
Towards Interactive Geovisualization
Authoring Toolkit for Industry Use Cases

Jǐŕı Hynek1(B) and Vı́t Rusňák2

1 Faculty of Information Technology, Brno University of Technology,
Brno, Czech Republic
hynek@fit.vut.cz

2 Institute of Computer Science, Masaryk University, Brno, Czech Republic

rusnak@ics.muni.cz

Abstract. Interactive visualizations of geospatial data are commonplace
in various applications and tools. The visual complexity of these visualiza-
tions ranges from simple point markers placed on the cartographic maps
through visualizing connections, heatmaps, or choropleths to their combi-
nation. Designing proper visualizations of geospatial data is often tricky,
and the existing approaches either provide only limited support based on
pre-defined templates or require extensive programming skills. In our pre-
vious work, we introduced the Geovisto toolkit – a novel approach that
blends between template editing and programmatic approaches provid-
ing tools for authoring reusable multilayered map widgets even for non-
programmers. In this paper, we extend our previous work focusing on Geo-
visto’s application in the industry. Based on the critical assessment of two
existing usage scenarios, we summarize the necessary design changes and
their impact on the toolkit’s architecture and implementation. We fur-
ther present a case study where Geovisto was used in the production-ready
application for IoT sensor monitoring developed by Logimic, a Czech-US
startup company. We conclude by discussing the advantages and limita-
tions of our approach and outlining the future work.

Keywords: Geospatial data · Geovisualizations · Visual Authoring
tools

1 Introduction

Interactive geovisualizations are used in various use cases, ranging from simple
choropleths in newspaper articles to specialized analytical applications for disas-
ter management [9] or ornitology [19]. The underlying geospatial data can com-
bine location information, descriptive attributes (categorical, numerical, or even
textual), and optionally also temporal dimensions (e.g., timestamp, duration).
The interactive geovisualizations can display data in multiple layers and enable
users to explore them at different detail levels through zooming and panning. The
right choice of visual geospatial data representation is not always straightforward.
When done wrong, it might lead to obscuring data perspectives that are essential
c© Springer Nature Switzerland AG 2023
A. A. de Sousa et al. (Eds.): VISIGRAPP 2021, CCIS 1691, pp. 232–256, 2023.
https://doi.org/10.1007/978-3-031-25477-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25477-2_11&domain=pdf
http://orcid.org/0000-0002-7292-6094
http://orcid.org/0000-0003-1493-2194
https://doi.org/10.1007/978-3-031-25477-2_11


Geovisualization Authoring Toolkit for Industry Use Cases 233

for the users [3]. Moreover, creating efficient interactive geovisualizations usually
requires programming skills.

In the last decade, we can observe growing efforts toward developing visual-
ization authoring systems enabling the creation of such interactive visualizations
for non-programmers [7,13]. Shortcomings of these tools include the focus on 2D
charts, only a few types of available geovisualizations, and limited capabilities
in terms of input data or support for multi-layered geovisualization interaction.

Our work aims to provide the geovisualization authoring toolkit, which has an
extensible API for programmers and allows authoring various use cases through
a user-friendly interface for users without programming skills. In this paper, we:
a) summarize the feedback acquired from the two usage scenarios in which the
early Geovisto prototype introduced in [10]; b) introduce the architectural and
implementation changes of the redesigned version; c) present a novel use case of
Geovisto in the production-ready application for IoT sensor monitoring.

The paper is structured as follows. Section 2 overviews the related work and
summarizes the shortcomings of current geovisualization authoring approaches.
Section 3 summarizes the Geovisto prototype and the two use cases described
in detail in our previous work [10]. Section 4 presents the design requirements
revisions and proposed changes to Geovisto’s architecture and implementation.
Sections 5 and 6 show the novel architecture of the toolkit and the implemen-
tation respectively. The case study of Geovisto’s application in the context of
IoT sensor monitoring is in Sect. 7. Finally, Sect. 8 discusses the advantages and
disadvantages of our approach, and Sect. 9 summarizes the paper and outlines
future work.

2 Related Work

In this section, we first overview several widely-used 2D geovisualization types.
Next, we present the visualization authoring methods with a particular focus on
authoring tools and their limitations.

2.1 Geovisualization Types

Geovisualizations often take advantage of combining multiple layers where each
layer presents only a subset of data. The typical base layer is a cartographic map
that provides a spatial context for visualized data. The geographic information
systems (e.g., QGIS1 or ArcGIS2 and the web mapping applications available to
the general public (e.g., Google Maps, Bing Maps, Open Street Maps) provide
the cartographic layers through public APIs, which can be used in the 3rd party
applications.

Further, we list the most common geospatial data visualization types. Point
distribution maps represent the simplest geovisualizations used for visualizing
datasets of elements containing only the location information (1 a)). If the

1 https://qgis.org/en/site/.
2 https://www.arcgis.com/index.html.

https://qgis.org/en/site/
https://www.arcgis.com/index.html


234 J. Hynek and V. Rusňák

Fig. 1. Common geovisualization types: a) point distribution maps; b) proportional
symbol map; c) choropleth; d) spider map; e) flow map; f) heatmap. Source: Tableau
Software LLC.

elements contain the location and one descriptive numerical value, they could
be plotted as (proportional) symbol maps (1 b)). The symbol can be a circle or
a glyph whose physical size determines the value. Symbol maps are also useful
when the element has two or three descriptive attributes since we can distinguish
their size, shape, and color. More advanced modifications enable us to show even
more data, e.g., when the glyph symbol is replaced by small 2D charts (e.g.,
pie/donut/bar charts). When the dataset contains information, not for single
locations but the whole regions, choropleth maps (or filled maps) are the best
option. The color fill of the region represents value (1 c)). Another type of spatial
visualization is heatmaps (or density maps) that are common, e.g., from weather
maps showing the measured temperature or precipitation (1 f)). A particular
category is geovisualizations showing routes and paths. Well-known from navi-
gations, the basic path maps show direction between two points. However, in the
case of flight monitoring websites or computer network visualizations, we can
naturally extend the point-to-point to multipoint connections, also known as
spider maps (1 d)). Finally, by adding the temporal dimension, we can visualize
flow maps, enabling traffic visualization on the edges (1 e)).

2.2 Geovisualization Authoring Approaches

The interactive visualizations can be authored in three general ways: by pro-
gramming, template editing, or authoring tools and applications.

Programmatic approaches are the most demanding in terms of users’ skills
and learning curve but offer the most versatility for fine-tuning of visual appear-
ance and interaction capabilities. The frameworks for developing interactive visu-
alizations are usually designed for web applications. D3 [2] is one of the most



Geovisualization Authoring Toolkit for Industry Use Cases 235

popular imperative frameworks nowadays, and many other libraries use it. It
allows mapping the input data to a Document Object Model (DOM) and trans-
forms it via data-driven operations. ProtoVis [1] toolkit, also leveraging the
imperative paradigm, is based on the idea of decomposing visualizations into
hierarchies of visual primitives whose visual properties are data functions. The
declarative paradigm frameworks represent Vega [17] and Vega-lite [16]. They
both provide a set of building blocks for interactive visualization designs. They
differ in the level of abstraction and primary use cases. Vega-lite is a high-level
grammar built on top of Vega and was designed for prototyping standard chart
types rapidly. Backward compatibility allows programmers to implement more
advanced use cases in Vega. There are also several widely-used geovisualiza-
tion libraries for the web development such as Mapbox GLJS3, OpenLayers4 or
Leaflet5. The latter one we utilize in Geovisto.

Template editing is the exact opposite of programmatic approaches. It is
a well-established way to create simple charts in spreadsheet applications like
Microsoft Excel or Apache OpenOffice. The main characteristics are limited
functionality in terms of interaction and the ability to visualize tabular-based
data in a pre-defined set of charts (e.g., pie charts, bar charts, or choropleths).
Users can modify only a basic set of parameters such as color, font, chart shape,
or legend position. Template editing is also available in dashboard platforms like
Grafana [6]), data analysis tools such as Tableau [18], or analytical frameworks
such as ElasticSearch in the form of extension library [4]. They allow the users to
connect their dataset through API. On the other hand, their main disadvantage
is that they centralize their platform’s visualization with limited support for
their export.

The authoring tools build on the advantages of the former two. We can imag-
ine them as advanced graphics software focusing on designing interactive charts.
They allow users to create visualizations from basic building blocks that can
be widely customized in visual appearance and interaction capabilities through
GUI. The output visualizations can be exported as web components and pub-
lished still without programming skills. The visualization community introduced
several projects in the last couple of years. Lyra [15], Data Illustrator [12],
or Charticulator [14] represents such tools or systems. However, their primary
focus is on authoring 2D charts, and geospatial data visualization is often lim-
ited to data presentation in a single layer. Another downside is that the tools
require specific visual design knowledge, limiting some users. There are also
examples of domain-specific visualization authoring applications. For example,
NewsViews [5] targets data journalists to help them create interactive geovisu-
alizations for online news articles. GeoDa Web [11] platform leverages the cloud
storage and computing capabilities and enables data analysts to visualize and
publish maps and plots to social media in a user-friendly way. Unlike the general
visualization authoring systems, the domain-specific ones are simpler and reduce
the need for specific visual design knowledge.

3 https://www.mapbox.com/mapbox-gljs.
4 https://openlayers.org.
5 https://leafletjs.com.

https://www.mapbox.com/mapbox-gljs
https://openlayers.org
https://leafletjs.com


236 J. Hynek and V. Rusňák

2.3 Limitations of Current Authoring Tools

We aim to generalize the geovisualization authoring tool while focusing on ease
of use for professional and novice users. In general, we identified three limitations
of the current tools that we address in our work.

Tabular data as the primary input format. Most of the tools expect the data
in a tabular format (e.g., CSV), where columns are attributes (or domains)
of elements in rows. However, many of the recent data sets are in hierarchical
object formats such as JSON or NoSQL databases. For these, additional data
transformation or preprocessing is necessary before their use in visualizations.
Our goal is to allow users to upload arbitrary geospatial data in an object-
oriented format and select the visualization attributes.

Limited number of configuration options. Since the existing tools focus mainly
on general 2D chart visualizations, the list of available geovisualization types
and their configuration options are narrow. The most frequent are choropleths,
heatmaps, or spider maps. As a result, the user can often display only a few data
attributes. Our goal is to enable a combination of visualization types in multiple
layers and let users decide which suits their needs.

Limited interaction capabilities. Finally, current tools provide only limited
interaction capabilities with visualized geospatial data such as their filtering or
region-based selection. Our goal is to let users configure the output geovisualiza-
tion in line with the expected usage and allow them to set multi-layer interaction
capabilities and cross-layer data linkage.

We propose Geovisto – the geovisualization authoring toolkit, which enables
configuring geospatial data visualizations for use in web-based dashboard appli-
cations or as a part of visual analytics workflows. In the reminder, we present
its design and prototype implementation. Two usage scenarios demonstrate its
applicability.

3 Geovisto Prototype

In this section, we outline the Geovisto prototype and two usage scenarios
described in detail in our earlier paper [10]. The usage scenarios that were used
to demonstrate Geovisto’s features also served for further revision of the require-
ments.

Geovisto prototype is a standalone ReactJS6 component, using Leaflet and
D3.js JavaScript libraries. Thus, it can be shared and included as a widget in
third-party web applications. The implementation is based on the four design
requirements: a) it has a component-based architecture; b) the input data are
transformed to a flat data model ; c) its user interface enable user-defined data
mapping to multiple configurable layers; d) users can export and import map
configurations.

Geovisto renders the base map with one or more predefined layers when
loaded. Users can specify their dataset and import or export map configura-
tions. Available layers are choropleth, marker, and connection layer. The layers
6 https://reactjs.org/.

https://reactjs.org/


Geovisualization Authoring Toolkit for Industry Use Cases 237

Fig. 2. An example of the Geovisto prototype map widget. It contains the sidebar
(on the left) used for the configuration of layers, the definition of filter rules, and the
map’s general setting. The map contains the choropleth, marker, and connection layers.
The example shows the configuration of the choropleth layer. It links the ‘from’ data
domain with the ‘country’ visual dimension, the ‘value’ data domain with the ‘value’
visual dimension, and uses the ‘sum’ function to aggregate the values.

can be managed from the user interface (e.g., show/hide the layer, define the
data visualized in each layer, apply basic filtering on the visualized data). The
Geovisto prototype also provides functions for projecting geographic features
onto the map and interaction capabilities with the base map. It handles events
invoked by the map layers (user interaction) and ships them to other layers,
which can process them (since the map layers are independent). Figure 2 shows
an example Geovisto prototype map widget.

We further demonstrated the Geovisto prototype on two distinct usage sce-
narios: Covid-19 pandemic open data, and DDoS attack analysis.

Covid-19 Pandemic Open Data: We used the map to visualize the worldwide
spread of the COVID-19 disease to demonstrate the widget’s general applicabil-
ity. We used the data from the rapidapi.com7 service and converted them to the
JSON format to import them into the map widget. Since the map allows the
users to change the data domains, the users can compare the countries from dif-
ferent aspects (sum of confirmed cases, numbers of recoveries, and deaths). They
can also combine these views using the choropleth and marker layers. Figure 3
shows an example of the use case.

7 https://rapidapi.com/.

https://rapidapi.com/


238 J. Hynek and V. Rusňák

Fig. 3. Covid-19 pandemic data. The
choropleth layer compares the number
of confirmed cases with the disease.
The marker layer shows the number of
deaths caused by the disease.

Fig. 4. DDoS attack analysis usage scenario.
The example shows the share of mitigated
and finished attacks for selected countries.

DDoS Attack Analysis: The scenario was performed in cooperation with Flow-
mon Networks a.s.8, a company providing complex tools for automated monitor-
ing, analysis, and network traffic protection. Figure 4 shows a DDoS monitoring
component. It provides an overview of all DDoS attacks and the source and
destination countries. The connections between the countries visualize the rela-
tions of the traffic flows. A country’s details show specific aspects of the attacks,
such as the state of the attacks (active, mitigated, finished) and their numbers
(in pop-up windows). The multilayer map meets the requirements. It contains
either the information about the source of DDoS attacks or their destinations.
Then, the connection layer can display the relations between the countries. The
users can filter the data to display only a specific subset. Finally, they can select a
particular country in the choropleth and highlight all the related data presented
in the same or other map layers.

While the former usage scenario focused on demonstrating Geovisto’s features
and general applicability, the latter demonstrated its utilization in the real-world
example from the cybersecurity domain. We further analyzed and evaluated the
usage scenarios to revise the design requirements and identify the shortcomings
limiting Geovisto’s applications in the industry.

4 Design Requirements Revision

The main area of Geovisto’s deployment is industrial applications. In order to
meet the requirements of the industry, we reformulated the initial design require-
ments based on the Geovisto prototype assessment in the presented scenarios.
The revised requirements focus on five main aspects:
8 https://www.flowmon.com/en.

https://www.flowmon.com/en


Geovisualization Authoring Toolkit for Industry Use Cases 239

– Usability : Geovisto should utilize the concept of authoring systems and pro-
vide map layers representing ready-to-use thematic maps to decrease the effort
to prototype visual projections of geographical data quickly;

– Modularity : Geovisto should not be served as a monolith but in the form
of independent modules which would provide particular functionality such as
map layers and map controls; these modules could be used only when needed
in order to decrease the size of the result;

– Configurability : Geovisto’s basemap and its layers and controls might be
customized with generic datasets, geographical data, appearance, and behav-
ior; users might capture the current map state and reload this state later;

– Extensibility : Geovisto should provide a core with programming API to
customize the map programmatically, allow further extensions of the existing
modules of the library, or implement new own modules concerning the current
requirements;

– Accessibility : the library (and modules of the library) should be avail-
able through a known package manager software to support versioning and
improve integration into its own system infrastructure, build and deliver the
solution as a part of its system.

The following subsections list these aspects reflecting the initial prototype
and identify required modifications to the original prototype design that have
driven the re-implementation of the Geovisto toolkit.

4.1 Usability

One of the crucial problems during the design and implementation of user inter-
face and visualization is to overcome the communication barrier between cus-
tomers providing requirements and programmers delivering the final product for
them. Usually, salespeople, UX designers, or data analysts try to break this bar-
rier. However, their lower knowledge of the system architecture and underlying
data models might skew the description of the requirements to the program-
mers. These specifications are usually vague, and they do not consider actual
data representation (e.g., data types and relations between data entities) and
effort (e.g., complexity and price of database queries) to map the data into
the UI components. The main goal of the Geovisto toolkit is to blend the pro-
grammatic and template editing approaches known from contemporary mapping
libraries to improve user experience during the prototyping phase.

The idea of Geovisto is to provide a UI layer composed of ready-to-use map
layers and controls, which would allow the UI designer to project the actual
data and prototype the map views corresponding to the end-user requirements.
Then, a snapshot of the map state could be exported and shared in a serialized
format. Such a configuration might help the programmer who implements a new
map widget into the production version of the application or service used by the
end-users, as illustrated in Fig. 5.



240 J. Hynek and V. Rusňák

Fig. 5. Geovisto’s authoring and configuration sharing workflow. First, the UI designer
creates a data projection into the map layers and exports the configuration into a JSON
file. The configuration can be shared with end-users or programmers developing the
web front-end.

The authoring tools could have been used while clarifying the user require-
ments and possible use cases of the Flowmon UX team. Since Geovisto can work
with custom datasets, the UX team members used the prototype independently,
generating multiple map configurations providing perspectives of their custom
data without any coding knowledge. This approach improved mutual commu-
nication between them and programmers and rapidly increased the ability to
generate new geovisualization use cases.

While the Geovisto prototype provided decent authoring tools to prepare the
map drafts, export, and import the map state, the programmatic definition of
the state as properties of map and map layers was rather cumbersome. Since
the Geovisto prototype was implemented in JavaScript, the property types were
unclear, leading to occasional crashes and debugging requests. One of the most
needed requirements was to re-implement the project into TypeScript9, which
only emphasizes the importance of statically typed languages in the industry
and even the front-end and data visualization.

4.2 Modularity

When implementing the prototype, our initial goal was to design a clear code
structure and decompose the library into the so-called Geovisto tools represent-
ing particular map layers and controls and the map core handling communication
between the tools. Although we fulfilled the modular approach, the main draw-
back stood for how the library was delivered – in the form of one JavaScript
repository. Thus, programmers using Geovisto needed to load the whole library,

9 https://www.typescriptlang.org.

https://www.typescriptlang.org


Geovisualization Authoring Toolkit for Industry Use Cases 241

although they wanted to use only a subset of Geovisto’s tools. To fully accom-
plish the proposed modularity, it was necessary to break apart the repository
into standalone packages to be included as project dependencies when needed.
The crucial task to handle this was to solve the problem of possible dependencies
between the tools (e.g., one tool needed to know the type of event object sent
by another tool).

4.3 Configurability

The Geovisto prototype worked with the following types of inputs:

– Geographical Data: the specification of polygons and their centroids rep-
resented in GeoJSON format. The prototype used the specification of world
countries published by J. Sundstrom10 but it should be replaceable with
generic specifications. The only requirement was that every GeoJSON fea-
ture had to contain a polygon identifier (e.g., country code), which is needed
to connect the geographical data with the dataset.

– Datasets: the values stored in a serialized format (JSON). The data needs to
contain at least one data domain representing an identifier of the geographical
feature (e.g., country code).

Since there are various models representing the data, it was essential to create
a mechanism for processing such models – choosing the data domains and binding
them to the map layers’ visual dimensions. Hence, every map layer provides a
list of visual dimensions, which can be associated with data domains. The users
can select the data domains manually using the layer settings provided by the
map sidebar. In contrast to existing authoring tools, this approach focuses only
on geospatial data. Users can work with multiple data domains representing
geographic location formats (such as the ISO 3166 country codes) and use them
in various use cases.

Since the dataset can represent non-tabular data structures (e.g., JSON or
XML formats), recursive data preprocessing was needed to construct a valid data
model representing data domains. Only then, the list of the data domains was
served to the UI. Figure 6 shows an example demonstrating the principle. The
Geovisto prototype provides a basic flattening algorithm that expands all nested
arrays into a combination of flat data visual projections and aggregations.

10 https://github.com/johan/world.geo.json.

https://github.com/johan/world.geo.json


242 J. Hynek and V. Rusňák

Fig. 6. An example of data composed of two records stored in the pseudo-JSON for-
mat. Since the records contain nested lists, they need to be preprocessed first. They are
expanded into four records represented by all combinations of the values. This repre-
sentation is characterized by data domains that can be mapped into visual dimensions.
The figure shows two different projections and aggregation of data.

Another requirement from the Flowmon evaluation was to implement different
flattening strategies. For instance, some of the nested lists might represent specific
qualitative characteristics of network traffic which should not be preprocessed as
described in the example of Fig. 6. For this purpose, the Geovisto prototype lacked
a solid mechanism to deliver custom data preprocessing algorithms.

Similarly, overriding the default Geovisto behavior and settings was cumber-
some and required decent knowledge of the library architecture. For instance,
Flowmon needed to integrate the map instances into its own environment, which
is characterized by specific appearance (e.g., types of controls familiar to the
company’s customers). Hence, the requirement to completely redesign the map
layers and controls has a high priority for future deployment of the map instances
to corporate environments.

4.4 Extensibility

Another requirement from the Flowmon evaluation was to implement different
flattening strategies. For instance, some of the nested lists might represent specific
qualitative characteristics of network traffic which should not be preprocessed as
described in the example of Fig. 6. For this purpose, the Geovisto prototype lacked
a solid mechanism to deliver custom data preprocessing mechanisms.

Similarly, overriding the default Geovisto behavior and settings was cumber-
some and required decent knowledge of the library architecture. For instance,
Flowmon needed to integrate the map instances into its environment, charac-
terized by specific appearance (e.g., types of controls familiar to its customers).
Hence, the requirement to completely redesign the map layers and controls has



Geovisualization Authoring Toolkit for Industry Use Cases 243

a high priority for future deployment of the map instances to corporate environ-
ments.

4.5 Accessibility

Since our goal is to deliver Geovisto in compact modules, it is essential to main-
tain modules versioning. These modules should be available in package man-
agement systems, such as npm (Node.js Package Manager), and the modules
users (i.e., programmers) should decide on their own when to switch to a higher
version. It is another essential requirement in the industry when delivering new
product releases. In order to deliver a stable product to its customers, the depen-
dent libraries must be reliable.

Flowmon develops its user interfaces in the React.js library. It helps organize
the user interface into logical parts (React components) and manage its rendering
lifecycle and UI events. The Geovisto prototype was wrapped in the React com-
ponent, but we decided to leave this abstraction in future versions and provide
the React extension as a standalone package. We kept Geovisto as a Leaflet-based
TypeScript library that can be integrated into any web application by the com-
panies which might use different UI frameworks (such as Angular or Vue.js).

5 Architecture

We updated the Geovisto prototype’s architecture concerning the listed require-
ments, which decomposes the library into the map core and map layers. We
designed a revised architecture reflecting the new aspects of Geovisto. The idea
of new Geovisto architecture is similar to the old one. However, it generalizes
the Geovisto modules as so-called Geovisto Tools, representing map layers, map
controls (e.g., sidebar), or utilities (e.g., filters and themes). Map layers are
a particular type of tool (Fig. 7).

The reason behind the decomposition was to provide standalone npm pack-
ages that can be included in a project when needed. Every Geovisto Tool is a
TypeScript project with a package.json file containing the npm metadata11. It
contains two peer dependencies – Geovisto Core and Leaflet – which force the
programmer to include Geovisto Core and Leaflet library in own project. Hence,
the built packages of Geovisto Tools do not include the code of these libraries in
order to minimize the size of the packages and prevent conflicts in dependencies.

5.1 Core

The management of the Geovisto Tools’ life cycle, inputs, and map state is
provided by the Geovisto Core. It is an npm package12 which represents an
abstraction of the Leaflet library, and it needs to be (together with Leaflet)
included in every project which utilizes Geovisto Tools.
11 Metadata required by the Node.js Package Manager when resolving the tree of pack-

age dependencies, running, building, and publishing the package.
12 https://www.npmjs.com/package/geovisto.

https://www.npmjs.com/package/geovisto


244 J. Hynek and V. Rusňák

Fig. 7. Geovisto architecture overview. The map component takes props and config and
renders a Leaflet-based map composed of map tools – usually SVG elements generated
via the Leaflet API or D3.js library. The map tools are independent of each other and
communicate via events. They represent map layers, map controls, and utilities.

Fig. 8. Map core life-cycle. First, the map state is initialized by default values of the
Geovisto toolkit and props given by the programmer. Then, the user can override
the state using config (such as data mapping or appearance). The map and tools are
rendered based on the combination of values given by Leaflet, programmer, and user.
Finally, the user can use the map, change the state and export the config.

Figure 8 describes the workflow of the Geovisto Core. First, it processes the
inputs and initializes the state of the map and instances of the required Geovisto



Geovisualization Authoring Toolkit for Industry Use Cases 245

Tools. Then, based on the initial state, it creates and renders the Leaflet map
and instances of Geovisto Tools. The phase of state initialization is crucial, and
it determines the data projection and appearance of the map and tools. It is
based on the following inputs:

– Default Values (defaults) – the state defined by Geovisto: the implicit
values and functions representing the map’s default behavior and appearance.
They make the initial state of the map and the tools.

– Properties (props) – the state defined by the programmer: the default state
can be overridden programmatically by using props. The programmer might
influence either the map’s appearance (static values) or override the default
behavior (functions). Some of the props are optional (e.g., initial map zoom);
however, there are several important mandatory props that are essential to
render the map:
• Geo-data manager providing geographical data (available GeoJSON def-

initions), which can be used across the tools.
• Data manager providing dataset and strategy for data preprocessing into

a suitable list data records which can be used across the tools.
• Tool manager providing tool instances that should extend the Geovisto
Core. Every tool might accept its own props and config to override its
default state.

– Configuration (config) – the state defined by the user: the ability of the
user to override default values and properties defined by the programmer.
Config is defined by serialized format data (e.g., JSON) and manager, which
processes this format and transforms it to the Geovisto Core model and tools.
It can also be exported during the map runtime to capture the snapshot of
the current map state. In contrast to the props, it represents only the static
characteristics of the map, not the procedural characteristics of the map.
Config usually defines map appearance and data mapping (projections of
data domains to the dimensions of map layers).

All of the inputs are wrapped in so-called input managers, which process
the inputs and transform them into Geovisto models. This approach gives the
programmer the opportunity to work on their own input format and provide
their own strategies to process these formats. It makes the library more generic
and applicable in different environments.

5.2 API

In contrast to the Geovisto prototype, the new Geovisto version (Core and
selected tools) was reimplemented using the TypeScript language. Using static
types allowed us to describe the exact model of all map objects. The code struc-
ture was split into two parts representing:

– Types and Interfaces: declaration of all Geovisto objects, their properties,
and methods (e.g., map, tool, layer, state, defaults, props, config, events,
geo-data, data domains, layer dimensions, aggregation functions, filters, etc.)



246 J. Hynek and V. Rusňák

– Classes: internal default definitions of map objects which provide implicit
behavior, ready to use

Both the declarations and definitions of Geovisto objects are exported using
ES6 module exports, so they can be used to design new Geovisto objects or
extend the existing ones. In order to allow comfortable overriding of implicit map
objects, the Factory design pattern was applied. Besides that, the programmer
can approach low-level Leaflet objects and utilize all capabilities of this library.

The architecture of Geovisto Core is used in Geovisto Tools implementing the
interfaces and types and extend the classes of Geovisto Core API. Since the tools
might also be extended or used by each other, they export their own declarations
and definitions of tool objects, similarly to the Geovisto Core. Then, the tools
might communicate with each other using events and the Observer design pattern
and the types of event objects are be known by the observers (e.g., the change
of preferred style in the themes tool).

The tools are represented as standalone npm packages. In order to avoid
direct dependencies between the npm packages, only the types and interfaces
can be imported, and so-called devDependecies13 are used.

6 Implementation

The Geovisto Core is distributed along with eight already published Geovisto
Tools in the npm repository14 under the MIT license. The source codes are
available on Github15. Several other tools are in the development. Further, we
present the published ones.

6.1 Layers

Layer tools represent thematic map layers. Besides Tile layer, each of the fol-
lowing layers allows defining a GeoJSON describing geographical objects of the
layer (e.g., polygons, or points based on the type of thematic map). In contrast
to the prototype, Geovisto accepts multiple definitions of GeoJSON directly in
the props. Then, a data mapping needs to be set to connect the data domains
with the layer’s dimensions (e.g., geographical dimension, value dimension, or
aggregation function) as illustrated in Fig. 2. The following map layer tools are
already available in the npm repository.

– Tile Layer Tool represents the base map layer which utilizes Leaflet Tile
layer API to show underlying maps of existing tile providers16. This might be
required when the data needs to be connected with real geographical places.

– Choropleth Layer Tool allows to use GeoJSON specifications of polygons
representing geographic regions and link them with the data. Unlike basic
choropleth widgets, our implementation can process custom definitions of

13 https://nodejs.dev/learn/npm-dependencies-and-devdependencies.
14 https://www.npmjs.com/search?q=geovisto.
15 https://github.com/geovisto.
16 https://github.com/leaflet-extras/leaflet-providers.

https://nodejs.dev/learn/npm-dependencies-and-devdependencies
https://www.npmjs.com/search?q=geovisto
https://github.com/geovisto
https://github.com/leaflet-extras/leaflet-providers


Geovisualization Authoring Toolkit for Industry Use Cases 247

geographic areas. Primarily, we work with the specification of world countries.
However, different GeoJSON files can be used, as described in Sect. 5. The
advantage of this approach is the higher scalability of the layer. We can use the
layer in different situations and detail (e.g., countries, districts, custom areas).
We can also adjust it according to the foreign policy of specific countries (e.g.,
visualization of disputed territories).

– Marker Layer Tool works with GeoJSON specification of points and visu-
alizes the data related to exact geographic locations via markers. Similar to
the choropleth polygons, every marker has a unique identifier and geographic
position (e.g., country code and country centroid). Since marker visualization
could be problematic when many are close to each other (clutter of markers),
we use Leaflet.markercluster plugin17 to overcome this issue by clustering the
close markers into groups and aggregating the values.

– Connection Layer Tool visualizes relations between geospatial locations in
the form of edges. The layer enables the user to select two required dimensions:
from and to, representing nodes of the rendered edges (by default, we work
with the country centroids identified by country codes). Optionally, the user
can set the value, which affects the strength of the lines.

A common problem of connection maps is their complexity and poor edge
placement. Holten and Van Wijk [8] proposed a force-directed edge bundling ren-
dering technique that significantly reduces the clutter of edges. S. Engle demon-
strated its application18 on a flight map in the US. The example implements the
technique using the d3-force19 module of the D3.js library, which “implements a
velocity Verlet numerical integrator for simulating physical forces on particles.”
In Geovisto, we implemented an SVG overlay layer using the Leaflet API and
rendered the SVG elements representing edges using the D3.js library and the
d3-force module according to Engle’s approach. It was necessary to implement
correct projections of the SVG elements into the Leaflet map concerning the
map’s zoom and current position. The result provides a comprehensive view of
edges that can be zoomed in/out.

6.2 Controls and Utilities

The second type of tool adds additional controls and functionality to the map
layers. Currently, Geovisto provides the support for adding custom UI controls
in the sidebar, filtering and selection of data, and changing style themes:

– Sidebar Tool provides a collapsible sidebar control and the API allowing
other tools to add custom sidebar tabs or sidebar tab fragments. The map
layer tools utilize this to provide controls for their customization and changing
data mapping.

– Filters Tool provides either UI controls to filter visualized data records and
the API to define custom advanced filter operations. The users specify filter
rules as conditional expressions evaluating selected data domains’ values.

17 https://github.com/Leaflet/Leaflet.markercluster.
18 https://bl.ocks.org/sjengle/2e58e83685f6d854aa40c7bc546aeb24.
19 https://github.com/d3/d3-force.

https://github.com/Leaflet/Leaflet.markercluster
https://bl.ocks.org/sjengle/2e58e83685f6d854aa40c7bc546aeb24
https://github.com/d3/d3-force


248 J. Hynek and V. Rusňák

– Selection Tool provides a mechanism for connecting map layers with
selected map layer geographical objects. The communication between the
layers is implemented via the observer design pattern. Every event passed to
the layers contains information about the source element selected by the user.
It consists of the identifier of the geographic element (e.g., country code) and
the layer. The identifiers of geographic elements can be used in more than one
layer (e.g., choropleth country, country marker, connection node). Then, the
filtering is based on the search of these identifiers through the map layer ele-
ments. The search algorithm avoids the cyclic event invocation. The elements
found on the map are highlighted (Fig. 9).

– Themes Tool provides a set of predefined styles (e.g., colors), which are
delivered to other tools via events and API, which allows defining own custom
style themes.

Fig. 9. Geographic element selection. The selection of Suriname in the choropleth layer
invokes an event that is passed to other map layers. The connection layer handles the
event, finds, and highlights all the edges which connect Suriname with other countries.
This selection invokes another event which contains all the countries connected with
Suriname. It affects the choropleth and marker layer, which highlights appropriate
countries. Further invocations of events are stopped.

7 Case Study: Logimic

We demonstrated Geovisto’s applicability in a case study that was done in coop-
eration with Logimic – the Czech-US startup company that brings innovative
IoT solutions to industry.20

20 Logimics’ products include smart city dashboards for monitoring billions of sensors,
street lighting control systems, indoor monitoring of temperature and humidity with
small battery-operated wireless sensors, wireless control of industrial heaters, and
many others (https://www.logimic.com/).

https://www.logimic.com/


Geovisualization Authoring Toolkit for Industry Use Cases 249

One of Logimic’s products is a user-friendly web application implemented
in TypeScript and Angular framework. It processes and aggregates large-scale
cloud data gathered from devices and provides monitoring and analytic tools
to end-users (e.g., administrators of smart devices, service workers, or inhabi-
tants of smart cities). Its main strength is the simplicity of data presentation
delivered in the form of several dashboards, systematically organized in different
levels of detail. For instance, basic users can monitor devices using high-level
views with simple indicators presenting key performance indicators (KPIs). On
the other hand, analysts could utilize drill-down actions to watch KPI alerts,
detect device problems and analyze the reasons behind these problems to cre-
ate service requests for service workers. Due to devices’ geographic locations,
KPI alerts and related device problems are problematic. Since many devices
might be distributed in the city, such information is crucial to navigating the
service worker to the device. It should be comprehensively displayed when an
alert is focused. Geovisto was used for this purpose. Figure 10 shows an example
of a device KPI alert selection and map focus.

Fig. 10. Device alerts view. The user can click on an alert in the list (on the left) and
the corresponding device is zoomed in on the map with description popup. Then, the
user can create a service request.

In order to include the Geovisto map into the Logimic application, it was
necessary to create an Angular component that serves as a wrapper for the
Logimic map. The principle was similar to the React component created for
Flowmon (Sect. 3). Since the Geovisto Core library is delivered as an npm package
and it was reimplemented to TypeScript, it was easy to set this library as the
npm dependency and import the library in the Angular component written in



250 J. Hynek and V. Rusňák

TypeScript. Geovisto creation and API functions calls were integrated into the
Angular lifecycle callbacks, similarly as it can be done by using React lifecycle
hooks. We expect the library to be used either in pure JavaScript/Typescript
projects or in various advanced UI frameworks (such as Vue.js or Svelte).

For the purposes of Logimic, we tested the following existing tools, currently
provided by Geovisto:

– Tile layer tool displays a real-world map which is vital to locate the devices.
Also, the satellite view is beneficial when the service worker is in the field and
needs to quickly locate the devices (e.g., actual positions of lamps, entrance
to buildings) as shown in Fig. 11. The tool itself does not provide a map
tiles server. It only provides the ability to connect the tool with a chosen
mapping provider service21 using the Leaflet API. Logimic purchases API
keys concerning the policy of the chosen map providers.

Fig. 11. Satellite perspective using Google maps. It can provide the service worker
with a detailed view of the focused neighborhood and help associate the device marker
with the actual location.

– Filters tool allows to select only the devices that might be important either
for the desktop user to analyze a map region or the service worker for navi-
gation across the series of same devices (e.g., the distribution of lamps in the
street – Fig. 12).

21 https://github.com/leaflet-extras/leaflet-providers.

https://github.com/leaflet-extras/leaflet-providers


Geovisualization Authoring Toolkit for Industry Use Cases 251

Fig. 12. Device filtering. In this example, service workers can only see one device type
(lamps) to unclutter the view and remove unneeded markers.

– Themes tool enables the widget appearance customization, so it fits the
surrounding environment.

– Sidebar tool allows to add new controls for customization of mentioned
tools. Currently, the controls are displayed as a part of the map widget,
but with the planned redesign of the application, it might be required to
move these controls outside the map widget and include them in the global
menu. This was also one of Flowmon’s requirements. Since the Geovisto Core
and tools provide API for their customization, it is possible to control them
externally.

Regarding the visualization of device markers, we integrated the Geovisto
toolkit as part of the Logimic environment to demonstrate the possibility of
extending Geovisto externally. The tool is similar to the Marker layer provided
by Geovisto, but it adds some new Logimic-specific functionality:

– The tool is connected to the list of device alerts and listens to the selection
changes in order to focus the device on the map when an alert is clicked.

– It extends marker popups for additional device metadata and allows to invoke
service requests dialogs directly.

This tool can be published as an npm package; however, it represents an internal
extension applicable in the Logimic application.

8 Discussion

As confirmed by the evaluation with Logimic, Geovisto’s attributes (usability,
modularity, configurability, extensibility, and accessibility) improved vastly. The



252 J. Hynek and V. Rusňák

multilayered map appeared to be an excellent way to display the geographic
locations of IoT devices distributed in the cities. Satellite view, filter, and focus
tools help locate the devices that alert KPI problems and navigate service work-
ers to these devices. We expect that Geovisto might be used with different use
cases of different industrial systems. Further, we present Geovisto’s advantages
and disadvantages.

8.1 Advantages

One of Geovisto’s main advantages is that it provides UI tools to prototype map
instances without implementing much code. Then, the state of a map instance
can be serialized and exported. Even though the prototyping possibilities are
limited, this functionality might be beneficial for a programmer trying to find
the best map configuration. Also, it might improve the communication between
the UX team, which can find an appropriate map configuration, and the pro-
grammers, which can use this configuration to implement the production version
of the map.

Geovisto can work with generic datasets and project them onto custom geo-
graphical objects (concerning the capabilities of chosen map layers). Users can
select various data domains, which allows them to explore the information fur-
ther. Showing more layers at the same time helps the users to see the data
in context. The interactive data filtering emphasizes the relations between geo-
graphical locations. The selection of map layer objects can be propagated to
other layers, focusing the important details better with a combination of high-
lighting tools.

When the programmers need to create an unusual data projection, they can
either choose from the existing Geovisto Tools or implement their own using
the Geovisto Core API. The second version of the library was rewritten in the
statically typed TypeScript language, improving code readability and decreasing
the number of runtime errors caused by the wrong API application.

The library does have a modular architecture. It provides a thin core layer
delivered as an npm package providing the core API. Then, additional Geovisto
Tools extend the Core and provide particular map layers, controls, and utilities.
Programmers can import additional npm packages in their projects only when
required, which decreases the size of the result.

8.2 Limitations

Geovisto is an open-source library that is still under development. The usage sce-
narios showed only a fragment of geospatial data types that could be visualized.
More usage scenarios and case studies are needed to validate the generalization
of our approach. We should focus more on processing the large-scale data and
the performance and profiling of the library.

Another limitation relates to data preprocessing that has to be done to gain
a flat data structure. Our implicit approach causes enlargement and redundancy
of the data. Thanks to that, the data can be processed quickly. However, it



Geovisualization Authoring Toolkit for Industry Use Cases 253

would be helpful to design an algorithm that can work with the data without
preprocessing and more efficiently. The new version of Geovisto offers the pos-
sibility to override these algorithms. However, a more extensive set of implicit
data processing strategies would improve its usability.

Last but not least, the lack of proper usability evaluation is another drawback
of our work. For instance, selecting colors and combining several map layers is
limited by people’s comprehensibility of the widget. The users might be over-
whelmed by the data, mainly when chosen inappropriate color combinations.
The z-index of the layers is hardcoded, and users cannot change it. Usually, the
users should not need to change the default settings (e.g., the marker and con-
nection layers are above the choropleth), but they should control their ordering
in the future with more layers added.

9 Conclusion and Future Work

There are three general approaches to authoring interactive geovisualizations:
programmatic, template editing, and authoring tools. The existing authoring
tools, however, are mainly focusing on 2D charts and diagrams, and their capa-
bilities for authoring geovisualizations are limited. In our work, we focus on
designing and implementing an authoring tool specifically focused on delivering
interactive geovisualizations.

Earlier, we implemented a prototype version of the Geovisto toolkit based on
JavaScript and Leaflet and demonstrated it on two usage scenarios (DDoS Attack
Analysis and Covid 19 Pandemic open data) in [10]. In this paper, we followed up
with an analysis of usage scenarios, identified prototype limitations, and revised
the design requirements for the new version in terms of usability, modularity,
configurability, extensibility, and accessibility.

Modular architecture allows to include only necessary parts of the library
and decrease the size of the product. Configurability allows customization of
included parts to integrate the map into the company’s environment. Improved
extensibility offers the creation of new map tools specific to companies. We re-
implemented the Geovisto toolkit in TypeScript – a statically-typed language –
that improves further development and decreases runtime errors.

The library has been published in the form of npm several packages22. The
source codes are available on Github under MIT license23.

The requirements reflected the intended industrial use and invoked changes in
Geovisto’s architecture and implementation. We presented the case study where
Geovisto was used in the production-ready application for visualizing IoT sensor
devices on the map developed by Logimic startup company. The case study
confirmed that the Geovisto toolkit fulfills our goal of creating a programmatic
mapping library that provides template editing known from mapping authoring
systems.

22 https://www.npmjs.com/search?q=geovisto.
23 https://github.com/geovisto.

https://www.npmjs.com/search?q=geovisto
https://github.com/geovisto


254 J. Hynek and V. Rusňák

9.1 Future Work

There are also several sub-projects we are currently working on. One of them
is a web service enabling non-programmers to prototype map instances using
the Geovisto toolkit and include them as widgets on their websites. We are
developing an infrastructure that will manage map configurations, datasets, and
GeoJSONs. The system will provide the front-end application wrapper, including
the UI tools to manage user-defined maps. The back-end will provide a configu-
ration database and API for remotely fetching the configurations. We also plan
to support loading data from third-party relational and non-relational database
systems.

The second area deals with layer improvements and creating new ones. We
have already implemented the bubble map, spike map, and heatmap layers,
which play an essential role in the comprehensive data distribution visualization.
Another almost finished tool provides animated geospatial data visualization
with the time dimensions (i.e., timestamps). It enables the animation of spatio-
temporal data domains and seeks them to the defined time frame. As a result, it
will allow the user to see the evolution of values in individual geographic regions
in time. Also, we plan to improve the visual appearance of the layers and add
interactive map legends. Since the users can show multiple layers in the map
simultaneously, we will pay closer attention to the color pallets used in the layers
(e.g., sufficient color contrast, color-blind safe palette combinations). Lastly, we
will add further visual dimensions to the layers and controls for manipulating
the layers.

The third area focuses on quality assurance. Since the project is getting
larger and composed of several packages that might use the API of others, it
is necessary to do proper testing before publishing new versions. We will also
pay attention to the documentation to better describe the API, including usage
examples.

Acknowledgements. Jǐŕı Hynek was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustainability (NPU II) project
“IT4Innovations excellence in science – LQ1602”. Vı́t Rusňák was supported by ERDF
“CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excel-
lence” (No. CZ.02.1.01/0.0/0.0/16 019/0000822) project. We also thank Progress Flow-
mon and Logimic, which provided usage scenarios and cooperated during the evaluation
of the Geovisto toolkit.

References

1. Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualization. IEEE Trans.
Vis. Comput. Graph. 15(6), 1121–1128 (2009)

2. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans.
Vis. Comput. Graph. 17(12), 2301–2309 (2011). https://doi.org/10.1109/TVCG.
2011.185

https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185


Geovisualization Authoring Toolkit for Industry Use Cases 255

3. Degbelo, A., Kauppinen, T.: Increasing transparency through web maps. In:
Companion Proceedings of the The Web Conference 2018, WWW 2018, pp.
899–904.International World Wide Web Conferences Steering Committee, Geneva
(2018). https://doi.org/10.1145/3184558.3191515

4. Elasticsearch, B.: Maps for Geospatial Analysis (2020). https://www.elastic.co/
maps, Accessed 10 Feb 2020

5. Gao, T., Hullman, J.R., Adar, E., Hecht, B., Diakopoulos, N.: NewsViews: an
automated pipeline for creating custom geovisualizations for news. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014,
pp. 3005–3014. Association for Computing Machinery, New York (2014). https://
doi.org/10.1145/2556288.2557228

6. Grafana Labs: Grafana: The Open Observability Platform (2020). https://grafana.
com/, Accessed 10 June 2020

7. Grammel, L., Bennett, C., Tory, M., Storey, M.A.: A survey of visualization
construction user interfaces. In: Hlawitschka, M., Weinkauf, T. (eds.) EuroVis -
Short Papers. The Eurographics Association (2013). https://doi.org/10.2312/PE.
EuroVisShort.EuroVisShort2013.019-023

8. Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Comput. Graph. Forum 28(3), 983–990 (2009). https://doi.org/10.1111/j.1467-
8659.2009.01450.x

9. Huang, Q., Cervone, G., Jing, D., Chang, C.: DisasterMapper: a CyberGIS frame-
work for disaster management using social media data. In: Proceedings of the 4th
International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data,
BigSpatial 2015, pp. 1–6. Association for Computing Machinery, New York (2015).
https://doi.org/10.1145/2835185.2835189

10. Hynek, J., Kachĺık, J., Rusňák, V.: Geovisto: a toolkit for generic geospatial
data visualization. In: Proceedings of the 16th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications.
SCITEPRESS - Science and Technology Publications (2021). https://doi.org/10.
5220/0010260401010111

11. Li, X., Anselin, L., Koschinsky, J.: GeoDa web: enhancing web-based mapping
with spatial analytics. In: Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL 2015.
Association for Computing Machinery, New York (2015). https://doi.org/10.1145/
2820783.2820792

12. Liu, Z., Thompson, J., et al.: Data illustrator: augmenting vector design tools with
lazy data binding for expressive visualization authoring. In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, pp.
1–13. Association for Computing Machinery, New York (2018). https://doi.org/
10.1145/3173574.3173697

13. Mei, H., Ma, Y., Wei, Y., Chen, W.: The design space of construction tools for
information visualization: a survey. J. Visual Lang. Comput. 44, 120–132 (2018).
https://doi.org/10.1016/j.jvlc.2017.10.001

14. Ren, D., Lee, B., Brehmer, M.: Charticulator: interactive construction of bespoke
chart layouts. IEEE Trans. Vis. Comput. Graph. 25(1), 789–799 (2019)

15. Satyanarayan, A., Heer, J.: Lyra: an interactive visualization design environment.
In: Proceedings of the 16th Eurographics Conference on Visualization, EuroVis
2014, pp. 351–360. Eurographics Association, Goslar, DEU (2014)

16. Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-Lite: a grammar
of interactive graphics. IEEE Trans. Vis. Comput. Graph. 23(1), 341–350 (2017)

https://doi.org/10.1145/3184558.3191515
https://www.elastic.co/maps
https://www.elastic.co/maps
https://doi.org/10.1145/2556288.2557228
https://doi.org/10.1145/2556288.2557228
https://grafana.com/
https://grafana.com/
https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
https://doi.org/10.1111/j.1467-8659.2009.01450.x
https://doi.org/10.1111/j.1467-8659.2009.01450.x
https://doi.org/10.1145/2835185.2835189
https://doi.org/10.5220/0010260401010111
https://doi.org/10.5220/0010260401010111
https://doi.org/10.1145/2820783.2820792
https://doi.org/10.1145/2820783.2820792
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1016/j.jvlc.2017.10.001


256 J. Hynek and V. Rusňák

17. Satyanarayan, A., Russell, R., Hoffswell, J., Heer, J.: Reactive vega: a streaming
dataflow architecture for declarative interactive visualization. IEEE Trans. Vis.
Comput. Graph. 22(1), 659–668 (2015)

18. Tableau Software, LLC.: Mapping Concepts in Tableau (2020). https://help.
tableau.com/current/pro/desktop/en-us/maps build.htm, Accessed 10 Feb 2020

19. Xavier, G., Dodge, S.: An exploratory visualization tool for mapping the relation-
ships between animal movement and the environment. In: Proceedings of the 2nd
ACM SIGSPATIAL International Workshop on Interacting with Maps, MapIn-
teract 2014, pp. 36–42. Association for Computing Machinery, New York (2014).
https://doi.org/10.1145/2677068.2677071

https://help.tableau.com/current/pro/desktop/en-us/maps_build.htm
https://help.tableau.com/current/pro/desktop/en-us/maps_build.htm
https://doi.org/10.1145/2677068.2677071

	Towards Interactive Geovisualization Authoring Toolkit for Industry Use Cases
	1 Introduction
	2 Related Work
	2.1 Geovisualization Types
	2.2 Geovisualization Authoring Approaches
	2.3 Limitations of Current Authoring Tools

	3 Geovisto Prototype
	4 Design Requirements Revision
	4.1 Usability
	4.2 Modularity
	4.3 Configurability
	4.4 Extensibility
	4.5 Accessibility

	5 Architecture
	5.1 Core
	5.2 API

	6 Implementation
	6.1 Layers
	6.2 Controls and Utilities

	7 Case Study: Logimic
	8 Discussion
	8.1 Advantages
	8.2 Limitations

	9 Conclusion and Future Work
	9.1 Future Work

	References




