority
2: for each job in the sorted list do
3: J sm, J s, system state = AllocateResource(job, p r, system state)
4: end for
5: return empty list, J s, system state

Setting Priority of Malleable Jobs (Candidate/Victim Selection Tech-
niques)
We have used multiple policies to define the priority of malleable applications.
These are called candidates of victim selection techniques. The priorities are
described below:

– Random, r: Jobs are randomly selected without considering any parameter.
Jobs selected first have the highest priority.
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Algorithm 6. Algorithm 02 for selecting shrinkable jobs (SelectShrinkableJob
(J rm, p r))
input: J rm and p r
output: (J sm), J s & system state

1: if there is a job which is about to end in next t sec then
2: return empty list, J s, system state
3: end if
4: Sort the running malleable jobs according to priority
5: for each job in the sorted list do
6: if the job is not x% done then
7: J sm, J s, system state = AllocateResource(job,p r, system state)
8: end if
9: end for

10: return empty list, J s, system state

Algorithm 7. Algorithm 03 for selecting shrinkable jobs (SelectShrinkableJob
(J rm, p r))
input: J rm and p r
output: (J sm), J s & system state

1: if utilization is greater than u% then
2: if there is a job which is about to end in next t second then
3: return empty list, J s, system state
4: end if
5: end if
6: Sort the running malleable jobs according to priority
7: for each job in the sorted list do
8: J sm, J s, system state = AllocateResource(job, p r, system state)
9: end for

10: return empty list, J s, system state

Algorithm 8. AllocateResource(job, p r, system state)
input: job, p r, system state
output: (J sm), J s & system state

1: needed resource allocation = p r
2: if available shrinkable resources of job ≥ p r then
3: shrinkable resources = needed resource allocation
4: needed resource allocation = 0
5: add pending job to J s
6: else
7: needed resource allocation -= available shrinkable resources
8: shrinkable resources = available resource allocation
9: end if

10: Add the malleable job to J sm
11: if needed resource allocation = 0 then
12: Return J sm, J s, system state
13: end if
14: Return J sm, J s, system state
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– Gain, g: Initially, every job has a gain (g) value set to 0. Every time a job
expands or shrinks, the gain changes. For expansion, the number of expanded
cores is added to the gain. For shrinkage, the number of shrunk cores is
subtracted from gain. The job with the highest gain has the highest priority.

– Shrinkable Resources, sr: If the application is running on Pcurrent processors
and the minimum processor for the application is Pmin, then the application
has Pcurrent − Pmin shrinkable resources (sr). The application with the high-
est sr has the highest priority. If two applications have the same shrinkable
resources, the application with the highest current resources has the highest
priority.

– No. of expansion, e: The job with the highest number of expansions (e) has
the highest priority.

– Adaptation Cost, a: The job with the lowest adaptation cost has the highest
priority.

– Time, t: The job with the lowest remaining runtime (t) has the highest pri-
ority.

4.1 Evaluation Metrics

We choose average turnaround time to measure application performance and
utilization to indicate system performance.

If the arrival time of a job i is Tai and completion time is Tci, and the
workload has total n jobs then average turn around time (TAT) is -

average TAT

n∑

i=1

Tci − Tai

n

System utilization indicates the fraction of CPU cycles that has been used during
the execution of the workload. If the scheduled span of a workload is SS and
total processors is p, then total cpu cycle, Ctotal = SS∗p. Let us assume that the
CPU cycle used by an application i is Ci. If the application has total ph phases
and the execution time and processor of phase p is Tp and Pp respectively then,

Ci =
ph∑

p=1

Tp ∗ Pp

If the workload has total n jobs then,

utilization =
n∑

i=1

Ci

Ctotal
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5 Experiment and Results

5.1 Workload

Selecting a workload to simulate a scheduling algorithm needs special attention.
The workload should emulate the workload running on a cluster. Input data
for simulating scheduling algorithms can be obtained in two ways. One is to
derive it from workload traces of the existing HPC system and the other is to
generate them using different workload models. For our study, we have used two
real workloads and one synthetic workload. We have chosen the LLNL Atlas
[17] and the KIT for HLR II [24] logs from the parallel workload archive [7].
We will refer to these two workloads as LLNL and KIT, respectively. For both
workloads, we have considered the first 10,000 jobs for simulation. In order to
increase the load and see the impact of that, we have further modified these two
workloads. We have created two shrunk versions of LLNL and KIT by shrinking
the inter-arrival time by 5% and 35% respectively. The modified workloads are
referred to as LLNL-shrunk and KIT-shrunk respectively. In addition to the real
workloads, one synthetic workload has been generated using Downey’s model
[6]. A workload containing 10,000 jobs was created with a cluster size of 10,000
processors. The model parameters to generate the workload are listed in Table 1.

Table 1. Parameters of Downey’s model to generate synthetic

#Jobs rho seed Job width (ln(Tr)) Job size (ln(P ))

10, 000 0.75 17 Min Max Min Max

5.69 9.91 0.69 8.51

Table 2 summarizes the workloads. The max processor and min processors are
the maximum and the minimum number of processors a job has in the workload,
respectively. The relevant parameters of the workloads are:

Table 2. Workloads for simulation

Workload # of jobs Max processor Min processor Total processors % of shrinkage in interarrival time

LLNL 10,000 9160 1 9,216 –

LLNL shrunk 10,000 9160 1 9,216 5%

KIT 10,000 10,240 1 24,048 –

KIT shrunk 10,000 10,240 1 24,048 35%

Synthetic 10,000 4994 2 10,000 –

– Id: A unique identifier for the jobs in the workload
– Type: A job can be of three types- rigid, malleable and evolving
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– Arrival, Ta: Job arrival time
– Runtime, Tr: Execution time of a job
– Processors, P: Number of desirable processor allocation
– Minimum Allowable processor, pmin: Minimum required resource allocation

for a job. pmin is equal to P for rigid jobs.
– Maximum Allowable Processor, pmax: Maximum allowable processor alloca-

tion of a job. pmax is equal to P for rigid jobs.

Creating Elastic Workload. All the workloads mentioned in Sect. 5.1 are
rigid. We have generated an elastic workload by randomly selecting jobs to be
elastic. If in a certain workload x% of jobs are elastic, then x/2% of them are
malleable, and x/2% of jobs are evolving. For every workload, we have made
in total 10 elastic versions with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100% elastic
jobs. Every elastic job has maximum and minimum processor requirements. We
have selected 800% of P to be the maximum (pmax) and 50% of P to be the
minimum (pmin) allowable resources.

Evolving jobs make expansion and shrinkage requests to the simulator. We
refer to these requests as evolving requests. We choose the total number of evolv-
ing requests submitted by an evolving job chosen randomly from a predefined
maximum and minimum. We have selected the event type (expansion or shrink-
age) from a Bernoulli Distribution with a higher probability to be expansion.
Then, we have chosen the number of processors involved in the evolving event
from a predefined maximum and minimum. The time of occurrence of each
evolving event is selected at a percentage of the remaining computation. The
percentage is also chosen from a predefined minimum and maximum.

5.2 Experimental Setup

The discrete event simulator has been implemented using Python 3.4.1. Results
shown in this section reflect the average of 10 runs. We have chosen the predefined
parameters used in this simulation from an educated guess. Parameters were
chosen to be the following:

– t in Algorithm 6 and 5 is set to be 5 s.
– u in Algorithm 5 is set to be 80.
– Maximum negotiation cost is set to be 0.05 s and minimum negotiation cost

is set to be 0.005 s.
– Parallel overhead defined in the mathematical model (Sect. 3) is set to be

between 0.5% to 1%.
– α and β defined in the mathematical model of Sect. 3 are randomly chosen

from a uniform random distribution of 0.005 to 0.05.
– Synchronization cost defined in the mathematical model of Sect. 3 is randomly

chosen from a uniform random distribution of 0.015 s to 0.1 s.
– Maximum and minimum evolving events requested by an evolving application

are set to be 4 and 1 respectively.
– Probability of an evolving event to be an expansion event is set to be 0.8
– Expansion event can occur anytime when 30% to 60% of work is left.
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5.3 Results

In all cases, including elastic application into the workload improves perfor-
mance over only rigid workload. The performance of the only rigid workload is
shown in the dotted line in all the plots of this section. Figures 1, and 2 show
the comparison of algorithm System, Application, and Default in terms of aver-
age turnaround time, and system utilization of KIT workload, respectively. The
algorithm System attains the best system utilization for all candidate selection
techniques but performs worst in terms of average turnaround time. Algorithms
Application and Default perform in a similar manner.

Fig. 1. Average turnaround time of KIT
workload with different algorithms

Fig. 2. System utilization with KIT
workload and different algorithms

Fig. 3. Average turnaround time of
KIT shrunk workload with different
algorithms

Fig. 4. System utilization with
KIT shrunk workload and different
algorithms

Figures 3, and 4 show the comparison of Algorithm System, Application,
and Default in terms of average TAT, and system utilization of KIT shrunk
workload, respectively. Random performs the best in terms of utilization for
all three algorithms. The algorithm System attains the best system utilization
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Fig. 5. Average turnaround time of
LLNL workload with different algorithms

Fig. 6. System utilization with LLNL
workload and different algorithms

for all candidate selection Algorithms but performs the worst in terms of aver-
age turnaround time. The algorithm Application performs the best in terms of
average turnaround time (see Fig. 3).

Figures 5 and 6 show the comparison of algorithm System, Application, and
Default in terms of average turnaround time, and system utilization of LLNL
workload respectively. The algorithm System has the worst average TAT in the
case of adaptation, expansion, and gain. The algorithm Default has the worst
average TAT in the case of random, resource, and time. The algorithm Appli-
cation provides the best TAT in all cases. In terms of utilization, the algorithm
System gets the best turnaround time for adaptation, expansion, gain, and ran-
dom. Algorithm Default generates the best utilization for resources and time.
The worst TAT comes from the algorithm Application in case of adaptation,
expansion, resource, and time, and from the algorithm Default in case of gain
and random.

Fig. 7. Average turnaround time of
LLNL shrunk workload with different
algorithms

Fig. 8. System utilization with
LLNL shrunk workload and differ-
ent algorithms

Figures 7 and 8 show the comparison of Algorithm System, Application,
and Default in terms of average turnaround time, and system utilization of
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LLNL shrunk workload respectively. The algorithm System generates the worst
TAT everywhere except random and resource. For random and resource, algo-
rithm Default is the worst. The algorithm Application performs best in terms of
average TAT for all candidate selection techniques except expansion and gain. In
terms of utilization, the algorithm System performs the best and the algorithm
Application performs the worst in all cases.

Fig. 9. Average turnaround time of syn-
thetic workload with different algorithms

Fig. 10. System utilization with syn-
thetic workload and different algorithms

Figures 9 and 10 show the comparison of algorithm System, Application, and
Default respectively in terms of average TAT, and system utilization of Synthetic
workload, respectively. In terms of average TAT and utilization, the results of the
algorithm Application and Default are clustered together. The algorithm System
is the best in terms of utilization and the worst in terms of average TAT.

5.4 Analysis

Table 3 shows comparisons between different candidate selection techniques for
the scheduling algorithms for different workloads. For each metric, the best and
the worst performing techniques along with the maximum difference between the
best and the worst are presented. Table 3 shows that the maximum improvement
gained over different candidate selection techniques of LLNL shrunk workload
is less than that of LLNL workload. It can be said that the results of different
candidate selection techniques of LLNL shrunk workload are more clustered than
that of LLNL workload (see Figs. 5, 6, 7 and 8). A similar pattern is found in KIT
and KIT shrunk workloads. So, we can conclude that if the workload is high,
the difference in performance between different candidate selection techniques
becomes insignificant. Table 3 also shows that in terms of average TAT gain
performs the best and random performs the worst in most of the cases. In terms
of utilization, random performs the best, and resource performs the worst in
most cases.

The performance of Synthetic workload increases as the percentage of elastic
jobs increases. For other workloads, the increase saturates and stops at some
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Table 3. Maximum improvement achieved by using different candidate selection tech-
niques at any percentage of elastic jobs

Workload Algorithm Average TAT Utilization

Best Worst Max difference Best Worst Max difference

LLNL Application Gain Random 2.62% at 40% elastic jobs Random Resource 8.075% at 70% elastic jobs

System Gain Resource 2.09% at 100% elastic jobs Random Resource 3.65% at 70% elastic jobs

Default Random Resource 3.08% at 30% elastic jobs Random Resource 9.0% at 90% elastic jobs

LLNL shrunk Application Adaptation Random 1.45% at 70% elastic jobs Random Time 3.23% at 90% elastic jobs

System Gain Random 2.19% at 60% elastic jobs Random Time 1.65% at 90% elastic jobs

Default Resource Random 2.36% at 100% elastic jobs Random Gain 2.49% at 90% elastic jobs

KIT Application Gain Random 3.21% at 70% elastic jobs Random Resource 10.25% at 50% elastic jobs

System Adaptation Random 3.04% at 20% elastic jobs Random Resource 3.11% at 40% elastic jobs

Default Gain Random 5.7% at 70% elastic jobs Random Resource 10.9% at 50% elastic jobs

KIT shrunk Application Gain Random 1.23% at 80% elastic jobs Random Resource 0.85% at 90% elastic jobs

System Gain Time 1.66% at 100% elastic jobs Random Resource 1.33% at 60% elastic jobs

Default Gain Random 2.84% at 100% elastic jobs Random Resource 1.31% at 90% elastic jobs

Synthetic Application Gain Random 1.51% at 60% elastic jobs Random Resource 8.58% at 80% elastic jobs

System Gain Time 1.09% at 90% elastic jobs Random Resource 3.6% at 70% elastic jobs

Default Gain Random 1.79% at 90% elastic jobs Random Resource 3.47% at 70% elastic jobs

point. Figures 11 and 12 shows the distribution of total jobs and the elastic jobs
of KIT shrunk workload and Synthetic workload when 30% and 60% of the work-
load are elastic respectively. The distribution for KIT, LLNL, and LLNL shrunk
workloads is similar to KIT shrunk workloads. From these figures, we can see
that in the case of Synthetic workload there are always elastic jobs present in
the workload which is not the case for other workloads. For this reason, the Syn-
thetic workload shows constant improvement with the increase in the percentage
of elastic jobs.

Fig. 11. Distribution of elastic job in
KIT shrunk workload

Fig. 12. Distribution of elastic job in
synthetic workload

For KIT workload and KIT shrunk workload, no algorithm can achieve uti-
lization above 91% (see Figs. 2 and 4). The possible reason for this can be frag-
mentation and/or adaptation and negotiation overhead. Elastic jobs have a limit
on how much they can expand. As a result, fragmentation can still exist even
after the full expansion of all running elastic jobs. Again, the job distribution
over time may be in such a way that at any point in time, there may not be any
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elastic job running at the cluster, and the cluster may remain underutilized. Also,
adaptation cost and negotiation cost cause some utilization loss. To investigate
this further, we have created another version of KIT and KIT shrunk workload
where every elastic job has a maximum resource of 24048 (equal to cluster size)
and a minimum resource of 1. We refer to this phenomenon as 100% flexibility.
We call these versions KIT full workload and KIT shrunk full workload, respec-
tively. Figures 13 and 14 show the utilization of KIT full and KIT shrunk full
workloads, respectively. Utilization of KIT full workload saturates at 90%, but
utilization of KIT shrunk full workload saturates at 98.5%. This proves that the
KIT full workload still has fragmentation as the inter-arrival time is high as well
as adaptation and negotiation overhead. On the other hand, KIT shrunk full
workload losses 1.5% utilization due to adaptation cost and negotiation cost.
Also, from the figures, a knee is visible in the utilization curve. After a certain
point, utilization saturates and does not improve with the increase in percentage
elastic jobs. At 100% flexibility, improvement in utilization saturates at a certain
percentage of elastic jobs.

Fig. 13. Utilization of KIT full workload Fig. 14. Utilization of KIT shrunk full
workload

The key findings of this research are as follows:

– When the load is high, the performance difference between many candidate
selection techniques is insignificant.

– Impact of elastic jobs not only depends on the percentage of elastic jobs but
also depends on the distribution of elastic jobs over time. The more uniform
the distribution of elastic jobs over time is, the more evident the impact is.

– Even introducing 100% flexibility, utilization may not be 100% due to adap-
tation cost, negotiation cost, and fragmentation. Fragmentation may still
remain due to the limit on the expansion capability of running elastic jobs.

– Algorithm System (Algorithm 7) always gets the highest system utilization.
In most of the cases, the Algorithm Application (Algorithm 6) gets the lowest
average TAT.
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– In terms of average TAT, the case study shows that gain performs the best
and random performs the worst in most cases. In terms of utilization, random
performs the best and resource performs the worst in most cases.

– In all cases even a low percentage of elastic jobs (as low as 10% of the total
job) improves the performance.

6 Conclusion and Future Works

The main objective of our research is to propose and evaluate different scheduling
strategies for elastic applications under different workloads. We have proposed
three different scheduling algorithms, and for every algorithm, we have proposed
six candidate selection techniques to prioritize shrinkable jobs. We have evalu-
ated the proposed algorithms using modified workload traces from real systems
as well as synthetic workloads. The following are the main observations from our
study: 1) With the increased workload, the difference in performance improve-
ment between the proposed candidate selection techniques becomes insignificant.
2) The impact of elasticity not only depends on the number of elastic jobs but
also depends on their distribution over time in the workload. The more uniform
the distribution of elastic jobs over time is, the more constant the improve-
ment will be with the increase in elasticity. 3) We have observed that even
with 100% flexibility, 100% utilization can not be achieved. Adaptation and
negotiation overhead limits the maximum achievable utilization. 4) In all cases,
workload with elastic applications improves both system and application perfor-
mance compared to the same workload with rigid workload only. 5) Even with a
very small percentage of elasticity (as low as 10%), both system and application
performance improved.

One of the limitations of the study is that the HPC systems we derived the
workload traces for our simulation no longer represent current large HPC systems
such ORNL Summit, Fugaku, etc., or upcoming systems like ORNL Frontier. In
addition, simulation parameters such as adaptation cost used for simulation were
derived from educated estimates based on sample runs of an iterative structured
grid application running on a medium-size cluster. Experiments with the real
application at scale should be used to estimate the value of such parameters.
These limitations are mostly due to time, effort, allocation and access to large
HPC systems, and availability of real workload traces from systems like Summit.
Our planned future work includes: 1) investigating candidate selection policies
for job expansion, 2) the impact of the ratio of malleable and evolving jobs in the
workload on performance (all our workload has 50% malleable 50% evolving).
It is difficult to estimate the execution time of an application if the number of
processors is changed in the middle of execution. There exists some model to
estimate the total execution time of an application on different sets of processors
[2,22]. Further exploration/extension of such models for estimation of execution
time on a different number of processors can be investigated.
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Abstract. Job walltime estimates are used by current batch schedulers
to optimize the performance and predictability when scheduling paral-
lel jobs on the computing resources. Since the user-provided estimates
are inaccurate and often overestimated, system administrators often seek
ways to improve them artificially using some form of walltime predictor.
In this work, we present our real-life experience with deploying such a
predictor using the soft walltime feature available in PBS Professional
resource manager. Our results indicate that the applied solution is work-
ing properly, significantly increasing the accuracy of user-provided esti-
mates. We share our experience when tuning the scheduler, discussing
several problems that occurred along the way. Also, we provide a com-
parison of how the system behavior evolved once soft walltimes were
deployed in production. Last but not least, we publish collected work-
load traces along with this paper to allow other researchers to further
study and extend our work.

Keywords: Job · Scheduling · Soft walltime · Estimate · Prediction ·
PBS

1 Introduction

This paper is addressing the problem of inaccurate user-provided job walltime
estimates [7,8,12]. Inaccurate estimates cause holes to be left in the schedule
during backfilling [10] as jobs appear to be too long for them to fit in. This
may lead to a well known scenario, where only very short jobs can use the holes
in the schedule, resulting in an SJF-like behavior (Shortest Job First) that can
compromise other system’s goals such as fair job ordering [16].

This paper is motivated by our real-life experience when maintaining the
PBS Professional resource manager in the Czech national distributed comput-
ing infrastructure MetaCentrum [9]. As we have already discussed in our previous
work [7], our users are no exception to the widely documented behavior of com-
mon HPC system users. They tend to use rather overestimated job walltime
estimates in order to decrease the chance that their job will be prematurely
killed due to running out of time. So the most common scenario is that users
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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choose the maximum allowed runtime of a queue and then use it as the walltime
estimate.

This well-known fact [15,16] motivated several researchers to either develop
some form of runtime prediction technique or find a significant incentive for
individual users to improve the accuracy of their runtime requests [2,8]. While
the problem itself and various walltime prediction techniques have been stud-
ied extensively, we saw very little practical deployment of these techniques in
practice. One of the reason was that mainstream resource managers did not pro-
vide tools to easily implement walltime predictors. This has changed in 2017
when PBS Professional introduced the so called “soft walltime” feature—a tool
designed to simplify walltime predictor deployment [14].

In our earlier work [7], we used historical workload traces and a simulator
to evaluate the impact of various walltime predictors in simulated HPC system.
Those simulations were designed in order to give us a hint whether it is worth
the effort to use the soft walltime in practice. Since the results were promising,
we have decided to use soft walltimes generated by walltime predictor in our
HPC system. This paper summarizes our current experience and lessons learned
along the way.

The main contributions of this paper are following. In Sect. 2, we provide
detailed description of our predictor and its integration in the HPC system.
We discuss the evolution of the walltime predicting algorithm and—using real-
life data—we illustrate problems that were observed and required our attention
during the development. Section 3 analyzes the accuracy of the predictor in great
detail, showing how even relatively simple predictor can improve the accuracy
of job walltime estimates. Next, we analyze how the system performance has
changed since the soft walltime has been deployed and used (Sect. 4). We believe
that this paper is one of the first reports that documents the impact of soft
walltimes in real environment. We conclude the paper in Sect. 5 and provide the
developed predictor and all workload traces used in this study to the scheduling
community.

2 Soft Walltime Adoption in CERIT-SC

In this paper we are using real data from the CERIT-SC partition of Meta-
Centrum infrastructure. CERIT-SC manages the second largest partition in our
infrastructure [1]. It consists of 6,656 CPUs and it has its own instance of PBS
server. This allowed us to use it as a “guinea-pig” in our efforts to introduce soft
walltimes in MetaCentrum.

2.1 Inaccurate Estimates

To demonstrate the level of inaccuracy of user-provided estimates we present
Fig. 1 that shows how jobs are distributed according to their user-provided wall-
time and their actual runtime. Clearly, the curves are very different and do not
match at all as users provide rather overestimated walltimes. This means that
the scheduler is using very inaccurate data when constructing reservations for
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Fig. 1. Cumulative distribution functions of user-provided walltimes and actual job
runtimes. User-provided estimates are significantly overestimated.

top jobs1, predicting job start times, or trying to find small-enough jobs to be
backfilled.

2.2 Soft Walltime Functionality

Soft walltimes in PBS are designed to safely refine user-provided job walltime
(runtime) estimates. When enabled, the scheduler does not use user-provided
estimates but instead uses so-called soft walltimes for all scheduling operations.
Most importantly, it uses them to create job reservation(s) and perform backfill-
ing. Soft walltimes are safe from the point of view of the user, because jobs are
not killed when their soft walltimes are exceeded. As usual, a job is only killed
when it exceeds its original, user-provided estimate. Unlike the walltimes which
represent hard limit on job runtime, soft walltimes can be underestimated. In
such situation the soft walltime is increased by a factor of two. This process
can be repeated until either the job completes or the original walltime limit is
reached. Underestimated soft walltimes should be avoided (if possible) because
they can invalidate guaranteed start times for top jobs [13]. An important secu-
rity feature is that soft walltimes cannot be (by default) specified or modified by
users. Only the manager (system administrator) is allowed to set them up, typi-
cally using the so-called job hook script. This guarantees that users cannot obtain
unfair priority in backfilling by providing very low (unrealistic) soft walltimes.
More details on soft walltimes can be found in the PBS documentation [13,14].

This paper is not focusing on discussing various runtime prediction tech-
niques. Instead, we will proceed with the details of our solution and we kindly
1 In PBS Professional, not every waiting job gets a reservation. Only a predefined

number of high priority jobs (per queue) has guaranteed (latest) start times and
these are called top jobs. Remaining jobs can be backfilled around top jobs provided
they will not interfere with their reservations.



Improving Accuracy of Walltime Estimates in PBS 195

Fig. 2. The scheme of soft walltime generation used in CERIT-SC system.

refer to existing works that discuss various techniques for walltime refinement,
e.g., the survey from Seneviratne and Witharana [11] or Soysal et al. [15].

2.3 Soft Walltime Predictor Implementation

The soft walltime feature was enabled by implementing a very simple predictor.
The predictor uses a small PostgreSQL database that collect statistics about
previously completed jobs of each user. The SQL database is hosted on the
main server and all SQL-related operations are performed using PBS hooks. No
operations are needed on the MoMs (execution nodes) due to security reasons (no
SQL connections to the server-side database). As designed in PBS, soft walltime
can be set either upon job arrival, job modification or when a job starts (using
hook events: queuejob, modifyjob and runjob).

In our implementation, soft walltime is first generated upon each job arrival
and is later updated when the job starts its execution. Once the job completes
and is recorded in the PBS accounting log, we add its parameters into the Post-
greSQL database to keep it up-to-date. Figure 2 depicts the current implementa-
tion and the main events + communication used to generate and maintain soft
walltimes.

The predictor used for soft walltime generation is very simple and under-
went two major upgrades since its first deployment in October 2021. The first
version (v1) used simple arithmetic average of the last two previous runtimes
of completed jobs of a given user [17]. This solution was used as a baseline
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Algorithm 1. Predictor v1(user, walltime, completed jobs)

1: previous runtimes := Select j.runtime From completed jobs j Where
j.user name=user Order By j.job end time Desc limit 2;

2: if previous runtimes = ∅ then
3: soft walltime := walltime;
4: else
5: soft walltime := Minimum(Average(previous runtimes), walltime);
6: end if
7: return soft walltime;

due to its simplicity and low computational requirements. The pseudo-code is
shown in Algorithm1. The predictor has three inputs: the user name (user),
current job’s walltime estimate (walltime) and the DB table of already com-
pleted jobs (completed jobs). In the first step, the last two runtimes of com-
pleted jobs of that user are found in the database (line 1). If the user has
no completed jobs yet (previous runtimes = ∅), the user-provided walltime is
used as the soft walltime (line 3). Otherwise, the average is computed and the
new soft walltime is the minimum of this average value and the user-provided
walltime (line 5).

This predictor was used for roughly three weeks and its performance was then
analyzed. Although it reduced absolute estimate errors significantly, it had one
major flaw which was obvious and critical—it generated too many predictions
that were underestimated. This was a big problem because it meant that the
scheduler had to perform many soft walltime prolongations (see Sect. 2.2) which
implied that existing reservations previously computed by the scheduler (using
overly optimistic soft walltimes) were not valid and top jobs were delayed. We
performed detailed analysis and realized that by adding a fixed reserve to every
generated soft walltime (+15 min) we should be able solve this problem in most
cases. This simple modification was added to the predictor at the beginning of
November 2021.

Although this modification reduced the number of underestimated soft wall-
times, it only worked for users with fairly stable job runtimes. Sadly, there are
users in our system with highly spread job runtimes. Notably, we are dealing
with users that have highly varying runtimes within a single batch of jobs2. To
demonstrate this problem we provide Fig. 3 that shows every job submission of
a given user within the first week of November 2021. Vertical axis represents job
runtime while the horizontal axis is the job submission time.

It is clear, that with such highly spread runtime distribution it makes no
sense to use simple arithmetic mean to “guess” next job’s runtime. This find-
ing motivated us to develop a more robust predictor. For this purpose, we
have developed a simple event-driven simulator which emulated job submissions
and completions in the system and allowed us to test the accuracy of various

2 In this context, job batch is the set of jobs submitted into the system by a given
user in a short time frame, e.g., during few minutes.
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Fig. 3. Varying job runtimes (hours in log. scale) of several job batches submitted
during one week by a given user.

Algorithm 2. Predictor v3(user, walltime, completed jobs)

1: walltime usages := Select (j.runtime/j.job walltime) as walltime usage From
completed jobs j Where j.user name=user Order By j.job end time Desc limit
15;

2: if walltime usages = ∅ then
3: soft walltime := walltime;
4: else
5: max walltime usage := Maximum(walltime usages);
6: predicted walltime := (max walltime usage · walltime) + 900;
7: soft walltime := Minimum(predicted walltime, walltime);
8: end if
9: return soft walltime;

predictors. The final solution abandoned the original average runtime and instead
focuses on the recent relative walltime usage. It is represented by Algorithm 2
and works as follows.

First, we compute so called walltime usage ratio for the 15 most recently
completed jobs. The walltime usage is computed as the ratio of job runtime
to its walltime (j.runtime/j.job walltime). The walltime usages list is used to
collect these ratios (line 1). Next, we choose the maximum of these values. The
maximum relative walltime usage is then used to multiply the user-provided
job walltime (line 6) producing the predicted walltime (which includes 900 s
corresponding to the 15 min-long reserve). It represents a conservative strat-
egy, where the prediction is calculated using the known relative accuracy of
user’s recent estimates. By choosing the max walltime usage (i.e., by choosing
a job where the difference between actual and estimated runtime was minimal),
this technique aims to minimize the number of cases where the new soft wall-
time will be underestimated. At the same time, since the predictor only uses 15
recent jobs it reflect aging and orients itself more on the recent user’s workload
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characteristics. With this approach we were able to reasonably cover the prob-
lems illustrated in Fig. 3. The final soft walltime is again computed as the
minimum of the predicted walltime and the user-provided walltime (line 7).

3 Comparison of Soft Walltime Predictors

In the following text we will summarize our findings that were collected during
the development and deployment of our predictors in CERIT-SC system.

3.1 Initial Evaluation and Applied Modifications

We start with the results that were obtained by the event-driven simulator men-
tioned in the previous section. This simulator used real workload and realis-
tically emulated job submissions and completions. Therefore, we were able to
replay job arrivals and test all three variants of our predictor and compare their
accuracy. Figure 4 illustrates the development of our predictor (v1, v2 and v3
variants). In this figure, we show absolute estimate errors (hours in log. scale)
with respect to the used predictor. As a reference we also include errors of
the original user-provided estimates (walltime). In order to distinguish between
under- and overestimation, we first order errors in the increasing order for each
used predictor. Next, we compute absolute values of these (ordered) errors and
plot them using the log. scale. The resulting curves thus have a typical “V”-shape
where the left part (decreasing) represents absolute values of negative errors (i.e.,
underestimated predictions) and the right part (increasing) corresponds to the
overestimations (positive errors).

Clearly, original walltimes are never underestimated since they represent the
upper bound of allowed runtime. From this experiment, which covers 67K jobs,
we can see that the initial average-based predictor (predictor v1) generated a lot
of underestimated soft walltimes (over 40% of jobs were underestimated). The
addition of 15 min reserve (predictor v2) reduces this unwanted situation, yet
still nearly 31% of all jobs are underestimated. The predictor based on relative
walltime usage (predictor v3) produced the best results (less than 12% jobs is
underestimated). While not so critical, the negative yet natural effect of pre-
dictor v3 is the fact that jobs are typically quite overestimated with respect to
predictor v2 and v1.

3.2 Analysis of Soft Walltime Accuracy

Unlike the previous experiment which used identical workload and performed
predictions using a simulator the following analysis is solely based on results
collected from the real system. In the first part, we compare our three predictors
as they were deployed during the time. While the underlying workload is not
identical we can still observe how the different predictor variants (v1, v2 and v3)
performed with respect to the original user-provided estimates.
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Fig. 4. The ratio and level of under- and overestimation with respect to different soft
walltime predictors.

Figure 5 uses the actual data from the system to show the distribution of
runtime estimate errors. It consists of 3 boxplots, each covering one time period—
October 2021, November 2021 and December 2021–January 2022, respectively.
In the first period (October 2021) predictor v1 was used. It was replaced in
November 2021 with the predictor v2 which was replaced with predictor v3 that
has been used since December 2021. Each boxplot shows the distribution of
errors both for the given predictor (v1, v2 or v3) and the original user-provided
estimates. Moreover, the errors are divided into three groups according to the
actual runtime of the job. The first group represents short jobs (runtime [0, 2]
hours), the second group contains all medium jobs (runtime (2, 24] hours) while
the third group consists of long-running jobs (runtime ≥ 24 h).

Figure 5 shows how the aforementioned predictors improved the quality of
walltime estimates with respect to those provided by users. Also, it shows how
the quality of predictions was further improved with those two major modifica-
tions that were performed in November (Fig. 5 top right) and December (Fig. 5
bottom left). As we can see, predictor v1 used in October 2021 produced a lot
of underestimated soft walltimes (Fig. 5 top left) and its performance was thus
not acceptable. Clearly, the added 15 min reserve applied in predictor v2 signifi-
cantly decreased the underestimation of soft walltimes as can be seen, e.g., from
the reduced spread and better lower quartile value (long jobs). The second mod-
ification deployed in December 2021 (predictor v3) further reduced the errors
of generated soft walltimes. Version v3 clearly generates soft walltimes that are
much more accurate than user-provided estimates (Fig. 5 bottom left).

We have also analyzed the accuracy of soft walltimes on a per-user basis.
These results are shown in Fig. 6. This figure compares the average absolute
errors of user-based walltimes and generated soft walltimes. Also, for each user
we show the number of jobs they have submitted into the system. In general, soft
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Fig. 5. The impact of two major upgrades of the soft walltime predictor with respect to
the initial October version (top left). Both the November and the December upgrades
(top right and bottom left) decreased errors significantly. All boxplots have the same
scale of y-axis. Bottom right chart shows the number of jobs per job group and epoch.

walltime-based estimates were more accurate for 91% of users (on average). For
the remaining 9% users, the average deterioration was rather small. The biggest
and smallest deteriorations we have observed were 26 min and 36 s, respectively.
While the drawbacks of soft walltimes were minor, the improvements were very
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Fig. 6. Comparison of average absolute errors per user.

clear. For example, for 77% of users the average improvement in the accuracy
was greater than 24 h, i.e., the average error of user-based estimates was reduced
by more than 24 h thanks to the application of soft walltime predictor.

Last but not least, we have used other existing historical workload traces
to test if our predictor v3 would work in other systems too. Beside our work-
load from CERIT system (2022), we have chosen several older workloads from
the Parallel Workloads Archive: KIT FH1 (2020), MetaCentrum (2013), HPCN
(2006), SDSC SP2 (2000), and CTC SP2 (1997). As can be seen, these workloads
cover both recent and decades old systems, thus representing a very variable mix-
ture of input data. The results of this comparison are presented in Fig. 7 using
the average absolute error metric (hours in log. scale). We can see that even
simple technique like predictor v3 decreases significantly the average error that
is embedded in user-provided runtime estimates.

3.3 Soft Walltime Caveats

During the deployment of soft walltimes in the CERIT-SC system we have also
analyzed the impact of using soft walltimes. During this process we have come up
with a set of “caveats” that one should keep in mind when using soft walltimes.
The first one is the danger that originates from underestimated soft walltimes
and we have already discussed this caveat in Sects. 2.2 and 3.1. The second caveat
relates to the way jobs are routed into queues. In our system, user-provided
walltime limit is one of the major factor that influences to which queue his
or her job will be routed to. Simply put, the system has several queues with
different maximum allowed walltime limits. “Short” queues can access larger
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Fig. 7. Comparison of average absolute errors per different workload traces.

pools of nodes while “long” have smaller pools of available nodes. These node
pools are overlapping and the limits are used to increase the chance that short
jobs will not be hugely delayed by long running jobs from long queues. However,
jobs are always routed by user-provided walltimes and soft walltimes do not
change this at all, unless the system is reconfigured to allow such soft walltime-
based routing. It means that although the job may be considered as “short” by
the scheduler it cannot be moved into a proper “short” queue and will remain
in the “long” queue (in default settings). Therefore, jobs having long walltimes
and small soft walltimes cannot use those larger pools of nodes that are available
to “short” queues. As a result, these jobs thus may experience larger wait times
compared to jobs from “short” queues.

Figure 8 shows this caveat in practice. On the left side, we present job (top)
and error (bottom) distribution when jobs are grouped according to their real
runtime. We can see that short and medium jobs are the most common (63%
and 30%) while long jobs are scarce (7%). On the other hand, when jobs are
grouped according to their queue (right) the job-to-group distribution is much
different (33%, 42% and 25%) since many jobs are overestimated by users, thus
ending up in “wrong” queues.

This difference then also changes completely the distribution of estimate
errors. In the former case (runtime-based grouping) soft walltimes are underes-
timated for 50% of long jobs while in the latter case (queue-based job grouping)
soft walltimes are underestimated for only 25% of jobs from long queues. Sim-
ilarly, user-provided estimates are much worse when considering long queues
(right) instead of long jobs (left). The output from this caveat is that the system
administrator must closely monitor system performance on the per-queue basis
as the introduction of soft walltimes will likely cause that resource-restricted
queues (e.g., “long” queues in our case) will contain lots of jobs that may be
more suitable for other system partitions (e.g., those used by “short” queues).
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Fig. 8. Job (top) and error (bottom) distribution according to the runtime-based (left)
and queue-based (right) job grouping. 3.4× more jobs fall into the “long” category when
grouped according to their system queues (right). Both boxplots have the same scale
of y-axis.

Not only this may limit the system performance but it can also degrade the
impact of using soft walltimes.

4 Comparison of System Performance

In the final part of our evaluation we compare how the system performed prior
and after soft walltimes were introduced. We will compare two data sets from
CERIT-SC system and analyze their differences. Since we are using real data
from the system, this comparison has some inevitable shortcomings. Clearly, we
are comparing two different workloads thus we cannot directly compare selected
metrics and draw immediate conclusions from such comparison. Instead, we will
provide side by side workload comparison and discuss observed trends in the
processed workloads. In the future, we plan to extend this work by performing
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reasonably detailed simulations where we would test various system setups (with
or without soft walltimes) using the same workload. This will provide additional
and more reliable/comparable results.

Still, we believe that current comparison provides interesting data and we
did our best to select two reasonably comparable epochs. First, we made sure to
select two epochs where the system setup is identical, i.e., the number of nodes
and queues (and their limits) is the same. The first trace where the scheduler uses
user-provided estimates is called CERIT-user-wall. It comprises 935,724 jobs
executed in the system during January–August 2021 period. The second trace
where soft walltimes are used is called CERIT-soft-wall. It covers 4 months since
October 2021 and contains 351,853 jobs. Out of these, 254,663 jobs have recorded
soft walltime3. In the following comparison, only jobs having soft walltime are
considered for comparison in the CERIT-soft-wall trace.

4.1 Comparison of Workload Characteristics

Let us first compare job runtime distributions in Fig. 9. Clearly, in both work-
loads short jobs are dominant, followed by medium and long jobs. The two data
sets are similar but the CERIT-soft-wall has larger percentage of long-running
jobs. Thus, we need to look also on CPU requirements (job parallelism) and sev-
eral other indicators. To achieve that, we analyze workload similarities in more
detail using heatmaps. We are focusing on job sizes and job runtime/walltime
distributions, as well as on the way how the total CPU load is distributed with
respect to job sizes and durations among these two workloads. We use heatmaps
where the “heat” intensity shows the percentage of jobs that fall within a given
category of jobs. The y and x axes then characterize job category with respect to
their CPU demands and runtime/walltime, i.e., y-axis denotes the required num-
ber of CPUs while x-axis divides jobs into categories according to their runtime
or walltime, respectively.

Figure 10 (top) shows that both workloads are quite similar with respect to
their CPU requirements and actual job runtime. In both cases, the majority of
jobs requires at most 32 CPUs (99.7% and 99.8% of jobs, respectively). Also,
the majority of jobs requires at most 1 day to execute (93.9% and 86.7% of jobs,
respectively).

The middle row in Fig. 10 shows, that both workloads have very coarse
grained user-provided estimates. Many jobs simply use the maximum allowed
queue runtime limit as their walltime4. When compared to the real runtimes (see
top row in Fig. 10), this heatmap clearly shows how the user-provided estimates
are overestimated in both workloads. For example, according to user provided
estimates in CERIT-soft-wall workload only 38.6% of jobs is expected to execute
within 2 h, while in reality 68.1% of all jobs run for less than 2 h.

3 The difference is caused by the fact that it takes some time before we collect enough
data for each user to produce soft walltimes.

4 In our case, those are 2, 4 and 24 h, 2, 4 and 7 days and 2, 4 or >4 weeks.
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Fig. 9. Job distribution (%) into the three common job runtime categories for CERIT-
user-wall and CERIT-soft-wall workload traces.

The last row in Fig. 10 compares the use of CPU hours with respect to job
classes. Here, the “heat” intensity shows the percentage of total used CPU hours
that are consumed by a given category of jobs. It shows that also the overall CPU
utilization is quite similar for CERIT-user-wall and CERIT-soft-wall workloads,
i.e., the majority of CPU time is consumed by long-running jobs (>1 day) in
both workloads (71.0% and 81.1% of CPU time, respectively). CERIT-soft-wall’s
higher use of CPU hours (in long jobs category) is related to the higher number
of long-running jobs (see Fig. 9).

Clearly, although the two workloads are not identical, they both have similar
patterns, i.e., utilized CPU hours are mostly consumed by long-running jobs
while at the same time, most jobs are rather short, requesting less than 40 CPUs.
Based on these similarities, we now compare those two workloads by means of
job wait time and bounded slowdown.

4.2 Comparison of Wait Time and Bounded Slowdown

In this section, we use two optimization criteria to compare CERIT-user-wall and
CERIT-soft-wall traces—job wait time and bounded slowdown [4]. Job slowdown
is the ratio of the actual response time of the job to the response time if executed
without any waiting. By definition, job slowdown is always ≥1. As pointed out
by Feitelson et al. [4], slowdown reflects users’ notion of system responsiveness
through measuring if jobs are completed within the time proportional to the
job length. In another words, it prefers completion of shorter jobs in a shorter
time horizon in comparison with time consuming jobs where a longer waiting is
acceptable. Since the whole idea behind soft walltime is to allow the scheduler to
“find shorter jobs” and backfill them efficiently we have used these two metrics
in our comparison.

In nearly all existing traces (ours included), many jobs have very short run-
time. This often represents jobs that ended prematurely right after their start
due to some error. These short jobs then skew slowdown distribution (their
slowdowns are huge). Therefore, we use so called bounded slowdown [3,4], where
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Fig. 10. Comparison of CERIT-user-wall (left) and CERIT-soft-wall (right) workload
traces according to their job runtime distribution (top), job walltime distribution (mid-
dle) and utilized CPU hours (bottom).

the minimal job runtime is guaranteed to be greater than some predefined time
constant, in our case 10 min5.

Figure 11 shows the distribution of job wait times (left) and bounded slow-
downs (right) for the CERIT-user-wall and CERIT-soft-wall traces. Let us start
with the wait time comparison. We can see, that there is a significant difference
in the shape of wait time distributions. Soft walltime-driven scheduler (CERIT-
soft-wall) seems to distribute high wait times to the long-running jobs, which
is natural for backfill-like scheduler. In the original walltime-driven workload
(CERIT-user-wall), both short and medium jobs have significantly different wait

5 Other values such as 10 s [3,4] or 1min [18] are used as well in the literature. In
CERIT-SC, 10 min is the recommended minimal runtime of regular job. Shorter
jobs are not recommended due to excessive overhead related to their (frequent)
processing.
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Fig. 11. Wait time (left) and slowdown (right) distributions for CERIT-user-wall and
CERIT-soft-wall traces.

time distribution, with medium jobs waiting the most. This is an indication that
more diverse soft walltimes enable the scheduler to pick shorter jobs more easily
and schedule them first. In other words, the wait time distribution in CERIT-
soft-wall trace is satisfactory for us, as we expect the system to follow the trend
of prioritizing shorter jobs6. Again, we must highlight the limitation of this com-
parison, i.e., we are comparing different workloads. As was already discussed in
Sect. 4, instead of directly comparing the observed values we are only discussing
“shapes” and “trends” here. Direct comparison of wait time values would be
quite misleading as the underlying workloads are different.

The distribution of job slowdowns is shown in Fig. 11 (right). Here, we see
that the long wait times of medium jobs in CERIT-user-wall trace result in
rather significant slowdowns as well. For example, the slowdown median for
short and medium jobs is very close in CERIT-user-wall trace. On the other
hand, CERIT-soft-wall trace has more “natural” slowdown distribution, where
largest slowdowns are related to short jobs and decrease as job runtime increases
(see the distribution of medium jobs and long jobs). Again, this indicates that
the application of soft walltimes helps the scheduler to find suitable jobs for
backfilling, which leads to lower wait times and thus reduces their slowdown.

6 This is also coupled with fair-share based job ordering which we use to prioritize less
active users over those who utilize the system heavily.
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5 Conclusion and Future Work

The aim of this work was to design and implement a soft walltime predictor for
the PBS Pro workload management system. The predictor generates job soft
walltimes using the knowledge obtained from historical workload data recorded
in the database. The developed solution can be obtained from CESNET GitHub
repository [5]. Moreover, we have presented our experience when first deploying
this predictor in real system. We have analyzed the strengths and weaknesses of
our current predictor which we summarize in the following list:

– Strengths
• The predictor is easy to deploy using tools available in PBS Pro.
• It generates soft walltimes that are much more accurate than user-

provided estimates.
• It has been used in practice for nearly 5 months now.
• Current results indicate that the system is operating as intended and no

negative feedback was observed (since the last upgraded predictor v3 has
been deployed).

– Weaknesses
• Current predictor does not enable to generate different soft walltimes for

different job classes of a single user (even if we know that the user has
different job classes).

• As a result, all jobs of a given user are treated as “identical” and their soft
walltime is generated using the same scaling factor at the given moment
(see max walltime usage in Algorithm 2).

• Due to the current limitations in PBS Pro, there is limited possibility to
update job soft walltime before job start (soft walltime can be modified
only upon job arrival or when it starts but not while it is waiting in a
queue). This means that the scheduler may work with rather “old” soft
walltimes that are only updated when the job finally starts.

Also, we provide real workload trace that contains generated job soft wall-
times. This trace has been published in the JSSPP workloads archive [6], hosted
at the JSSPP workshop page: https://jsspp.org/workload/. Using this real-life
data we have analyzed the accuracy and impact of our approach. We believe
this is one of the first publicly available reports on practical application of soft
walltimes.

In the future, we want to extend our existing work by detailed simulations
that would increase our understanding of how the refined estimates influence
the performance of the scheduler. Also, we would like to use such simulations
to test new variants of soft walltime predictor that would focus on the current
weaknesses (see above).
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Abstract. The visual effects (VFX) industry has for decades been
actively developing and running job and resource management systems
(JARMS) under the guise of “render farms”. Rarely have we sought to
share our work, stories, and problems beyond our niche bubble with the
wider HPC community. With this paper we hope to break that cycle and
introduce you to how we at Industrial Light & Magic (ILM) support our
ever-changing diverse workloads at scale to produce high quality imagery
for major motion pictures and television such as Jurassic World and
The Mandalorian. We then share recent development efforts to prepare
us for our biggest challenge yet: ABBA Voyage. These developments are
the result of practical improvements to a production scheduler yielding
higher throughput, reduced waste and makespan, and increased insight
into internal metrics. We also briefly discuss how we developed tooling to
aid in trace-based simulations to gain confidence in production upgrades.

This is the printed edition featuring greyscale images and dashed line
types in line graphs. The original digital edition retains the coloured
images and lines, which some readers may find offer a greater definition
and distinction between data points, for example.

Keywords: Scheduling · Render farm · Batch schedulers · High
performance computing · Cluster management

1 Introduction

The VFX industry has relied upon compute farms to parallelise the tasks
required to render frames for film since the mid-to-late 1990 s. For ILM this
has scaled from a few dozen MIPS cores at a single location to nearer 100k x86
cores per location, now numbering 5 across the globe.

A VFX shot (generally a run of frames uninterrupted by a cut or edit) may
comprise of, but is not limited to, camera tracking, environment or set exten-
sion, 3D modelling, animation, texture painting, FX & Simulations, lighting &
shading, and 2D compositing. These disciplines work on a single shot as it moves
towards completion, and the process is colloquially referred to as “the pipeline”
(although this is a simplification). Many of these stages submit work as jobs to
the farm and range in complexity depending on the shot.
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As an artist (our end user - not a scientist) iterates over refinements to their
work, many versions are “rendered” on the farm. For each re-render, adjustments
to the resource requirements plus parameters specific to the DCC (digital content
creation) tool are made, though they are opaque to the scheduler.

With such a heterogeneous workload running on the farm, where task types
are diverse, the corresponding resource requirements are also varied. The prece-
dent constraints between tasks that model the job structure also change with
this diversity, contributing to the overall system complexity.

1.1 Basic Concepts

For ILM, concurrency comes in many forms; we work on multiple shows at
a time (e.g. The Book of Boba Fett, Eternals, Red Notice etc.) and these are
often at different stages of development and vary in complexity. A single shot
can be developed by different departments at the same time (e.g. modelling,
animation) especially when these iterations are versioned. Finally, we achieve
task concurrency on the farm by executing many tasks simultaneously through
parallel directed acyclic graphs (DAGs).

Shows generally work to different deadlines (internal, director approval, trail-
ers etc.) and many shots are prioritised over others according to these deadlines
(due dates). Individual users themselves may also wish to rank their own submis-
sions to the farm. However, the farm is a company resource and digital resource
managers (DRMs) have the tricky job of juggling conflicting objectives such
as farm throughput/high utilisation vs. competing show priorities & resource
contention.

Finally, each discipline or stage in this VFX pipeline demands diverse
resources of varying quantities to accomplish their task. Consumable resources
available on a host include CPU, GPU, RAM and local disk space (we don’t fac-
tor in network bandwidth). Static resources include things such as OS release,
GPU chipset, SIMD instruction set etc.

From a global pool, consumable tokens include software licences, often expen-
sive resources hotly contended between shows. Each vendor licence may come
with a different sharing scheme - an opportunity to pack and cut costs.

All these packing dimensions lead to task shapes and corresponding holes on
compute nodes ranging from 1 CPU and 512MB RAM to 96 CPUs and 128GB
RAM, and every combination & permutation in between. These shapes can of
course influence the runtime of the task, assuming the task can parallelise well
(many renderers do) on a multi-core host. Task types are so diverse that nor-
malised runtimes range from 30 s (e.g. data moves) to several days (e.g. machine
learning) and are bounded by different resources (e.g. I/O or GPU). Despite
this, most tasks are compute-heavy requiring high core counts, fast clock speeds
and SIMD instructions.

It’s worth noting that across VFX, rarely is a runtime or duration estimate
(from the user) assigned to a task and doesn’t contribute to scheduling decisions
made by the system. Historically, it’s been widely accepted that workloads are
simply too unpredictable since many commands, once they execute, are black
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boxes to the scheduler; scene parameters in the input file(s) significantly affect
the render times and resources consumed.

2 Background

Star Wars Episode I: The Phantom Menace began production in 1997 and since
then ILM adopted use of its proprietary ObaQ/DOALL [6] distributed schedul-
ing system. This system delivered hundreds of feature films and millions of frames
until it was eventually superseded 2 decades later in 2020 by a centralised dis-
patch system, Coda [11], developed at a sibling company, Walt Disney Animation
Studios (WDAS).

2.1 Coda

In 2017 work began to adapt the WDAS system for the ILM pipeline. During
this period we developed additional Coda tooling, maintained & supported the
existing ObaQ system, integrated Coda into our software stack all the while
still delivering films. By 2019 we were coordinating the production of rendered
frames through Coda and had scheduled ObaQ for decommission. As ILM began
adopting version 5.1 of Coda, WDAS continued to develop version 6. We were
unable to interupt our own integration and migration plans to accommodate
this additional change. Therefore, ILM remained on the 5.1 release, which is the
codebase we forked and maintained internally.

2.2 Production Proven

Coda 5.1 had already proven itself in production both at WDAS and ILM. At
Disney, Coda had delivered animation features such as Frozen and Moana and
at ILM, before the advances in this paper were required, we delivered, among
others, Star Wars: The Rise of Skywalker. The success of Coda at both studios,
despite their workflows being different, gave us confidence enough to develop it
further to meet the demands of more challenging shows.

2.3 Architecture

The Coda architecture is designed such that system responsibilities reflect com-
ponents often shared by similar systems (see Fig. 1). The reflector is a central
communications broker where every message flows through it via topical channels
- every other Coda component communicates through it; there is no other direct
peer transport. The rgoferd daemon receives submissions and control actions, the
rqinfod daemon caches data to answer queries and the rdispatcher, the primary
focus of this paper, is the decision engine behind core allocation, task-to-node
mapping, prioritisation and dispatch.
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Fig. 1. The coda architecture

2.4 Concepts and Configuration

Coda assigns CPUs or cores to so-called pools. Typically each show would have
a set of pools assembled in a hierarchical structure (to reflect work type, dis-
cipline or priority as they see fit), and a DRM would discuss with the show
their requirements and set a core entitlement for these pools accordingly. Any
show under-utilising their entitlement of any given pool implicitly permits other
pools to borrow from them, leading to speculative execution with a preemption
penalty. In other words, tasks are killed and requeued if running speculatively
and an entitled pool now requires its cores back to fulfil a demand. Each pool
effectively models a priority queue implemented as a heap and tasks are placed
according to an ordinal priority. A synthetic structure illustrating a pool config-
uration is given below in Fig. 2.

Fig. 2. An example of how CPU Pools can be arranged according to requirement
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Fig. 3. Illustrating the nested encapsulation of a dgraph (innermost squares represent
tasks, arrows represent dependencies)

Coda models jobs as “dgraphs” (dependency graph) and these contain arrays,
which in turn are comprised of tasks. An array is often used to represent a frame
range, each task thus rendering a frame of the film. Precedent constraints are
defined as dependency expressions in JavaScript (rather than a DAG directly)
between any of these 3 layers. Each instance of an object in a dgraph had a
unique identifier, a fully qualified ID being 9876.1.1000, for example. Metadata
attributes, expressed as key=value pairs, can also be set at any level, as there
exists a hierarchy between them. Thus the lowest level (a task) can inherit values
through its ancestry. Reserved metadata keys describe common attributes such
as required resources, user, command, dependencies, priority etc. whereas others
such as title, shot name or task type are informational only and used in reporting
or display data for UIs. Figure 3 demonstrates the job composition. Although a
job or dgraph is a container of arrays and an array is a container of tasks,
the rdispatcher component is concerned only with eligible tasks (those with no
pending predecessor tasks).

2.5 Scale and Complexity

The growth of a render farm at ILM is steady and expands to accommodate
increased workload. More shows concurrently, greater complexity (e.g. resolu-
tion, number of characters in frame), new CG technologies (virtual production,
machine learning etc.) all make demands of the farm in ways we’ve not experi-
enced before. At its peak, the on-premises render farm in London is now 40%
larger than 4 years ago when we delivered Ready Player One. Cloud bursting has
also allowed us to expand capacity flexibly when required - our Singapore studio
recently ran at 3x its normal 30k core capacity for a week to meet a deadline.
Since introducing Coda across the globe, we even launched an entirely new stu-
dio in Sydney which now runs at 50k cores. The sum of ILMs regular on-premise
core count now exceeds a quarter of a million and we regularly peak at 40x that
for our task-queued cores, which is a lot of work to chew through!

With these sizes, the dimensionality of resources, diversity of workload and
pressure of deadlines, we began to experience regular problems in production.



216 J. Vanns and D. Galeano

As the larger sites scaled their demands, we often found Coda was unable to
examine enough tasks during a scheduling run and overall farm utilisation was
low.

The popularity of cloud compute has soared this past decade, but VFX facil-
ities such as ILM not only already have significant investment in existing on-
premises renderfarms but are also bounded by jobs often requiring low-latency,
high-frequency IOPS during the runtime of a task. Much of the pipeline that sup-
ports tasks as they execute are built upon decades of assumed high-performing
NFS filers, which is something cloud vendors could not guarantee. It is also cost
prohibitive and time consuming to synchronise the data between them. However,
renderfarms are often extended by cloud-compute VMs during peak periods and
thus we ‘burst’ into the cloud when required. Suitable tasks (those with a known
high-compute to low-IO ratio) are guided via a series of labels or tags to cloud
VMs, otherwise they remain on-premise only.

In an attempt to provide some idea on film complexity and growth, these
metrics may be of some use. However, note that they are simplified a great deal
in an attempt to make them more discernible. Table 1 shows that Star Wars:
The Rise of Skywalker was rendered at a greater resolution than the previous
two films of the Skywalker saga, which contributes to its near 2x increase in
average core hours per frame. In addition to this, we can state that Episode 9
took in excess of 367,000,000 core hours to render!

Table 1. Final render report statistics for star wars

Film Year Shot count Resolution Aspect ratio Core hours/Frame

Episode VII 2015 1696 2k 1.77 650

Episode VIII 2017 1840 2k 1.77 1511

Episode IX 2019 1719 4k 2.37 2720

2.6 Problem Statement

With each facility handling a share of the ABBA workload plus their own addi-
tional film & TV projects, we’d reached a point where the main scheduling com-
ponent, rdispatcher, struggled to handle the increased load. This was causing
disruption to the service since queue wait times for our users became unsatisfac-
tory even though we’d not yet reached the forecasted peak demand. A project
was proposed to deal with the fundamental issues we faced, and planned phases
to tackle each of them.

Our first challenge was improving our ability to correlate events on a timeline
- reports from users or production and the performance of system components,
modules etc. We lacked this visibility, and without it, would be unable to easily
identify root-causes of performance degradation. This work is covered in Sect. 3.
Section 4 then details the cycles1 we spent identifying the specific bottlenecks
1 An agile development process. See [10].
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and eradicating them. Section 5 presents the necessity of improved tests and how
we tackled them, since before now, testing representative production workloads
simply didn’t exist.

It’s worth emphasising here that a keen reader will come to realise that our
paper surveys the merit of a series of pratical code and architectural changes
introduced over time to a production dispatcher. A dispatcher that is not only
an integral part of an intricate software pipeline used by thousands but also that
it must continue to service users and deliver films, remaining available at all times
to receive jobs and dispatch matched tasks to compute nodes. The paper doesn’t
discuss any switch of job shop scheduling dispatch rules, for example, since the
majority of scheduling systems in VFX are often solutions in queueing theory
and packing due to the lack of a temporal dimension in the decision criteria. We
hope that the successes of this project will grant us the freedom and, crucially,
the time to evaluate alternative job scheduling strategies in the future. Where
relevant, each of the following sub-sections may refer to particular scheduling or
dispatch algorithms implemented in code.

3 Observability

One of our initial challenges was understanding the system performance; where
it struggled and why. The very motivation behind this project was to handle
increased load (more tasks, more nodes) and we already had at hand, reports of
dispatch problems at each site and a modicum of metrics to refer to. However,
nothing rich enough to provide greater insight - no key performance indicators
(KPI) or engineers’ view of the farm and its operational state.

3.1 Logging

To ease the selection of useful log entries that could drive data on a dashboard, we
concentrated on rewriting each log line according to a semi-structured format
that made extraction and understanding easier. Choosing concise, descriptive
text removed previous ambiguity and improved readability and parsing. New
messages were also added to expose previously unavailable data. Log lines were
extracted and sent, via a handler, in real-time to fluentd [2] for processing before
storing in Elasticsearch [1] (ES). The fluentd processing engine was able to gen-
erate ES document mappings automatically via the key=value pairs present in
some of the logs.

3.2 Dashboard

With ES as a data source we now had enough information to build a Grafana [5]
dashboard. The aim with this dashboard was to give us, as maintainers of
the software and system, useful diagnostic information to quickly narrow down
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dispatch problems in production. We were able to derive KPIs and, among oth-
ers, produce resource distributions via binning and a task distribution by prior-
ity band for each pool. This latter metric was useful, since one of the primary
problems we faced was identifying the flood of tasks to a pool and where in
the corresponding heap they were located (guided by their priority). Coda was
originally designed to honour absolute (task) order by priority with respect to
its pool. A pool’s priority queue could effectively be blocked by 100s of 1000s of
“undispatchable”2 tasks, thus starving 1000s of others at a lower priority (Figs. 5
and 6). This, we found, contributed to the overall low utilisation of the render
farm. Figures 4 through 7 provide some small insight into the panels on our
dashboard.

Fig. 4. The high-level overview of an render farm (24h period)

Fig. 5. Distribution of tasks by priority band per pool (pool names omitted)

2 Tasks unable to be dispatched due to scarce resources, exceeded limitations etc.
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Fig. 6. Requested & Free RAM binned in powers of 2 shown as a Heatmap

Fig. 7. Distribution of CPUs as a ratio of requested to available. I.e 66x more 4-core
slots are required than available to fulfil the queued amount.
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4 Optimisations

In order to measure the effectiveness of Coda we employ the following metrics:

– Is the farm busy? Idle machines are a waste of money.
• This can be measured in real-time.

– Is the farm busy with effective work? Discarding work is a waste of money.
• This can only be measured accurately in retrospect, tasks may take many

hours to complete and they could be killed at any time for different rea-
sons.

– Are pools filling their assigned quotas?
• This can be measured in real-time.

– Are the hardware resources available on the machine hosting the dispatcher
service used effectively? An idle machine is a waste of money.
• This can be measured in real-time.

– Are high priority tasks completed before lower priority ones?
• This is complicated to measure but we record submission, start and end

times, the number of times the task was examined, the reasons why it
was not dispatched, all the status changes, etc. All this information could
be used in retrospect to compare dispatch times versus other tasks.

These metrics need to be interpreted in context, there is a big difference in
monitored values when there are only one hundred eligible tasks versus when
there are hundreds of thousands of them.

We take into account all the metrics when we check the status of the farm
and the effect our changes have on its performance. Each of the following subsec-
tions report on the major developments required to improve all of these metrics,
effectively producing a survey on our recent work. The process as a whole was
iterative and relied upon repeated profiling & testing both in production and
through simulations (see Sect. 5.4).

4.1 Thread Model

The original implementation had a fixed number of worker or dispatch threads
servicing all pools, the main loop being similar to;

CPUPool *pool = nullptr;

const bool use_round_robin = true;

while ((pool = select_next_pool (use_round_robin ))) {

Task *task = pool ->get_highest_ranking_task ();

if (task != nullptr && examine(task)) {

Host *host = match_host(task);

if (host != nullptr) {

host ->manage(task);

dispatch(task , host);

}

}

}
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This was not optimal for these primary reasons:

1. The process of selecting a pool required access to shared global data that
had to be protected by a mutex, which effectively serialised the threads and
avoided potential parallelism.

2. Selecting a pool was not free, sometimes it was more expensive to select a
pool than to actually examine a task for dispatch, which acted as an unwanted
dispatch-rate throttle.

Simply increasing the number of dispatch threads in this model was not providing
a noticeable improvement in dispatch rates. We also observed the CPU utilisation
of the machine hosting the service was almost never above 40%. These machines
had 88 logical cores and they were underutilised. Our hottest metric here was
the considerable voluntary context switching performed.

Our primary objective throughout the project was in effect, to increase farm
throughput. At the root of this problem was the way in which tasks in a pool
formed a priority queue, relying on the mechanics of a heap data structure. The
highest priority task was given 1st shot at dispatch. If, due to constraints or
limits, this task was unable to be dispatched the next in line was given the same
chance. This iterative process drove the core of the dispatcher and thus a low
priority task was given a chance to execute if a higher priority task could not be
dispatched. However, the queue(s) had begun to grow so large and resources for
high priority items become so constrained, that lower priority tasks were denied
this opportunity since the dispatcher was not fast enough to reach the bottom
of the heap. This was our optimisation goal!

Replace Static Pool. Changing the model to have a separate thread per pool
rather than a shared pool of worker threads, improved examination and dispatch
rates. The few stages of the new thread loop was now:

1. Select the highest priority task from the pool.
2. Examine, match, and dispatch the selected task, if possible.
3. Back to 1

With this model the main serialisation point and the repeated work of selecting a
pool were avoided. This feature was introduced in the milestone release 0.19.12,
and is included in the results produced for Figs. 9 and 10.

Work Stealing. The previous change improved our examination and dispatch
rates but it did not take advantage of all the CPU cores available on the dis-
patcher machine when the number of active pools was small. To compensate for
this, we implemented a work stealing system for idle pools which worked in the
same way the previous thread model worked, by first selecting an active pool
to dispatch a task from. With this change we had the best of both threading
models, automatically changing from one system to another depending on the
number of active pools and some thread-to-pool affinity where possible. This



222 J. Vanns and D. Galeano

feature was introduced in the milestone release 0.19.16, and is included in the
results produced for Figs. 9 and 10. A later release, which included a throttle
to prevent the work-stealing mode being too aggresive (denying other threads
access to shared data) is also included and labelled as 0.20.4.

4.2 Parallelisation

Reduce Serialisation Points. Despite the thread model improvements, rdis-
patcher was still unable to take full advantage of all the CPU cores available on
the host. Careful analysis and profiling highlighted several global mutexes that
were serialising many operations. We removed or avoided several of those global
locks and managed to improve our overall parallelism.

Reduce Cost of Critical Sections. Several global locks still remained that
were required for the effective and safe work of the dispatcher service. In order
to reduce the impact of those locks we reduced the amount of work done in
critical sections in order to reduce the amount of time threads were waiting on
locks. Some improvements were, for example, to move safe calculations outside
of critical sections. We also identified computation that could be carried out in
parallel since it did not require access to shared data, or only required read-only
access to shared data.

4.3 Redundant Calculations

Reuse JavaScript Engines In Sect. 2.4 we highlighted that precedent con-
straints were implemented as JavaScript (JS) expressions between the graph
vertices. We discovered that each JS engine used to evaluate task dependencies
were recreated every time those dependencies were checked (which happened fre-
quently). We changed the code to create and reuse one single JavaScript engine
per thread, effectively removing the heavy cost of recreating them. This feature
was introduced in the milestone release 0.19.13, and is included in the results
produced for Figs. 9 and 10.

Cache Regular Objects. We identified several strings that were reconstructed
regularly. By caching these strings we traded off a small increase in memory
usage by a massive reduction in string operations, further reducing the load
on the memory allocator and avoiding the work required to recalculate those
strings.

Introduce 128-Bit Integers. Tasks are sorted by priority, and the one with
the highest value is examined and dispatched first. This ordinal priority was a
composite of many individual priorities and the final value computed for com-
parison was the 40-character string (stored internally as UTF-16) representation
of these concatenated priorities. The string operations required to generate and
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to compare that value appeared high on profiling sessions. Careful examina-
tion of the values used to generate that string showed that we could encode
the same amount of information as a 128-bit integer, converting only to strings
when we had to present that value for debugging purposes. This change allowed
the compiler to generate far fewer yet more efficient instructions provided by a
big reduction in string operations that otherwise ranked highly during profiling
sessions. The results produced for Figs. 9 and 10 feature this improvement and
is present in release 0.20.13.

Replace Strings with Integers. The task state and event system used strings
as identifiers which required many string comparisons by the state machine and
the event system. The number of different values was fixed and small, which
meant that it was relatively easy to convert into integer values. This change
again removed a large amount of string comparisons from the profiler sessions.

4.4 Memory Footprint

Many routine bug fixes contributed to an overall reduction in memory footprint
and the associated cost or overhead introduced by an allocator continuously
trying to manage memory. There were two modifications we made however,
where the significance is worth highlighting. Eventually, we reduced the mean
memory consumption by 50%.

Share a Fixed State Hierarchy. A finite state machine was created for each
task, and with hundreds of thousands of tasks active at each single run, and
millions more inactive but in cache, meant a significant amount of memory allo-
cations were duplicated for this graph. Upon investigation we concluded that the
state graph was fixed and constant during the runtime of the service and that
we could generate the graph at startup time and to share it with all the tasks.
The original implementation of the state machine was very generic, allowing for
dynamic and variable state graphs, but the actual usage of the state machine was
actually static once the service had started. This change saved millions of mem-
ory allocations, significantly helping to reduce the load on the memory allocator.
This feature was introduced in the milestone release 0.19.14, and is included in
the results produced for Figs. 9 and 10.

Reduced Temporary Objects. Several components of the dispatcher service
were creating too many temporary objects, often unnecessarily. Carefully rewrit-
ing the code to reuse or reduce the number of temporary objects improved the
load on the allocator.

4.5 Memory Allocator

Our profiling sessions often showed the memory allocator (tcmalloc [4]) as
responsible for up to 30% of the CPU usage. After some investigation and testing
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we identified a more suitable allocator (mimalloc [7]) which now rarely exceeds
1% of the CPU usage according to the profiler. The previous allocator was not
suitable for the amount of CPU cores and threads and the memory allocation
patterns our service required.

4.6 Stability

Serialise State Changes. The original implementation allowed task state
modifications from multiple threads at the same time. There were mutexes
attempting safe operations but there were several race conditions that con-
tributed to abnormal operations. For example, dispatching the same task twice
to two different clients at the same time or task metrics being accounted for
on the wrong pool. By serialising task state modifications we removed the race
conditions and improved the behaviour of the system.

Generic Bug Fixes. There were logical bugs that affected the correct
behaviour of the service. For example the recalculation of available CPU cores
was returning negative values for overallocated clients, and those negative values
were wrongly affecting the cache structures used to identify clients that provided
the required amount of resources for a task.

4.7 Asynchronous Events

Simplified and Streamlined Event System. The Qt [9] event system was
used heavily in the original implementation but it’s generic applicability was
not performant enough for our needs. We recorded latencies in excess of 1 min
between when an event was emitted until it was processed, due to the sheer
amount of events we were generating (sustaining peaks of 400,000 events per
minute), and due to the cost of processing each individual event. By implement-
ing a much simpler and specific event system we reduced both CPU and memory
usage and greatly reduced event processing latency. This feature was introduced
in the milestone release 0.20.0, and is included in the results produced for Figs. 9
and 10.

Simplified and Streamlined Timer System. As part of the implementa-
tion of the new event system we also implemented our own timer system highly
integrated with the event system and tailored to our simple and specific require-
ments, further reducing memory and CPU overhead.

4.8 Networking

Reduced Data Copies. We identified a redundant data copy every time we
received a message from the network. We receive hundreds of thousands of JSON-
encoded messages per minute, each averaging 2.3KB. Removing this redundant
buffer, among a few other trivial optimisations, increased our throughput by up
to 50% at times.
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Remove Shared Sockets. We were using a single socket for all the messages
sent and received, and because of the way messages were encoded we needed to
serialise access to that socket, otherwise headers and bodies of different messages
could interleave and corrupt the communication between the endpoints. Because
the number of threads using the socket was small it was feasible to create a
separate socket for each thread which allowed us to parallelise network operations
more efficiently.

4.9 Work Distribution

Spread Dependency Checking Evenly. The system often has hundreds of
thousands of tasks waiting on others to complete. Depending on the job type,
these dependency checks can be quite complex (E.g. FX simulations). The dis-
patcher service employs several worker threads constantly running those depen-
dency checks and originally it was observed that some threads had 10 times the
work than others, which resulted in some dependencies taking a lot longer to be
satisfied than others just because the thread handling the checks was extremely
busy. We identified that the key used to distribute the work among the worker
threads was not evenly distributed because it only depended on the ID of the
dgraph owning the task (again, see Fig. 3). After comparing several alternative
hash algorithms, we settled on choosing the popular FNV-1a [3] and switched to
combining the fully qualified ID. This resulted in a near perfect balance of work
across available threads. This feature was introduced in the milestone release
0.20.1, and is included in the results produced for Figs. 9 and 10.

Revised Thread Count. Each subsystem of the dispatcher service has its
own number of dedicated threads, and in some cases the number of worker
threads too small, this was identified by the latency of processing work items.
Simply increasing the number of worker threads on those subsystems improved
the responsiveness of the whole system. We now routinely examine the CPU
usage of each worker thread in order to identify subsystems that may require
additional resources.

4.10 Waste Reduction

Ordered Preemptive Task Selection. When a pool has reached its allocated
farm quota it is still allowed to dispatch work to clients but that work is deemed
speculative, and hence can be preempted at any point by a regular task entitled
to run. By ordering speculative tasks according to their running time and by
selecting the one(s) with the least amount of work done, we reduced the amount
of wasted core-hours on the farm.

Ordered In-place Promotion (IPP). When the dispatcher has the option
to promote a speculatively running task over dispatching a new task of the same
shape and belonging to the same pool, it does so to reduce “lost” core hours (a
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form of waste). To further improve the selection of these otherwise preemptable
tasks, we now order by runtime in decreasing order ensuring to promote the
longest-running task first.

Recovery of “ghost” Tasks. Sometimes clients become unresponsive and
after a specific amount of time. Without hearing any status updates from these
hosts, we consider the tasks running on them as “dead”, and we proceed to
dispatch the task to another client. But in many cases the lack of updates was
due to some temporary reason such as network congestion, machine overload
etc. and the client is still functioning correctly and the tasks are still running.
We are now able to identify these situations and to recover those dead tasks
that are still running, hence avoiding the wasted effort of dispatching that task
to another machine and starting over.

5 Simulations and Testing

An obstacle often inhibiting the adoption of new or upgraded critical software
in production is sufficient and relevant testing. Can we with good confidence
guarantee that a) we won’t degrade the service and b) achieve our objective(s)
such as handle increased load?

5.1 Coda in a Box (CIAB)

The system components listed in Fig. 1 run across a variety of powerful host sys-
tems in production. Developers don’t have this luxury and bringing up a system
and all its components including several compute clients was cumbersome. To
simplify this step we adopted a container approach early on, running all compo-
nents sandboxed and managed via utility scripts. This container could then also
be run on a single powerful machine sufficient to handle greater loads, although
running 1000 s of rclientd processes remained impractical.

5.2 Integration Tests

To identify regressions we wrote short integration tests that create tasks using
the public API and verify that they run successfully within a time limit. We
test a fair amount of the internal functionality through these tests (though not
everything) - enough to detect obviously broken builds. We run the integration
tests in a CI/CD fashion, as a vanguard before any other test.

5.3 Saturation Tests

For more comprehensive testing we created saturation tests. We create 280k tasks
with dependencies between them and distributed among 50 different pools. Every
minute we issue thousands of random changes to those tasks, such as priority
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increments or pool migrations. These task modifications helped us to identify
and subsequently fix many race conditions. The tests may take up to one hour
to run and require a machine with dozens of cores in order to run properly.
We run these tests extensively during development when profiling and are good
indicators of improved or degraded performance. The results illustrated through
Figs. 9–10 are produced from this script.

5.4 Simulation

At the heart of the Coda system is the reflector (see Fig. 1) and a rich set of
messages pass through it - every message necessary, in fact, to replicate a pro-
duction workload targeted at a separate test system. We developed “refractor”,
a tool that simulates a render farm given the recorded input stream of another.

In capture mode it simply listens, as a read-only client, to a source reflector
(from a production system) for all the messages necessary to rebuild jobs, mimic
compute nodes and gather configuration data. This data, once processed, is then
serialised to disk ready to replay on a separate test system at will (though there
is also a real-time mode).

Refractor can replay recorded input streams, on a test system. It submits the
jobs exactly as a user would retaining structure, resource requirements, priority
etc. It also creates and configures as many compute nodes as recorded ready
to accept the tasks scheduled by the test dispatcher. However, each node is an
object in code rather than a real machine. Tasks don’t execute the command a
user intended but rather sleeps for the known duration, which was encoded into
the stream as completed tasks were observed.

This new tool gave us the ability to simulate a render farm at the scale we
expect in production. Moreover, it also gave us representative jobs and compute
node configurations such that we were able to better simulate the behaviour of a
production system under the same conditions (e.g. artificial user limits, resource
sharing & scarcity, error rates etc.).

We found that the refractor tool is also limited by the number of “in-flight”
ascynchronous events Python 3 can handle. Some of our larger simulations are
constrained by this and as such, may reconsider its implementation in the future.

6 Results

We provide results measured from simulations through refractor and our sat-
uration script, plus metrics recorded in production. We also demonstrate the
improved resource utilisation of the host machine the dispatcher runs on.
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6.1 Simulation & Saturation

Our trace data replayed through versions old and new (denoted via their seman-
tic versioning) consistently demonstrate improved performance when compared.
Figure 8 shows an overall better farm utilisation for two runs of the same trace
data. Note that version 0.20.11 was allowed to complete whereas 0.18.3 was
terminated prematurely due to time pressure. Since the saturation tests take
less time to complete we’ve been able to run each milestone release through
our simplified sampling pipeline to produce graphs that clearly demonstrate the
incremental improvements each version introduces. The oldest release, 0.18.2,
featured only the additions we made to increase insight and observability (see
Sect. 3) before tackling the required performance improvements covered in later
sections. This same release, 0.18.2, also featured a curious inaccuracy in reporting
throughput; the counters were actually sampled periodically and then extrapo-
lated to produce an imprecise value rather than its true rate. Thus the dispatch
rate present in Fig. 10 is actually likely to closely follow 0.18.3, which introduced
a fix for this bug. CPU utilisation however, was unaffected by this and remains
true in Fig. 9. Figure 10 shows improved task handling by the dispatcher resulting
in a makespan reduction of 75% between 0.18.3 and the latest release, 0.20.13.
It clearly illustrates the efficiency gains of the newer system, and these results
remain consistent even under increased load (i.e. greater rclientd counts).
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6.2 In Production

Using our dashboard (see Sect. 3.2), we were able easily extract a pair of 3 week
averages of some simple metrics that demonstrate the effectiveness of our work in
production. The averages were taken while the render farm was handling similar
workloads from the same set of shows a month apart. Table 2 displays a subset
of the quantifiable data we measure to compare the old vs. new dispatcher.
Examination is when Coda first pulls a task off a pool’s heap, preparing to
attempt resource matches etc. Dispatch indicates a successful assignment of a
task to a host. Turnover is a measure of tasks completing (regardless of success
or failure).

Table 2. Average rates (per minute) for London from November–December 2021

Metric 0.18.3 0.20.11

Task Examination Rate 2.01k 43.8k

Task Dispatch Rate 953 2k

Task Turnover Rate 1.12k 2.51k

The examination rate illustrates a typical 20x improvement in throughput
- the new threading model, reduced stalling (less lock contention) and more
efficient task comparator allows the dispatcher to examine more tasks, quicker.

The dispatch rate has more than doubled owing to the new allocator, rewrit-
ten events system & balanced work handling. Similarly the turnover rate, which
will closely follow the dispatch rate, has improved due to these same optimi-
sations plus the more economical message handling, which must consider both
task completion and dispatch messages together.

Note that no two days are the same on a production render farm, so naturally
numbers and rates etc. fluctuate. It is therefore difficult to compare the two ver-
sions reliably in production without the guarantee of the underlying workloads
remaining identical (i.e. in a trace-based simulation). However, every care has
been given to select periods as close as possible and to calculate the mean over
a large enough window.

6.3 Server Resources

Here we report briefly on the more efficient use of the server resources follow-
ing the software changes we made to the dispatcher. Section 4.1 introduced the
changes we made to the threading model. This change, coupled with attempts
to reduce lock contention to a minimum, resulted in a 50% reduction in context
switching and a corresponding boost in on-CPU time. We’re finally exceeding
the 40% CPU utilisation threshold mentioned in Sect. 4.1. This efficiency gain
is reflected in the examination rate given above in Sect. 6.2. Figures 11 & 12
respectively, illustrate clearly the improved CPU utilisation for two separate
7 day periods for a similarly loaded system.
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Fig. 11. CPU Utilisation of the server under rdispatcher 0.18.3

Fig. 12. CPU Utilisation of the server under rdispatcher 0.20.11

7 Future Work

This paper has concentrated only on the changes necessary to improve our cur-
rent production scheduler and makes no mention of any research into alterna-
tives. However, we have experimented with several ideas we wish to revive, to
further maximise our general render farm utilisation.

We’re keen to quickly compare common benchmarks such as the minimisa-
tion of makespan, mean user wait-time, resource fragmentation etc., when trace
data is run through different scheduling policies or established dispatching rules
from [8] (e.g. FCFS/ERD, SJF, LRPT, WSPT etc.). Similarly, we wish to eval-
uate the different packing strategies available to us such as NF, BF, FFD etc.
as well as our own proprietary algorithms. To this end we’d begun work on a
pluggable/modular framework where combinations of these can be composed
quickly and tested offline without the need of production systems.

Many scheduling policies require some knowledge of expected task runtimes
and we’ve already disclosed that rarely do we have this information available
as decision criteria. However, in order to evaluate the suitability of deadline



232 J. Vanns and D. Galeano

scheduling with preemptive backfill through the aforementioned framework, we
must first tackle this problem. To this end, we had some success experimenting
with simple attribute-based grouping and unsupervised clustering of tasks and,
through ARIMA and EWMA, forecasting runtimes for the tasks categorised by
these clusters. The framework again supports pre-processing refinement stages
such as this prior to the main scheduling run.

We hope to resurrect these efforts in R&D in the near future and bring them
closer to conclusion and, ideally, production.
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Abstract. In this work, we discuss our experience when utilizing the
Kubernetes orchestrator (K8s) to efficiently allocate resources in a
heterogeneous and dynamic academic environment. In the commercial
world, the “pay per use” model is a strong regulating factor for efficient
resource usage. In the academic environment, resources are usually pro-
vided “for free” to the end-users, thus they often lack a clear motivation
to plan their use efficiently. In this paper, we show three major sources of
inefficiencies. One is the users’ requirement to have interactive comput-
ing environments, where the users need resources for their application as
soon as possible. Users do not appreciate waiting for interactive environ-
ments, but constantly keeping some resources available for interactive
tasks is inefficient. The second phenomenon is observable in both inter-
active and batch workloads; users tend to overestimate necessary limits
for their computations, thus wasting resources. Finally, Kubernetes does
not support fair-sharing functionality (dynamic user priorities) which
hampers the efforts when developing a fair scheme for Pod/job schedul-
ing and/or eviction. We discuss various approaches to deal with these
problems such as scavenger jobs, placeholder jobs, Kubernetes-specific
resource allocation policies, separate clusters, priority classes, and novel
hybrid cloud approach. We also show that all these proposals open inter-
esting scheduling-related questions that are hard to answer with exist-
ing Kubernetes tools and policies. Last but not least, we provide a real
workload trace from our installation to the scheduling community which
captures these phenomena.

Keywords: Cloud · HPC · Scheduling · Kubernetes · Resource
management

1 Introduction

In today’s world, the usefulness of container-oriented computing is widely recog-
nized. Businesses adopted containers several years ago for their digital services.
However, academia started to notice containers as a viable way of supporting
research not so long ago.
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Historically, demanding computations that process data, produce analyses or
deliver results of complex workflows are foundations of research. These actions
occur on large high performance computing clusters. Specifically, computations
are managed by various scheduling systems because there are more requests
on resources than resources themselves. Scheduling methodologies have been in
active development for at least 30 years and internal design is finely calibrated
to provide a variety of important features such as granular resource selection,
placement control or topology and affinity as well as fairness. Scheduling sys-
tems can have different optimization goals. Some systems focus on maximizing
throughput and resource utilization while users’ jobs have to wait in queues.
Other systems want to avoid starvation, focusing on low latency, thus running
new jobs as quickly as possible which in turn often results in decreased resource
utilization. Furthermore, resources are often allocated such that overall fairness
among users, groups and/or projects is guaranteed.

Resources for scientific computations in academia are in majority offered
for free as a result of financing by national governments that earmark funds for
research and education. For this reason, academic resource providers need proper
scheduling mechanisms as it is the only way to regulate access to resources. This
is in contrast to commercial world where access to resources is paid by users
which imposes strong and efficient access regulation. This explains why container
orchestrators or cloud-management frameworks do not typically provide truly
sophisticated HPC-like schedulers to regulate resource access. Especially, a well-
performing scheduler in the commercial world equals high profit and vice versa.

A crucial difference between HPC scheduler logic and container orchestra-
tor is that in the HPC world, submitted jobs typically act as a “finite” com-
putations that start, compute and then finish, whereas container orchestrators
(e.g., Kubernetes1) were developed to accommodate continuous services and
long-running stateless applications [15]. Nevertheless, container orchestrators
are actively looking for a way of implementing HPC jobs concept. For exam-
ple, recent versions of Kubernetes (v.1.21) feature Indexed Jobs2 that allow
static work partition among the workers of a parallel job. The introduction of
such resource marks efforts of Kubernetes developers and community to migrate
more of HPC and batch workloads into the platform. None of these “extensions”
enforces job runtime limit so as of now, container orchestrators do not forbid
endless jobs which makes HPC-like scheduling almost impossible.

Besides potentially endless jobs, there is another category of waiting-sensitive
workloads—interactive jobs, i.e., jobs that do not run in batch/background but
users interactively work with them. This kind of jobs imposes problems to sched-
ulers even in standard HPC installations used in academia.

Another complication for moving HPC workloads to container platform lies in
the modus operandi of this platform. Kubernetes orchestrator (K8s) works with

1 https://kubernetes.io.
2 https://kubernetes.io/blog/2021/04/19/introducing-indexed-jobs/.

https://kubernetes.io
https://kubernetes.io/blog/2021/04/19/introducing-indexed-jobs/
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the assumption that every Pod3 can be terminated and restarted. In contrast,
typical HPC workload does not expect any interruptions once it has started and
terminates only when it has either finished or has reached its allocated walltime
limit.

In this paper, we discuss our experience and problems observed when utilizing
the Kubernetes container orchestrator in academia. We aim to provide Kuber-
netes platform that will be fully competitive with traditional HPC infrastructure
as well as other types of workload. We see this as challenging and interesting
task. The benefits of containerized computations are obvious and are becoming
very popular among scientists. The challenge is to come up with a solution that
allows “free of charge” computing while being robust and self-regulating. On
the other hand, we do not aim to “mimic” HPC-like system including complex
HPC scheduler on top of Kubernetes infrastructure, and vice versa Kubernetes
infrastructure on top of HPC infrastructure.

The rest of this paper is organized as follows. First, in Sect. 2 we define
major scheduling challenges that arise due to the intended use of Kubernetes
infrastructure in academic environment. Next, Sect. 3 presents current scheduling
capabilities of Kubernetes. In Sect. 4, we propose several ideas on how to solve
our scheduling and resource allocation issues. We also discuss the details of
our infrastructure setup and provide basic data about the workload trace from
our installation (Sect. 5). Finally, we introduce the related work in Sect. 6 and
conclude the paper.

2 Scheduling Challenges

Concept of shared, multi-tenant infrastructure is usually adopted in academic
environment. Choosing Kubernetes as workload scheduler might be regarded as
illogical step because such infrastructures are usually built with HPC schedulers
e.g. SLURM4, OpenPBS5. Moreover, some workload managers e.g. SLURM supports
requesting containers6. However, there are numerous reasons why we adopted
Kubernetes rather than embracing containers in HPC environment.

First of all, Kubernetes is a system developed specifically for deployment,
scaling and management of containerized applications. Its deployment stack is
optimized for containers which is reflected on easiness of use, high reliability and
much more comfortable environment to work with. Kubernetes manages whole
container lifecycle and automatically ensures number of desired replicas exist
in the system. When choosing workload manager for containers, we were con-
sidering not only specialized HPC containers but all sorts of containers—web
services, databases, microservice applications and other workload types regu-
larly deployed. We already maintain a fully functional HPC environment where

3 Pods are the smallest deployable units of computing that you can create and manage
in Kubernetes.

4 https://slurm.schedmd.com/documentation.html.
5 https://www.openpbs.org.
6 https://slurm.schedmd.com/containers.html.

https://slurm.schedmd.com/documentation.html
https://www.openpbs.org
https://slurm.schedmd.com/containers.html
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we learned running containers in such environment has considerable amount of
downsides and missing features. We understood users would benefit from oppor-
tunity to run wide variety of containerized workflows conveniently on special-
ized infrastructure. Interests of users seeking HPC characteristics with container
technology were secondary and we started to accommodate them later. However,
only then we discovered importance of conducting scheduling related research in
Kubernetes environment.

Providing multi-tenant infrastructure (HPC or container) requires proper
scheduling. Otherwise, vast inefficiencies can appear and lead to resource
(money) wasting while irritating the users. We discuss major obstacles that
threaten the success and efficiency of the container infrastructure. From infras-
tructure administrator point of view, we distinguished three major domains of
inefficiencies, all coupled with scheduling.

2.1 Endless Computing with Limited Resources

In a standard HPC batch system, each job has a maximum allowed lifetime—the
so called walltime limit [17]. Achieving time limit for a workload is not always
simple, e.g., in interactive workloads or other long-running services. Therefore,
the runtime of a container/Pod is unbounded and unknown, in general [10]. This
means that the system (and its users) do not expect the workload will terminate
after predefined time. Since the academia is not using pay-per-use model, we
lack a clear motivation for the users to terminate their containers/Pods once
they are not needed anymore.

At the same time, academia budget is fixed (as users use it for free), i.e.,
we cannot simply buy another cluster whenever the demand is approaching
the available capacity. The absence of the pay-per-use model together with no
clear resource-reclaiming policy will inevitably cause another obvious problem—
existing resources will be allocated to the users without considering overall fair-
ness. This is in great contrast with common batch HPC installations, where
fairness is one of the major optimization goals and is usually enforced by the
well known fair-sharing approach [11].

Job starvation is tightly connected to the absence of walltime limit. Users
can submit jobs demanding resources that cannot be satisfied because all nodes
are occupied by jobs without finite walltime. The problem is more visible with
standard Kubernetes scheduler as it is not able to reserve a node for a large
job. Without reservation, large job is endlessly preempted by smaller jobs or
it can evict smaller jobs from a node, but this solution is not acceptable for
(long-running) HPC jobs.

2.2 Interactive Computing

In HPC environment, batch jobs often do not start immediately but reside in
a queue and wait until a cluster has enough free resources to execute the job.
However, we are witnessing rising popularity of user interest in working with
graphical interfaces rather than command line. In the past, we deployed a web
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Fig. 1. Time series graph depicting rising popularity of applications spawned from
OnDemand portal.

portal Open OnDemand7 as the first step of improving interactive applications’
accessibility. Figure 1 shows the growing demand of GUI applications in CERIT-
SC, supporting the argument that users seek more comfortable ways of working
with graphical interfaces, i.e., interactive use-cases will not likely disappear.

Interactive jobs comprise both interactive CLI jobs, i.e., jobs running purely
from command line, and more importantly interactive GUI jobs. The two types
should be scheduled and started as soon as possible because they require user
interaction to run, e.g., selecting options or filling in password in the GUI. If
this is the case, the user has to wait but the job may start after such a long time
that the user is not available anymore, thus the job is only blocking resources. A
common solution to the waiting-user problem is to keep some resources unoccu-
pied so interactive jobs start nearly immediately, thus keeping users active and
responsive. On the other hand, resources are likewise blocked needlessly so both
situations impose ineffective usage of resources.

One solution suggesting itself is suspending non-interactive jobs in order to
accommodate interactive ones. Suspending a job would mean to free its resources
and thus letting interactive job run. After interactive job is completed, dormant
non-interactive job resumes. Unfortunately, neither HPC nor Kubernetes allow
to suspend running jobs which makes interactive computing problematic both
in HPC and Kubernetes.

2.3 Overestimation

Specifying precise job resource request is a key precondition for effective job
scheduling. This is a well understood requirement in HPC world but container
orchestrators are not notably strict about the necessity to specify job resources.

7 https://openondemand.org.

https://openondemand.org
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Even if users specify job resources, there are no guarantees how exact the speci-
fication is. As a result, users tend to significantly overestimate resource requests
which has several reasons.

First reason is the sheer obliviousness to the concept and the logic behind
resource specification—some users can not envision abstract units as RAM GB
or units of CPU so they are not capable of setting sensible value. Second reason
is their fear of job exceeding allocated resources (causing job termination) which
leads to specifying substantially more resources than needed in order to avoid
the situation. Last but not least, computations are sometimes characterized by
dynamic variation when most of the time, resource utilization is low but for
a short time period, perhaps for more complex part of computation, resource
consumption spikes. This can result in specifying fundamentally more resources
than needed, although the correct practice could probably be to split the job
into several units with tailored requirements.

User-induced overestimation causes very low real cluster usage. Here, resource
oversubscription (allocating more resources than the physical capacity) is a cru-
cial enhancement to existing systems [2]. According to our experience the over-
estimation problem is more coupled with K8s workloads than HPC where the
actual usage-to-request ratio is quite good8.

As we show in the Fig. 2, users are prone to significantly overestimate Pods’
resource requests which in turn leads to inefficient use of those resources. In the
upper part of Fig. 2 we show the total used CPU hours and the requested (allo-
cated) CPU hours per K8s namespace. Clearly, there are huge differences both
in the amount of used resources as well as in the allocations (Y -axis is in log
scale). When we normalize these allocations into percents (see Fig. 2 bottom),
we can see how poorly those allocated resources are being used. 57.7% of names-
paces uses less than 5% of allocated resources. The fact that some namespaces
use (way) more than 100% of allocated resources is caused by the Kubernetes
allowing Pods to have their CPU limits greater than their guaranteed allocations.

2.4 Problem Summary and Scheduling Objectives

To sum up the challenges that we want to address let us briefly recap the schedul-
ing problem. In ideal scenario, we want to provide a service that will allow imme-
diate start of users’ workloads to guarantee interactive-like experience. At the
same time, we need to provide this service for free while having a fixed budget
(i.e., fixed size of infrastructure). Also, we want to minimize resource wastage.
Since these requirements are somehow contradictory, we need to develop a rea-
sonable compromise.

First of all, we need to ensure unused resources will not be wasted but rather
used by some suitable (lower priority) workloads. Thankfully, this can be solved
quite easily (see Sect. 4.2). The complicated part is how to guarantee quick start
for new workloads when, e.g., the infrastructure is full. So far, we foresee several

8 In our system, HPC workloads typically utilize more than 80% of requested CPU
resources.
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Fig. 2. The comparison of absolute (top) and relative (bottom) usage of requested
CPU resources in CERIT-SC Kubernetes (K8s) cluster during the last 90 days. Y -axis
in log. scale.

possible directions. The first possibility is to terminate some of those currently
executing workloads or guarantee that (at least some) of those executing work-
load will complete in reasonable time. However, in order to solve this we need
to address major problems. Simply put, we need to find a mechanism to select
(and assign) priority to users’ workloads which in turn will help us to decide
which workloads to stop and/or allow to run.

The complication is that this priority mechanism can not be static in general.
It is not sufficient to assign each user a fixed priority (or a static share) and keep
it intact. This would (in a long run) lead to inefficiencies and/or unfairness. The
reasons are obvious—just like in HPC, the “priority” of a given user (tenant)
may change in time (for various reasons). Similarly, the size of a “share” that a
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given user can obtain depends, e.g., on the current number of active users and
their resource usage.

In other words, Kubernetes is an orchestrator, that is very good in keeping
the infrastructure in some “desired state”. However, it does not provide auto-
mated mechanisms to dynamically adjust this “desired state” with respect to the
changing situation in the system. Obviously, we need such component to address
the aforementioned challenges. In the following section we will discuss some of
the tools that Kubernetes provides to enable complex scheduling policies. As we
will demonstrate, it currently lacks the ability to fully fulfill our needs. Therefore,
in Sect. 4 we will provide a proposal how to, at least partially, solve it.

3 Scheduling in Kubernetes

As we have already presented, we are searching for a solution that would allow
us to fairly execute various types of workloads—batch, low latency interactive,
bursty as well as long-running services. Due to the nature of the infrastruc-
ture (free of charge, limited resources) we will need to to develop rather robust
scheduling policies. In this section we will mention some of the key components
of Kubernetes that may help us to achieve this goal.

Prevailing version (1.22) of container orchestrator Kubernetes offers several
general concepts that can be utilized together to build more complex scheduling
policies. Many available features can usually be found in other scheduling systems
as well, therefore we will not discuss them thoroughly but we will rather focus
on their usefulness when dealing with our scheduling problem.

3.1 Pods and Jobs

In Kubernetes, the basic unit of scheduling is a Pod. It is the smallest deployable
unit of computing and contains one or more containers. A Job in Kubernetes is
a higher level of abstraction than a Pod. A Job creates one or more Pods and
will (try) to execute these Pods until a specified number of them successfully
terminate. The important feature of Job is that a deadline can be specified and
Jobs can be cleaned up by CronJobs, i.e., deleted from the system after their
completion. Therefore they can be used for HPC-like jobs with known maximum
allowed runtime. Jobs are thus useful building blocks to prevent the “endless
computing” scenario mentioned in Sect. 2.1.

3.2 Resource Requests and Limits

Kubernetes uses two types of resource allocation for each container—request
and limit—that can be applied to CPU and memory. Request represents guar-
anteed resources that will be allocated to a container whereas limit is the upper
bound of the resources. Standard Kubernetes scheduler makes resource alloca-
tion based on requests meaning the scheduler ensures that for both CPU and
memory, the sum of their requests (respectively) of all containers scheduled on
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a node is less than its capacity. CPU limit is a hard upper bound on amount
CPU time a container can use. Pod resource request/limit is the sum of the
resource requests/limits of that type for each container in the Pod. However,
containers share total CPU time and if all containers need more CPU time than
their request but less than limit (i.e., several containers use more than they
requested), performance degradation can be observed but container runtimes do
not terminate jobs or containers for excessive CPU usage.9

On the other hand, memory limit imposes strict regime—if container exceeds
the limit, the system kernel terminates the process that attempted the allocation
and it is likely that the Pod will be evicted if memory shortage appears on the
physical node. As scheduler allocates resources solely according to requests, it
can happen that a node is short of resources if many containers exceed request
resources. In such a case, container eviction starts and some Pods are terminated
and moved to another node. However, there are no checkpoints and Pods are
basically restarted.

Apparently, requests and limits can be used as a building block to accom-
modate bursty workloads with generally low momentary CPU utilization (by
setting low requests and generous limits). The problem is that requests and lim-
its cannot be modified for running Pods, neither can running Pods be migrated.
To change existing limit or move it somewhere else a Pod must be restarted.

It is worth mentioning that no other resources can be strictly limited (or
requested) in Kubernetes scheduler, e.g. network bandwidth, GPU or I/O
throughput. Technically, nvidia add-on10 enables manipulation with GPU card
in Kuberentes in same manner as CPU but eventually, there are multiple ways
how GPU can be used in a container without formal request. To conclude, it
is important to think about other computational resources and cover them in
future discussions because there are many applications that might not be con-
cerned about CPU time but rather about GPU time or I/O time.

3.3 Priority Classes

Priorities are extensively used in HPC world to indicate users’ rights to use
resources. Kubernetes offers similar concept called Priority Class11. Priority
Class demonstrates the importance of a Pod among all other Pods in the cluster
or in the pending queue. If a Pod cannot be scheduled due to limited capacity
of a cluster, the scheduler attempts to preempt one or more Pods with lower
priority in favor of scheduling pending Pods with higher priorities.

Priority classes can be configured as preempting and non-preempting. A
workload assigned to non-preempting priority class will stay in the scheduling
queue until its resource requests are satisfied. This represents a kind of silent
overtake when prioritized workload claims resource ahead of others but does

9 https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/.
10 https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/.
11 https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-

preemption/.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
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not violently terminate other workloads, with the risk of losing their in-progress
computation.

Importantly, while a priority class can be changed, added or even removed,
this will not impact already running Pods. In other words, the priority of running
Pod can not be changed without restarting that Pod.

3.4 Labels, Affinity, Anti-affinity

Kubernetes understands heterogeneous clusters exist and they feature wide vari-
ety of node types. This creates many opportunities for fine scheduling when Pods
need to run on same node (e.g. due to sharing cache) or oppositely, Pods run
on different nodes in order to lower chance of node failure bringing down all
workloads.

If there are circumstances when Pods pose their own preferences concern-
ing nodes, Kubernetes has several ways12 of employing affinity (or anti-affinity)
mainly represented by assigning labels and taints to nodes and nodeSelectors to
Pods. Importantly, node taints can be used to repel Pods from specific nodes.
Moreover, taints can be used to evict Pods and both taints and labels can be
changed dynamically. This features can greatly contribute not only to improve
Pod’s performance but it can be also used to steer the scheduler toward better
decisions.

4 Problem Solutions Using Kubernetes Building Blocks

This section discusses several possible approaches how to deal with the outlined
problems shown in the previous sections. Not all of them are directly connected
to scheduling, but they rather present different approaches to running work-
loads in the Kubernetes platform. Whenever possible, we try to use legacy K8s
functionality instead of using either some third party solution or proposing new
components.

4.1 Separate Clusters

The first and by far the easiest solution to assigning resources to multiple com-
peting workloads is creating separate clusters for specific computations (e.g.
interactive jobs, HPC jobs, web services). Separate clusters bring the possibil-
ity of applying distinct schedulers into each cluster where one might be more
suitable than the other for a certain workload type.

However, this is merely a naive solution because it brings overhead for users
as well as administrators. Users must be familiar with each cluster’s structure
in order to decide the most appropriate environment for workloads; they have
to control progress at multiple places and eventually they spend more time ana-
lyzing infrastructure. Furthermore, administrators must handle several clusters,

12 https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
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provide maintenance and continuous development. On the other hand, analyz-
ing the most executed workload types brings the opportunity to tailor scheduler
to specific requirements of the specific workload classes. Still, within a cluster
diverse workloads may co-exist, thus bringing back most of the problems men-
tioned earlier.

4.2 Scavanger Jobs

One of the major problems (see Fig. 2) observed in practice is the low CPU uti-
lization of guaranteed allocations. One way how to increase resource utilization
without impacting other users is to deploy so called scavenger jobs, i.e., jobs that
are reasonably short/small and can be easily terminated and later resumed [9].
Scavenger jobs usually run at low priority and if resources are needed, they are
terminated. When a resource becomes free again, scavanger jobs are resumed.

In Kubernetes, the administrator can define preemptible classes for Pods.
These Pods then act as scavanger jobs; they get started and terminated according
to resources’ state. As they can be preempted by the scheduler at any time,
eligible users will obtain interactive feedback immediately.

We have evaluated this approach using job preemption to deal with inefficien-
cies of using shared computational infrastructure. It turned out that preemptible
scavenger jobs influence Pod allocations that rely on the interplay of requests
and limits (see Sect. 3.2). These concepts are basically contradictory. Scavenger
jobs, by their nature, do not leave available resources, so users are unable to uti-
lize more resources than they requested, i.e., use the limit property. Therefore,
in the following section we propose a solution for this problem in the form of
ad-hoc placeholder jobs and we discuss their pros and cons.

4.3 Placeholder Jobs

As we stated above, there are no guarantees of free resources in the range between
a Pod’s request and its limit. As we observed, adopting scavanger jobs makes all
resources above Pod’s request almost unusable (as they are occupied). Moreover,
in the current version of K8s it is not possible to change the amount of requested
resources without container restart13, so the user (or the scheduler) is unable to
deal with this problem by temporarily increasing resource requests.

Until in-place vertical scaler is provided in K8s, there is another possibility
to mitigate this problem. Instead of specifying resource requests and limits, we
can use a little trick to ensure that there are enough free resources that can be
used by user’s Pod.

The trick how to obtain free resources (used by scavenger jobs) on a particular
node is to create so called placeholder job, i.e., a job that reserves resources
but it does not consume them. Placeholder job terminates existing scavanger
job(s), thus freeing resources for the demanding Pod. Using node affinity, we can
easily ensure that the placeholder job runs on the same node as the Pod that

13 https://github.com/kubernetes/kubernetes/pull/102884.

https://github.com/kubernetes/kubernetes/pull/102884
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Fig. 3. During idle period scavenger jobs use free resources (left). When Pod’s CPU
load grows, placeholder job is started thus evicting scavenger jobs and freeing resources
for active Pod (right).

needs more resources. This approach works because there is no CPU or memory
pinning to particular Pod, so the unused resources (reserved by placeholder) can
be consumed by anyone.

Figure 3 illustrates this approach. On the left side we show an idle Pod. Its
requested CPUs are low and its (unused) CPU limit is utilized by scavenger
jobs. When the load increases (Fig. 3 right), a placeholder job with large CPU
request is deployed on that node (evicting low priority scavengers) and the now
busy Pod can use its CPUs to the limit.

This solution is not perfect as there are no guarantees that created free
resources will be consumed just by the requesting Pod/user. Still, our initial
evaluation shows that it is good enough in most situations. We believe that the
combination of scavenger and placeholder jobs is currently good solution to keep
the utilization high while allowing for quick vertical scaling of selected Pods.

4.4 Unresolved Issues

Native Kubernetes concepts alone are not capable of ensuring fair, efficient, and
transparent automated scheduling mechanism. So far, we were able to use some
of those building blocks to come up with solutions to several problems. Still,
some problems (e.g., fairness) remain unresolved. Let us now discuss some of
the directions that can be taken to deal with them.
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Hybrid Cloud Approach. The concept of hybrid cloud is now appearing
everywhere. Nearly all big cloud providers have already tackled the idea and
generally, it is considered as a promising way of computing. The definition of
hybrid cloud is not entirely transparent because word “hybrid” itself induces
some ambiguity and room for multiple explanations. However, RedHat has come
with a list of actions14 that hybrid cloud should be able to perform and one of
them is to “be able to move workloads between environments”. We consider this
claim as a perfect definition because joining environments—in our context HPC
and container-based environments—could represent possibly viable solution to
some of the unresolved scheduling problems we discussed. In the first sections of
this article, we have introduced complications connected to moving workloads
from HPC to container infrastructure, mainly related to resource requests over-
estimation and “access control” policies including fairness. We should give it a
second thought and admit that for now, some computations perform better in
traditional HPC environment, e.g., due to significant resource requests (hundreds
of GB of RAM, hundreds of CPUs) or code-optimizations for certain hardware
infrastructures. Usually, container-oriented clusters are not composed of large
nodes and even if they are, there are limits on the number of containers that can
be deployed in a cluster.

Hybrid cloud approach could bring an alternative way of computing where
truly HPC workloads would be submitted to HPC environment and other work-
load types would continue existing as containers. Importantly, HPC schedulers
offer better resource division and always allow to fine-tune fairness and job order-
ing, so offloading large workloads from Kubernetes clusters into HPC cluster
would diminish the current need for major changes in K8s’s scheduling abilities.
Until Kubernetes community creates a way of dealing with HPC-cloud transfor-
mation, it would be sufficient to develop a sort of connector for HPC jobs that
would connect the two worlds.

While this “outsourcing” may help us to survive for some time, we still need
to properly handle truly container-based workloads. Especially, we need to focus
on their life cycle which we will discuss next.

Pod Life-Cycle and Resource Draining. Once we have Pods running in our
system, we must make sure that only “living” Pods will keep their allocations
and all leftover workloads will be evicted and their Pods deleted. Here we propose
a naive mechanism which uses priority classes, resource requests and limits. We
understand the complexity of scheduling, resource allocation and fairness, and
we are aware of the simplicity of the following method.

In the beginning, each workload submitted into the Kubernetes has the same
priority and it must provide its specification of resource requirements. Once
deployed, the system observes and logs user’s utilization of resources for a speci-
fied period of time, e.g., three to four days. If the observed resource consumption
is close to the requests, no action is needed. If the resource consumption is sig-
nificantly lower than requested, this workload’s priority class is decreased and
14 https://www.redhat.com/en/topics/cloud-computing/what-is-hybrid-cloud.

https://www.redhat.com/en/topics/cloud-computing/what-is-hybrid-cloud
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the user is informed about this fact together with data and a set of recommenda-
tions on how to improve their resource requests. Whatever is the case, the final
decision (action Y/N) is stored in a database for further comparisons. After
the first observation time period the new period begins and same rules apply.
Undoubtedly, priority class can not be lowered forever so a proper mechanism
handling ignorant users/workloads must be in place. For example, after, e.g.,
five decreasing periods, the Pod is evicted and deleted. This simple approach
guarantees that long-running idle workloads can be preempted or terminated in
order to drain resources for new tasks.

Such simple eviction works out of the box only for workloads resembling
long stateful services. It is common that cluster hosts burst Pods, on-demand
computations or pipelines with fluctuating resource requests. Therefore, during
one observation time period, they might present themselves as resource-intensive
(fully utilizing requested resources) and the next time they can be resource-
dormant (utilizing near-to-nothing). One solution to that could be enforcing
singularity principle, thus letting one Pod perform only one task which naturally
breaks all pipelines and compound computations into better manageable units.
Assigning resource requests to small individual units is more accurate and should
contribute to reducing resource wasting.

Accounting, Monitoring, and Control. These approaches will require imple-
mentation of a monitoring framework and a “controller” with predefined logic
and recent knowledge about the behavior of workloads and/or users in the sys-
tem. Surely, accounting can be done manually by the administrator, but it does
not scale very well. While there exist various accounting and monitoring solu-
tions such as kubecost15, the reactive “controller” is missing and yet needs to
be developed. We are convinced that just showing the costs to the user is not
enough if the he is not forced to pay the costs. As already mentioned, resources
are usually free of charge in academic environments. However, some kind of
virtual coins could be adopted as a regulation mechanism. Such approach still
requires development, testing, and evaluation to recognize its sufficiency.

5 Real Workload Trace from CERIT-SC Installation

In this section we provide real data from our K8s installation in CERIT-SC
system [1]. It is based on Kubernetes cluster version 1.21 consisting of 20 nodes.
Each node is equipped with 128 hyperthreaded cores, 512 GB RAM, one NVIDIA
GPU card and 7 TB of local SSD storage. In total, the system has 2,560 CPU
cores. All of those 20 nodes have worker roles, i.e., they are able to run any Pod.
Default limit is 110 Pods per node but it has been increased to 160 Pods per
node, so we are able to run up to 3200 Pods on the whole cluster, service jobs
are included in this limit.

15 https://github.com/kubecost/cost-model.

https://github.com/kubecost/cost-model
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We collected data of all Pods that were executed on the cluster during the
July 2021 – May 2022. The workload trace contains information about more than
292,000 Pods. In the workload trace, each Pod occupies one line that contains
following (anonymized) data:

– Pod Name
– Pod UUID
– arrival time
– start time
– end time (either completed or killed)
– CPU request
– CPU limit
– RAM request
– RAM limit
– average, minimum and maximum CPU usage
– average, minimum and maximum RAM usage
– requested GPUs
– namespace ID

Since real usage of CPU/Memory resources varies over time and it would not
be practical to provide real usage, e.g., for each minute, we (currently) provide
data on average, minimum, and maximum real CPU/Memory usage over the
runtime of the Pod. Figure 4 shows current distribution of CPU requests and
limits (top left) and also illustrates how the values of CPU utilization (avg.,
min., max.) are spread with respect to Pods’ CPU requests. More details can
be obtained from the time-series database that records these values periodically.
This anonymized workload trace has been published along with this paper in
the JSSPP workloads archive [8] which is hosted at the JSSPP workshop page:
https://jsspp.org/workload/.

6 Related Work

Aforementioned problems have already been acknowledged by other groups.
Even commercial world deals somehow with them as users can opt for enterprise
cloud infrastructures which often offer several free deals but in the context of
large resource requests, unpaid plans do not provide sensible amount of resources.
Enterprise infrastructure can be represented by Amazon AWS16. Amazon’s pay-
ing model is based on per-second billing where user pays only for what he or
she uses. Amazon currently offers five plans of reserving computational instances
which all introduce various discounts and peculiarities. One of the plans, Spot
Instances, is based on utilizing unused EC2 capacity in the cloud with signifi-
cant discount. However, EC2 can reclaim the capacity anytime so when selecting
this plan, user sets preferred way of handling evicted workload (hibernate, stop,

16 https://aws.amazon.com.

https://jsspp.org/workload/
https://aws.amazon.com
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Fig. 4. CPU requests and limits (top left) and the average, minimum and maximum
CPU utilization of Pods recorded in the trace. All charts have the same scale.

terminate). In case capacity is needed by AWS services, user receives notifica-
tion two minutes before reclamation.17 This approach shows resources are finely
managed in enterprise infrastructures as well. However, users are still motivated
to think about their requirements because they would have to pay more while
infrastructure providers are maximizing earnings.

In the field of container orchestrators, solutions proposed to solve schedul-
ing obstacles are usually crafted only for needs of subjects or as proof of con-
cept without further integration into whole system. The reason is that modern
technologies are widely used, open-source hence shaped by outsiders, individ-
uals, enterprises and anyone interested which eliminates the utmost need for
academic literature and deep research. Currently, real solutions or novel ideas

17 https://aws.amazon.com/ec2/spot/.

https://aws.amazon.com/ec2/spot/
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introductions happen at community discussion forums or at source code manage-
ment platforms such as GitHub18. As Randal points out [16]: “... recent projects
such as Docker and Kubernetes are largely written by outsiders providing exter-
nal commentary rather than by the primary developers of the technologies. As a
result, recent academic publications on containers tend to lack the depth of per-
spective and insight that was common to earlier publications on virtual machines,
capabilities, and security in the Linux Kernel. The dialog driving innovation and
improvements to the technology has not disappeared, but it has moved away from
the academic literature and into other communication channels.”

From published works we choose four that discuss scheduling strategies, fair-
ness resolution and analyze low cluster utilization. We observe that resource
allocation issues have become recognized and researchers are trying to invent
alternatives to basic Kubernetes scheduler. Still, problems discussed in the works
remain unsolved as incorporating any change into the official system is a longer
process.

In the work “Availability-driven scheduling in Kubernetes” Farias et al. [3]
introduce different Kubernetes scheduling approach based on resource alloca-
tion according to promised quality of service (QoS). Their implementation and
performed experiments show that QoS-driven scheduling yields better and more
reliable service with fairer and more efficient resource division.

Medel et al. propose in their paper “Client-Side Scheduling Based on Appli-
cation Characterization on Kubernetes” [14] idea that clients should provide a
characterization of their applications which would allow scheduler to evaluate the
best configuration to deal with the workload at a given moment. The enhanced
scheduler design puts emphasis on balancing number of applications in each node
and minimizing degradation caused by resource contention. Clients or develop-
ers are responsible for providing information about resources used intensively by
their applications utilized by scheduler in advance. The solution achieved 20%
improvement in a test case compared to basic Kubernetes scheduler but one can
argue if user is capable of correctly assessing application’s needs, especially in
relation to HPC jobs where as mentioned, overestimation is ubiquitous.

Apart from suggesting new scheduling strategies, researchers have noticed
non-existence of fairness in Kuberentes [5]. Hamzeh et al. propose a model to
calculate and assign resource limits fairly among the Pods in the Kubernetes
environment. Authors state that due to early development stage no real case
example scenarios could be presented but the work brings interesting view on
cloud fair allocation algorithms (DRF [4], MLF-DRS [7] and FFMRA [6]).

Le and Liu in [12] open the work from different perspective where they discuss
resource inefficiency of data centers with connection to global emissions and
electric energy consumption. Overall, the paper focuses on improving cluster
utilization without degrading quality of service. For that purpose, they developed
an online resource manager that combines both load balancing and feedback
control. Evaluations show that the tool achieved truly higher resource utilization
compared to user submitting resource requests.

18 https://github.com.

https://github.com
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Ma and Wang [13] propose a new scheduler on top of standard K8s instal-
lation called Volcano. It presents some interesting features such as support for
efficient batch processing, however it is solely oriented on well-defined set of
batch workloads, i.e., it is not a universal solution to our problems.

7 Conclusion

This paper discussed our experience with the Kubernetes container orchestrator
and various problems related to the process of scheduling and resource alloca-
tion in a containerized environment. Based on existing Kubernetes concepts,
we suggest several solutions to existing scheduling challenges such as infinite
and interactive computing and/or overestimation of resource requests. Efficient
scheduling and resource allocation can not be achieved with current Kubernetes
tools easily. While Kubernetes is very good and robust in keeping the infras-
tructure in some “desired state”, it does not provide automated mechanisms to
dynamically adjust the “desired state” with respect to the changing situation in
the system.

The transformation from HPC to containers will not happen in a few months,
it is an ongoing, long-lasting process that should be performed by a stable
provider to ensure a complete and reliable shift. Since such efforts are not strong
enough now, we suggest that a hybrid cloud approach could serve as an interim
solution of integrating and merging Kubernetes and HPC environments. More-
over, we offer several resource allocation concepts that might perform well in
future versions of Kubernetes. Last but not least, we provide real-life workload
trace from our installation to the scientific community.
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